linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <linux/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
  56int sparc64_multi_core __read_mostly;
  57
  58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  60        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  61
  62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  63EXPORT_SYMBOL(cpu_core_map);
  64
  65static cpumask_t smp_commenced_mask;
  66
  67void smp_info(struct seq_file *m)
  68{
  69        int i;
  70        
  71        seq_printf(m, "State:\n");
  72        for_each_online_cpu(i)
  73                seq_printf(m, "CPU%d:\t\tonline\n", i);
  74}
  75
  76void smp_bogo(struct seq_file *m)
  77{
  78        int i;
  79        
  80        for_each_online_cpu(i)
  81                seq_printf(m,
  82                           "Cpu%dClkTck\t: %016lx\n",
  83                           i, cpu_data(i).clock_tick);
  84}
  85
  86extern void setup_sparc64_timer(void);
  87
  88static volatile unsigned long callin_flag = 0;
  89
  90void smp_callin(void)
  91{
  92        int cpuid = hard_smp_processor_id();
  93
  94        __local_per_cpu_offset = __per_cpu_offset(cpuid);
  95
  96        if (tlb_type == hypervisor)
  97                sun4v_ktsb_register();
  98
  99        __flush_tlb_all();
 100
 101        setup_sparc64_timer();
 102
 103        if (cheetah_pcache_forced_on)
 104                cheetah_enable_pcache();
 105
 106        callin_flag = 1;
 107        __asm__ __volatile__("membar #Sync\n\t"
 108                             "flush  %%g6" : : : "memory");
 109
 110        /* Clear this or we will die instantly when we
 111         * schedule back to this idler...
 112         */
 113        current_thread_info()->new_child = 0;
 114
 115        /* Attach to the address space of init_task. */
 116        atomic_inc(&init_mm.mm_count);
 117        current->active_mm = &init_mm;
 118
 119        /* inform the notifiers about the new cpu */
 120        notify_cpu_starting(cpuid);
 121
 122        while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 123                rmb();
 124
 125        set_cpu_online(cpuid, true);
 126        local_irq_enable();
 127
 128        /* idle thread is expected to have preempt disabled */
 129        preempt_disable();
 130
 131        cpu_startup_entry(CPUHP_ONLINE);
 132}
 133
 134void cpu_panic(void)
 135{
 136        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 137        panic("SMP bolixed\n");
 138}
 139
 140/* This tick register synchronization scheme is taken entirely from
 141 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 142 *
 143 * The only change I've made is to rework it so that the master
 144 * initiates the synchonization instead of the slave. -DaveM
 145 */
 146
 147#define MASTER  0
 148#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 149
 150#define NUM_ROUNDS      64      /* magic value */
 151#define NUM_ITERS       5       /* likewise */
 152
 153static DEFINE_SPINLOCK(itc_sync_lock);
 154static unsigned long go[SLAVE + 1];
 155
 156#define DEBUG_TICK_SYNC 0
 157
 158static inline long get_delta (long *rt, long *master)
 159{
 160        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 161        unsigned long tcenter, t0, t1, tm;
 162        unsigned long i;
 163
 164        for (i = 0; i < NUM_ITERS; i++) {
 165                t0 = tick_ops->get_tick();
 166                go[MASTER] = 1;
 167                membar_safe("#StoreLoad");
 168                while (!(tm = go[SLAVE]))
 169                        rmb();
 170                go[SLAVE] = 0;
 171                wmb();
 172                t1 = tick_ops->get_tick();
 173
 174                if (t1 - t0 < best_t1 - best_t0)
 175                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 176        }
 177
 178        *rt = best_t1 - best_t0;
 179        *master = best_tm - best_t0;
 180
 181        /* average best_t0 and best_t1 without overflow: */
 182        tcenter = (best_t0/2 + best_t1/2);
 183        if (best_t0 % 2 + best_t1 % 2 == 2)
 184                tcenter++;
 185        return tcenter - best_tm;
 186}
 187
 188void smp_synchronize_tick_client(void)
 189{
 190        long i, delta, adj, adjust_latency = 0, done = 0;
 191        unsigned long flags, rt, master_time_stamp;
 192#if DEBUG_TICK_SYNC
 193        struct {
 194                long rt;        /* roundtrip time */
 195                long master;    /* master's timestamp */
 196                long diff;      /* difference between midpoint and master's timestamp */
 197                long lat;       /* estimate of itc adjustment latency */
 198        } t[NUM_ROUNDS];
 199#endif
 200
 201        go[MASTER] = 1;
 202
 203        while (go[MASTER])
 204                rmb();
 205
 206        local_irq_save(flags);
 207        {
 208                for (i = 0; i < NUM_ROUNDS; i++) {
 209                        delta = get_delta(&rt, &master_time_stamp);
 210                        if (delta == 0)
 211                                done = 1;       /* let's lock on to this... */
 212
 213                        if (!done) {
 214                                if (i > 0) {
 215                                        adjust_latency += -delta;
 216                                        adj = -delta + adjust_latency/4;
 217                                } else
 218                                        adj = -delta;
 219
 220                                tick_ops->add_tick(adj);
 221                        }
 222#if DEBUG_TICK_SYNC
 223                        t[i].rt = rt;
 224                        t[i].master = master_time_stamp;
 225                        t[i].diff = delta;
 226                        t[i].lat = adjust_latency/4;
 227#endif
 228                }
 229        }
 230        local_irq_restore(flags);
 231
 232#if DEBUG_TICK_SYNC
 233        for (i = 0; i < NUM_ROUNDS; i++)
 234                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 235                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 236#endif
