linux/arch/tile/include/hv/netio_intf.h
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15/**
  16 * NetIO interface structures and macros.
  17 */
  18
  19#ifndef __NETIO_INTF_H__
  20#define __NETIO_INTF_H__
  21
  22#include <hv/netio_errors.h>
  23
  24#ifdef __KERNEL__
  25#include <linux/types.h>
  26#else
  27#include <stdint.h>
  28#endif
  29
  30#if !defined(__HV__) && !defined(__BOGUX__) && !defined(__KERNEL__)
  31#include <assert.h>
  32#define netio_assert assert  /**< Enable assertions from macros */
  33#else
  34#define netio_assert(...) ((void)(0))  /**< Disable assertions from macros */
  35#endif
  36
  37/*
  38 * If none of these symbols are defined, we're building libnetio in an
  39 * environment where we have pthreads, so we'll enable locking.
  40 */
  41#if !defined(__HV__) && !defined(__BOGUX__) && !defined(__KERNEL__) && \
  42    !defined(__NEWLIB__)
  43#define _NETIO_PTHREAD       /**< Include a mutex in netio_queue_t below */
  44
  45/*
  46 * If NETIO_UNLOCKED is defined, we don't do use per-cpu locks on
  47 * per-packet NetIO operations.  We still do pthread locking on things
  48 * like netio_input_register, though.  This is used for building
  49 * libnetio_unlocked.
  50 */
  51#ifndef NETIO_UNLOCKED
  52
  53/* Avoid PLT overhead by using our own inlined per-cpu lock. */
  54#include <sched.h>
  55typedef int _netio_percpu_mutex_t;
  56
  57static __inline int
  58_netio_percpu_mutex_init(_netio_percpu_mutex_t* lock)
  59{
  60  *lock = 0;
  61  return 0;
  62}
  63
  64static __inline int
  65_netio_percpu_mutex_lock(_netio_percpu_mutex_t* lock)
  66{
  67  while (__builtin_expect(__insn_tns(lock), 0))
  68    sched_yield();
  69  return 0;
  70}
  71
  72static __inline int
  73_netio_percpu_mutex_unlock(_netio_percpu_mutex_t* lock)
  74{
  75  *lock = 0;
  76  return 0;
  77}
  78
  79#else /* NETIO_UNLOCKED */
  80
  81/* Don't do any locking for per-packet NetIO operations. */
  82typedef int _netio_percpu_mutex_t;
  83#define _netio_percpu_mutex_init(L)
  84#define _netio_percpu_mutex_lock(L)
  85#define _netio_percpu_mutex_unlock(L)
  86
  87#endif /* NETIO_UNLOCKED */
  88#endif /* !__HV__, !__BOGUX, !__KERNEL__, !__NEWLIB__ */
  89
  90/** How many tiles can register for a given queue.
  91 *  @ingroup setup */
  92#define NETIO_MAX_TILES_PER_QUEUE  64
  93
  94
  95/** Largest permissible queue identifier.
  96 *  @ingroup setup  */
  97#define NETIO_MAX_QUEUE_ID        255
  98
  99
 100#ifndef __DOXYGEN__
 101
 102/* Metadata packet checksum/ethertype flags. */
 103
 104/** The L4 checksum has not been calculated. */
 105#define _NETIO_PKT_NO_L4_CSUM_SHIFT           0
 106#define _NETIO_PKT_NO_L4_CSUM_RMASK           1
 107#define _NETIO_PKT_NO_L4_CSUM_MASK \
 108         (_NETIO_PKT_NO_L4_CSUM_RMASK << _NETIO_PKT_NO_L4_CSUM_SHIFT)
 109
 110/** The L3 checksum has not been calculated. */
 111#define _NETIO_PKT_NO_L3_CSUM_SHIFT           1
 112#define _NETIO_PKT_NO_L3_CSUM_RMASK           1
 113#define _NETIO_PKT_NO_L3_CSUM_MASK \
 114         (_NETIO_PKT_NO_L3_CSUM_RMASK << _NETIO_PKT_NO_L3_CSUM_SHIFT)
 115
 116/** The L3 checksum is incorrect (or perhaps has not been calculated). */
 117#define _NETIO_PKT_BAD_L3_CSUM_SHIFT          2
 118#define _NETIO_PKT_BAD_L3_CSUM_RMASK          1
 119#define _NETIO_PKT_BAD_L3_CSUM_MASK \
 120         (_NETIO_PKT_BAD_L3_CSUM_RMASK << _NETIO_PKT_BAD_L3_CSUM_SHIFT)
 121
 122/** The Ethernet packet type is unrecognized. */
 123#define _NETIO_PKT_TYPE_UNRECOGNIZED_SHIFT    3
 124#define _NETIO_PKT_TYPE_UNRECOGNIZED_RMASK    1
 125#define _NETIO_PKT_TYPE_UNRECOGNIZED_MASK \
 126         (_NETIO_PKT_TYPE_UNRECOGNIZED_RMASK << \
 127          _NETIO_PKT_TYPE_UNRECOGNIZED_SHIFT)
 128
 129/* Metadata packet type flags. */
 130
 131/** Where the packet type bits are; this field is the index into
 132 *  _netio_pkt_info. */
 133#define _NETIO_PKT_TYPE_SHIFT        4
 134#define _NETIO_PKT_TYPE_RMASK        0x3F
 135
 136/** How many VLAN tags the packet has, and, if we have two, which one we
 137 *  actually grouped on.  A VLAN within a proprietary (Marvell or Broadcom)
 138 *  tag is counted here. */
 139#define _NETIO_PKT_VLAN_SHIFT        4
 140#define _NETIO_PKT_VLAN_RMASK        0x3
 141#define _NETIO_PKT_VLAN_MASK \
 142         (_NETIO_PKT_VLAN_RMASK << _NETIO_PKT_VLAN_SHIFT)
 143#define _NETIO_PKT_VLAN_NONE         0   /* No VLAN tag. */
 144#define _NETIO_PKT_VLAN_ONE          1   /* One VLAN tag. */
 145#define _NETIO_PKT_VLAN_TWO_OUTER    2   /* Two VLAN tags, outer one used. */
 146#define _NETIO_PKT_VLAN_TWO_INNER    3   /* Two VLAN tags, inner one used. */
 147
 148/** Which proprietary tags the packet has. */
 149#define _NETIO_PKT_TAG_SHIFT         6
 150#define _NETIO_PKT_TAG_RMASK         0x3
 151#define _NETIO_PKT_TAG_MASK \
 152          (_NETIO_PKT_TAG_RMASK << _NETIO_PKT_TAG_SHIFT)
 153#define _NETIO_PKT_TAG_NONE          0   /* No proprietary tags. */
 154#define _NETIO_PKT_TAG_MRVL          1   /* Marvell HyperG.Stack tags. */
 155#define _NETIO_PKT_TAG_MRVL_EXT      2   /* HyperG.Stack extended tags. */
 156#define _NETIO_PKT_TAG_BRCM          3   /* Broadcom HiGig tags. */
 157
 158/** Whether a packet has an LLC + SNAP header. */
 159#define _NETIO_PKT_SNAP_SHIFT        8
 160#define _NETIO_PKT_SNAP_RMASK        0x1
 161#define _NETIO_PKT_SNAP_MASK \
 162          (_NETIO_PKT_SNAP_RMASK << _NETIO_PKT_SNAP_SHIFT)
 163
 164/* NOTE: Bits 9 and 10 are unused. */
 165
 166/** Length of any custom data before the L2 header, in words. */
 167#define _NETIO_PKT_CUSTOM_LEN_SHIFT  11
 168#define _NETIO_PKT_CUSTOM_LEN_RMASK  0x1F
 169#define _NETIO_PKT_CUSTOM_LEN_MASK \
 170          (_NETIO_PKT_CUSTOM_LEN_RMASK << _NETIO_PKT_CUSTOM_LEN_SHIFT)
 171
 172/** The L4 checksum is incorrect (or perhaps has not been calculated). */
 173#define _NETIO_PKT_BAD_L4_CSUM_SHIFT 16
 174#define _NETIO_PKT_BAD_L4_CSUM_RMASK 0x1
 175#define _NETIO_PKT_BAD_L4_CSUM_MASK \
 176          (_NETIO_PKT_BAD_L4_CSUM_RMASK << _NETIO_PKT_BAD_L4_CSUM_SHIFT)
 177
 178/** Length of the L2 header, in words. */
 179#define _NETIO_PKT_L2_LEN_SHIFT  17
 180#define _NETIO_PKT_L2_LEN_RMASK  0x1F
 181#define _NETIO_PKT_L2_LEN_MASK \
 182          (_NETIO_PKT_L2_LEN_RMASK << _NETIO_PKT_L2_LEN_SHIFT)
 183
 184
 185/* Flags in minimal packet metadata. */
 186
 187/** We need an eDMA checksum on this packet. */
 188#define _NETIO_PKT_NEED_EDMA_CSUM_SHIFT            0
 189#define _NETIO_PKT_NEED_EDMA_CSUM_RMASK            1
 190#define _NETIO_PKT_NEED_EDMA_CSUM_MASK \
 191         (_NETIO_PKT_NEED_EDMA_CSUM_RMASK << _NETIO_PKT_NEED_EDMA_CSUM_SHIFT)
 192
 193/* Data within the packet information table. */
 194
 195/* Note that, for efficiency, code which uses these fields assumes that none
 196 * of the shift values below are zero.  See uses below for an explanation. */
 197
 198/** Offset within the L2 header of the innermost ethertype (in halfwords). */
 199#define _NETIO_PKT_INFO_ETYPE_SHIFT       6
 200#define _NETIO_PKT_INFO_ETYPE_RMASK    0x1F
 201
 202/** Offset within the L2 header of the VLAN tag (in halfwords). */
 203#define _NETIO_PKT_INFO_VLAN_SHIFT       11
 204#define _NETIO_PKT_INFO_VLAN_RMASK     0x1F
 205
 206#endif
 207
 208
 209/** The size of a memory buffer representing a small packet.
 210 *  @ingroup egress */
 211#define SMALL_PACKET_SIZE 256
 212
 213/** The size of a memory buffer representing a large packet.
 214 *  @ingroup egress */
 215#define LARGE_PACKET_SIZE 2048
 216
 217/** The size of a memory buffer representing a jumbo packet.
 218 *  @ingroup egress */
 219#define JUMBO_PACKET_SIZE (12 * 1024)
 220
 221
 222/* Common ethertypes.
 223 * @ingroup ingress */
 224/** @{ */
 225/** The ethertype of IPv4. */
 226#define ETHERTYPE_IPv4 (0x0800)
 227/** The ethertype of ARP. */
 228#define ETHERTYPE_ARP (0x0806)
 229/** The ethertype of VLANs. */
 230#define ETHERTYPE_VLAN (0x8100)
 231/** The ethertype of a Q-in-Q header. */
 232#define ETHERTYPE_Q_IN_Q (0x9100)
 233/** The ethertype of IPv6. */
 234#define ETHERTYPE_IPv6 (0x86DD)
 235/** The ethertype of MPLS. */
 236#define ETHERTYPE_MPLS (0x8847)
 237/** @} */
 238
 239
 240/** The possible return values of NETIO_PKT_STATUS.
