linux/arch/powerpc/perf/core-book3s.c
<<
>>
Prefs
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <linux/uaccess.h>
  17#include <asm/reg.h>
  18#include <asm/pmc.h>
  19#include <asm/machdep.h>
  20#include <asm/firmware.h>
  21#include <asm/ptrace.h>
  22#include <asm/code-patching.h>
  23
  24#define BHRB_MAX_ENTRIES        32
  25#define BHRB_TARGET             0x0000000000000002
  26#define BHRB_PREDICTION         0x0000000000000001
  27#define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
  28
  29struct cpu_hw_events {
  30        int n_events;
  31        int n_percpu;
  32        int disabled;
  33        int n_added;
  34        int n_limited;
  35        u8  pmcs_enabled;
  36        struct perf_event *event[MAX_HWEVENTS];
  37        u64 events[MAX_HWEVENTS];
  38        unsigned int flags[MAX_HWEVENTS];
  39        unsigned long mmcr[3];
  40        struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  41        u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  42        u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  43        unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  44        unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  45
  46        unsigned int group_flag;
  47        int n_txn_start;
  48
  49        /* BHRB bits */
  50        u64                             bhrb_filter;    /* BHRB HW branch filter */
  51        int                             bhrb_users;
  52        void                            *bhrb_context;
  53        struct  perf_branch_stack       bhrb_stack;
  54        struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
  55};
  56
  57DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  58
  59struct power_pmu *ppmu;
  60
  61/*
  62 * Normally, to ignore kernel events we set the FCS (freeze counters
  63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  64 * hypervisor bit set in the MSR, or if we are running on a processor
  65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  66 * then we need to use the FCHV bit to ignore kernel events.
  67 */
  68static unsigned int freeze_events_kernel = MMCR0_FCS;
  69
  70/*
  71 * 32-bit doesn't have MMCRA but does have an MMCR2,
  72 * and a few other names are different.
  73 */
  74#ifdef CONFIG_PPC32
  75
  76#define MMCR0_FCHV              0
  77#define MMCR0_PMCjCE            MMCR0_PMCnCE
  78#define MMCR0_FC56              0
  79#define MMCR0_PMAO              0
  80#define MMCR0_EBE               0
  81#define MMCR0_PMCC              0
  82#define MMCR0_PMCC_U6           0
  83
  84#define SPRN_MMCRA              SPRN_MMCR2
  85#define MMCRA_SAMPLE_ENABLE     0
  86
  87static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  88{
  89        return 0;
  90}
  91static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  92static inline u32 perf_get_misc_flags(struct pt_regs *regs)
  93{
  94        return 0;
  95}
  96static inline void perf_read_regs(struct pt_regs *regs)
  97{
  98        regs->result = 0;
  99}
 100static inline int perf_intr_is_nmi(struct pt_regs *regs)
 101{
 102        return 0;
 103}
 104
 105static inline int siar_valid(struct pt_regs *regs)
 106{
 107        return 1;
 108}
 109
 110static bool is_ebb_event(struct perf_event *event) { return false; }
 111static int ebb_event_check(struct perf_event *event) { return 0; }
 112static void ebb_event_add(struct perf_event *event) { }
 113static void ebb_switch_out(unsigned long mmcr0) { }
 114static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
 115{
 116        return mmcr0;
 117}
 118
 119static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 120static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 121void power_pmu_flush_branch_stack(void) {}
 122static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 123#endif /* CONFIG_PPC32 */
 124
 125static bool regs_use_siar(struct pt_regs *regs)
 126{
 127        return !!regs->result;
 128}
 129
 130/*
 131 * Things that are specific to 64-bit implementations.
 132 */
 133#ifdef CONFIG_PPC64
 134
 135static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 136{
 137        unsigned long mmcra = regs->dsisr;
 138
 139        if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 140                unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 141                if (slot > 1)
 142                        return 4 * (slot - 1);
 143        }
 144
 145        return 0;
 146}
 147
 148/*
 149 * The user wants a data address recorded.
 150 * If we're not doing instruction sampling, give them the SDAR
 151 * (sampled data address).  If we are doing instruction sampling, then
 152 * only give them the SDAR if it corresponds to the instruction
 153 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 154 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 155 */
 156static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 157{
 158        unsigned long mmcra = regs->dsisr;
 159        bool sdar_valid;
 160
 161        if (ppmu->flags & PPMU_HAS_SIER)
 162                sdar_valid = regs->dar & SIER_SDAR_VALID;
 163        else {
 164                unsigned long sdsync;
 165
 166                if (ppmu->flags & PPMU_SIAR_VALID)
 167                        sdsync = POWER7P_MMCRA_SDAR_VALID;
 168                else if (ppmu->flags & PPMU_ALT_SIPR)
 169                        sdsync = POWER6_MMCRA_SDSYNC;
 170                else
 171                        sdsync = MMCRA_SDSYNC;
 172
 173                sdar_valid = mmcra & sdsync;
 174        }
 175
 176        if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 177                *addrp = mfspr(SPRN_SDAR);
 178}
 179
 180static bool regs_sihv(struct pt_regs *regs)
 181{
 182        unsigned long sihv = MMCRA_SIHV;
 183
 184        if (ppmu->flags & PPMU_HAS_SIER)
 185                return !!(regs->dar & SIER_SIHV);
 186
 187        if (ppmu->flags & PPMU_ALT_SIPR)
 188                sihv = POWER6_MMCRA_SIHV;
 189
 190        return !!(regs->dsisr & sihv);
 191}
 192
 193static bool regs_sipr(struct pt_regs *regs)
 194{
 195        unsigned long sipr = MMCRA_SIPR;
 196
 197        if (ppmu->flags & PPMU_HAS_SIER)
 198                return !!(regs->dar & SIER_SIPR);
 199
 200        if (ppmu->flags & PPMU_ALT_SIPR)
 201                sipr = POWER6_MMCRA_SIPR;
 202
 203        return !!(regs->dsisr & sipr);
 204}
 205
 206static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 207{
 208        if (regs->msr & MSR_PR)
 209                return PERF_RECORD_MISC_USER;
 210        if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 211                return PERF_RECORD_MISC_HYPERVISOR;
 212        return PERF_RECORD_MISC_KERNEL;
 213}
 214
 215static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 216{
 217        bool use_siar = regs_use_siar(regs);
 218
 219        if (!use_siar)
 220                return perf_flags_from_msr(regs);
 221
 222        /*
 223         * If we don't have flags in MMCRA, rather than using
 224         * the MSR, we intuit the flags from the address in
 225         * SIAR which should give slightly more reliable
 226         * results
 227         */
 228        if (ppmu->flags & PPMU_NO_SIPR) {
 229                unsigned long siar = mfspr(SPRN_SIAR);
 230                if (siar >= PAGE_OFFSET)
 231                        return PERF_RECORD_MISC_KERNEL;
 232                return PERF_RECORD_MISC_USER;
 233        }
 234
 235        /* PR has priority over HV, so order below is important */
 236        if (regs_sipr(regs))
 237                return PERF_RECORD_MISC_USER;
 238
 239        if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 240                return PERF_RECORD_MISC_HYPERVISOR;
 241
 242        return PERF_RECORD_MISC_KERNEL;
 243}
 244
 245/*
 246 * Overload regs->dsisr to store MMCRA so we only need to read it once
 247 * on each interrupt.
 248 * Overload regs->dar to store SIER if we have it.
 249 * Overload regs->result to specify whether we should use the MSR (result
 250 * is zero) or the SIAR (result is non zero).
 251 */
 252static inline void perf_read_regs(struct pt_regs *regs)
 253{
 254        unsigned long mmcra = mfspr(SPRN_MMCRA);
 255        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 256        int use_siar;
 257
 258        regs->dsisr = mmcra;
 259
 260        if (ppmu->flags & PPMU_HAS_SIER)
 261                regs->dar = mfspr(SPRN_SIER);
 262
 263        /*
 264         * If this isn't a PMU exception (eg a software event) the SIAR is
 265         * not valid. Use pt_regs.