 237
 238        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 239               "(last diff %ld cycles, maxerr %lu cycles)\n",
 240               smp_processor_id(), delta, rt);
 241}
 242
 243static void smp_start_sync_tick_client(int cpu);
 244
 245static void smp_synchronize_one_tick(int cpu)
 246{
 247        unsigned long flags, i;
 248
 249        go[MASTER] = 0;
 250
 251        smp_start_sync_tick_client(cpu);
 252
 253        /* wait for client to be ready */
 254        while (!go[MASTER])
 255                rmb();
 256
 257        /* now let the client proceed into his loop */
 258        go[MASTER] = 0;
 259        membar_safe("#StoreLoad");
 260
 261        spin_lock_irqsave(&itc_sync_lock, flags);
 262        {
 263                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 264                        while (!go[MASTER])
 265                                rmb();
 266                        go[MASTER] = 0;
 267                        wmb();
 268                        go[SLAVE] = tick_ops->get_tick();
 269                        membar_safe("#StoreLoad");
 270                }
 271        }
 272        spin_unlock_irqrestore(&itc_sync_lock, flags);
 273}
 274
 275#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 276/* XXX Put this in some common place. XXX */
 277static unsigned long kimage_addr_to_ra(void *p)
 278{
 279        unsigned long val = (unsigned long) p;
 280
 281        return kern_base + (val - KERNBASE);
 282}
 283
 284static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 285                                void **descrp)
 286{
 287        extern unsigned long sparc64_ttable_tl0;
 288        extern unsigned long kern_locked_tte_data;
 289        struct hvtramp_descr *hdesc;
 290        unsigned long trampoline_ra;
 291        struct trap_per_cpu *tb;
 292        u64 tte_vaddr, tte_data;
 293        unsigned long hv_err;
 294        int i;
 295
 296        hdesc = kzalloc(sizeof(*hdesc) +
 297                        (sizeof(struct hvtramp_mapping) *
 298                         num_kernel_image_mappings - 1),
 299                        GFP_KERNEL);
 300        if (!hdesc) {
 301                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 302                       "hvtramp_descr.\n");
 303                return;
 304        }
 305        *descrp = hdesc;
 306
 307        hdesc->cpu = cpu;
 308        hdesc->num_mappings = num_kernel_image_mappings;
 309
 310        tb = &trap_block[cpu];
 311
 312        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 313        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 314
 315        hdesc->thread_reg = thread_reg;
 316
 317        tte_vaddr = (unsigned long) KERNBASE;
 318        tte_data = kern_locked_tte_data;
 319
 320        for (i = 0; i < hdesc->num_mappings; i++) {
 321                hdesc->maps[i].vaddr = tte_vaddr;
 322                hdesc->maps[i].tte   = tte_data;
 323                tte_vaddr += 0x400000;
 324                tte_data  += 0x400000;
 325        }
 326
 327        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 328
 329        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 330                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 331                                 __pa(hdesc));
 332        if (hv_err)
 333                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 334                       "gives error %lu\n", hv_err);
 335}
 336#endif
 337
 338extern unsigned long sparc64_cpu_startup;
 339
 340/* The OBP cpu startup callback truncates the 3rd arg cookie to
 341 * 32-bits (I think) so to be safe we have it read the pointer
 342 * contained here so we work on >4GB machines. -DaveM
 343 */
 344static struct thread_info *cpu_new_thread = NULL;
 345
 346static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 347{
 348        unsigned long entry =
 349                (unsigned long)(&sparc64_cpu_startup);
 350        unsigned long cookie =
 351                (unsigned long)(&cpu_new_thread);
 352        void *descr = NULL;
 353        int timeout, ret;
 354
 355        callin_flag = 0;
 356        cpu_new_thread = task_thread_info(idle);
 357
 358        if (tlb_type == hypervisor) {
 359#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 360                if (ldom_domaining_enabled)
 361                        ldom_startcpu_cpuid(cpu,
 362                                            (unsigned long) cpu_new_thread,
 363                                            &descr);
 364                else
 365#endif
 366                        prom_startcpu_cpuid(cpu, entry, cookie);
 367        } else {
 368                struct device_node *dp = of_find_node_by_cpuid(cpu);
 369
 370                prom_startcpu(dp->phandle, entry, cookie);
 371        }
 372
 373        for (timeout = 0; timeout < 50000; timeout++) {
 374                if (callin_flag)
 375                        break;
 376                udelay(100);
 377        }
 378
 379        if (callin_flag) {
 380                ret = 0;
 381        } else {
 382                printk("Processor %d is stuck.\n", cpu);
 383                ret = -ENODEV;
 384        }
 385        cpu_new_thread = NULL;
 386
 387        kfree(descr);
 388
 389        return ret;
 390}
 391
 392static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 393{
 394        u64 result, target;
 395        int stuck, tmp;
 396
 397        if (this_is_starfire) {
 398                /* map to real upaid */
 399                cpu = (((cpu & 0x3c) << 1) |
 400                        ((cpu & 0x40) >> 4) |
 401                        (cpu & 0x3));
 402        }
 403
 404        target = (cpu << 14) | 0x70;
 405again:
 406        /* Ok, this is the real Spitfire Errata #54.
 407         * One must read back from a UDB internal register
 408         * after writes to the UDB interrupt dispatch, but
 409         * before the membar Sync for that write.