 241 * @ingroup ingress
 242 */
 243typedef enum
 244{
 245  /** No problems were detected with this packet. */
 246  NETIO_PKT_STATUS_OK,
 247  /** The packet is undersized; this is expected behavior if the packet's
 248    * ethertype is unrecognized, but otherwise the packet is likely corrupt. */
 249  NETIO_PKT_STATUS_UNDERSIZE,
 250  /** The packet is oversized and some trailing bytes have been discarded.
 251      This is expected behavior for short packets, since it's impossible to
 252      precisely determine the amount of padding which may have been added to
 253      them to make them meet the minimum Ethernet packet size. */
 254  NETIO_PKT_STATUS_OVERSIZE,
 255  /** The packet was judged to be corrupt by hardware (for instance, it had
 256      a bad CRC, or part of it was discarded due to lack of buffer space in
 257      the I/O shim) and should be discarded. */
 258  NETIO_PKT_STATUS_BAD
 259} netio_pkt_status_t;
 260
 261
 262/** Log2 of how many buckets we have. */
 263#define NETIO_LOG2_NUM_BUCKETS (10)
 264
 265/** How many buckets we have.
 266 * @ingroup ingress */
 267#define NETIO_NUM_BUCKETS (1 << NETIO_LOG2_NUM_BUCKETS)
 268
 269
 270/**
 271 * @brief A group-to-bucket identifier.
 272 *
 273 * @ingroup setup
 274 *
 275 * This tells us what to do with a given group.
 276 */
 277typedef union {
 278  /** The header broken down into bits. */
 279  struct {
 280    /** Whether we should balance on L4, if available */
 281    unsigned int __balance_on_l4:1;
 282    /** Whether we should balance on L3, if available */
 283    unsigned int __balance_on_l3:1;
 284    /** Whether we should balance on L2, if available */
 285    unsigned int __balance_on_l2:1;
 286    /** Reserved for future use */
 287    unsigned int __reserved:1;
 288    /** The base bucket to use to send traffic */
 289    unsigned int __bucket_base:NETIO_LOG2_NUM_BUCKETS;
 290    /** The mask to apply to the balancing value. This must be one less
 291     * than a power of two, e.g. 0x3 or 0xFF.
 292     */
 293    unsigned int __bucket_mask:NETIO_LOG2_NUM_BUCKETS;
 294    /** Pad to 32 bits */
 295    unsigned int __padding:(32 - 4 - 2 * NETIO_LOG2_NUM_BUCKETS);
 296  } bits;
 297  /** To send out the IDN. */
 298  unsigned int word;
 299}
 300netio_group_t;
 301
 302
 303/**
 304 * @brief A VLAN-to-bucket identifier.
 305 *
 306 * @ingroup setup
 307 *
 308 * This tells us what to do with a given VLAN.
 309 */
 310typedef netio_group_t netio_vlan_t;
 311
 312
 313/**
 314 * A bucket-to-queue mapping.
 315 * @ingroup setup
 316 */
 317typedef unsigned char netio_bucket_t;
 318
 319
 320/**
 321 * A packet size can always fit in a netio_size_t.
 322 * @ingroup setup
 323 */
 324typedef unsigned int netio_size_t;
 325
 326
 327/**
 328 * @brief Ethernet standard (ingress) packet metadata.
 329 *
 330 * @ingroup ingress
 331 *
 332 * This is additional data associated with each packet.
 333 * This structure is opaque and accessed through the @ref ingress.
 334 *
 335 * Also, the buffer population operation currently assumes that standard
 336 * metadata is at least as large as minimal metadata, and will need to be
 337 * modified if that is no longer the case.
 338 */
 339typedef struct
 340{
 341#ifdef __DOXYGEN__
 342  /** This structure is opaque. */
 343  unsigned char opaque[24];
 344#else
 345  /** The overall ordinal of the packet */
 346  unsigned int __packet_ordinal;
 347  /** The ordinal of the packet within the group */
 348  unsigned int __group_ordinal;
 349  /** The best flow hash IPP could compute. */
 350  unsigned int __flow_hash;
 351  /** Flags pertaining to checksum calculation, packet type, etc. */
 352  unsigned int __flags;
 353  /** The first word of "user data". */
 354  unsigned int __user_data_0;
 355  /** The second word of "user data". */
 356  unsigned int __user_data_1;
 357#endif
 358}
 359netio_pkt_metadata_t;
 360
 361
 362/** To ensure that the L3 header is aligned mod 4, the L2 header should be
 363 * aligned mod 4 plus 2, since every supported L2 header is 4n + 2 bytes
 364 * long.  The standard way to do this is to simply add 2 bytes of padding
 365 * before the L2 header.
 366 */
 367#define NETIO_PACKET_PADDING 2
 368
 369
 370
 371/**
 372 * @brief Ethernet minimal (egress) packet metadata.
 373 *
 374 * @ingroup egress
 375 *
 376 * This structure represents information about packets which have
 377 * been processed by @ref netio_populate_buffer() or
 378 * @ref netio_populate_prepend_buffer().  This structure is opaque
 379 * and accessed through the @ref egress.
 380 *
 381 * @internal This structure is actually copied into the memory used by
 382 * standard metadata, which is assumed to be large enough.
 383 */
 384typedef struct
 385{
 386#ifdef __DOXYGEN__
 387  /** This structure is opaque. */
 388  unsigned char opaque[14];
 389#else
 390  /** The offset of the L2 header from the start of the packet data. */
 391  unsigned short l2_offset;
 392  /** The offset of the L3 header from the start of the packet data. */
 393  unsigned short l3_offset;
 394  /** Where to write the checksum. */
 395  unsigned char csum_location;
 396  /** Where to start checksumming from. */
 397  unsigned char csum_start;
 398  /** Flags pertaining to checksum calculation etc. */
 399  unsigned short flags;
 400  /** The L2 length of the packet. */
 401  unsigned short l2_length;
 402  /** The checksum with which to seed the checksum generator. */
 403  unsigned short csum_seed;
 404  /** How much to checksum. */
 405  unsigned short csum_length;
 406#endif
 407}
 408netio_pkt_minimal_metadata_t;
 409
 410
 411#ifndef __DOXYGEN__
 412
 413/**
 414 * @brief An I/O notification header.
 415 *
 416 * This is the first word of data received from an I/O shim in a notification
 417 * packet. It contains framing and status information.
 418 */
 419typedef union
 420{
 421  unsigned int word; /**< The whole word. */
 422  /** The various fields. */
 423  struct
 424  {
 425    unsigned int __channel:7;    /**< Resource channel. */
 426    unsigned int __type:4;       /**< Type. */
 427    unsigned int __ack:1;        /**< Whether an acknowledgement is needed. */
 428    unsigned int __reserved:1;   /**< Reserved. */
 429    unsigned int __protocol:1;   /**< A protocol-specific word is added. */
 430    unsigned int __status:2;     /**< Status of the transfer. */
 431    unsigned int __framing:2;    /**< Framing of the transfer. */
 432    unsigned int __transfer_size:14; /**< Transfer size in bytes (total). */
 433  } bits;
 434}
 435__netio_pkt_notif_t;
 436
 437
 438/**
 439 * Returns the base address of the packet.
 440 */
 441#define _NETIO_PKT_HANDLE_BASE(p) \
 442  ((unsigned char*)((p).word & 0xFFFFFFC0))
 443
 444/**
 445 * Returns the base address of the packet.
 446 */
 447#define _NETIO_PKT_BASE(p) \
 448  _NETIO_PKT_HANDLE_BASE(p->__packet)
 449
 450/**
 451 * @brief An I/O notification packet (second word)
 452 *
 453 * This is the second word of data received from an I/O shim in a notification
 454 * packet.  This is the virtual address of the packet buffer, plus some flag
 455 * bits.  (The virtual address of the packet is always 256-byte aligned so we
 456 * have room for 8 bits' worth of flags in the low 8 bits.)
 457 *
 458 * @internal
 459 * NOTE: The low two bits must contain "__queue", so the "packet size"
 460 * (SIZE_SMALL, SIZE_LARGE, or SIZE_JUMBO) can be determined quickly.
 461 *
 462 * If __addr or __offset are moved, _NETIO_PKT_BASE
 463 * (defined right below this) must be changed.
 464 */
 465typedef union
 466{
 467  unsigned int word; /**< The whole word. */
 468  /** The various fields. */
 469  struct
 470  {
 471    /** Which queue the packet will be returned to once it is sent back to
 472        the IPP.  This is one of the SIZE_xxx values. */
 473    unsigned int __queue:2;
 474
 475    /** The IPP handle of the sending IPP. */
 476    unsigned int __ipp_handle:2;
 477
 478    /** Reserved for future use. */
 479    unsigned int __reserved:1;
 480
 481    /** If 1, this packet has minimal (egress) metadata; otherwise, it
 482        has standard (ingress) metadata. */
 483    unsigned int __minimal:1;
 484
 485    /** Offset of the metadata within the packet.  This value is multiplied
 486     *  by 64 and added to the base packet address to get the metadata
 487     *  address.  Note that this field is aligned within the word such that
 488     *  you can easily extract the metadata address with a 26-bit mask. */
 489    unsigned int __offset:2;
 490
 491    /** The top 24 bits of the packet's virtual address. */
 492    unsigned int __addr:24;
 493  } bits;
 494}
 495__netio_pkt_handle_t;
 496
 497#endif /* !__DOXYGEN__ */
 498
 499
 500/**
 501 * @brief A handle for an I/O packet's storage.
 502 * @ingroup ingress
 503 *
 504 * netio_pkt_handle_t encodes the concept of a ::netio_pkt_t with its
 505 * packet metadata removed.  It is a much smaller type that exists to
 506 * facilitate applications where the full ::netio_pkt_t type is too
 507 * large, such as those that cache enormous numbers of packets or wish
 508 * to transmit packet descriptors over the UDN.
 509 *
 510 * Because there is no metadata, most ::netio_pkt_t operations cannot be
 511 * performed on a netio_pkt_handle_t.  It supports only
 512 * netio_free_handle() (to free the buffer) and
 513 * NETIO_PKT_CUSTOM_DATA_H() (to access a pointer to its contents).
 514 * The application must acquire any additional metadata it wants from the
 515 * original ::netio_pkt_t and record it separately.
 516 *
 517 * A netio_pkt_handle_t can be extracted from a ::netio_pkt_t by calling
 518 * NETIO_PKT_HANDLE().  An invalid handle (analogous to NULL) can be
 519 * created by assigning the value ::NETIO_PKT_HANDLE_NONE. A handle can
 520 * be tested for validity with NETIO_PKT_HANDLE_IS_VALID().
 521 */
 522typedef struct
 523{
 524  unsigned int word; /**< Opaque bits. */
 525} netio_pkt_handle_t;
 526
 527/**
 528 * @brief A packet descriptor.
 529 *
 530 * @ingroup ingress
 531 * @ingroup egress
 532 *
 533 * This data structure represents a packet.  The structure is manipulated
 534 * through the @ref ingress and the @ref egress.