 266         *
 267         * If it is a marked event use the SIAR.
 268         *
 269         * If the PMU doesn't update the SIAR for non marked events use
 270         * pt_regs.
 271         *
 272         * If the PMU has HV/PR flags then check to see if they
 273         * place the exception in userspace. If so, use pt_regs. In
 274         * continuous sampling mode the SIAR and the PMU exception are
 275         * not synchronised, so they may be many instructions apart.
 276         * This can result in confusing backtraces. We still want
 277         * hypervisor samples as well as samples in the kernel with
 278         * interrupts off hence the userspace check.
 279         */
 280        if (TRAP(regs) != 0xf00)
 281                use_siar = 0;
 282        else if (marked)
 283                use_siar = 1;
 284        else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 285                use_siar = 0;
 286        else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 287                use_siar = 0;
 288        else
 289                use_siar = 1;
 290
 291        regs->result = use_siar;
 292}
 293
 294/*
 295 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 296 * it as an NMI.
 297 */
 298static inline int perf_intr_is_nmi(struct pt_regs *regs)
 299{
 300        return !regs->softe;
 301}
 302
 303/*
 304 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 305 * must be sampled only if the SIAR-valid bit is set.
 306 *
 307 * For unmarked instructions and for processors that don't have the SIAR-Valid
 308 * bit, assume that SIAR is valid.
 309 */
 310static inline int siar_valid(struct pt_regs *regs)
 311{
 312        unsigned long mmcra = regs->dsisr;
 313        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 314
 315        if (marked) {
 316                if (ppmu->flags & PPMU_HAS_SIER)
 317                        return regs->dar & SIER_SIAR_VALID;
 318
 319                if (ppmu->flags & PPMU_SIAR_VALID)
 320                        return mmcra & POWER7P_MMCRA_SIAR_VALID;
 321        }
 322
 323        return 1;
 324}
 325
 326
 327/* Reset all possible BHRB entries */
 328static void power_pmu_bhrb_reset(void)
 329{
 330        asm volatile(PPC_CLRBHRB);
 331}
 332
 333static void power_pmu_bhrb_enable(struct perf_event *event)
 334{
 335        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 336
 337        if (!ppmu->bhrb_nr)
 338                return;
 339
 340        /* Clear BHRB if we changed task context to avoid data leaks */
 341        if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 342                power_pmu_bhrb_reset();
 343                cpuhw->bhrb_context = event->ctx;
 344        }
 345        cpuhw->bhrb_users++;
 346}
 347
 348static void power_pmu_bhrb_disable(struct perf_event *event)
 349{
 350        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 351
 352        if (!ppmu->bhrb_nr)
 353                return;
 354
 355        cpuhw->bhrb_users--;
 356        WARN_ON_ONCE(cpuhw->bhrb_users < 0);
 357
 358        if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 359                /* BHRB cannot be turned off when other
 360                 * events are active on the PMU.
 361                 */
 362
 363                /* avoid stale pointer */
 364                cpuhw->bhrb_context = NULL;
 365        }
 366}
 367
 368/* Called from ctxsw to prevent one process's branch entries to
 369 * mingle with the other process's entries during context switch.
 370 */
 371void power_pmu_flush_branch_stack(void)
 372{
 373        if (ppmu->bhrb_nr)
 374                power_pmu_bhrb_reset();
 375}
 376/* Calculate the to address for a branch */
 377static __u64 power_pmu_bhrb_to(u64 addr)
 378{
 379        unsigned int instr;
 380        int ret;
 381        __u64 target;
 382
 383        if (is_kernel_addr(addr))
 384                return branch_target((unsigned int *)addr);
 385
 386        /* Userspace: need copy instruction here then translate it */
 387        pagefault_disable();
 388        ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 389        if (ret) {
 390                pagefault_enable();
 391                return 0;
 392        }
 393        pagefault_enable();
 394
 395        target = branch_target(&instr);
 396        if ((!target) || (instr & BRANCH_ABSOLUTE))
 397                return target;
 398
 399        /* Translate relative branch target from kernel to user address */
 400        return target - (unsigned long)&instr + addr;
 401}
 402
 403/* Processing BHRB entries */
 404void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 405{
 406        u64 val;
 407        u64 addr;
 408        int r_index, u_index, pred;
 409
 410        r_index = 0;
 411        u_index = 0;
 412        while (r_index < ppmu->bhrb_nr) {
 413                /* Assembly read function */
 414                val = read_bhrb(r_index++);
 415                if (!val)
 416                        /* Terminal marker: End of valid BHRB entries */
 417                        break;
 418                else {
 419                        addr = val & BHRB_EA;
 420                        pred = val & BHRB_PREDICTION;
 421
 422                        if (!addr)
 423                                /* invalid entry */
 424                                continue;
 425
 426                        /* Branches are read most recent first (ie. mfbhrb 0 is
 427                         * the most recent branch).
 428                         * There are two types of valid entries:
 429                         * 1) a target entry which is the to address of a
 430                         *    computed goto like a blr,bctr,btar.  The next
 431                         *    entry read from the bhrb will be branch
 432                         *    corresponding to this target (ie. the actual
 433                         *    blr/bctr/btar instruction).
 434                         * 2) a from address which is an actual branch.  If a
 435                         *    target entry proceeds this, then this is the
 436                         *    matching branch for that target.  If this is not
 437                         *    following a target entry, then this is a branch
 438                         *    where the target is given as an immediate field
 439                         *    in the instruction (ie. an i or b form branch).
 440                         *    In this case we need to read the instruction from
 441                         *    memory to determine the target/to address.
 442                         */
 443
 444                        if (val & BHRB_TARGET) {
 445                                /* Target branches use two entries
 446                                 * (ie. computed gotos/XL form)
 447                                 */
 448                                cpuhw->bhrb_entries[u_index].to = addr;
 449                                cpuhw->bhrb_entries[u_index].mispred = pred;
 450                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 451
 452                                /* Get from address in next entry */
 453                                val = read_bhrb(r_index++);
 454                                addr = val & BHRB_EA;
 455                                if (val & BHRB_TARGET) {
 456                                        /* Shouldn't have two targets in a
 457                                           row.. Reset index and try again */
 458                                        r_index--;
 459                                        addr = 0;
 460                                }
 461                                cpuhw->bhrb_entries[u_index].from = addr;
 462                        } else {
 463                                /* Branches to immediate field 
 464                                   (ie I or B form) */
 465                                cpuhw->bhrb_entries[u_index].from = addr;
 466                                cpuhw->bhrb_entries[u_index].to =
 467                                        power_pmu_bhrb_to(addr);
 468                                cpuhw->bhrb_entries[u_index].mispred = pred;
 469                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 470                        }
 471                        u_index++;
 472
 473                }
 474        }
 475        cpuhw->bhrb_stack.nr = u_index;
 476        return;
 477}
 478
 479static bool is_ebb_event(struct perf_event *event)
 480{
 481        /*
 482         * This could be a per-PMU callback, but we'd rather avoid the cost. We
 483         * check that the PMU supports EBB, meaning those that don't can still
 484         * use bit 63 of the event code for something else if they wish.
 485         */
 486        return (ppmu->flags & PPMU_EBB) &&
 487               ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 488}
 489
 490static int ebb_event_check(struct perf_event *event)
 491{
 492        struct perf_event *leader = event->group_leader;
 493
 494        /* Event and group leader must agree on EBB */
 495        if (is_ebb_event(leader) != is_ebb_event(event))
 496                return -EINVAL;
 497
 498        if (is_ebb_event(event)) {
 499                if (!(event->attach_state & PERF_ATTACH_TASK))
 500                        return -EINVAL;
 501
 502                if (!leader->attr.pinned || !leader->attr.exclusive)
 503                        return -EINVAL;
 504
 505                if (event->attr.inherit || event->attr.sample_period ||
 506                    event->attr.enable_on_exec || event->attr.freq)
 507                        return -EINVAL;
 508        }
 509
 510        return 0;
 511}
 512
 513static void ebb_event_add(struct perf_event *event)
 514{
 515        if (!is_ebb_event(event) || current->thread.used_ebb)
 516                return;
 517
 518        /*
 519         * IFF this is the first time we've added an EBB event, set
 520         * PMXE in the user MMCR0 so we can detect when it's cleared by
 521         * userspace. We need this so that we can context switch while
 522         * userspace is in the EBB handler (where PMXE is 0).
