linux/arch/s390/lib/div64.c
<<
>>
Prefs
   1/*
   2 *  __div64_32 implementation for 31 bit.
   3 *
   4 *    Copyright IBM Corp. 2006
   5 *    Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
   6 */
   7
   8#include <linux/types.h>
   9#include <linux/module.h>
  10
  11#ifdef CONFIG_MARCH_G5
  12
  13/*
  14 * Function to divide an unsigned 64 bit integer by an unsigned
  15 * 31 bit integer using signed 64/32 bit division.
  16 */
  17static uint32_t __div64_31(uint64_t *n, uint32_t base)
  18{
  19        register uint32_t reg2 asm("2");
  20        register uint32_t reg3 asm("3");
  21        uint32_t *words = (uint32_t *) n;
  22        uint32_t tmp;
  23
  24        /* Special case base==1, remainder = 0, quotient = n */
  25        if (base == 1)
  26                return 0;
  27        /*
  28         * Special case base==0 will cause a fixed point divide exception
  29         * on the dr instruction and may not happen anyway. For the
  30         * following calculation we can assume base > 1. The first
  31         * signed 64 / 32 bit division with an upper half of 0 will
  32         * give the correct upper half of the 64 bit quotient.
  33         */
  34        reg2 = 0UL;
  35        reg3 = words[0];
  36        asm volatile(
  37                "       dr      %0,%2\n"
  38                : "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" );
  39        words[0] = reg3;
  40        reg3 = words[1];
  41        /*
  42         * To get the lower half of the 64 bit quotient and the 32 bit
  43         * remainder we have to use a little trick. Since we only have
  44         * a signed division the quotient can get too big. To avoid this
  45         * the 64 bit dividend is halved, then the signed division will
  46         * work. Afterwards the quotient and the remainder are doubled.
  47         * If the last bit of the dividend has been one the remainder
  48         * is increased by one then checked against the base. If the
  49         * remainder has overflown subtract base and increase the
  50         * quotient. Simple, no ?
  51         */
  52        asm volatile(
  53                "       nr      %2,%1\n"
  54                "       srdl    %0,1\n"
  55                "       dr      %0,%3\n"
  56                "       alr     %0,%0\n"
  57                "       alr     %1,%1\n"
  58                "       alr     %0,%2\n"
  59                "       clr     %0,%3\n"
  60                "       jl      0f\n"
  61                "       slr     %0,%3\n"
  62                "       ahi     %1,1\n"
  63                "0:\n"
  64                : "+d" (reg2), "+d" (reg3), "=d" (tmp)
  65                : "d" (base), "2" (1UL) : "cc" );
  66        words[1] = reg3;
  67        return reg2;
  68}
  69
  70/*
  71 * Function to divide an unsigned 64 bit integer by an unsigned
  72 * 32 bit integer using the unsigned 64/31 bit division.
  73 */
  74uint32_t __div64_32(uint64_t *n, uint32_t base)
  75{
  76        uint32_t r;
  77
  78        /*
  79         * If the most significant bit of base is set, divide n by
  80         * (base/2). That allows to use 64/31 bit division and gives a
  81         * good approximation of the result: n = (base/2)*q + r. The
  82         * result needs to be corrected with two simple transformations.
  83         * If base is already < 2^31-1 __div64_31 can be used directly.
  84         */
  85        r = __div64_31(n, ((signed) base < 0) ? (base/2) : base);
  86        if ((signed) base < 0) {
  87                uint64_t q = *n;
  88                /*
  89                 * First transformation:
  90                 * n = (base/2)*q + r
  91                 *   = ((base/2)*2)*(q/2) + ((q&1) ? (base/2) : 0) + r
  92                 * Since r < (base/2), r + (base/2) < base.
  93                 * With q1 = (q/2) and r1 = r + ((q&1) ? (base/2) : 0)
  94                 * n = ((base/2)*2)*q1 + r1 with r1 < base.
  95                 */
  96                if (q & 1)
  97                        r += base/2;
  98                q >>= 1;
  99                /*
 100                 * Second transformation. ((base/2)*2) could have lost the
 101                 * last bit.
 102                 * n = ((base/2)*2)*q1 + r1
 103                 *   = base*q1 - ((base&1) ? q1 : 0) + r1
 104                 */
 105                if (base & 1) {
 106                        int64_t rx = r - q;
 107                        /*
 108                         * base is >= 2^31. The worst case for the while
 109                         * loop is n=2^64-1 base=2^31+1. That gives a
 110                         * maximum for q=(2^64-1)/2^31 = 0x1ffffffff. Since
 111                         * base >= 2^31 the loop is finished after a maximum
 112                         * of three iterations.
 113                         */
 114                        while (rx < 0) {
 115                                rx += base;
 116                                q--;
 117                        }
 118                        r = rx;
 119                }
 120                *n = q;
 121        }
 122        return r;
 123}
 124
 125#else /* MARCH_G5 */
 126
 127uint32_t __div64_32(uint64_t *n, uint32_t base)
 128{
 129        register uint32_t reg2 asm("2");
 130        register uint32_t reg3 asm("3");
 131        uint32_t *words = (uint32_t *) n;
 132
 133        reg2 = 0UL;
 134        reg3 = words[0];
 135        asm volatile(
 136                "       dlr     %0,%2\n"
 137                : "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" );
 138        words[0] = reg3;
 139        reg3 = words[1];
 140        asm volatile(
 141                "       dlr     %0,%2\n"
 142                : "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" );
 143        words[1] = reg3;
 144        return reg2;
 145}
 146
 147#endif /* MARCH_G5 */
 148