 535 *
 536 * While the contents of a netio_pkt_t are opaque, the structure itself is
 537 * portable.  This means that it may be shared between all tiles which have
 538 * done a netio_input_register() call for the interface on which the pkt_t
 539 * was initially received (via netio_get_packet()) or retrieved (via
 540 * netio_get_buffer()).  The contents of a netio_pkt_t can be transmitted to
 541 * another tile via shared memory, or via a UDN message, or by other means.
 542 * The destination tile may then use the pkt_t as if it had originally been
 543 * received locally; it may read or write the packet's data, read its
 544 * metadata, free the packet, send the packet, transfer the netio_pkt_t to
 545 * yet another tile, and so forth.
 546 *
 547 * Once a netio_pkt_t has been transferred to a second tile, the first tile
 548 * should not reference the original copy; in particular, if more than one
 549 * tile frees or sends the same netio_pkt_t, the IPP's packet free lists will
 550 * become corrupted.  Note also that each tile which reads or modifies
 551 * packet data must obey the memory coherency rules outlined in @ref input.
 552 */
 553typedef struct
 554{
 555#ifdef __DOXYGEN__
 556  /** This structure is opaque. */
 557  unsigned char opaque[32];
 558#else
 559  /** For an ingress packet (one with standard metadata), this is the
 560   *  notification header we got from the I/O shim.  For an egress packet
 561   *  (one with minimal metadata), this word is zero if the packet has not
 562   *  been populated, and nonzero if it has. */
 563  __netio_pkt_notif_t __notif_header;
 564
 565  /** Virtual address of the packet buffer, plus state flags. */
 566  __netio_pkt_handle_t __packet;
 567
 568  /** Metadata associated with the packet. */
 569  netio_pkt_metadata_t __metadata;
 570#endif
 571}
 572netio_pkt_t;
 573
 574
 575#ifndef __DOXYGEN__
 576
 577#define __NETIO_PKT_NOTIF_HEADER(pkt) ((pkt)->__notif_header)
 578#define __NETIO_PKT_IPP_HANDLE(pkt) ((pkt)->__packet.bits.__ipp_handle)
 579#define __NETIO_PKT_QUEUE(pkt) ((pkt)->__packet.bits.__queue)
 580#define __NETIO_PKT_NOTIF_HEADER_M(mda, pkt) ((pkt)->__notif_header)
 581#define __NETIO_PKT_IPP_HANDLE_M(mda, pkt) ((pkt)->__packet.bits.__ipp_handle)
 582#define __NETIO_PKT_MINIMAL(pkt) ((pkt)->__packet.bits.__minimal)
 583#define __NETIO_PKT_QUEUE_M(mda, pkt) ((pkt)->__packet.bits.__queue)
 584#define __NETIO_PKT_FLAGS_M(mda, pkt) ((mda)->__flags)
 585
 586/* Packet information table, used by the attribute access functions below. */
 587extern const uint16_t _netio_pkt_info[];
 588
 589#endif /* __DOXYGEN__ */
 590
 591
 592#ifndef __DOXYGEN__
 593/* These macros are deprecated and will disappear in a future MDE release. */
 594#define NETIO_PKT_GOOD_CHECKSUM(pkt) \
 595  NETIO_PKT_L4_CSUM_CORRECT(pkt)
 596#define NETIO_PKT_GOOD_CHECKSUM_M(mda, pkt) \
 597  NETIO_PKT_L4_CSUM_CORRECT_M(mda, pkt)
 598#endif /* __DOXYGEN__ */
 599
 600
 601/* Packet attribute access functions. */
 602
 603/** Return a pointer to the metadata for a packet.
 604 * @ingroup ingress
 605 *
 606 * Calling this function once and passing the result to other retrieval
 607 * functions with a "_M" suffix usually improves performance.  This
 608 * function must be called on an 'ingress' packet (i.e. one retrieved
 609 * by @ref netio_get_packet(), on which @ref netio_populate_buffer() or
 610 * @ref netio_populate_prepend_buffer have not been called). Use of this
 611 * function on an 'egress' packet will cause an assertion failure.
 612 *
 613 * @param[in] pkt Packet on which to operate.
 614 * @return A pointer to the packet's standard metadata.
 615 */
 616static __inline netio_pkt_metadata_t*
 617NETIO_PKT_METADATA(netio_pkt_t* pkt)
 618{
 619  netio_assert(!pkt->__packet.bits.__minimal);
 620  return &pkt->__metadata;
 621}
 622
 623
 624/** Return a pointer to the minimal metadata for a packet.
 625 * @ingroup egress
 626 *
 627 * Calling this function once and passing the result to other retrieval
 628 * functions with a "_MM" suffix usually improves performance.  This
 629 * function must be called on an 'egress' packet (i.e. one on which
 630 * @ref netio_populate_buffer() or @ref netio_populate_prepend_buffer()
 631 * have been called, or one retrieved by @ref netio_get_buffer()). Use of
 632 * this function on an 'ingress' packet will cause an assertion failure.
 633 *
 634 * @param[in] pkt Packet on which to operate.
 635 * @return A pointer to the packet's standard metadata.
 636 */
 637static __inline netio_pkt_minimal_metadata_t*
 638NETIO_PKT_MINIMAL_METADATA(netio_pkt_t* pkt)
 639{
 640  netio_assert(pkt->__packet.bits.__minimal);
 641  return (netio_pkt_minimal_metadata_t*) &pkt->__metadata;
 642}
 643
 644
 645/** Determine whether a packet has 'minimal' metadata.
 646 * @ingroup pktfuncs
 647 *
 648 * This function will return nonzero if the packet is an 'egress'
 649 * packet (i.e. one on which @ref netio_populate_buffer() or
 650 * @ref netio_populate_prepend_buffer() have been called, or one
 651 * retrieved by @ref netio_get_buffer()), and zero if the packet
 652 * is an 'ingress' packet (i.e. one retrieved by @ref netio_get_packet(),
 653 * which has not been converted into an 'egress' packet).
 654 *
 655 * @param[in] pkt Packet on which to operate.
 656 * @return Nonzero if the packet has minimal metadata.
 657 */
 658static __inline unsigned int
 659NETIO_PKT_IS_MINIMAL(netio_pkt_t* pkt)
 660{
 661  return pkt->__packet.bits.__minimal;
 662}
 663
 664
 665/** Return a handle for a packet's storage.
 666 * @ingroup pktfuncs
 667 *
 668 * @param[in] pkt Packet on which to operate.
 669 * @return A handle for the packet's storage.
 670 */
 671static __inline netio_pkt_handle_t
 672NETIO_PKT_HANDLE(netio_pkt_t* pkt)
 673{
 674  netio_pkt_handle_t h;
 675  h.word = pkt->__packet.word;
 676  return h;
 677}
 678
 679
 680/** A special reserved value indicating the absence of a packet handle.
 681 *
 682 * @ingroup pktfuncs
 683 */
 684#define NETIO_PKT_HANDLE_NONE ((netio_pkt_handle_t) { 0 })
 685
 686
 687/** Test whether a packet handle is valid.
 688 *
 689 * Applications may wish to use the reserved value NETIO_PKT_HANDLE_NONE
 690 * to indicate no packet at all.  This function tests to see if a packet
 691 * handle is a real handle, not this special reserved value.
 692 *
 693 * @ingroup pktfuncs
 694 *
 695 * @param[in] handle Handle on which to operate.
 696 * @return One if the packet handle is valid, else zero.
 697 */
 698static __inline unsigned int
 699NETIO_PKT_HANDLE_IS_VALID(netio_pkt_handle_t handle)
 700{
 701  return handle.word != 0;
 702}
 703
 704
 705
 706/** Return a pointer to the start of the packet's custom header.
 707 *  A custom header may or may not be present, depending upon the IPP; its
 708 *  contents and alignment are also IPP-dependent.  Currently, none of the
 709 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 710 *  the custom header precedes the L2 header in the packet buffer.
 711 * @ingroup ingress
 712 *
 713 * @param[in] handle Handle on which to operate.
 714 * @return A pointer to start of the packet.
 715 */
 716static __inline unsigned char*
 717NETIO_PKT_CUSTOM_DATA_H(netio_pkt_handle_t handle)
 718{
 719  return _NETIO_PKT_HANDLE_BASE(handle) + NETIO_PACKET_PADDING;
 720}
 721
 722
 723/** Return the length of the packet's custom header.
 724 *  A custom header may or may not be present, depending upon the IPP; its
 725 *  contents and alignment are also IPP-dependent.  Currently, none of the
 726 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 727 *  the custom header precedes the L2 header in the packet buffer.
 728 *
 729 * @ingroup ingress
 730 *
 731 * @param[in] mda Pointer to packet's standard metadata.
 732 * @param[in] pkt Packet on which to operate.
 733 * @return The length of the packet's custom header, in bytes.
 734 */
 735static __inline netio_size_t
 736NETIO_PKT_CUSTOM_HEADER_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 737{
 738  /*
 739   * Note that we effectively need to extract a quantity from the flags word
 740   * which is measured in words, and then turn it into bytes by shifting
 741   * it left by 2.  We do this all at once by just shifting right two less
 742   * bits, and shifting the mask up two bits.
 743   */
 744  return ((mda->__flags >> (_NETIO_PKT_CUSTOM_LEN_SHIFT - 2)) &
 745          (_NETIO_PKT_CUSTOM_LEN_RMASK << 2));
 746}
 747
 748
 749/** Return the length of the packet, starting with the custom header.
 750 *  A custom header may or may not be present, depending upon the IPP; its
 751 *  contents and alignment are also IPP-dependent.  Currently, none of the
 752 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 753 *  the custom header precedes the L2 header in the packet buffer.
 754 * @ingroup ingress
 755 *
 756 * @param[in] mda Pointer to packet's standard metadata.
 757 * @param[in] pkt Packet on which to operate.
 758 * @return The length of the packet, in bytes.
 759 */
 760static __inline netio_size_t
 761NETIO_PKT_CUSTOM_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 762{
 763  return (__NETIO_PKT_NOTIF_HEADER(pkt).bits.__transfer_size -
 764          NETIO_PACKET_PADDING);
 765}
 766
 767
 768/** Return a pointer to the start of the packet's custom header.
 769 *  A custom header may or may not be present, depending upon the IPP; its
 770 *  contents and alignment are also IPP-dependent.  Currently, none of the
 771 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 772 *  the custom header precedes the L2 header in the packet buffer.
 773 * @ingroup ingress
 774 *
 775 * @param[in] mda Pointer to packet's standard metadata.
 776 * @param[in] pkt Packet on which to operate.
 777 * @return A pointer to start of the packet.
 778 */
 779static __inline unsigned char*
 780NETIO_PKT_CUSTOM_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 781{
 782  return NETIO_PKT_CUSTOM_DATA_H(NETIO_PKT_HANDLE(pkt));
 783}
 784
 785
 786/** Return the length of the packet's L2 (Ethernet plus VLAN or SNAP) header.
 787 * @ingroup ingress
 788 *
 789 * @param[in] mda Pointer to packet's standard metadata.
 790 * @param[in] pkt Packet on which to operate.
 791 * @return The length of the packet's L2 header, in bytes.