 410         * So we use the high UDB control register (ASI 0x7f,
 411         * ADDR 0x20) for the dummy read. -DaveM
 412         */
 413        tmp = 0x40;
 414        __asm__ __volatile__(
 415        "wrpr   %1, %2, %%pstate\n\t"
 416        "stxa   %4, [%0] %3\n\t"
 417        "stxa   %5, [%0+%8] %3\n\t"
 418        "add    %0, %8, %0\n\t"
 419        "stxa   %6, [%0+%8] %3\n\t"
 420        "membar #Sync\n\t"
 421        "stxa   %%g0, [%7] %3\n\t"
 422        "membar #Sync\n\t"
 423        "mov    0x20, %%g1\n\t"
 424        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 425        "membar #Sync"
 426        : "=r" (tmp)
 427        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 428          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 429          "r" (0x10), "0" (tmp)
 430        : "g1");
 431
 432        /* NOTE: PSTATE_IE is still clear. */
 433        stuck = 100000;
 434        do {
 435                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 436                        : "=r" (result)
 437                        : "i" (ASI_INTR_DISPATCH_STAT));
 438                if (result == 0) {
 439                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 440                                             : : "r" (pstate));
 441                        return;
 442                }
 443                stuck -= 1;
 444                if (stuck == 0)
 445                        break;
 446        } while (result & 0x1);
 447        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 448                             : : "r" (pstate));
 449        if (stuck == 0) {
 450                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 451                       smp_processor_id(), result);
 452        } else {
 453                udelay(2);
 454                goto again;
 455        }
 456}
 457
 458static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 459{
 460        u64 *mondo, data0, data1, data2;
 461        u16 *cpu_list;
 462        u64 pstate;
 463        int i;
 464
 465        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 466        cpu_list = __va(tb->cpu_list_pa);
 467        mondo = __va(tb->cpu_mondo_block_pa);
 468        data0 = mondo[0];
 469        data1 = mondo[1];
 470        data2 = mondo[2];
 471        for (i = 0; i < cnt; i++)
 472                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 473}
 474
 475/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 476 * packet, but we have no use for that.  However we do take advantage of
 477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 478 */
 479static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 480{
 481        int nack_busy_id, is_jbus, need_more;
 482        u64 *mondo, pstate, ver, busy_mask;
 483        u16 *cpu_list;
 484
 485        cpu_list = __va(tb->cpu_list_pa);
 486        mondo = __va(tb->cpu_mondo_block_pa);
 487
 488        /* Unfortunately, someone at Sun had the brilliant idea to make the
 489         * busy/nack fields hard-coded by ITID number for this Ultra-III
 490         * derivative processor.
 491         */
 492        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 493        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 494                   (ver >> 32) == __SERRANO_ID);
 495
 496        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 497
 498retry:
 499        need_more = 0;
 500        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 501                             : : "r" (pstate), "i" (PSTATE_IE));
 502
 503        /* Setup the dispatch data registers. */
 504        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 505                             "stxa      %1, [%4] %6\n\t"
 506                             "stxa      %2, [%5] %6\n\t"
 507                             "membar    #Sync\n\t"
 508                             : /* no outputs */
 509                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 510                               "r" (0x40), "r" (0x50), "r" (0x60),
 511                               "i" (ASI_INTR_W));
 512
 513        nack_busy_id = 0;
 514        busy_mask = 0;
 515        {
 516                int i;
 517
 518                for (i = 0; i < cnt; i++) {
 519                        u64 target, nr;
 520
 521                        nr = cpu_list[i];
 522                        if (nr == 0xffff)
 523                                continue;
 524
 525                        target = (nr << 14) | 0x70;
 526                        if (is_jbus) {
 527                                busy_mask |= (0x1UL << (nr * 2));
 528                        } else {
 529                                target |= (nack_busy_id << 24);
 530                                busy_mask |= (0x1UL <<
 531                                              (nack_busy_id * 2));
 532                        }
 533                        __asm__ __volatile__(
 534                                "stxa   %%g0, [%0] %1\n\t"
 535                                "membar #Sync\n\t"
 536                                : /* no outputs */
 537                                : "r" (target), "i" (ASI_INTR_W));
 538                        nack_busy_id++;
 539                        if (nack_busy_id == 32) {
 540                                need_more = 1;
 541                                break;
 542                        }
 543                }
 544        }
 545
 546        /* Now, poll for completion. */
 547        {
 548                u64 dispatch_stat, nack_mask;
 549                long stuck;
 550
 551                stuck = 100000 * nack_busy_id;
 552                nack_mask = busy_mask << 1;
 553                do {
 554                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 555                                             : "=r" (dispatch_stat)
 556                                             : "i" (ASI_INTR_DISPATCH_STAT));
 557                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 558                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 559                                                     : : "r" (pstate));
 560                                if (unlikely(need_more)) {
 561                                        int i, this_cnt = 0;
 562                                        for (i = 0; i < cnt; i++) {
 563                                                if (cpu_list[i] == 0xffff)
 564                                                        continue;
 565                                                cpu_list[i] = 0xffff;
 566                                                this_cnt++;
 567                                                if (this_cnt == 32)
 568                                                        break;
 569                                        }
 570                                        goto retry;
 571                                }
 572                                return;
 573                        }
 574                        if (!--stuck)
 575                                break;
 576                } while (dispatch_stat & busy_mask);
 577
 578                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 579                                     : : "r" (pstate));
 580
 581                if (dispatch_stat & busy_mask) {
 582                        /* Busy bits will not clear, continue instead
 583                         * of freezing up on this cpu.
 584                         */
 585                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 586                               smp_processor_id(), dispatch_stat);
 587                } else {
 588                        int i, this_busy_nack = 0;
 589
 590                        /* Delay some random time with interrupts enabled
 591                         * to prevent deadlock.