 523         */
 524        current->thread.used_ebb = 1;
 525        current->thread.mmcr0 |= MMCR0_PMXE;
 526}
 527
 528static void ebb_switch_out(unsigned long mmcr0)
 529{
 530        if (!(mmcr0 & MMCR0_EBE))
 531                return;
 532
 533        current->thread.siar  = mfspr(SPRN_SIAR);
 534        current->thread.sier  = mfspr(SPRN_SIER);
 535        current->thread.sdar  = mfspr(SPRN_SDAR);
 536        current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 537        current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 538}
 539
 540static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
 541{
 542        if (!ebb)
 543                goto out;
 544
 545        /* Enable EBB and read/write to all 6 PMCs for userspace */
 546        mmcr0 |= MMCR0_EBE | MMCR0_PMCC_U6;
 547
 548        /* Add any bits from the user reg, FC or PMAO */
 549        mmcr0 |= current->thread.mmcr0;
 550
 551        /* Be careful not to set PMXE if userspace had it cleared */
 552        if (!(current->thread.mmcr0 & MMCR0_PMXE))
 553                mmcr0 &= ~MMCR0_PMXE;
 554
 555        mtspr(SPRN_SIAR, current->thread.siar);
 556        mtspr(SPRN_SIER, current->thread.sier);
 557        mtspr(SPRN_SDAR, current->thread.sdar);
 558        mtspr(SPRN_MMCR2, current->thread.mmcr2);
 559out:
 560        return mmcr0;
 561}
 562#endif /* CONFIG_PPC64 */
 563
 564static void perf_event_interrupt(struct pt_regs *regs);
 565
 566void perf_event_print_debug(void)
 567{
 568}
 569
 570/*
 571 * Read one performance monitor counter (PMC).
 572 */
 573static unsigned long read_pmc(int idx)
 574{
 575        unsigned long val;
 576
 577        switch (idx) {
 578        case 1:
 579                val = mfspr(SPRN_PMC1);
 580                break;
 581        case 2:
 582                val = mfspr(SPRN_PMC2);
 583                break;
 584        case 3:
 585                val = mfspr(SPRN_PMC3);
 586                break;
 587        case 4:
 588                val = mfspr(SPRN_PMC4);
 589                break;
 590        case 5:
 591                val = mfspr(SPRN_PMC5);
 592                break;
 593        case 6:
 594                val = mfspr(SPRN_PMC6);
 595                break;
 596#ifdef CONFIG_PPC64
 597        case 7:
 598                val = mfspr(SPRN_PMC7);
 599                break;
 600        case 8:
 601                val = mfspr(SPRN_PMC8);
 602                break;
 603#endif /* CONFIG_PPC64 */
 604        default:
 605                printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 606                val = 0;
 607        }
 608        return val;
 609}
 610
 611/*
 612 * Write one PMC.
 613 */
 614static void write_pmc(int idx, unsigned long val)
 615{
 616        switch (idx) {
 617        case 1:
 618                mtspr(SPRN_PMC1, val);
 619                break;
 620        case 2:
 621                mtspr(SPRN_PMC2, val);
 622                break;
 623        case 3:
 624                mtspr(SPRN_PMC3, val);
 625                break;
 626        case 4:
 627                mtspr(SPRN_PMC4, val);
 628                break;
 629        case 5:
 630                mtspr(SPRN_PMC5, val);
 631                break;
 632        case 6:
 633                mtspr(SPRN_PMC6, val);
 634                break;
 635#ifdef CONFIG_PPC64
 636        case 7:
 637                mtspr(SPRN_PMC7, val);
 638                break;
 639        case 8:
 640                mtspr(SPRN_PMC8, val);
 641                break;
 642#endif /* CONFIG_PPC64 */
 643        default:
 644                printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 645        }
 646}
 647
 648/*
 649 * Check if a set of events can all go on the PMU at once.
 650 * If they can't, this will look at alternative codes for the events
 651 * and see if any combination of alternative codes is feasible.
 652 * The feasible set is returned in event_id[].
 653 */
 654static int power_check_constraints(struct cpu_hw_events *cpuhw,
 655                                   u64 event_id[], unsigned int cflags[],
 656                                   int n_ev)
 657{
 658        unsigned long mask, value, nv;
 659        unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 660        int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 661        int i, j;
 662        unsigned long addf = ppmu->add_fields;
 663        unsigned long tadd = ppmu->test_adder;
 664
 665        if (n_ev > ppmu->n_counter)
 666                return -1;
 667
 668        /* First see if the events will go on as-is */
 669        for (i = 0; i < n_ev; ++i) {
 670                if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 671                    && !ppmu->limited_pmc_event(event_id[i])) {
 672                        ppmu->get_alternatives(event_id[i], cflags[i],
 673                                               cpuhw->alternatives[i]);
 674                        event_id[i] = cpuhw->alternatives[i][0];
 675                }
 676                if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 677                                         &cpuhw->avalues[i][0]))
 678                        return -1;
 679        }
 680        value = mask = 0;
 681        for (i = 0; i < n_ev; ++i) {
 682                nv = (value | cpuhw->avalues[i][0]) +
 683                        (value & cpuhw->avalues[i][0] & addf);
 684                if ((((nv + tadd) ^ value) & mask) != 0 ||
 685                    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 686                     cpuhw->amasks[i][0]) != 0)
 687                        break;
 688                value = nv;
 689                mask |= cpuhw->amasks[i][0];
 690        }
 691        if (i == n_ev)
 692                return 0;       /* all OK */
 693
 694        /* doesn't work, gather alternatives... */
 695        if (!ppmu->get_alternatives)
 696                return -1;
 697        for (i = 0; i < n_ev; ++i) {
 698                choice[i] = 0;
 699                n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 700                                                  cpuhw->alternatives[i]);
 701                for (j = 1; j < n_alt[i]; ++j)
 702                        ppmu->get_constraint(cpuhw->alternatives[i][j],
 703                                             &cpuhw->amasks[i][j],
 704                                             &cpuhw->avalues[i][j]);
 705        }
 706
 707        /* enumerate all possibilities and see if any will work */
 708        i = 0;
 709        j = -1;
 710        value = mask = nv = 0;
 711        while (i < n_ev) {
 712                if (j >= 0) {
 713                        /* we're backtracking, restore context */
 714                        value = svalues[i];
 715                        mask = smasks[i];
 716                        j = choice[i];
 717                }
 718                /*
 719                 * See if any alternative k for event_id i,
 720                 * where k > j, will satisfy the constraints.
 721                 */
 722                while (++j < n_alt[i]) {
 723                        nv = (value | cpuhw->avalues[i][j]) +
 724                                (value & cpuhw->avalues[i][j] & addf);
 725                        if ((((nv + tadd) ^ value) & mask) == 0 &&
 726                            (((nv + tadd) ^ cpuhw->avalues[i][j])
 727                             & cpuhw->amasks[i][j]) == 0)
 728                                break;
 729                }
 730                if (j >= n_alt[i]) {
 731                        /*
 732                         * No feasible alternative, backtrack
 733                         * to event_id i-1 and continue enumerating its
 734                         * alternatives from where we got up to.
 735                         */
 736                        if (--i < 0)
 737                                return -1;
 738                } else {
 739                        /*
 740                         * Found a feasible alternative for event_id i,
 741                         * remember where we got up to with this event_id,
 742                         * go on to the next event_id, and start with
 743                         * the first alternative for it.