 792 */
 793static __inline netio_size_t
 794NETIO_PKT_L2_HEADER_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 795{
 796  /*
 797   * Note that we effectively need to extract a quantity from the flags word
 798   * which is measured in words, and then turn it into bytes by shifting
 799   * it left by 2.  We do this all at once by just shifting right two less
 800   * bits, and shifting the mask up two bits.  We then add two bytes.
 801   */
 802  return ((mda->__flags >> (_NETIO_PKT_L2_LEN_SHIFT - 2)) &
 803          (_NETIO_PKT_L2_LEN_RMASK << 2)) + 2;
 804}
 805
 806
 807/** Return the length of the packet, starting with the L2 (Ethernet) header.
 808 * @ingroup ingress
 809 *
 810 * @param[in] mda Pointer to packet's standard metadata.
 811 * @param[in] pkt Packet on which to operate.
 812 * @return The length of the packet, in bytes.
 813 */
 814static __inline netio_size_t
 815NETIO_PKT_L2_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 816{
 817  return (NETIO_PKT_CUSTOM_LENGTH_M(mda, pkt) -
 818          NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda,pkt));
 819}
 820
 821
 822/** Return a pointer to the start of the packet's L2 (Ethernet) header.
 823 * @ingroup ingress
 824 *
 825 * @param[in] mda Pointer to packet's standard metadata.
 826 * @param[in] pkt Packet on which to operate.
 827 * @return A pointer to start of the packet.
 828 */
 829static __inline unsigned char*
 830NETIO_PKT_L2_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 831{
 832  return (NETIO_PKT_CUSTOM_DATA_M(mda, pkt) +
 833          NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt));
 834}
 835
 836
 837/** Retrieve the length of the packet, starting with the L3 (generally,
 838 *  the IP) header.
 839 * @ingroup ingress
 840 *
 841 * @param[in] mda Pointer to packet's standard metadata.
 842 * @param[in] pkt Packet on which to operate.
 843 * @return Length of the packet's L3 header and data, in bytes.
 844 */
 845static __inline netio_size_t
 846NETIO_PKT_L3_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 847{
 848  return (NETIO_PKT_L2_LENGTH_M(mda, pkt) -
 849          NETIO_PKT_L2_HEADER_LENGTH_M(mda,pkt));
 850}
 851
 852
 853/** Return a pointer to the packet's L3 (generally, the IP) header.
 854 * @ingroup ingress
 855 *
 856 * Note that we guarantee word alignment of the L3 header.
 857 *
 858 * @param[in] mda Pointer to packet's standard metadata.
 859 * @param[in] pkt Packet on which to operate.
 860 * @return A pointer to the packet's L3 header.
 861 */
 862static __inline unsigned char*
 863NETIO_PKT_L3_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 864{
 865  return (NETIO_PKT_L2_DATA_M(mda, pkt) +
 866          NETIO_PKT_L2_HEADER_LENGTH_M(mda, pkt));
 867}
 868
 869
 870/** Return the ordinal of the packet.
 871 * @ingroup ingress
 872 *
 873 * Each packet is given an ordinal number when it is delivered by the IPP.
 874 * In the medium term, the ordinal is unique and monotonically increasing,
 875 * being incremented by 1 for each packet; the ordinal of the first packet
 876 * delivered after the IPP starts is zero.  (Since the ordinal is of finite
 877 * size, given enough input packets, it will eventually wrap around to zero;
 878 * in the long term, therefore, ordinals are not unique.)  The ordinals
 879 * handed out by different IPPs are not disjoint, so two packets from
 880 * different IPPs may have identical ordinals.  Packets dropped by the
 881 * IPP or by the I/O shim are not assigned ordinals.
 882 *
 883 * @param[in] mda Pointer to packet's standard metadata.
 884 * @param[in] pkt Packet on which to operate.
 885 * @return The packet's per-IPP packet ordinal.
 886 */
 887static __inline unsigned int
 888NETIO_PKT_ORDINAL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 889{
 890  return mda->__packet_ordinal;
 891}
 892
 893
 894/** Return the per-group ordinal of the packet.
 895 * @ingroup ingress
 896 *
 897 * Each packet is given a per-group ordinal number when it is
 898 * delivered by the IPP. By default, the group is the packet's VLAN,
 899 * although IPP can be recompiled to use different values.  In
 900 * the medium term, the ordinal is unique and monotonically
 901 * increasing, being incremented by 1 for each packet; the ordinal of
 902 * the first packet distributed to a particular group is zero.
 903 * (Since the ordinal is of finite size, given enough input packets,
 904 * it will eventually wrap around to zero; in the long term,
 905 * therefore, ordinals are not unique.)  The ordinals handed out by
 906 * different IPPs are not disjoint, so two packets from different IPPs
 907 * may have identical ordinals; similarly, packets distributed to
 908 * different groups may have identical ordinals.  Packets dropped by
 909 * the IPP or by the I/O shim are not assigned ordinals.
 910 *
 911 * @param[in] mda Pointer to packet's standard metadata.
 912 * @param[in] pkt Packet on which to operate.
 913 * @return The packet's per-IPP, per-group ordinal.
 914 */
 915static __inline unsigned int
 916NETIO_PKT_GROUP_ORDINAL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 917{
 918  return mda->__group_ordinal;
 919}
 920
 921
 922/** Return the VLAN ID assigned to the packet.
 923 * @ingroup ingress
 924 *
 925 * This value is usually contained within the packet header.
 926 *
 927 * This value will be zero if the packet does not have a VLAN tag, or if
 928 * this value was not extracted from the packet.
 929 *
 930 * @param[in] mda Pointer to packet's standard metadata.
 931 * @param[in] pkt Packet on which to operate.
 932 * @return The packet's VLAN ID.
 933 */
 934static __inline unsigned short
 935NETIO_PKT_VLAN_ID_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 936{
 937  int vl = (mda->__flags >> _NETIO_PKT_VLAN_SHIFT) & _NETIO_PKT_VLAN_RMASK;
 938  unsigned short* pkt_p;
 939  int index;
 940  unsigned short val;
 941
 942  if (vl == _NETIO_PKT_VLAN_NONE)
 943    return 0;
 944
 945  pkt_p = (unsigned short*) NETIO_PKT_L2_DATA_M(mda, pkt);
 946  index = (mda->__flags >> _NETIO_PKT_TYPE_SHIFT) & _NETIO_PKT_TYPE_RMASK;
 947
 948  val = pkt_p[(_netio_pkt_info[index] >> _NETIO_PKT_INFO_VLAN_SHIFT) &
 949              _NETIO_PKT_INFO_VLAN_RMASK];
 950
 951#ifdef __TILECC__
 952  return (__insn_bytex(val) >> 16) & 0xFFF;
 953#else
 954  return (__builtin_bswap32(val) >> 16) & 0xFFF;
 955#endif
 956}
 957
 958
 959/** Return the ethertype of the packet.
 960 * @ingroup ingress
 961 *
 962 * This value is usually contained within the packet header.
 963 *
 964 * This value is reliable if @ref NETIO_PKT_ETHERTYPE_RECOGNIZED_M()
 965 * returns true, and otherwise, may not be well defined.
 966 *
 967 * @param[in] mda Pointer to packet's standard metadata.
 968 * @param[in] pkt Packet on which to operate.
 969 * @return The packet's ethertype.
 970 */
 971static __inline unsigned short
 972NETIO_PKT_ETHERTYPE_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
 973{
 974  unsigned short* pkt_p = (unsigned short*) NETIO_PKT_L2_DATA_M(mda, pkt);
 975  int index = (mda->__flags >> _NETIO_PKT_TYPE_SHIFT) & _NETIO_PKT_TYPE_RMASK;
 976
 977  unsigned short val =
 978    pkt_p[(_netio_pkt_info[index] >> _NETIO_PKT_INFO_ETYPE_SHIFT) &
 979          _NETIO_PKT_INFO_ETYPE_RMASK];
 980
 981  return __builtin_bswap32(val) >> 16;
 982}
 983
 984
 985/** Return the flow hash computed on the packet.
 986 * @ingroup ingress
 987 *
 988 * For TCP and UDP packets, this hash is calculated by hashing together
 989 * the "5-tuple" values, specifically the source IP address, destination
 990 * IP address, protocol type, source port and destination port.
 991 * The hash value is intended to be helpful for millions of distinct
 992 * flows.
 993 *
 994 * For IPv4 or IPv6 packets which are neither TCP nor UDP, the flow hash is
 995 * derived by hashing together the source and destination IP addresses.
 996 *
 997 * For MPLS-encapsulated packets, the flow hash is derived by hashing
 998 * the first MPLS label.
 999 *
1000 * For all other packets the flow hash is computed from the source
1001 * and destination Ethernet addresses.
1002 *
1003 * The hash is symmetric, meaning it produces the same value if the
1004 * source and destination are swapped. The only exceptions are
1005 * tunneling protocols 0x04 (IP in IP Encapsulation), 0x29 (Simple
1006 * Internet Protocol), 0x2F (General Routing Encapsulation) and 0x32
1007 * (Encap Security Payload), which use only the destination address
1008 * since the source address is not meaningful.
1009 *
1010 * @param[in] mda Pointer to packet's standard metadata.
1011 * @param[in] pkt Packet on which to operate.
1012 * @return The packet's 32-bit flow hash.
1013 */
1014static __inline unsigned int
1015NETIO_PKT_FLOW_HASH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1016{
1017  return mda->__flow_hash;
1018}
1019
1020
1021/** Return the first word of "user data" for the packet.
1022 *
1023 * The contents of the user data words depend on the IPP.
1024 *
1025 * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the first
1026 * word of user data contains the least significant bits of the 64-bit
1027 * arrival cycle count (see @c get_cycle_count_low()).
1028 *
1029 * See the <em>System Programmer's Guide</em> for details.
1030 *
1031 * @ingroup ingress
1032 *
1033 * @param[in] mda Pointer to packet's standard metadata.
1034 * @param[in] pkt Packet on which to operate.
1035 * @return The packet's first word of "user data".
1036 */
1037static __inline unsigned int
1038NETIO_PKT_USER_DATA_0_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1039{
1040  return mda->__user_data_0;
1041}
1042
1043
1044/** Return the second word of "user data" for the packet.
1045 *
1046 * The contents of the user data words depend on the IPP.
1047 *
1048 * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the second
1049 * word of user data contains the most significant bits of the 64-bit
1050 * arrival cycle count (see @c get_cycle_count_high()).
1051 *
1052 * See the <em>System Programmer's Guide</em> for details.
1053 *
1054 * @ingroup ingress
1055 *
1056 * @param[in] mda Pointer to packet's standard metadata.
1057 * @param[in] pkt Packet on which to operate.
1058 * @return The packet's second word of "user data".
1059 */
1060static __inline unsigned int
1061NETIO_PKT_USER_DATA_1_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1062{
1063  return mda->__user_data_1;
1064}
1065
1066
1067/** Determine whether the L4 (TCP/UDP) checksum was calculated.
1068 * @ingroup ingress
1069 *
1070 * @param[in] mda Pointer to packet's standard metadata.
1071 * @param[in] pkt Packet on which to operate.
1072 * @return Nonzero if the L4 checksum was calculated.
1073 */
1074static __inline unsigned int
1075NETIO_PKT_L4_CSUM_CALCULATED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1076{
1077  return !(mda->__flags & _NETIO_PKT_NO_L4_CSUM_MASK);
1078}
1079
1080
1081/** Determine whether the L4 (TCP/UDP) checksum was calculated and found to
1082 *  be correct.