 592                         */
 593                        udelay(2 * nack_busy_id);
 594
 595                        /* Clear out the mask bits for cpus which did not
 596                         * NACK us.
 597                         */
 598                        for (i = 0; i < cnt; i++) {
 599                                u64 check_mask, nr;
 600
 601                                nr = cpu_list[i];
 602                                if (nr == 0xffff)
 603                                        continue;
 604
 605                                if (is_jbus)
 606                                        check_mask = (0x2UL << (2*nr));
 607                                else
 608                                        check_mask = (0x2UL <<
 609                                                      this_busy_nack);
 610                                if ((dispatch_stat & check_mask) == 0)
 611                                        cpu_list[i] = 0xffff;
 612                                this_busy_nack += 2;
 613                                if (this_busy_nack == 64)
 614                                        break;
 615                        }
 616
 617                        goto retry;
 618                }
 619        }
 620}
 621
 622/* Multi-cpu list version.  */
 623static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 624{
 625        int retries, this_cpu, prev_sent, i, saw_cpu_error;
 626        unsigned long status;
 627        u16 *cpu_list;
 628
 629        this_cpu = smp_processor_id();
 630
 631        cpu_list = __va(tb->cpu_list_pa);
 632
 633        saw_cpu_error = 0;
 634        retries = 0;
 635        prev_sent = 0;
 636        do {
 637                int forward_progress, n_sent;
 638
 639                status = sun4v_cpu_mondo_send(cnt,
 640                                              tb->cpu_list_pa,
 641                                              tb->cpu_mondo_block_pa);
 642
 643                /* HV_EOK means all cpus received the xcall, we're done.  */
 644                if (likely(status == HV_EOK))
 645                        break;
 646
 647                /* First, see if we made any forward progress.
 648                 *
 649                 * The hypervisor indicates successful sends by setting
 650                 * cpu list entries to the value 0xffff.
 651                 */
 652                n_sent = 0;
 653                for (i = 0; i < cnt; i++) {
 654                        if (likely(cpu_list[i] == 0xffff))
 655                                n_sent++;
 656                }
 657
 658                forward_progress = 0;
 659                if (n_sent > prev_sent)
 660                        forward_progress = 1;
 661
 662                prev_sent = n_sent;
 663
 664                /* If we get a HV_ECPUERROR, then one or more of the cpus
 665                 * in the list are in error state.  Use the cpu_state()
 666                 * hypervisor call to find out which cpus are in error state.
 667                 */
 668                if (unlikely(status == HV_ECPUERROR)) {
 669                        for (i = 0; i < cnt; i++) {
 670                                long err;
 671                                u16 cpu;
 672
 673                                cpu = cpu_list[i];
 674                                if (cpu == 0xffff)
 675                                        continue;
 676
 677                                err = sun4v_cpu_state(cpu);
 678                                if (err == HV_CPU_STATE_ERROR) {
 679                                        saw_cpu_error = (cpu + 1);
 680                                        cpu_list[i] = 0xffff;
 681                                }
 682                        }
 683                } else if (unlikely(status != HV_EWOULDBLOCK))
 684                        goto fatal_mondo_error;
 685
 686                /* Don't bother rewriting the CPU list, just leave the
 687                 * 0xffff and non-0xffff entries in there and the
 688                 * hypervisor will do the right thing.
 689                 *
 690                 * Only advance timeout state if we didn't make any
 691                 * forward progress.
 692                 */
 693                if (unlikely(!forward_progress)) {
 694                        if (unlikely(++retries > 10000))
 695                                goto fatal_mondo_timeout;
 696
 697                        /* Delay a little bit to let other cpus catch up
 698                         * on their cpu mondo queue work.
 699                         */
 700                        udelay(2 * cnt);
 701                }
 702        } while (1);
 703
 704        if (unlikely(saw_cpu_error))
 705                goto fatal_mondo_cpu_error;
 706
 707        return;
 708
 709fatal_mondo_cpu_error:
 710        printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 711               "(including %d) were in error state\n",
 712               this_cpu, saw_cpu_error - 1);
 713        return;
 714
 715fatal_mondo_timeout:
 716        printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 717               " progress after %d retries.\n",
 718               this_cpu, retries);
 719        goto dump_cpu_list_and_out;
 720
 721fatal_mondo_error:
 722        printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 723               this_cpu, status);
 724        printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 725               "mondo_block_pa(%lx)\n",
 726               this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 727
 728dump_cpu_list_and_out:
 729        printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 730        for (i = 0; i < cnt; i++)
 731                printk("%u ", cpu_list[i]);
 732        printk("]\n");
 733}
 734
 735static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 736
 737static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 738{
 739        struct trap_per_cpu *tb;
 740        int this_cpu, i, cnt;
 741        unsigned long flags;
 742        u16 *cpu_list;
 743        u64 *mondo;
 744
 745        /* We have to do this whole thing with interrupts fully disabled.
 746         * Otherwise if we send an xcall from interrupt context it will
 747         * corrupt both our mondo block and cpu list state.
 748         *
 749         * One consequence of this is that we cannot use timeout mechanisms
 750         * that depend upon interrupts being delivered locally.  So, for
 751         * example, we cannot sample jiffies and expect it to advance.
 752         *
 753         * Fortunately, udelay() uses %stick/%tick so we can use that.