 744                         */
 745                        choice[i] = j;
 746                        svalues[i] = value;
 747                        smasks[i] = mask;
 748                        value = nv;
 749                        mask |= cpuhw->amasks[i][j];
 750                        ++i;
 751                        j = -1;
 752                }
 753        }
 754
 755        /* OK, we have a feasible combination, tell the caller the solution */
 756        for (i = 0; i < n_ev; ++i)
 757                event_id[i] = cpuhw->alternatives[i][choice[i]];
 758        return 0;
 759}
 760
 761/*
 762 * Check if newly-added events have consistent settings for
 763 * exclude_{user,kernel,hv} with each other and any previously
 764 * added events.
 765 */
 766static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 767                          int n_prev, int n_new)
 768{
 769        int eu = 0, ek = 0, eh = 0;
 770        int i, n, first;
 771        struct perf_event *event;
 772
 773        n = n_prev + n_new;
 774        if (n <= 1)
 775                return 0;
 776
 777        first = 1;
 778        for (i = 0; i < n; ++i) {
 779                if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 780                        cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 781                        continue;
 782                }
 783                event = ctrs[i];
 784                if (first) {
 785                        eu = event->attr.exclude_user;
 786                        ek = event->attr.exclude_kernel;
 787                        eh = event->attr.exclude_hv;
 788                        first = 0;
 789                } else if (event->attr.exclude_user != eu ||
 790                           event->attr.exclude_kernel != ek ||
 791                           event->attr.exclude_hv != eh) {
 792                        return -EAGAIN;
 793                }
 794        }
 795
 796        if (eu || ek || eh)
 797                for (i = 0; i < n; ++i)
 798                        if (cflags[i] & PPMU_LIMITED_PMC_OK)
 799                                cflags[i] |= PPMU_LIMITED_PMC_REQD;
 800
 801        return 0;
 802}
 803
 804static u64 check_and_compute_delta(u64 prev, u64 val)
 805{
 806        u64 delta = (val - prev) & 0xfffffffful;
 807
 808        /*
 809         * POWER7 can roll back counter values, if the new value is smaller
 810         * than the previous value it will cause the delta and the counter to
 811         * have bogus values unless we rolled a counter over.  If a coutner is
 812         * rolled back, it will be smaller, but within 256, which is the maximum
 813         * number of events to rollback at once.  If we dectect a rollback
 814         * return 0.  This can lead to a small lack of precision in the
 815         * counters.
 816         */
 817        if (prev > val && (prev - val) < 256)
 818                delta = 0;
 819
 820        return delta;
 821}
 822
 823static void power_pmu_read(struct perf_event *event)
 824{
 825        s64 val, delta, prev;
 826
 827        if (event->hw.state & PERF_HES_STOPPED)
 828                return;
 829
 830        if (!event->hw.idx)
 831                return;
 832
 833        if (is_ebb_event(event)) {
 834                val = read_pmc(event->hw.idx);
 835                local64_set(&event->hw.prev_count, val);
 836                return;
 837        }
 838
 839        /*
 840         * Performance monitor interrupts come even when interrupts
 841         * are soft-disabled, as long as interrupts are hard-enabled.
 842         * Therefore we treat them like NMIs.
 843         */
 844        do {
 845                prev = local64_read(&event->hw.prev_count);
 846                barrier();
 847                val = read_pmc(event->hw.idx);
 848                delta = check_and_compute_delta(prev, val);
 849                if (!delta)
 850                        return;
 851        } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
 852
 853        local64_add(delta, &event->count);
 854        local64_sub(delta, &event->hw.period_left);
 855}
 856
 857/*
 858 * On some machines, PMC5 and PMC6 can't be written, don't respect
 859 * the freeze conditions, and don't generate interrupts.  This tells
 860 * us if `event' is using such a PMC.
 861 */
 862static int is_limited_pmc(int pmcnum)
 863{
 864        return (ppmu->flags & PPMU_LIMITED_PMC5_6)
 865                && (pmcnum == 5 || pmcnum == 6);
 866}
 867
 868static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
 869                                    unsigned long pmc5, unsigned long pmc6)
 870{
 871        struct perf_event *event;
 872        u64 val, prev, delta;
 873        int i;
 874
 875        for (i = 0; i < cpuhw->n_limited; ++i) {
 876                event = cpuhw->limited_counter[i];
 877                if (!event->hw.idx)
 878                        continue;
 879                val = (event->hw.idx == 5) ? pmc5 : pmc6;
 880                prev = local64_read(&event->hw.prev_count);
 881                event->hw.idx = 0;
 882                delta = check_and_compute_delta(prev, val);
 883                if (delta)
 884                        local64_add(delta, &event->count);
 885        }
 886}
 887
 888static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
 889                                  unsigned long pmc5, unsigned long pmc6)
 890{
 891        struct perf_event *event;
 892        u64 val, prev;
 893        int i;
 894
 895        for (i = 0; i < cpuhw->n_limited; ++i) {
 896                event = cpuhw->limited_counter[i];
 897                event->hw.idx = cpuhw->limited_hwidx[i];
 898                val = (event->hw.idx == 5) ? pmc5 : pmc6;
 899                prev = local64_read(&event->hw.prev_count);
 900                if (check_and_compute_delta(prev, val))
 901                        local64_set(&event->hw.prev_count, val);
 902                perf_event_update_userpage(event);
 903        }
 904}
 905
 906/*
 907 * Since limited events don't respect the freeze conditions, we
 908 * have to read them immediately after freezing or unfreezing the
 909 * other events.  We try to keep the values from the limited
 910 * events as consistent as possible by keeping the delay (in
 911 * cycles and instructions) between freezing/unfreezing and reading
 912 * the limited events as small and consistent as possible.
 913 * Therefore, if any limited events are in use, we read them
 914 * both, and always in the same order, to minimize variability,
 915 * and do it inside the same asm that writes MMCR0.
 916 */
 917static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
 918{
 919        unsigned long pmc5, pmc6;
 920
 921        if (!cpuhw->n_limited) {
 922                mtspr(SPRN_MMCR0, mmcr0);
 923                return;
 924        }
 925
 926        /*
 927         * Write MMCR0, then read PMC5 and PMC6 immediately.
 928         * To ensure we don't get a performance monitor interrupt
 929         * between writing MMCR0 and freezing/thawing the limited
 930         * events, we first write MMCR0 with the event overflow
 931         * interrupt enable bits turned off.
 932         */
 933        asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
 934                     : "=&r" (pmc5), "=&r" (pmc6)
 935                     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
 936                       "i" (SPRN_MMCR0),
 937                       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
 938
 939        if (mmcr0 & MMCR0_FC)
 940                freeze_limited_counters(cpuhw, pmc5, pmc6);
 941        else
 942                thaw_limited_counters(cpuhw, pmc5, pmc6);
 943
 944        /*
 945         * Write the full MMCR0 including the event overflow interrupt
 946         * enable bits, if necessary.
 947         */
 948        if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
 949                mtspr(SPRN_MMCR0, mmcr0);
 950}
 951
 952/*
 953 * Disable all events to prevent PMU interrupts and to allow
 954 * events to be added or removed.
 955 */
 956static void power_pmu_disable(struct pmu *pmu)
 957{
 958        struct cpu_hw_events *cpuhw;
 959        unsigned long flags, mmcr0, val;
 960
 961        if (!ppmu)
 962                return;
 963        local_irq_save(flags);
 964        cpuhw = &__get_cpu_var(cpu_hw_events);
 965
 966        if (!cpuhw->disabled) {
 967                /*
 968                 * Check if we ever enabled the PMU on this cpu.
 969                 */
 970                if (!cpuhw->pmcs_enabled) {
 971                        ppc_enable_pmcs();
 972                        cpuhw->pmcs_enabled = 1;
 973                }
 974
 975                /*
 976                 * Set the 'freeze counters' bit, clear EBE/PMCC/PMAO/FC56.