1083 * @ingroup ingress
1084 *
1085 * @param[in] mda Pointer to packet's standard metadata.
1086 * @param[in] pkt Packet on which to operate.
1087 * @return Nonzero if the checksum was calculated and is correct.
1088 */
1089static __inline unsigned int
1090NETIO_PKT_L4_CSUM_CORRECT_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1091{
1092  return !(mda->__flags &
1093           (_NETIO_PKT_BAD_L4_CSUM_MASK | _NETIO_PKT_NO_L4_CSUM_MASK));
1094}
1095
1096
1097/** Determine whether the L3 (IP) checksum was calculated.
1098 * @ingroup ingress
1099 *
1100 * @param[in] mda Pointer to packet's standard metadata.
1101 * @param[in] pkt Packet on which to operate.
1102 * @return Nonzero if the L3 (IP) checksum was calculated.
1103*/
1104static __inline unsigned int
1105NETIO_PKT_L3_CSUM_CALCULATED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1106{
1107  return !(mda->__flags & _NETIO_PKT_NO_L3_CSUM_MASK);
1108}
1109
1110
1111/** Determine whether the L3 (IP) checksum was calculated and found to be
1112 *  correct.
1113 * @ingroup ingress
1114 *
1115 * @param[in] mda Pointer to packet's standard metadata.
1116 * @param[in] pkt Packet on which to operate.
1117 * @return Nonzero if the checksum was calculated and is correct.
1118 */
1119static __inline unsigned int
1120NETIO_PKT_L3_CSUM_CORRECT_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1121{
1122  return !(mda->__flags &
1123           (_NETIO_PKT_BAD_L3_CSUM_MASK | _NETIO_PKT_NO_L3_CSUM_MASK));
1124}
1125
1126
1127/** Determine whether the ethertype was recognized and L3 packet data was
1128 *  processed.
1129 * @ingroup ingress
1130 *
1131 * @param[in] mda Pointer to packet's standard metadata.
1132 * @param[in] pkt Packet on which to operate.
1133 * @return Nonzero if the ethertype was recognized and L3 packet data was
1134 *   processed.
1135 */
1136static __inline unsigned int
1137NETIO_PKT_ETHERTYPE_RECOGNIZED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1138{
1139  return !(mda->__flags & _NETIO_PKT_TYPE_UNRECOGNIZED_MASK);
1140}
1141
1142
1143/** Retrieve the status of a packet and any errors that may have occurred
1144 * during ingress processing (length mismatches, CRC errors, etc.).
1145 * @ingroup ingress
1146 *
1147 * Note that packets for which @ref NETIO_PKT_ETHERTYPE_RECOGNIZED()
1148 * returns zero are always reported as underlength, as there is no a priori
1149 * means to determine their length.  Normally, applications should use
1150 * @ref NETIO_PKT_BAD_M() instead of explicitly checking status with this
1151 * function.
1152 *
1153 * @param[in] mda Pointer to packet's standard metadata.
1154 * @param[in] pkt Packet on which to operate.
1155 * @return The packet's status.
1156 */
1157static __inline netio_pkt_status_t
1158NETIO_PKT_STATUS_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1159{
1160  return (netio_pkt_status_t) __NETIO_PKT_NOTIF_HEADER(pkt).bits.__status;
1161}
1162
1163
1164/** Report whether a packet is bad (i.e., was shorter than expected based on
1165 *  its headers, or had a bad CRC).
1166 * @ingroup ingress
1167 *
1168 * Note that this function does not verify L3 or L4 checksums.
1169 *
1170 * @param[in] mda Pointer to packet's standard metadata.
1171 * @param[in] pkt Packet on which to operate.
1172 * @return Nonzero if the packet is bad and should be discarded.
1173 */
1174static __inline unsigned int
1175NETIO_PKT_BAD_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1176{
1177  return ((NETIO_PKT_STATUS_M(mda, pkt) & 1) &&
1178          (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(mda, pkt) ||
1179           NETIO_PKT_STATUS_M(mda, pkt) == NETIO_PKT_STATUS_BAD));
1180}
1181
1182
1183/** Return the length of the packet, starting with the L2 (Ethernet) header.
1184 * @ingroup egress
1185 *
1186 * @param[in] mmd Pointer to packet's minimal metadata.
1187 * @param[in] pkt Packet on which to operate.
1188 * @return The length of the packet, in bytes.
1189 */
1190static __inline netio_size_t
1191NETIO_PKT_L2_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
1192{
1193  return mmd->l2_length;
1194}
1195
1196
1197/** Return the length of the L2 (Ethernet) header.
1198 * @ingroup egress
1199 *
1200 * @param[in] mmd Pointer to packet's minimal metadata.
1201 * @param[in] pkt Packet on which to operate.
1202 * @return The length of the packet's L2 header, in bytes.
1203 */
1204static __inline netio_size_t
1205NETIO_PKT_L2_HEADER_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd,
1206                              netio_pkt_t* pkt)
1207{
1208  return mmd->l3_offset - mmd->l2_offset;
1209}
1210
1211
1212/** Return the length of the packet, starting with the L3 (IP) header.
1213 * @ingroup egress
1214 *
1215 * @param[in] mmd Pointer to packet's minimal metadata.
1216 * @param[in] pkt Packet on which to operate.
1217 * @return Length of the packet's L3 header and data, in bytes.
1218 */
1219static __inline netio_size_t
1220NETIO_PKT_L3_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
1221{
1222  return (NETIO_PKT_L2_LENGTH_MM(mmd, pkt) -
1223          NETIO_PKT_L2_HEADER_LENGTH_MM(mmd, pkt));
1224}
1225
1226
1227/** Return a pointer to the packet's L3 (generally, the IP) header.
1228 * @ingroup egress
1229 *
1230 * Note that we guarantee word alignment of the L3 header.
1231 *
1232 * @param[in] mmd Pointer to packet's minimal metadata.
1233 * @param[in] pkt Packet on which to operate.
1234 * @return A pointer to the packet's L3 header.
1235 */
1236static __inline unsigned char*
1237NETIO_PKT_L3_DATA_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
1238{
1239  return _NETIO_PKT_BASE(pkt) + mmd->l3_offset;
1240}
1241
1242
1243/** Return a pointer to the packet's L2 (Ethernet) header.
1244 * @ingroup egress
1245 *
1246 * @param[in] mmd Pointer to packet's minimal metadata.
1247 * @param[in] pkt Packet on which to operate.
1248 * @return A pointer to start of the packet.
1249 */
1250static __inline unsigned char*
1251NETIO_PKT_L2_DATA_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
1252{
1253  return _NETIO_PKT_BASE(pkt) + mmd->l2_offset;
1254}
1255
1256
1257/** Retrieve the status of a packet and any errors that may have occurred
1258 * during ingress processing (length mismatches, CRC errors, etc.).
1259 * @ingroup ingress
1260 *
1261 * Note that packets for which @ref NETIO_PKT_ETHERTYPE_RECOGNIZED()
1262 * returns zero are always reported as underlength, as there is no a priori
1263 * means to determine their length.  Normally, applications should use
1264 * @ref NETIO_PKT_BAD() instead of explicitly checking status with this
1265 * function.
1266 *
1267 * @param[in] pkt Packet on which to operate.
1268 * @return The packet's status.
1269 */
1270static __inline netio_pkt_status_t
1271NETIO_PKT_STATUS(netio_pkt_t* pkt)
1272{
1273  netio_assert(!pkt->__packet.bits.__minimal);
1274
1275  return (netio_pkt_status_t) __NETIO_PKT_NOTIF_HEADER(pkt).bits.__status;
1276}
1277
1278
1279/** Report whether a packet is bad (i.e., was shorter than expected based on
1280 *  its headers, or had a bad CRC).
1281 * @ingroup ingress
1282 *
1283 * Note that this function does not verify L3 or L4 checksums.
1284 *
1285 * @param[in] pkt Packet on which to operate.
1286 * @return Nonzero if the packet is bad and should be discarded.
1287 */
1288static __inline unsigned int
1289NETIO_PKT_BAD(netio_pkt_t* pkt)
1290{
1291  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1292
1293  return NETIO_PKT_BAD_M(mda, pkt);
1294}
1295
1296
1297/** Return the length of the packet's custom header.
1298 *  A custom header may or may not be present, depending upon the IPP; its
1299 *  contents and alignment are also IPP-dependent.  Currently, none of the
1300 *  standard IPPs supplied by Tilera produce a custom header.  If present,
1301 *  the custom header precedes the L2 header in the packet buffer.
1302 * @ingroup pktfuncs
1303 *
1304 * @param[in] pkt Packet on which to operate.
1305 * @return The length of the packet's custom header, in bytes.
1306 */
1307static __inline netio_size_t
1308NETIO_PKT_CUSTOM_HEADER_LENGTH(netio_pkt_t* pkt)
1309{
1310  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1311
1312  return NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt);
1313}
1314
1315
1316/** Return the length of the packet, starting with the custom header.
1317 *  A custom header may or may not be present, depending upon the IPP; its
1318 *  contents and alignment are also IPP-dependent.  Currently, none of the
1319 *  standard IPPs supplied by Tilera produce a custom header.  If present,
1320 *  the custom header precedes the L2 header in the packet buffer.
1321 * @ingroup pktfuncs
1322 *
1323 * @param[in] pkt Packet on which to operate.
1324 * @return  The length of the packet, in bytes.
1325 */
1326static __inline netio_size_t
1327NETIO_PKT_CUSTOM_LENGTH(netio_pkt_t* pkt)
1328{
1329  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1330
1331  return NETIO_PKT_CUSTOM_LENGTH_M(mda, pkt);
1332}
1333
1334
1335/** Return a pointer to the packet's custom header.
1336 *  A custom header may or may not be present, depending upon the IPP; its
1337 *  contents and alignment are also IPP-dependent.  Currently, none of the
1338 *  standard IPPs supplied by Tilera produce a custom header.  If present,
1339 *  the custom header precedes the L2 header in the packet buffer.
1340 * @ingroup pktfuncs
1341 *
1342 * @param[in] pkt Packet on which to operate.
1343 * @return A pointer to start of the packet.
1344 */
1345static __inline unsigned char*
1346NETIO_PKT_CUSTOM_DATA(netio_pkt_t* pkt)
1347{
1348  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1349
1350  return NETIO_PKT_CUSTOM_DATA_M(mda, pkt);
1351}
1352
1353
1354/** Return the length of the packet's L2 (Ethernet plus VLAN or SNAP) header.
1355 * @ingroup pktfuncs
1356 *
1357 * @param[in] pkt Packet on which to operate.
1358 * @return The length of the packet's L2 header, in bytes.
1359 */
1360static __inline netio_size_t
1361NETIO_PKT_L2_HEADER_LENGTH(netio_pkt_t* pkt)
1362{
1363  if (NETIO_PKT_IS_MINIMAL(pkt))
1364  {
1365    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1366
1367    return NETIO_PKT_L2_HEADER_LENGTH_MM(mmd, pkt);
1368  }
1369  else
1370  {
1371    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1372
1373    return NETIO_PKT_L2_HEADER_LENGTH_M(mda, pkt);
1374  }
1375}
1376
1377
1378/** Return the length of the packet, starting with the L2 (Ethernet) header.