 754         */
 755        local_irq_save(flags);
 756
 757        this_cpu = smp_processor_id();
 758        tb = &trap_block[this_cpu];
 759
 760        mondo = __va(tb->cpu_mondo_block_pa);
 761        mondo[0] = data0;
 762        mondo[1] = data1;
 763        mondo[2] = data2;
 764        wmb();
 765
 766        cpu_list = __va(tb->cpu_list_pa);
 767
 768        /* Setup the initial cpu list.  */
 769        cnt = 0;
 770        for_each_cpu(i, mask) {
 771                if (i == this_cpu || !cpu_online(i))
 772                        continue;
 773                cpu_list[cnt++] = i;
 774        }
 775
 776        if (cnt)
 777                xcall_deliver_impl(tb, cnt);
 778
 779        local_irq_restore(flags);
 780}
 781
 782/* Send cross call to all processors mentioned in MASK_P
 783 * except self.  Really, there are only two cases currently,
 784 * "cpu_online_mask" and "mm_cpumask(mm)".
 785 */
 786static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 787{
 788        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 789
 790        xcall_deliver(data0, data1, data2, mask);
 791}
 792
 793/* Send cross call to all processors except self. */
 794static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 795{
 796        smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 797}
 798
 799extern unsigned long xcall_sync_tick;
 800
 801static void smp_start_sync_tick_client(int cpu)
 802{
 803        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 804                      cpumask_of(cpu));
 805}
 806
 807extern unsigned long xcall_call_function;
 808
 809void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 810{
 811        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 812}
 813
 814extern unsigned long xcall_call_function_single;
 815
 816void arch_send_call_function_single_ipi(int cpu)
 817{
 818        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 819                      cpumask_of(cpu));
 820}
 821
 822void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 823{
 824        clear_softint(1 << irq);
 825        generic_smp_call_function_interrupt();
 826}
 827
 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 829{
 830        clear_softint(1 << irq);
 831        generic_smp_call_function_single_interrupt();
 832}
 833
 834static void tsb_sync(void *info)
 835{
 836        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 837        struct mm_struct *mm = info;
 838
 839        /* It is not valid to test "current->active_mm == mm" here.
 840         *
 841         * The value of "current" is not changed atomically with
 842         * switch_mm().  But that's OK, we just need to check the
 843         * current cpu's trap block PGD physical address.
 844         */
 845        if (tp->pgd_paddr == __pa(mm->pgd))
 846                tsb_context_switch(mm);
 847}
 848
 849void smp_tsb_sync(struct mm_struct *mm)
 850{
 851        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 852}
 853
 854extern unsigned long xcall_flush_tlb_mm;
 855extern unsigned long xcall_flush_tlb_page;
 856extern unsigned long xcall_flush_tlb_kernel_range;
 857extern unsigned long xcall_fetch_glob_regs;
 858extern unsigned long xcall_fetch_glob_pmu;
 859extern unsigned long xcall_fetch_glob_pmu_n4;
 860extern unsigned long xcall_receive_signal;
 861extern unsigned long xcall_new_mmu_context_version;
 862#ifdef CONFIG_KGDB
 863extern unsigned long xcall_kgdb_capture;
 864#endif
 865
 866#ifdef DCACHE_ALIASING_POSSIBLE
 867extern unsigned long xcall_flush_dcache_page_cheetah;
 868#endif
 869extern unsigned long xcall_flush_dcache_page_spitfire;
 870
 871#ifdef CONFIG_DEBUG_DCFLUSH
 872extern atomic_t dcpage_flushes;
 873extern atomic_t dcpage_flushes_xcall;
 874#endif
 875
 876static inline void __local_flush_dcache_page(struct page *page)
 877{
 878#ifdef DCACHE_ALIASING_POSSIBLE
 879        __flush_dcache_page(page_address(page),
 880                            ((tlb_type == spitfire) &&
 881                             page_mapping(page) != NULL));
 882#else
 883        if (page_mapping(page) != NULL &&
 884            tlb_type == spitfire)
 885                __flush_icache_page(__pa(page_address(page)));
 886#endif
 887}
 888
 889void smp_flush_dcache_page_impl(struct page *page, int cpu)
 890{
 891        int this_cpu;
 892
 893        if (tlb_type == hypervisor)
 894                return;
 895
 896#ifdef CONFIG_DEBUG_DCFLUSH
 897        atomic_inc(&dcpage_flushes);
 898#endif
 899
 900        this_cpu = get_cpu();
 901
 902        if (cpu == this_cpu) {
 903                __local_flush_dcache_page(page);
 904        } else if (cpu_online(cpu)) {
 905                void *pg_addr = page_address(page);
 906                u64 data0 = 0;
 907
 908                if (tlb_type == spitfire) {
 909                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 910                        if (page_mapping(page) != NULL)
 911                                data0 |= ((u64)1 << 32);
 912                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 913#ifdef DCACHE_ALIASING_POSSIBLE
 914                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 915#endif
 916                }
 917                if (data0) {
 918                        xcall_deliver(data0, __pa(pg_addr),
 919                                      (u64) pg_addr, cpumask_of(cpu));
 920#ifdef CONFIG_DEBUG_DCFLUSH
 921                        atomic_inc(&dcpage_flushes_xcall);
 922#endif
 923                }
 924        }
 925
 926        put_cpu();
 927}
 928
 929void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 930{
 931        void *pg_addr;
 932        u64 data0;
 933
 934        if (tlb_type == hypervisor)
 935                return;
 936
 937        preempt_disable();
 938
 939#ifdef CONFIG_DEBUG_DCFLUSH
 940        atomic_inc(&dcpage_flushes);
 941#endif
 942        data0 = 0;
 943        pg_addr = page_address(page);
 944        if (tlb_type == spitfire) {
 945                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 946                if (page_mapping(page) != NULL)
 947                        data0 |= ((u64)1 << 32);
 948        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 949#ifdef DCACHE_ALIASING_POSSIBLE
 950                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 951#endif
 952        }
 953        if (data0) {
 954                xcall_deliver(data0, __pa(pg_addr),
 955                              (u64) pg_addr, cpu_online_mask);
 956#ifdef CONFIG_DEBUG_DCFLUSH
 957                atomic_inc(&dcpage_flushes_xcall);
 958#endif
 959        }
 960        __local_flush_dcache_page(page);
 961
 962        preempt_enable();
 963}
 964
 965void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 966{
 967        struct mm_struct *mm;
 968        unsigned long flags;
 969
 970        clear_softint(1 << irq);
 971
 972        /* See if we need to allocate a new TLB context because
 973         * the version of the one we are using is now out of date.