 977                 */
 978                val  = mmcr0 = mfspr(SPRN_MMCR0);
 979                val |= MMCR0_FC;
 980                val &= ~(MMCR0_EBE | MMCR0_PMCC | MMCR0_PMAO | MMCR0_FC56);
 981
 982                /*
 983                 * The barrier is to make sure the mtspr has been
 984                 * executed and the PMU has frozen the events etc.
 985                 * before we return.
 986                 */
 987                write_mmcr0(cpuhw, val);
 988                mb();
 989
 990                /*
 991                 * Disable instruction sampling if it was enabled
 992                 */
 993                if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
 994                        mtspr(SPRN_MMCRA,
 995                              cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 996                        mb();
 997                }
 998
 999                cpuhw->disabled = 1;
1000                cpuhw->n_added = 0;
1001
1002                ebb_switch_out(mmcr0);
1003        }
1004
1005        local_irq_restore(flags);
1006}
1007
1008/*
1009 * Re-enable all events if disable == 0.
1010 * If we were previously disabled and events were added, then
1011 * put the new config on the PMU.
1012 */
1013static void power_pmu_enable(struct pmu *pmu)
1014{
1015        struct perf_event *event;
1016        struct cpu_hw_events *cpuhw;
1017        unsigned long flags;
1018        long i;
1019        unsigned long val, mmcr0;
1020        s64 left;
1021        unsigned int hwc_index[MAX_HWEVENTS];
1022        int n_lim;
1023        int idx;
1024        bool ebb;
1025
1026        if (!ppmu)
1027                return;
1028        local_irq_save(flags);
1029
1030        cpuhw = &__get_cpu_var(cpu_hw_events);
1031        if (!cpuhw->disabled)
1032                goto out;
1033
1034        if (cpuhw->n_events == 0) {
1035                ppc_set_pmu_inuse(0);
1036                goto out;
1037        }
1038
1039        cpuhw->disabled = 0;
1040
1041        /*
1042         * EBB requires an exclusive group and all events must have the EBB
1043         * flag set, or not set, so we can just check a single event. Also we
1044         * know we have at least one event.
1045         */
1046        ebb = is_ebb_event(cpuhw->event[0]);
1047
1048        /*
1049         * If we didn't change anything, or only removed events,
1050         * no need to recalculate MMCR* settings and reset the PMCs.
1051         * Just reenable the PMU with the current MMCR* settings
1052         * (possibly updated for removal of events).
1053         */
1054        if (!cpuhw->n_added) {
1055                mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1056                mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1057                goto out_enable;
1058        }
1059
1060        /*
1061         * Compute MMCR* values for the new set of events
1062         */
1063        if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1064                               cpuhw->mmcr)) {
1065                /* shouldn't ever get here */
1066                printk(KERN_ERR "oops compute_mmcr failed\n");
1067                goto out;
1068        }
1069
1070        /*
1071         * Add in MMCR0 freeze bits corresponding to the
1072         * attr.exclude_* bits for the first event.
1073         * We have already checked that all events have the
1074         * same values for these bits as the first event.
1075         */
1076        event = cpuhw->event[0];
1077        if (event->attr.exclude_user)
1078                cpuhw->mmcr[0] |= MMCR0_FCP;
1079        if (event->attr.exclude_kernel)
1080                cpuhw->mmcr[0] |= freeze_events_kernel;
1081        if (event->attr.exclude_hv)
1082                cpuhw->mmcr[0] |= MMCR0_FCHV;
1083
1084        /*
1085         * Write the new configuration to MMCR* with the freeze
1086         * bit set and set the hardware events to their initial values.
1087         * Then unfreeze the events.
1088         */
1089        ppc_set_pmu_inuse(1);
1090        mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1091        mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1092        mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1093                                | MMCR0_FC);
1094
1095        /*
1096         * Read off any pre-existing events that need to move
1097         * to another PMC.
1098         */
1099        for (i = 0; i < cpuhw->n_events; ++i) {
1100                event = cpuhw->event[i];
1101                if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1102                        power_pmu_read(event);
1103                        write_pmc(event->hw.idx, 0);
1104                        event->hw.idx = 0;
1105                }
1106        }
1107
1108        /*
1109         * Initialize the PMCs for all the new and moved events.
1110         */
1111        cpuhw->n_limited = n_lim = 0;
1112        for (i = 0; i < cpuhw->n_events; ++i) {
1113                event = cpuhw->event[i];
1114                if (event->hw.idx)
1115                        continue;
1116                idx = hwc_index[i] + 1;
1117                if (is_limited_pmc(idx)) {
1118                        cpuhw->limited_counter[n_lim] = event;
1119                        cpuhw->limited_hwidx[n_lim] = idx;
1120                        ++n_lim;
1121                        continue;
1122                }
1123
1124                if (ebb)
1125                        val = local64_read(&event->hw.prev_count);
1126                else {
1127                        val = 0;
1128                        if (event->hw.sample_period) {
1129                                left = local64_read(&event->hw.period_left);
1130                                if (left < 0x80000000L)
1131                                        val = 0x80000000L - left;
1132                        }
1133                        local64_set(&event->hw.prev_count, val);
1134                }
1135
1136                event->hw.idx = idx;
1137                if (event->hw.state & PERF_HES_STOPPED)
1138                        val = 0;
1139                write_pmc(idx, val);
1140
1141                perf_event_update_userpage(event);
1142        }
1143        cpuhw->n_limited = n_lim;
1144        cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1145
1146 out_enable:
1147        mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);
1148
1149        mb();
1150        write_mmcr0(cpuhw, mmcr0);
1151
1152        /*
1153         * Enable instruction sampling if necessary
1154         */
1155        if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1156                mb();
1157                mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1158        }
1159
1160 out:
1161        if (cpuhw->bhrb_users)
1162                ppmu->config_bhrb(cpuhw->bhrb_filter);
1163
1164        local_irq_restore(flags);
1165}
1166
1167static int collect_events(struct perf_event *group, int max_count,
1168                          struct perf_event *ctrs[], u64 *events,
1169                          unsigned int *flags)
1170{
1171        int n = 0;
1172        struct perf_event *event;
1173
1174        if (!is_software_event(group)) {
1175                if (n >= max_count)
1176                        return -1;
1177                ctrs[n] = group;
1178                flags[n] = group->hw.event_base;
1179                events[n++] = group->hw.config;
1180        }
1181        list_for_each_entry(event, &group->sibling_list, group_entry) {
1182                if (!is_software_event(event) &&
1183                    event->state != PERF_EVENT_STATE_OFF) {
1184                        if (n >= max_count)
1185                                return -1;
1186                        ctrs[n] = event;
1187                        flags[n] = event->hw.event_base;
1188                        events[n++] = event->hw.config;
1189                }
1190        }
1191        return n;
1192}
1193
1194/*
1195 * Add a event to the PMU.
1196 * If all events are not already frozen, then we disable and
1197 * re-enable the PMU in order to get hw_perf_enable to do the
1198 * actual work of reconfiguring the PMU.
1199 */
1200static int power_pmu_add(struct perf_event *event, int ef_flags)
1201{
1202        struct cpu_hw_events *cpuhw;
1203        unsigned long flags;
1204        int n0;
1205        int ret = -EAGAIN;
1206
1207        local_irq_save(flags);
1208        perf_pmu_disable(event->pmu);
1209
1210        /*
1211         * Add the event to the list (if there is room)
1212         * and check whether the total set is still feasible.
1213         */
1214        cpuhw = &__get_cpu_var(cpu_hw_events);
1215        n0 = cpuhw->n_events;
1216        if (n0 >= ppmu->n_counter)
1217                goto out;
1218        cpuhw->event[n0] = event;
1219        cpuhw->events[n0] = event->hw.config;
1220        cpuhw->flags[n0] = event->hw.event_base;
1221
1222        /*
1223         * This event may have been disabled/stopped in record_and_restart()
1224         * because we exceeded the ->event_limit. If re-starting the event,
1225         * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1226         * notification is re-enabled.