1379 * @ingroup pktfuncs
1380 *
1381 * @param[in] pkt Packet on which to operate.
1382 * @return  The length of the packet, in bytes.
1383 */
1384static __inline netio_size_t
1385NETIO_PKT_L2_LENGTH(netio_pkt_t* pkt)
1386{
1387  if (NETIO_PKT_IS_MINIMAL(pkt))
1388  {
1389    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1390
1391    return NETIO_PKT_L2_LENGTH_MM(mmd, pkt);
1392  }
1393  else
1394  {
1395    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1396
1397    return NETIO_PKT_L2_LENGTH_M(mda, pkt);
1398  }
1399}
1400
1401
1402/** Return a pointer to the packet's L2 (Ethernet) header.
1403 * @ingroup pktfuncs
1404 *
1405 * @param[in] pkt Packet on which to operate.
1406 * @return A pointer to start of the packet.
1407 */
1408static __inline unsigned char*
1409NETIO_PKT_L2_DATA(netio_pkt_t* pkt)
1410{
1411  if (NETIO_PKT_IS_MINIMAL(pkt))
1412  {
1413    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1414
1415    return NETIO_PKT_L2_DATA_MM(mmd, pkt);
1416  }
1417  else
1418  {
1419    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1420
1421    return NETIO_PKT_L2_DATA_M(mda, pkt);
1422  }
1423}
1424
1425
1426/** Retrieve the length of the packet, starting with the L3 (generally, the IP)
1427 * header.
1428 * @ingroup pktfuncs
1429 *
1430 * @param[in] pkt Packet on which to operate.
1431 * @return Length of the packet's L3 header and data, in bytes.
1432 */
1433static __inline netio_size_t
1434NETIO_PKT_L3_LENGTH(netio_pkt_t* pkt)
1435{
1436  if (NETIO_PKT_IS_MINIMAL(pkt))
1437  {
1438    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1439
1440    return NETIO_PKT_L3_LENGTH_MM(mmd, pkt);
1441  }
1442  else
1443  {
1444    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1445
1446    return NETIO_PKT_L3_LENGTH_M(mda, pkt);
1447  }
1448}
1449
1450
1451/** Return a pointer to the packet's L3 (generally, the IP) header.
1452 * @ingroup pktfuncs
1453 *
1454 * Note that we guarantee word alignment of the L3 header.
1455 *
1456 * @param[in] pkt Packet on which to operate.
1457 * @return A pointer to the packet's L3 header.
1458 */
1459static __inline unsigned char*
1460NETIO_PKT_L3_DATA(netio_pkt_t* pkt)
1461{
1462  if (NETIO_PKT_IS_MINIMAL(pkt))
1463  {
1464    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1465
1466    return NETIO_PKT_L3_DATA_MM(mmd, pkt);
1467  }
1468  else
1469  {
1470    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1471
1472    return NETIO_PKT_L3_DATA_M(mda, pkt);
1473  }
1474}
1475
1476
1477/** Return the ordinal of the packet.
1478 * @ingroup ingress
1479 *
1480 * Each packet is given an ordinal number when it is delivered by the IPP.
1481 * In the medium term, the ordinal is unique and monotonically increasing,
1482 * being incremented by 1 for each packet; the ordinal of the first packet
1483 * delivered after the IPP starts is zero.  (Since the ordinal is of finite
1484 * size, given enough input packets, it will eventually wrap around to zero;
1485 * in the long term, therefore, ordinals are not unique.)  The ordinals
1486 * handed out by different IPPs are not disjoint, so two packets from
1487 * different IPPs may have identical ordinals.  Packets dropped by the
1488 * IPP or by the I/O shim are not assigned ordinals.
1489 *
1490 *
1491 * @param[in] pkt Packet on which to operate.
1492 * @return The packet's per-IPP packet ordinal.
1493 */
1494static __inline unsigned int
1495NETIO_PKT_ORDINAL(netio_pkt_t* pkt)
1496{
1497  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1498
1499  return NETIO_PKT_ORDINAL_M(mda, pkt);
1500}
1501
1502
1503/** Return the per-group ordinal of the packet.
1504 * @ingroup ingress
1505 *
1506 * Each packet is given a per-group ordinal number when it is
1507 * delivered by the IPP. By default, the group is the packet's VLAN,
1508 * although IPP can be recompiled to use different values.  In
1509 * the medium term, the ordinal is unique and monotonically
1510 * increasing, being incremented by 1 for each packet; the ordinal of
1511 * the first packet distributed to a particular group is zero.
1512 * (Since the ordinal is of finite size, given enough input packets,
1513 * it will eventually wrap around to zero; in the long term,
1514 * therefore, ordinals are not unique.)  The ordinals handed out by
1515 * different IPPs are not disjoint, so two packets from different IPPs
1516 * may have identical ordinals; similarly, packets distributed to
1517 * different groups may have identical ordinals.  Packets dropped by
1518 * the IPP or by the I/O shim are not assigned ordinals.
1519 *
1520 * @param[in] pkt Packet on which to operate.
1521 * @return The packet's per-IPP, per-group ordinal.
1522 */
1523static __inline unsigned int
1524NETIO_PKT_GROUP_ORDINAL(netio_pkt_t* pkt)
1525{
1526  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1527
1528  return NETIO_PKT_GROUP_ORDINAL_M(mda, pkt);
1529}
1530
1531
1532/** Return the VLAN ID assigned to the packet.
1533 * @ingroup ingress
1534 *
1535 * This is usually also contained within the packet header.  If the packet
1536 * does not have a VLAN tag, the VLAN ID returned by this function is zero.
1537 *
1538 * @param[in] pkt Packet on which to operate.
1539 * @return The packet's VLAN ID.
1540 */
1541static __inline unsigned short
1542NETIO_PKT_VLAN_ID(netio_pkt_t* pkt)
1543{
1544  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1545
1546  return NETIO_PKT_VLAN_ID_M(mda, pkt);
1547}
1548
1549
1550/** Return the ethertype of the packet.
1551 * @ingroup ingress
1552 *
1553 * This value is reliable if @ref NETIO_PKT_ETHERTYPE_RECOGNIZED()
1554 * returns true, and otherwise, may not be well defined.
1555 *
1556 * @param[in] pkt Packet on which to operate.
1557 * @return The packet's ethertype.
1558 */
1559static __inline unsigned short
1560NETIO_PKT_ETHERTYPE(netio_pkt_t* pkt)
1561{
1562  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1563
1564  return NETIO_PKT_ETHERTYPE_M(mda, pkt);
1565}
1566
1567
1568/** Return the flow hash computed on the packet.
1569 * @ingroup ingress
1570 *
1571 * For TCP and UDP packets, this hash is calculated by hashing together
1572 * the "5-tuple" values, specifically the source IP address, destination
1573 * IP address, protocol type, source port and destination port.
1574 * The hash value is intended to be helpful for millions of distinct
1575 * flows.
1576 *
1577 * For IPv4 or IPv6 packets which are neither TCP nor UDP, the flow hash is
1578 * derived by hashing together the source and destination IP addresses.
1579 *
1580 * For MPLS-encapsulated packets, the flow hash is derived by hashing
1581 * the first MPLS label.
1582 *
1583 * For all other packets the flow hash is computed from the source
1584 * and destination Ethernet addresses.
1585 *
1586 * The hash is symmetric, meaning it produces the same value if the
1587 * source and destination are swapped. The only exceptions are
1588 * tunneling protocols 0x04 (IP in IP Encapsulation), 0x29 (Simple
1589 * Internet Protocol), 0x2F (General Routing Encapsulation) and 0x32
1590 * (Encap Security Payload), which use only the destination address
1591 * since the source address is not meaningful.
1592 *
1593 * @param[in] pkt Packet on which to operate.
1594 * @return The packet's 32-bit flow hash.
1595 */
1596static __inline unsigned int
1597NETIO_PKT_FLOW_HASH(netio_pkt_t* pkt)
1598{
1599  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1600
1601  return NETIO_PKT_FLOW_HASH_M(mda, pkt);
1602}
1603
1604
1605/** Return the first word of "user data" for the packet.
1606 *
1607 * The contents of the user data words depend on the IPP.
1608 *
1609 * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the first
1610 * word of user data contains the least significant bits of the 64-bit
1611 * arrival cycle count (see @c get_cycle_count_low()).
1612 *
1613 * See the <em>System Programmer's Guide</em> for details.
1614 *
1615 * @ingroup ingress
1616 *
1617 * @param[in] pkt Packet on which to operate.
1618 * @return The packet's first word of "user data".
1619 */
1620static __inline unsigned int
1621NETIO_PKT_USER_DATA_0(netio_pkt_t* pkt)
1622{
1623  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1624
1625  return NETIO_PKT_USER_DATA_0_M(mda, pkt);
1626}
1627
1628
1629/** Return the second word of "user data" for the packet.
1630 *
1631 * The contents of the user data words depend on the IPP.
1632 *
1633 * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the second
1634 * word of user data contains the most significant bits of the 64-bit
1635 * arrival cycle count (see @c get_cycle_count_high()).
1636 *
1637 * See the <em>System Programmer's Guide</em> for details.
1638 *
1639 * @ingroup ingress
1640 *
1641 * @param[in] pkt Packet on which to operate.
1642 * @return The packet's second word of "user data".
1643 */
1644static __inline unsigned int
1645NETIO_PKT_USER_DATA_1(netio_pkt_t* pkt)
1646{
1647  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1648
1649  return NETIO_PKT_USER_DATA_1_M(mda, pkt);
1650}
1651
1652
1653/** Determine whether the L4 (TCP/UDP) checksum was calculated.
1654 * @ingroup ingress
1655 *
1656 * @param[in] pkt Packet on which to operate.
1657 * @return Nonzero if the L4 checksum was calculated.
1658 */
1659static __inline unsigned int
1660NETIO_PKT_L4_CSUM_CALCULATED(netio_pkt_t* pkt)
1661{
1662  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1663
1664  return NETIO_PKT_L4_CSUM_CALCULATED_M(mda, pkt);
1665}
1666
1667
1668/** Determine whether the L4 (TCP/UDP) checksum was calculated and found to
1669 *  be correct.
1670 * @ingroup ingress
1671 *
1672 * @param[in] pkt Packet on which to operate.
1673 * @return Nonzero if the checksum was calculated and is correct.
1674 */
1675static __inline unsigned int
1676NETIO_PKT_L4_CSUM_CORRECT(netio_pkt_t* pkt)
1677{
1678  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1679
1680  return NETIO_PKT_L4_CSUM_CORRECT_M(mda, pkt);
1681}
1682
1683
1684/** Determine whether the L3 (IP) checksum was calculated.
1685 * @ingroup ingress
1686 *
1687 * @param[in] pkt Packet on which to operate.
1688 * @return Nonzero if the L3 (IP) checksum was calculated.