 974         */
 975        mm = current->active_mm;
 976        if (unlikely(!mm || (mm == &init_mm)))
 977                return;
 978
 979        spin_lock_irqsave(&mm->context.lock, flags);
 980
 981        if (unlikely(!CTX_VALID(mm->context)))
 982                get_new_mmu_context(mm);
 983
 984        spin_unlock_irqrestore(&mm->context.lock, flags);
 985
 986        load_secondary_context(mm);
 987        __flush_tlb_mm(CTX_HWBITS(mm->context),
 988                       SECONDARY_CONTEXT);
 989}
 990
 991void smp_new_mmu_context_version(void)
 992{
 993        smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 994}
 995
 996#ifdef CONFIG_KGDB
 997void kgdb_roundup_cpus(unsigned long flags)
 998{
 999        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1000}
1001#endif
1002
1003void smp_fetch_global_regs(void)
1004{
1005        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1006}
1007
1008void smp_fetch_global_pmu(void)
1009{
1010        if (tlb_type == hypervisor &&
1011            sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1012                smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1013        else
1014                smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1015}
1016
1017/* We know that the window frames of the user have been flushed
1018 * to the stack before we get here because all callers of us
1019 * are flush_tlb_*() routines, and these run after flush_cache_*()
1020 * which performs the flushw.
1021 *
1022 * The SMP TLB coherency scheme we use works as follows:
1023 *
1024 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1025 *    space has (potentially) executed on, this is the heuristic
1026 *    we use to avoid doing cross calls.
1027 *
1028 *    Also, for flushing from kswapd and also for clones, we
1029 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1030 *
1031 * 2) TLB context numbers are shared globally across all processors
1032 *    in the system, this allows us to play several games to avoid
1033 *    cross calls.
1034 *
1035 *    One invariant is that when a cpu switches to a process, and
1036 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1037 *    current cpu's bit set, that tlb context is flushed locally.
1038 *
1039 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1040 *    cross calls when we want to flush the currently running process's
1041 *    tlb state.  This is done by clearing all cpu bits except the current
1042 *    processor's in current->mm->cpu_vm_mask and performing the
1043 *    flush locally only.  This will force any subsequent cpus which run
1044 *    this task to flush the context from the local tlb if the process
1045 *    migrates to another cpu (again).
1046 *
1047 * 3) For shared address spaces (threads) and swapping we bite the
1048 *    bullet for most cases and perform the cross call (but only to
1049 *    the cpus listed in cpu_vm_mask).
1050 *
1051 *    The performance gain from "optimizing" away the cross call for threads is
1052 *    questionable (in theory the big win for threads is the massive sharing of
1053 *    address space state across processors).
1054 */
1055
1056/* This currently is only used by the hugetlb arch pre-fault
1057 * hook on UltraSPARC-III+ and later when changing the pagesize
1058 * bits of the context register for an address space.
1059 */
1060void smp_flush_tlb_mm(struct mm_struct *mm)
1061{
1062        u32 ctx = CTX_HWBITS(mm->context);
1063        int cpu = get_cpu();
1064
1065        if (atomic_read(&mm->mm_users) == 1) {
1066                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1067                goto local_flush_and_out;
1068        }
1069
1070        smp_cross_call_masked(&xcall_flush_tlb_mm,
1071                              ctx, 0, 0,
1072                              mm_cpumask(mm));
1073
1074local_flush_and_out:
1075        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1076
1077        put_cpu();
1078}
1079
1080struct tlb_pending_info {
1081        unsigned long ctx;
1082        unsigned long nr;
1083        unsigned long *vaddrs;
1084};
1085
1086static void tlb_pending_func(void *info)
1087{
1088        struct tlb_pending_info *t = info;
1089
1090        __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1091}
1092
1093void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1094{
1095        u32 ctx = CTX_HWBITS(mm->context);
1096        struct tlb_pending_info info;
1097        int cpu = get_cpu();
1098
1099        info.ctx = ctx;
1100        info.nr = nr;
1101        info.vaddrs = vaddrs;
1102
1103        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1104                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1105        else
1106                smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1107                                       &info, 1);
1108
1109        __flush_tlb_pending(ctx, nr, vaddrs);
1110
1111        put_cpu();
1112}
1113
1114void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1115{
1116        unsigned long context = CTX_HWBITS(mm->context);
1117        int cpu = get_cpu();
1118
1119        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1120                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1121        else
1122                smp_cross_call_masked(&xcall_flush_tlb_page,
1123                                      context, vaddr, 0,
1124                                      mm_cpumask(mm));
1125        __flush_tlb_page(context, vaddr);
1126
1127        put_cpu();
1128}
1129
1130void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1131{
1132        start &= PAGE_MASK;
1133        end    = PAGE_ALIGN(end);
1134        if (start != end) {
1135                smp_cross_call(&xcall_flush_tlb_kernel_range,
1136                               0, start, end);
1137
1138                __flush_tlb_kernel_range(start, end);
1139        }
1140}
1141
1142/* CPU capture. */
1143/* #define CAPTURE_DEBUG */
1144extern unsigned long xcall_capture;
1145
1146static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1147static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1148static unsigned long penguins_are_doing_time;
1149
1150void smp_capture(void)
1151{
1152        int result = atomic_add_ret(1, &smp_capture_depth);
1153
1154        if (result == 1) {
1155                int ncpus = num_online_cpus();
1156
1157#ifdef CAPTURE_DEBUG
1158                printk("CPU[%d]: Sending penguins to jail...",
1159                       smp_processor_id());
1160#endif
1161                penguins_are_doing_time = 1;
1162                atomic_inc(&smp_capture_registry);
1163                smp_cross_call(&xcall_capture, 0, 0, 0);
1164                while (atomic_read(&smp_capture_registry) != ncpus)
1165                        rmb();
1166#ifdef CAPTURE_DEBUG
1167                printk("done\n");
1168#endif
1169        }
1170}
1171
1172void smp_release(void)
1173{
1174        if (atomic_dec_and_test(&smp_capture_depth)) {
1175#ifdef CAPTURE_DEBUG
1176                printk("CPU[%d]: Giving pardon to "
1177                       "imprisoned penguins\n",
1178                       smp_processor_id());
1179#endif
1180                penguins_are_doing_time = 0;
1181                membar_safe("#StoreLoad");
1182                atomic_dec(&smp_capture_registry);
1183        }
1184}
1185
1186/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1187 * set, so they can service tlb flush xcalls...