1227         */
1228        if (!(ef_flags & PERF_EF_START))
1229                event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1230        else
1231                event->hw.state = 0;
1232
1233        /*
1234         * If group events scheduling transaction was started,
1235         * skip the schedulability test here, it will be performed
1236         * at commit time(->commit_txn) as a whole
1237         */
1238        if (cpuhw->group_flag & PERF_EVENT_TXN)
1239                goto nocheck;
1240
1241        if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1242                goto out;
1243        if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1244                goto out;
1245        event->hw.config = cpuhw->events[n0];
1246
1247nocheck:
1248        ebb_event_add(event);
1249
1250        ++cpuhw->n_events;
1251        ++cpuhw->n_added;
1252
1253        ret = 0;
1254 out:
1255        if (has_branch_stack(event)) {
1256                power_pmu_bhrb_enable(event);
1257                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1258                                        event->attr.branch_sample_type);
1259        }
1260
1261        perf_pmu_enable(event->pmu);
1262        local_irq_restore(flags);
1263        return ret;
1264}
1265
1266/*
1267 * Remove a event from the PMU.
1268 */
1269static void power_pmu_del(struct perf_event *event, int ef_flags)
1270{
1271        struct cpu_hw_events *cpuhw;
1272        long i;
1273        unsigned long flags;
1274
1275        local_irq_save(flags);
1276        perf_pmu_disable(event->pmu);
1277
1278        power_pmu_read(event);
1279
1280        cpuhw = &__get_cpu_var(cpu_hw_events);
1281        for (i = 0; i < cpuhw->n_events; ++i) {
1282                if (event == cpuhw->event[i]) {
1283                        while (++i < cpuhw->n_events) {
1284                                cpuhw->event[i-1] = cpuhw->event[i];
1285                                cpuhw->events[i-1] = cpuhw->events[i];
1286                                cpuhw->flags[i-1] = cpuhw->flags[i];
1287                        }
1288                        --cpuhw->n_events;
1289                        ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1290                        if (event->hw.idx) {
1291                                write_pmc(event->hw.idx, 0);
1292                                event->hw.idx = 0;
1293                        }
1294                        perf_event_update_userpage(event);
1295                        break;
1296                }
1297        }
1298        for (i = 0; i < cpuhw->n_limited; ++i)
1299                if (event == cpuhw->limited_counter[i])
1300                        break;
1301        if (i < cpuhw->n_limited) {
1302                while (++i < cpuhw->n_limited) {
1303                        cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1304                        cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1305                }
1306                --cpuhw->n_limited;
1307        }
1308        if (cpuhw->n_events == 0) {
1309                /* disable exceptions if no events are running */
1310                cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1311        }
1312
1313        if (has_branch_stack(event))
1314                power_pmu_bhrb_disable(event);
1315
1316        perf_pmu_enable(event->pmu);
1317        local_irq_restore(flags);
1318}
1319
1320/*
1321 * POWER-PMU does not support disabling individual counters, hence
1322 * program their cycle counter to their max value and ignore the interrupts.
1323 */
1324
1325static void power_pmu_start(struct perf_event *event, int ef_flags)
1326{
1327        unsigned long flags;
1328        s64 left;
1329        unsigned long val;
1330
1331        if (!event->hw.idx || !event->hw.sample_period)
1332                return;
1333
1334        if (!(event->hw.state & PERF_HES_STOPPED))
1335                return;
1336
1337        if (ef_flags & PERF_EF_RELOAD)
1338                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1339
1340        local_irq_save(flags);
1341        perf_pmu_disable(event->pmu);
1342
1343        event->hw.state = 0;
1344        left = local64_read(&event->hw.period_left);
1345
1346        val = 0;
1347        if (left < 0x80000000L)
1348                val = 0x80000000L - left;
1349
1350        write_pmc(event->hw.idx, val);
1351
1352        perf_event_update_userpage(event);
1353        perf_pmu_enable(event->pmu);
1354        local_irq_restore(flags);
1355}
1356
1357static void power_pmu_stop(struct perf_event *event, int ef_flags)
1358{
1359        unsigned long flags;
1360
1361        if (!event->hw.idx || !event->hw.sample_period)
1362                return;
1363
1364        if (event->hw.state & PERF_HES_STOPPED)
1365                return;
1366
1367        local_irq_save(flags);
1368        perf_pmu_disable(event->pmu);
1369
1370        power_pmu_read(event);
1371        event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1372        write_pmc(event->hw.idx, 0);
1373
1374        perf_event_update_userpage(event);
1375        perf_pmu_enable(event->pmu);
1376        local_irq_restore(flags);
1377}
1378
1379/*
1380 * Start group events scheduling transaction
1381 * Set the flag to make pmu::enable() not perform the
1382 * schedulability test, it will be performed at commit time
1383 */
1384void power_pmu_start_txn(struct pmu *pmu)
1385{
1386        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1387
1388        perf_pmu_disable(pmu);
1389        cpuhw->group_flag |= PERF_EVENT_TXN;
1390        cpuhw->n_txn_start = cpuhw->n_events;
1391}
1392
1393/*
1394 * Stop group events scheduling transaction
1395 * Clear the flag and pmu::enable() will perform the
1396 * schedulability test.
1397 */
1398void power_pmu_cancel_txn(struct pmu *pmu)
1399{
1400        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1401
1402        cpuhw->group_flag &= ~PERF_EVENT_TXN;
1403        perf_pmu_enable(pmu);
1404}
1405
1406/*
1407 * Commit group events scheduling transaction
1408 * Perform the group schedulability test as a whole
1409 * Return 0 if success
1410 */
1411int power_pmu_commit_txn(struct pmu *pmu)
1412{
1413        struct cpu_hw_events *cpuhw;
1414        long i, n;
1415
1416        if (!ppmu)
1417                return -EAGAIN;
1418        cpuhw = &__get_cpu_var(cpu_hw_events);
1419        n = cpuhw->n_events;
1420        if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1421                return -EAGAIN;
1422        i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1423        if (i < 0)
1424                return -EAGAIN;
1425
1426        for (i = cpuhw->n_txn_start; i < n; ++i)
1427                cpuhw->event[i]->hw.config = cpuhw->events[i];
1428
1429        cpuhw->group_flag &= ~PERF_EVENT_TXN;
1430        perf_pmu_enable(pmu);
1431        return 0;
1432}
1433
1434/*
1435 * Return 1 if we might be able to put event on a limited PMC,
1436 * or 0 if not.
1437 * A event can only go on a limited PMC if it counts something
1438 * that a limited PMC can count, doesn't require interrupts, and
1439 * doesn't exclude any processor mode.
1440 */
1441static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1442                                 unsigned int flags)
1443{
1444        int n;
1445        u64 alt[MAX_EVENT_ALTERNATIVES];
1446
1447        if (event->attr.exclude_user
1448            || event->attr.exclude_kernel
1449            || event->attr.exclude_hv
1450            || event->attr.sample_period)
1451                return 0;
1452
1453        if (ppmu->limited_pmc_event(ev))
1454                return 1;
1455
1456        /*
1457         * The requested event_id isn't on a limited PMC already;
1458         * see if any alternative code goes on a limited PMC.
1459         */
1460        if (!ppmu->get_alternatives)
1461                return 0;
1462
1463        flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1464        n = ppmu->get_alternatives(ev, flags, alt);
1465
1466        return n > 0;
1467}
1468
1469/*
1470 * Find an alternative event_id that goes on a normal PMC, if possible,
1471 * and return the event_id code, or 0 if there is no such alternative.
1472 * (Note: event_id code 0 is "don't count" on all machines.)
1473 */
1474static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1475{
1476        u64 alt[MAX_EVENT_ALTERNATIVES];
1477        int n;
1478
1479        flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1480        n = ppmu->get_alternatives(ev, flags, alt);
1481        if (!n)
1482                return 0;
1483        return alt[0];
1484}
1485
1486/* Number of perf_events counting hardware events */
1487static atomic_t num_events;
1488/* Used to avoid races in calling reserve/release_pmc_hardware */
1489static DEFINE_MUTEX(pmc_reserve_mutex);
1490
1491/*
1492 * Release the PMU if this is the last perf_event.