1689*/
1690static __inline unsigned int
1691NETIO_PKT_L3_CSUM_CALCULATED(netio_pkt_t* pkt)
1692{
1693  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1694
1695  return NETIO_PKT_L3_CSUM_CALCULATED_M(mda, pkt);
1696}
1697
1698
1699/** Determine whether the L3 (IP) checksum was calculated and found to be
1700 *  correct.
1701 * @ingroup ingress
1702 *
1703 * @param[in] pkt Packet on which to operate.
1704 * @return Nonzero if the checksum was calculated and is correct.
1705 */
1706static __inline unsigned int
1707NETIO_PKT_L3_CSUM_CORRECT(netio_pkt_t* pkt)
1708{
1709  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1710
1711  return NETIO_PKT_L3_CSUM_CORRECT_M(mda, pkt);
1712}
1713
1714
1715/** Determine whether the Ethertype was recognized and L3 packet data was
1716 *  processed.
1717 * @ingroup ingress
1718 *
1719 * @param[in] pkt Packet on which to operate.
1720 * @return Nonzero if the Ethertype was recognized and L3 packet data was
1721 *   processed.
1722 */
1723static __inline unsigned int
1724NETIO_PKT_ETHERTYPE_RECOGNIZED(netio_pkt_t* pkt)
1725{
1726  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1727
1728  return NETIO_PKT_ETHERTYPE_RECOGNIZED_M(mda, pkt);
1729}
1730
1731
1732/** Set an egress packet's L2 length, using a metadata pointer to speed the
1733 * computation.
1734 * @ingroup egress
1735 *
1736 * @param[in,out] mmd Pointer to packet's minimal metadata.
1737 * @param[in] pkt Packet on which to operate.
1738 * @param[in] len Packet L2 length, in bytes.
1739 */
1740static __inline void
1741NETIO_PKT_SET_L2_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt,
1742                           int len)
1743{
1744  mmd->l2_length = len;
1745}
1746
1747
1748/** Set an egress packet's L2 length.
1749 * @ingroup egress
1750 *
1751 * @param[in,out] pkt Packet on which to operate.
1752 * @param[in] len Packet L2 length, in bytes.
1753 */
1754static __inline void
1755NETIO_PKT_SET_L2_LENGTH(netio_pkt_t* pkt, int len)
1756{
1757  netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1758
1759  NETIO_PKT_SET_L2_LENGTH_MM(mmd, pkt, len);
1760}
1761
1762
1763/** Set an egress packet's L2 header length, using a metadata pointer to
1764 *  speed the computation.
1765 * @ingroup egress
1766 *
1767 * It is not normally necessary to call this routine; only the L2 length,
1768 * not the header length, is needed to transmit a packet.  It may be useful if
1769 * the egress packet will later be processed by code which expects to use
1770 * functions like @ref NETIO_PKT_L3_DATA() to get a pointer to the L3 payload.
1771 *
1772 * @param[in,out] mmd Pointer to packet's minimal metadata.
1773 * @param[in] pkt Packet on which to operate.
1774 * @param[in] len Packet L2 header length, in bytes.
1775 */
1776static __inline void
1777NETIO_PKT_SET_L2_HEADER_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd,
1778                                  netio_pkt_t* pkt, int len)
1779{
1780  mmd->l3_offset = mmd->l2_offset + len;
1781}
1782
1783
1784/** Set an egress packet's L2 header length.
1785 * @ingroup egress
1786 *
1787 * It is not normally necessary to call this routine; only the L2 length,
1788 * not the header length, is needed to transmit a packet.  It may be useful if
1789 * the egress packet will later be processed by code which expects to use
1790 * functions like @ref NETIO_PKT_L3_DATA() to get a pointer to the L3 payload.
1791 *
1792 * @param[in,out] pkt Packet on which to operate.
1793 * @param[in] len Packet L2 header length, in bytes.
1794 */
1795static __inline void
1796NETIO_PKT_SET_L2_HEADER_LENGTH(netio_pkt_t* pkt, int len)
1797{
1798  netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1799
1800  NETIO_PKT_SET_L2_HEADER_LENGTH_MM(mmd, pkt, len);
1801}
1802
1803
1804/** Set up an egress packet for hardware checksum computation, using a
1805 *  metadata pointer to speed the operation.
1806 * @ingroup egress
1807 *
1808 *  NetIO provides the ability to automatically calculate a standard
1809 *  16-bit Internet checksum on transmitted packets.  The application
1810 *  may specify the point in the packet where the checksum starts, the
1811 *  number of bytes to be checksummed, and the two bytes in the packet
1812 *  which will be replaced with the completed checksum.  (If the range
1813 *  of bytes to be checksummed includes the bytes to be replaced, the
1814 *  initial values of those bytes will be included in the checksum.)
1815 *
1816 *  For some protocols, the packet checksum covers data which is not present
1817 *  in the packet, or is at least not contiguous to the main data payload.
1818 *  For instance, the TCP checksum includes a "pseudo-header" which includes
1819 *  the source and destination IP addresses of the packet.  To accommodate
1820 *  this, the checksum engine may be "seeded" with an initial value, which
1821 *  the application would need to compute based on the specific protocol's
1822 *  requirements.  Note that the seed is given in host byte order (little-
1823 *  endian), not network byte order (big-endian); code written to compute a
1824 *  pseudo-header checksum in network byte order will need to byte-swap it
1825 *  before use as the seed.
1826 *
1827 *  Note that the checksum is computed as part of the transmission process,
1828 *  so it will not be present in the packet upon completion of this routine.
1829 *
1830 * @param[in,out] mmd Pointer to packet's minimal metadata.
1831 * @param[in] pkt Packet on which to operate.
1832 * @param[in] start Offset within L2 packet of the first byte to include in
1833 *   the checksum.
1834 * @param[in] length Number of bytes to include in the checksum.
1835 *   the checksum.
1836 * @param[in] location Offset within L2 packet of the first of the two bytes
1837 *   to be replaced with the calculated checksum.
1838 * @param[in] seed Initial value of the running checksum before any of the
1839 *   packet data is added.
1840 */
1841static __inline void
1842NETIO_PKT_DO_EGRESS_CSUM_MM(netio_pkt_minimal_metadata_t* mmd,
1843                            netio_pkt_t* pkt, int start, int length,
1844                            int location, uint16_t seed)
1845{
1846  mmd->csum_start = start;
1847  mmd->csum_length = length;
1848  mmd->csum_location = location;
1849  mmd->csum_seed = seed;
1850  mmd->flags |= _NETIO_PKT_NEED_EDMA_CSUM_MASK;
1851}
1852
1853
1854/** Set up an egress packet for hardware checksum computation.
1855 * @ingroup egress
1856 *
1857 *  NetIO provides the ability to automatically calculate a standard
1858 *  16-bit Internet checksum on transmitted packets.  The application
1859 *  may specify the point in the packet where the checksum starts, the
1860 *  number of bytes to be checksummed, and the two bytes in the packet
1861 *  which will be replaced with the completed checksum.  (If the range
1862 *  of bytes to be checksummed includes the bytes to be replaced, the
1863 *  initial values of those bytes will be included in the checksum.)
1864 *
1865 *  For some protocols, the packet checksum covers data which is not present
1866 *  in the packet, or is at least not contiguous to the main data payload.
1867 *  For instance, the TCP checksum includes a "pseudo-header" which includes
1868 *  the source and destination IP addresses of the packet.  To accommodate
1869 *  this, the checksum engine may be "seeded" with an initial value, which
1870 *  the application would need to compute based on the specific protocol's
1871 *  requirements.  Note that the seed is given in host byte order (little-
1872 *  endian), not network byte order (big-endian); code written to compute a
1873 *  pseudo-header checksum in network byte order will need to byte-swap it
1874 *  before use as the seed.
1875 *
1876 *  Note that the checksum is computed as part of the transmission process,
1877 *  so it will not be present in the packet upon completion of this routine.
1878 *
1879 * @param[in,out] pkt Packet on which to operate.
1880 * @param[in] start Offset within L2 packet of the first byte to include in
1881 *   the checksum.
1882 * @param[in] length Number of bytes to include in the checksum.
1883 *   the checksum.
1884 * @param[in] location Offset within L2 packet of the first of the two bytes
1885 *   to be replaced with the calculated checksum.
1886 * @param[in] seed Initial value of the running checksum before any of the
1887 *   packet data is added.
1888 */
1889static __inline void
1890NETIO_PKT_DO_EGRESS_CSUM(netio_pkt_t* pkt, int start, int length,
1891                         int location, uint16_t seed)
1892{
1893  netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1894
1895  NETIO_PKT_DO_EGRESS_CSUM_MM(mmd, pkt, start, length, location, seed);
1896}
1897
1898
1899/** Return the number of bytes which could be prepended to a packet, using a
1900 *  metadata pointer to speed the operation.
1901 *  See @ref netio_populate_prepend_buffer() to get a full description of
1902 *  prepending.
1903 *
1904 * @param[in,out] mda Pointer to packet's standard metadata.
1905 * @param[in] pkt Packet on which to operate.
1906 */
1907static __inline int
1908NETIO_PKT_PREPEND_AVAIL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
1909{
1910  return (pkt->__packet.bits.__offset << 6) +
1911         NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt);
1912}
1913
1914
1915/** Return the number of bytes which could be prepended to a packet, using a
1916 *  metadata pointer to speed the operation.
1917 *  See @ref netio_populate_prepend_buffer() to get a full description of
1918 *  prepending.
1919 * @ingroup egress
1920 *
1921 * @param[in,out] mmd Pointer to packet's minimal metadata.
1922 * @param[in] pkt Packet on which to operate.
1923 */
1924static __inline int
1925NETIO_PKT_PREPEND_AVAIL_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
1926{
1927  return (pkt->__packet.bits.__offset << 6) + mmd->l2_offset;
1928}
1929
1930
1931/** Return the number of bytes which could be prepended to a packet.
1932 *  See @ref netio_populate_prepend_buffer() to get a full description of
1933 *  prepending.
1934 * @ingroup egress
1935 *
1936 * @param[in] pkt Packet on which to operate.
1937 */
1938static __inline int
1939NETIO_PKT_PREPEND_AVAIL(netio_pkt_t* pkt)
1940{
1941  if (NETIO_PKT_IS_MINIMAL(pkt))
1942  {
1943    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);
1944
1945    return NETIO_PKT_PREPEND_AVAIL_MM(mmd, pkt);
1946  }
1947  else
1948  {
1949    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);
1950
1951    return NETIO_PKT_PREPEND_AVAIL_M(mda, pkt);
1952  }
1953}
1954
1955
1956/** Flush a packet's minimal metadata from the cache, using a metadata pointer
1957 *  to speed the operation.
1958 * @ingroup egress
1959 *
1960 * @param[in] mmd Pointer to packet's minimal metadata.
1961 * @param[in] pkt Packet on which to operate.
1962 */
1963static __inline void
1964NETIO_PKT_FLUSH_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd,
1965                                    netio_pkt_t* pkt)
1966{
1967}
1968
1969
1970/** Invalidate a packet's minimal metadata from the cache, using a metadata
1971 *  pointer to speed the operation.
1972 * @ingroup egress
1973 *
1974 * @param[in] mmd Pointer to packet's minimal metadata.
1975 * @param[in] pkt Packet on which to operate.