1188 */
1189extern void prom_world(int);
1190
1191void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1192{
1193        clear_softint(1 << irq);
1194
1195        preempt_disable();
1196
1197        __asm__ __volatile__("flushw");
1198        prom_world(1);
1199        atomic_inc(&smp_capture_registry);
1200        membar_safe("#StoreLoad");
1201        while (penguins_are_doing_time)
1202                rmb();
1203        atomic_dec(&smp_capture_registry);
1204        prom_world(0);
1205
1206        preempt_enable();
1207}
1208
1209/* /proc/profile writes can call this, don't __init it please. */
1210int setup_profiling_timer(unsigned int multiplier)
1211{
1212        return -EINVAL;
1213}
1214
1215void __init smp_prepare_cpus(unsigned int max_cpus)
1216{
1217}
1218
1219void smp_prepare_boot_cpu(void)
1220{
1221}
1222
1223void __init smp_setup_processor_id(void)
1224{
1225        if (tlb_type == spitfire)
1226                xcall_deliver_impl = spitfire_xcall_deliver;
1227        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1228                xcall_deliver_impl = cheetah_xcall_deliver;
1229        else
1230                xcall_deliver_impl = hypervisor_xcall_deliver;
1231}
1232
1233void smp_fill_in_sib_core_maps(void)
1234{
1235        unsigned int i;
1236
1237        for_each_present_cpu(i) {
1238                unsigned int j;
1239
1240                cpumask_clear(&cpu_core_map[i]);
1241                if (cpu_data(i).core_id == 0) {
1242                        cpumask_set_cpu(i, &cpu_core_map[i]);
1243                        continue;
1244                }
1245
1246                for_each_present_cpu(j) {
1247                        if (cpu_data(i).core_id ==
1248                            cpu_data(j).core_id)
1249                                cpumask_set_cpu(j, &cpu_core_map[i]);
1250                }
1251        }
1252
1253        for_each_present_cpu(i) {
1254                unsigned int j;
1255
1256                cpumask_clear(&per_cpu(cpu_sibling_map, i));
1257                if (cpu_data(i).proc_id == -1) {
1258                        cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1259                        continue;
1260                }
1261
1262                for_each_present_cpu(j) {
1263                        if (cpu_data(i).proc_id ==
1264                            cpu_data(j).proc_id)
1265                                cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1266                }
1267        }
1268}
1269
1270int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1271{
1272        int ret = smp_boot_one_cpu(cpu, tidle);
1273
1274        if (!ret) {
1275                cpumask_set_cpu(cpu, &smp_commenced_mask);
1276                while (!cpu_online(cpu))
1277                        mb();
1278                if (!cpu_online(cpu)) {
1279                        ret = -ENODEV;
1280                } else {
1281                        /* On SUN4V, writes to %tick and %stick are
1282                         * not allowed.