1493 */
1494static void hw_perf_event_destroy(struct perf_event *event)
1495{
1496        if (!atomic_add_unless(&num_events, -1, 1)) {
1497                mutex_lock(&pmc_reserve_mutex);
1498                if (atomic_dec_return(&num_events) == 0)
1499                        release_pmc_hardware();
1500                mutex_unlock(&pmc_reserve_mutex);
1501        }
1502}
1503
1504/*
1505 * Translate a generic cache event_id config to a raw event_id code.
1506 */
1507static int hw_perf_cache_event(u64 config, u64 *eventp)
1508{
1509        unsigned long type, op, result;
1510        int ev;
1511
1512        if (!ppmu->cache_events)
1513                return -EINVAL;
1514
1515        /* unpack config */
1516        type = config & 0xff;
1517        op = (config >> 8) & 0xff;
1518        result = (config >> 16) & 0xff;
1519
1520        if (type >= PERF_COUNT_HW_CACHE_MAX ||
1521            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1522            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1523                return -EINVAL;
1524
1525        ev = (*ppmu->cache_events)[type][op][result];
1526        if (ev == 0)
1527                return -EOPNOTSUPP;
1528        if (ev == -1)
1529                return -EINVAL;
1530        *eventp = ev;
1531        return 0;
1532}
1533
1534static int power_pmu_event_init(struct perf_event *event)
1535{
1536        u64 ev;
1537        unsigned long flags;
1538        struct perf_event *ctrs[MAX_HWEVENTS];
1539        u64 events[MAX_HWEVENTS];
1540        unsigned int cflags[MAX_HWEVENTS];
1541        int n;
1542        int err;
1543        struct cpu_hw_events *cpuhw;
1544
1545        if (!ppmu)
1546                return -ENOENT;
1547
1548        if (has_branch_stack(event)) {
1549                /* PMU has BHRB enabled */
1550                if (!(ppmu->flags & PPMU_BHRB))
1551                        return -EOPNOTSUPP;
1552        }
1553
1554        switch (event->attr.type) {
1555        case PERF_TYPE_HARDWARE:
1556                ev = event->attr.config;
1557                if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1558                        return -EOPNOTSUPP;
1559                ev = ppmu->generic_events[ev];
1560                break;
1561        case PERF_TYPE_HW_CACHE:
1562                err = hw_perf_cache_event(event->attr.config, &ev);
1563                if (err)
1564                        return err;
1565                break;
1566        case PERF_TYPE_RAW:
1567                ev = event->attr.config;
1568                break;
1569        default:
1570                return -ENOENT;
1571        }
1572
1573        event->hw.config_base = ev;
1574        event->hw.idx = 0;
1575
1576        /*
1577         * If we are not running on a hypervisor, force the
1578         * exclude_hv bit to 0 so that we don't care what
1579         * the user set it to.
1580         */
1581        if (!firmware_has_feature(FW_FEATURE_LPAR))
1582                event->attr.exclude_hv = 0;
1583
1584        /*
1585         * If this is a per-task event, then we can use
1586         * PM_RUN_* events interchangeably with their non RUN_*
1587         * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1588         * XXX we should check if the task is an idle task.
1589         */
1590        flags = 0;
1591        if (event->attach_state & PERF_ATTACH_TASK)
1592                flags |= PPMU_ONLY_COUNT_RUN;
1593
1594        /*
1595         * If this machine has limited events, check whether this
1596         * event_id could go on a limited event.
1597         */
1598        if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1599                if (can_go_on_limited_pmc(event, ev, flags)) {
1600                        flags |= PPMU_LIMITED_PMC_OK;
1601                } else if (ppmu->limited_pmc_event(ev)) {
1602                        /*
1603                         * The requested event_id is on a limited PMC,
1604                         * but we can't use a limited PMC; see if any
1605                         * alternative goes on a normal PMC.
1606                         */
1607                        ev = normal_pmc_alternative(ev, flags);
1608                        if (!ev)
1609                                return -EINVAL;
1610                }
1611        }
1612
1613        /* Extra checks for EBB */
1614        err = ebb_event_check(event);
1615        if (err)
1616                return err;
1617
1618        /*
1619         * If this is in a group, check if it can go on with all the
1620         * other hardware events in the group.  We assume the event
1621         * hasn't been linked into its leader's sibling list at this point.
1622         */
1623        n = 0;
1624        if (event->group_leader != event) {
1625                n = collect_events(event->group_leader, ppmu->n_counter - 1,
1626                                   ctrs, events, cflags);
1627                if (n < 0)
1628                        return -EINVAL;
1629        }
1630        events[n] = ev;
1631        ctrs[n] = event;
1632        cflags[n] = flags;
1633        if (check_excludes(ctrs, cflags, n, 1))
1634                return -EINVAL;
1635
1636        cpuhw = &get_cpu_var(cpu_hw_events);
1637        err = power_check_constraints(cpuhw, events, cflags, n + 1);
1638
1639        if (has_branch_stack(event)) {
1640                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1641                                        event->attr.branch_sample_type);
1642
1643                if(cpuhw->bhrb_filter == -1)
1644                        return -EOPNOTSUPP;
1645        }
1646
1647        put_cpu_var(cpu_hw_events);
1648        if (err)
1649                return -EINVAL;
1650
1651        event->hw.config = events[n];
1652        event->hw.event_base = cflags[n];
1653        event->hw.last_period = event->hw.sample_period;
1654        local64_set(&event->hw.period_left, event->hw.last_period);
1655
1656        /*
1657         * For EBB events we just context switch the PMC value, we don't do any
1658         * of the sample_period logic. We use hw.prev_count for this.
1659         */
1660        if (is_ebb_event(event))
1661                local64_set(&event->hw.prev_count, 0);
1662
1663        /*
1664         * See if we need to reserve the PMU.
1665         * If no events are currently in use, then we have to take a
1666         * mutex to ensure that we don't race with another task doing
1667         * reserve_pmc_hardware or release_pmc_hardware.
1668         */
1669        err = 0;
1670        if (!atomic_inc_not_zero(&num_events)) {
1671                mutex_lock(&pmc_reserve_mutex);
1672                if (atomic_read(&num_events) == 0 &&
1673                    reserve_pmc_hardware(perf_event_interrupt))
1674                        err = -EBUSY;
1675                else
1676                        atomic_inc(&num_events);
1677                mutex_unlock(&pmc_reserve_mutex);
1678        }
1679        event->destroy = hw_perf_event_destroy;
1680
1681        return err;
1682}
1683
1684static int power_pmu_event_idx(struct perf_event *event)
1685{
1686        return event->hw.idx;
1687}
1688
1689ssize_t power_events_sysfs_show(struct device *dev,
1690                                struct device_attribute *attr, char *page)
1691{
1692        struct perf_pmu_events_attr *pmu_attr;
1693
1694        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1695
1696        return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1697}
1698
1699struct pmu power_pmu = {
1700        .pmu_enable     = power_pmu_enable,
1701        .pmu_disable    = power_pmu_disable,
1702        .event_init     = power_pmu_event_init,
1703        .add            = power_pmu_add,
1704        .del            = power_pmu_del,
1705        .start          = power_pmu_start,
1706        .stop           = power_pmu_stop,
1707        .read           = power_pmu_read,
1708        .start_txn      = power_pmu_start_txn,
1709        .cancel_txn     = power_pmu_cancel_txn,
1710        .commit_txn     = power_pmu_commit_txn,
1711        .event_idx      = power_pmu_event_idx,
1712        .flush_branch_stack = power_pmu_flush_branch_stack,
1713};
1714
1715/*
1716 * A counter has overflowed; update its count and record
1717 * things if requested.  Note that interrupts are hard-disabled
1718 * here so there is no possibility of being interrupted.