1283                         */
1284                        if (tlb_type != hypervisor)
1285                                smp_synchronize_one_tick(cpu);
1286                }
1287        }
1288        return ret;
1289}
1290
1291#ifdef CONFIG_HOTPLUG_CPU
1292void cpu_play_dead(void)
1293{
1294        int cpu = smp_processor_id();
1295        unsigned long pstate;
1296
1297        idle_task_exit();
1298
1299        if (tlb_type == hypervisor) {
1300                struct trap_per_cpu *tb = &trap_block[cpu];
1301
1302                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1303                                tb->cpu_mondo_pa, 0);
1304                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1305                                tb->dev_mondo_pa, 0);
1306                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1307                                tb->resum_mondo_pa, 0);
1308                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1309                                tb->nonresum_mondo_pa, 0);
1310        }
1311
1312        cpumask_clear_cpu(cpu, &smp_commenced_mask);
1313        membar_safe("#Sync");
1314
1315        local_irq_disable();
1316
1317        __asm__ __volatile__(
1318                "rdpr   %%pstate, %0\n\t"
1319                "wrpr   %0, %1, %%pstate"
1320                : "=r" (pstate)
1321                : "i" (PSTATE_IE));
1322
1323        while (1)
1324                barrier();
1325}
1326
1327int __cpu_disable(void)
1328{
1329        int cpu = smp_processor_id();
1330        cpuinfo_sparc *c;
1331        int i;
1332
1333        for_each_cpu(i, &cpu_core_map[cpu])
1334                cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1335        cpumask_clear(&cpu_core_map[cpu]);
1336
1337        for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1338                cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1339        cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1340
1341        c = &cpu_data(cpu);
1342
1343        c->core_id = 0;
1344        c->proc_id = -1;
1345
1346        smp_wmb();
1347
1348        /* Make sure no interrupts point to this cpu.  */
1349        fixup_irqs();
1350
1351        local_irq_enable();
1352        mdelay(1);
1353        local_irq_disable();
1354
1355        set_cpu_online(cpu, false);
1356
1357        cpu_map_rebuild();
1358
1359        return 0;
1360}
1361
1362void __cpu_die(unsigned int cpu)
1363{
1364        int i;
1365
1366        for (i = 0; i < 100; i++) {
1367                smp_rmb();
1368                if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1369                        break;
1370                msleep(100);
1371        }
1372        if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1373                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1374        } else {
1375#if defined(CONFIG_SUN_LDOMS)
1376                unsigned long hv_err;
1377                int limit = 100;
1378
1379                do {
1380                        hv_err = sun4v_cpu_stop(cpu);
1381                        if (hv_err == HV_EOK) {
1382                                set_cpu_present(cpu, false);
1383                                break;
1384                        }
1385                } while (--limit > 0);
1386                if (limit <= 0) {
1387                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1388                               hv_err);
1389                }
1390#endif
1391        }
1392}
1393#endif
1394
1395void __init smp_cpus_done(unsigned int max_cpus)
1396{
1397        pcr_arch_init();
1398}
1399
1400void smp_send_reschedule(int cpu)
1401{
1402        xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1403                      cpumask_of(cpu));
1404}
1405
1406void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1407{
1408        clear_softint(1 << irq);
1409        scheduler_ipi();
1410}
1411
1412/* This is a nop because we capture all other cpus
1413 * anyways when making the PROM active.
1414 */
1415void smp_send_stop(void)
1416{
1417}
1418
1419/**
1420 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1421 * @cpu: cpu to allocate for
1422 * @size: size allocation in bytes
1423 * @align: alignment
1424 *
1425 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1426 * does the right thing for NUMA regardless of the current
1427 * configuration.
1428 *
1429 * RETURNS:
1430 * Pointer to the allocated area on success, NULL on failure.
1431 */
1432static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1433                                        size_t align)
1434{
1435        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1436#ifdef CONFIG_NEED_MULTIPLE_NODES
1437        int node = cpu_to_node(cpu);
1438        void *ptr;
1439
1440        if (!node_online(node) || !NODE_DATA(node)) {
1441                ptr = __alloc_bootmem(size, align, goal);
1442                pr_info("cpu %d has no node %d or node-local memory\n",
1443                        cpu, node);
1444                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1445                         cpu, size, __pa(ptr));
1446        } else {
1447                ptr = __alloc_bootmem_node(NODE_DATA(node),
1448                                           size, align, goal);
1449                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1450                         "%016lx\n", cpu, size, node, __pa(ptr));
1451        }
1452        return ptr;
1453#else
1454        return __alloc_bootmem(size, align, goal);
1455#endif
1456}
1457
1458static void __init pcpu_free_bootmem(void *ptr, size_t size)
1459{
1460        free_bootmem(__pa(ptr), size);
1461}
1462
1463static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1464{
1465        if (cpu_to_node(from) == cpu_to_node(to))
1466                return LOCAL_DISTANCE;
1467        else
1468                return REMOTE_DISTANCE;
1469}
1470
1471static void __init pcpu_populate_pte(unsigned long addr)
1472{
1473        pgd_t *pgd = pgd_offset_k(addr);
1474        pud_t *pud;
1475        pmd_t *pmd;
1476
1477        pud = pud_offset(pgd, addr);
1478        if (pud_none(*pud)) {
1479                pmd_t *new;
1480
1481                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1482                pud_populate(&init_mm, pud, new);
1483        }
1484
1485        pmd = pmd_offset(pud, addr);
1486        if (!pmd_present(*pmd)) {
1487                pte_t *new;
1488
1489                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1490                pmd_populate_kernel(&init_mm, pmd, new);
1491        }
1492}
1493
1494void __init setup_per_cpu_areas(void)
1495{
1496        unsigned long delta;
1497        unsigned int cpu;
1498        int rc = -EINVAL;
1499
1500        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1501                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1502                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1503                                            pcpu_cpu_distance,
1504                                            pcpu_alloc_bootmem,
1505                                            pcpu_free_bootmem);
1506                if (rc)
1507                        pr_warning("PERCPU: %s allocator failed (%d), "
1508                                   "falling back to page size\n",
1509                                   pcpu_fc_names[pcpu_chosen_fc], rc);
1510        }
1511        if (rc < 0)
1512                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1513                                           pcpu_alloc_bootmem,
1514                                           pcpu_free_bootmem,
1515                                           pcpu_populate_pte);
1516        if (rc < 0)
1517                panic("cannot initialize percpu area (err=%d)", rc);
1518
1519        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1520        for_each_possible_cpu(cpu)
1521                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1522
1523        /* Setup %g5 for the boot cpu.  */
1524        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1525
1526        of_fill_in_cpu_data();
1527        if (tlb_type == hypervisor)
1528                mdesc_fill_in_cpu_data(cpu_all_mask);
1529}
1530