1719 */
1720static void record_and_restart(struct perf_event *event, unsigned long val,
1721                               struct pt_regs *regs)
1722{
1723        u64 period = event->hw.sample_period;
1724        s64 prev, delta, left;
1725        int record = 0;
1726
1727        if (event->hw.state & PERF_HES_STOPPED) {
1728                write_pmc(event->hw.idx, 0);
1729                return;
1730        }
1731
1732        /* we don't have to worry about interrupts here */
1733        prev = local64_read(&event->hw.prev_count);
1734        delta = check_and_compute_delta(prev, val);
1735        local64_add(delta, &event->count);
1736
1737        /*
1738         * See if the total period for this event has expired,
1739         * and update for the next period.
1740         */
1741        val = 0;
1742        left = local64_read(&event->hw.period_left) - delta;
1743        if (delta == 0)
1744                left++;
1745        if (period) {
1746                if (left <= 0) {
1747                        left += period;
1748                        if (left <= 0)
1749                                left = period;
1750                        record = siar_valid(regs);
1751                        event->hw.last_period = event->hw.sample_period;
1752                }
1753                if (left < 0x80000000LL)
1754                        val = 0x80000000LL - left;
1755        }
1756
1757        write_pmc(event->hw.idx, val);
1758        local64_set(&event->hw.prev_count, val);
1759        local64_set(&event->hw.period_left, left);
1760        perf_event_update_userpage(event);
1761
1762        /*
1763         * Finally record data if requested.
1764         */
1765        if (record) {
1766                struct perf_sample_data data;
1767
1768                perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1769
1770                if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1771                        perf_get_data_addr(regs, &data.addr);
1772
1773                if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1774                        struct cpu_hw_events *cpuhw;
1775                        cpuhw = &__get_cpu_var(cpu_hw_events);
1776                        power_pmu_bhrb_read(cpuhw);
1777                        data.br_stack = &cpuhw->bhrb_stack;
1778                }
1779
1780                if (perf_event_overflow(event, &data, regs))
1781                        power_pmu_stop(event, 0);
1782        }
1783}
1784
1785/*
1786 * Called from generic code to get the misc flags (i.e. processor mode)
1787 * for an event_id.
1788 */
1789unsigned long perf_misc_flags(struct pt_regs *regs)
1790{
1791        u32 flags = perf_get_misc_flags(regs);
1792
1793        if (flags)
1794                return flags;
1795        return user_mode(regs) ? PERF_RECORD_MISC_USER :
1796                PERF_RECORD_MISC_KERNEL;
1797}
1798
1799/*
1800 * Called from generic code to get the instruction pointer
1801 * for an event_id.
1802 */
1803unsigned long perf_instruction_pointer(struct pt_regs *regs)
1804{
1805        bool use_siar = regs_use_siar(regs);
1806
1807        if (use_siar && siar_valid(regs))
1808                return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1809        else if (use_siar)
1810                return 0;               // no valid instruction pointer
1811        else
1812                return regs->nip;
1813}
1814
1815static bool pmc_overflow_power7(unsigned long val)
1816{
1817        /*
1818         * Events on POWER7 can roll back if a speculative event doesn't
1819         * eventually complete. Unfortunately in some rare cases they will
1820         * raise a performance monitor exception. We need to catch this to
1821         * ensure we reset the PMC. In all cases the PMC will be 256 or less
1822         * cycles from overflow.
1823         *
1824         * We only do this if the first pass fails to find any overflowing
1825         * PMCs because a user might set a period of less than 256 and we
1826         * don't want to mistakenly reset them.
1827         */
1828        if ((0x80000000 - val) <= 256)
1829                return true;
1830
1831        return false;
1832}
1833
1834static bool pmc_overflow(unsigned long val)
1835{
1836        if ((int)val < 0)
1837                return true;
1838
1839        return false;
1840}
1841
1842/*
1843 * Performance monitor interrupt stuff
1844 */
1845static void perf_event_interrupt(struct pt_regs *regs)
1846{
1847        int i, j;
1848        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1849        struct perf_event *event;
1850        unsigned long val[8];
1851        int found, active;
1852        int nmi;
1853
1854        if (cpuhw->n_limited)
1855                freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1856                                        mfspr(SPRN_PMC6));
1857
1858        perf_read_regs(regs);
1859
1860        nmi = perf_intr_is_nmi(regs);
1861        if (nmi)
1862                nmi_enter();
1863        else
1864                irq_enter();
1865
1866        /* Read all the PMCs since we'll need them a bunch of times */
1867        for (i = 0; i < ppmu->n_counter; ++i)
1868                val[i] = read_pmc(i + 1);
1869
1870        /* Try to find what caused the IRQ */
1871        found = 0;
1872        for (i = 0; i < ppmu->n_counter; ++i) {
1873                if (!pmc_overflow(val[i]))
1874                        continue;
1875                if (is_limited_pmc(i + 1))
1876                        continue; /* these won't generate IRQs */
1877                /*
1878                 * We've found one that's overflowed.  For active
1879                 * counters we need to log this.  For inactive
1880                 * counters, we need to reset it anyway
1881                 */
1882                found = 1;
1883                active = 0;
1884                for (j = 0; j < cpuhw->n_events; ++j) {
1885                        event = cpuhw->event[j];
1886                        if (event->hw.idx == (i + 1)) {
1887                                active = 1;
1888                                record_and_restart(event, val[i], regs);
1889                                break;
1890                        }
1891                }
1892                if (!active)
1893                        /* reset non active counters that have overflowed */
1894                        write_pmc(i + 1, 0);
1895        }
1896        if (!found && pvr_version_is(PVR_POWER7)) {
1897                /* check active counters for special buggy p7 overflow */
1898                for (i = 0; i < cpuhw->n_events; ++i) {
1899                        event = cpuhw->event[i];
1900                        if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1901                                continue;
1902                        if (pmc_overflow_power7(val[event->hw.idx - 1])) {
1903                                /* event has overflowed in a buggy way*/
1904                                found = 1;
1905                                record_and_restart(event,
1906                                                   val[event->hw.idx - 1],
1907                                                   regs);
1908                        }
1909                }
1910        }
1911        if (!found && !nmi && printk_ratelimit())
1912                printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1913
1914        /*
1915         * Reset MMCR0 to its normal value.  This will set PMXE and
1916         * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1917         * and thus allow interrupts to occur again.
1918         * XXX might want to use MSR.PM to keep the events frozen until
1919         * we get back out of this interrupt.
1920         */
1921        write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1922
1923        if (nmi)
1924                nmi_exit();
1925        else
1926                irq_exit();
1927}
1928
1929static void power_pmu_setup(int cpu)
1930{
1931        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1932
1933        if (!ppmu)
1934                return;
1935        memset(cpuhw, 0, sizeof(*cpuhw));
1936        cpuhw->mmcr[0] = MMCR0_FC;
1937}
1938
1939static int
1940power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1941{
1942        unsigned int cpu = (long)hcpu;
1943
1944        switch (action & ~CPU_TASKS_FROZEN) {
1945        case CPU_UP_PREPARE:
1946                power_pmu_setup(cpu);
1947                break;
1948
1949        default:
1950                break;
1951        }
1952
1953        return NOTIFY_OK;
1954}
1955
1956int register_power_pmu(struct power_pmu *pmu)
1957{
1958        if (ppmu)
1959                return -EBUSY;          /* something's already registered */
1960
1961        ppmu = pmu;
1962        pr_info("%s performance monitor hardware support registered\n",
1963                pmu->name);
1964
1965        power_pmu.attr_groups = ppmu->attr_groups;
1966
1967#ifdef MSR_HV
1968        /*
1969         * Use FCHV to ignore kernel events if MSR.HV is set.
1970         */
1971        if (mfmsr() & MSR_HV)
1972                freeze_events_kernel = MMCR0_FCHV;
1973#endif /* CONFIG_PPC64 */
1974
1975        perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1976        perf_cpu_notifier(power_pmu_notifier);
1977
1978        return 0;
1979}
1980