1976 */
1977static __inline void
1978NETIO_PKT_INV_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd,
1979                                  netio_pkt_t* pkt)
1980{
1981}
1982
1983
1984/** Flush and then invalidate a packet's minimal metadata from the cache,
1985 *  using a metadata pointer to speed the operation.
1986 * @ingroup egress
1987 *
1988 * @param[in] mmd Pointer to packet's minimal metadata.
1989 * @param[in] pkt Packet on which to operate.
1990 */
1991static __inline void
1992NETIO_PKT_FLUSH_INV_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd,
1993                                        netio_pkt_t* pkt)
1994{
1995}
1996
1997
1998/** Flush a packet's metadata from the cache, using a metadata pointer
1999 *  to speed the operation.
2000 * @ingroup ingress
2001 *
2002 * @param[in] mda Pointer to packet's minimal metadata.
2003 * @param[in] pkt Packet on which to operate.
2004 */
2005static __inline void
2006NETIO_PKT_FLUSH_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
2007{
2008}
2009
2010
2011/** Invalidate a packet's metadata from the cache, using a metadata
2012 *  pointer to speed the operation.
2013 * @ingroup ingress
2014 *
2015 * @param[in] mda Pointer to packet's metadata.
2016 * @param[in] pkt Packet on which to operate.
2017 */
2018static __inline void
2019NETIO_PKT_INV_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
2020{
2021}
2022
2023
2024/** Flush and then invalidate a packet's metadata from the cache,
2025 *  using a metadata pointer to speed the operation.
2026 * @ingroup ingress
2027 *
2028 * @param[in] mda Pointer to packet's metadata.
2029 * @param[in] pkt Packet on which to operate.
2030 */
2031static __inline void
2032NETIO_PKT_FLUSH_INV_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
2033{
2034}
2035
2036
2037/** Flush a packet's minimal metadata from the cache.
2038 * @ingroup egress
2039 *
2040 * @param[in] pkt Packet on which to operate.
2041 */
2042static __inline void
2043NETIO_PKT_FLUSH_MINIMAL_METADATA(netio_pkt_t* pkt)
2044{
2045}
2046
2047
2048/** Invalidate a packet's minimal metadata from the cache.
2049 * @ingroup egress
2050 *
2051 * @param[in] pkt Packet on which to operate.
2052 */
2053static __inline void
2054NETIO_PKT_INV_MINIMAL_METADATA(netio_pkt_t* pkt)
2055{
2056}
2057
2058
2059/** Flush and then invalidate a packet's minimal metadata from the cache.
2060 * @ingroup egress
2061 *
2062 * @param[in] pkt Packet on which to operate.
2063 */
2064static __inline void
2065NETIO_PKT_FLUSH_INV_MINIMAL_METADATA(netio_pkt_t* pkt)
2066{
2067}
2068
2069
2070/** Flush a packet's metadata from the cache.
2071 * @ingroup ingress
2072 *
2073 * @param[in] pkt Packet on which to operate.
2074 */
2075static __inline void
2076NETIO_PKT_FLUSH_METADATA(netio_pkt_t* pkt)
2077{
2078}
2079
2080
2081/** Invalidate a packet's metadata from the cache.
2082 * @ingroup ingress
2083 *
2084 * @param[in] pkt Packet on which to operate.
2085 */
2086static __inline void
2087NETIO_PKT_INV_METADATA(netio_pkt_t* pkt)
2088{
2089}
2090
2091
2092/** Flush and then invalidate a packet's metadata from the cache.
2093 * @ingroup ingress
2094 *
2095 * @param[in] pkt Packet on which to operate.
2096 */
2097static __inline void
2098NETIO_PKT_FLUSH_INV_METADATA(netio_pkt_t* pkt)
2099{
2100}
2101
2102/** Number of NUMA nodes we can distribute buffers to.
2103 * @ingroup setup */
2104#define NETIO_NUM_NODE_WEIGHTS  16
2105
2106/**
2107 * @brief An object for specifying the characteristics of NetIO communication
2108 * endpoint.
2109 *
2110 * @ingroup setup
2111 *
2112 * The @ref netio_input_register() function uses this structure to define
2113 * how an application tile will communicate with an IPP.
2114 *
2115 *
2116 * Future updates to NetIO may add new members to this structure,
2117 * which can affect the success of the registration operation.  Thus,
2118 * if dynamically initializing the structure, applications are urged to
2119 * zero it out first, for example:
2120 *
2121 * @code
2122 * netio_input_config_t config;
2123 * memset(&config, 0, sizeof (config));
2124 * config.flags = NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE;
2125 * config.num_receive_packets = NETIO_MAX_RECEIVE_PKTS;
2126 * config.queue_id = 0;
2127 *     .
2128 *     .
2129 *     .
2130 * @endcode
2131 *
2132 * since that guarantees that any unused structure members, including
2133 * members which did not exist when the application was first developed,
2134 * will not have unexpected values.
2135 *
2136 * If statically initializing the structure, we strongly recommend use of
2137 * C99-style named initializers, for example:
2138 *
2139 * @code
2140 * netio_input_config_t config = {
2141 *    .flags = NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE,
2142 *    .num_receive_packets = NETIO_MAX_RECEIVE_PKTS,
2143 *    .queue_id = 0,
2144 * },
2145 * @endcode
2146 *
2147 * instead of the old-style structure initialization:
2148 *
2149 * @code
2150 * // Bad example! Currently equivalent to the above, but don't do this.
2151 * netio_input_config_t config = {
2152 *    NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE, NETIO_MAX_RECEIVE_PKTS, 0
2153 * },
2154 * @endcode
2155 *
2156 * since the C99 style requires no changes to the code if elements of the
2157 * config structure are rearranged.  (It also makes the initialization much
2158 * easier to understand.)
2159 *
2160 * Except for items which address a particular tile's transmit or receive
2161 * characteristics, such as the ::NETIO_RECV flag, applications are advised
2162 * to specify the same set of configuration data on all registrations.
2163 * This prevents differing results if multiple tiles happen to do their
2164 * registration operations in a different order on different invocations of
2165 * the application.  This is particularly important for things like link
2166 * management flags, and buffer size and homing specifications.
2167 *
2168 * Unless the ::NETIO_FIXED_BUFFER_VA flag is specified in flags, the NetIO
2169 * buffer pool is automatically created and mapped into the application's
2170 * virtual address space at an address chosen by the operating system,
2171 * using the common memory (cmem) facility in the Tilera Multicore
2172 * Components library.  The cmem facility allows multiple processes to gain
2173 * access to shared memory which is mapped into each process at an
2174 * identical virtual address.  In order for this to work, the processes
2175 * must have a common ancestor, which must create the common memory using
2176 * tmc_cmem_init().
2177 *
2178 * In programs using the iLib process creation API, or in programs which use
2179 * only one process (which include programs using the pthreads library),
2180 * tmc_cmem_init() is called automatically.  All other applications
2181 * must call it explicitly, before any child processes which might call
2182 * netio_input_register() are created.
2183 */
2184typedef struct
2185{
2186  /** Registration characteristics.
2187
2188      This value determines several characteristics of the registration;
2189      flags for different types of behavior are ORed together to make the
2190      final flag value.  Generally applications should specify exactly
2191      one flag from each of the following categories:
2192
2193      - Whether the application will be receiving packets on this queue
2194        (::NETIO_RECV or ::NETIO_NO_RECV).
2195
2196      - Whether the application will be transmitting packets on this queue,
2197        and if so, whether it will request egress checksum calculation
2198        (::NETIO_XMIT, ::NETIO_XMIT_CSUM, or ::NETIO_NO_XMIT).  It is
2199        legal to call netio_get_buffer() without one of the XMIT flags,
2200        as long as ::NETIO_RECV is specified; in this case, the retrieved
2201        buffers must be passed to another tile for transmission.
2202
2203      - Whether the application expects any vendor-specific tags in
2204        its packets' L2 headers (::NETIO_TAG_NONE, ::NETIO_TAG_BRCM,
2205        or ::NETIO_TAG_MRVL).  This must match the configuration of the
2206        target IPP.
2207
2208      To accommodate applications written to previous versions of the NetIO
2209      interface, none of the flags above are currently required; if omitted,
2210      NetIO behaves more or less as if ::NETIO_RECV | ::NETIO_XMIT_CSUM |
2211      ::NETIO_TAG_NONE were used.  However, explicit specification of
2212      the relevant flags allows NetIO to do a better job of resource
2213      allocation, allows earlier detection of certain configuration errors,
2214      and may enable advanced features or higher performance in the future,
2215      so their use is strongly recommended.
2216
2217      Note that specifying ::NETIO_NO_RECV along with ::NETIO_NO_XMIT
2218      is a special case, intended primarily for use by programs which
2219      retrieve network statistics or do link management operations.
2220      When these flags are both specified, the resulting queue may not
2221      be used with NetIO routines other than netio_get(), netio_set(),
2222      and netio_input_unregister().  See @ref link for more information
2223      on link management.
2224
2225      Other flags are optional; their use is described below.
2226  */
2227  int flags;
2228
2229  /** Interface name.  This is a string which identifies the specific
2230      Ethernet controller hardware to be used.  The format of the string
2231      is a device type and a device index, separated by a slash; so,
2232      the first 10 Gigabit Ethernet controller is named "xgbe/0", while
2233      the second 10/100/1000 Megabit Ethernet controller is named "gbe/1".
2234   */
2235  const char* interface;
2236
2237  /** Receive packet queue size.  This specifies the maximum number
2238      of ingress packets that can be received on this queue without
2239      being retrieved by @ref netio_get_packet().  If the IPP's distribution
2240      algorithm calls for a packet to be sent to this queue, and this
2241      number of packets are already pending there, the new packet
2242      will either be discarded, or sent to another tile registered
2243      for the same queue_id (see @ref drops).  This value must
2244      be at least ::NETIO_MIN_RECEIVE_PKTS, can always be at least
2245      ::NETIO_MAX_RECEIVE_PKTS, and may be larger than that on certain
2246      interfaces.
2247   */
2248  int num_receive_packets;
2249
2250  /** The queue ID being requested.  Legal values for this range from 0
2251      to ::NETIO_MAX_QUEUE_ID, inclusive.  ::NETIO_MAX_QUEUE_ID is always
2252      greater than or equal to the number of tiles; this allows one queue
2253      for each tile, plus at least one additional queue.  Some applications
2254      may wish to use the additional queue as a destination for unwanted
2255      packets, since packets delivered to queues for which no tiles have
2256      registered are discarded.
2257   */
2258  unsigned int queue_id;
2259
2260  /** Maximum number of small send buffers to be held in the local empty
2261      buffer cache.  This specifies the size of the area which holds
2262      empty small egress buffers requested from the IPP but not yet
2263      retrieved via @ref netio_get_buffer().  This value must be greater
2264      than zero if the application will ever use @ref netio_get_buffer()
2265      to allocate empty small egress buffers; it may be no larger than
2266      ::NETIO_MAX_SEND_BUFFERS.  See @ref epp for more details on empty
2267      buffer caching.
2268   */
2269  int num_send_buffers_small_total;
2270
2271  /** Number of small send buffers to be preallocated at registration.
2272      If this value is nonzero, the specified number of empty small egress
2273      buffers will be requested from the IPP during the netio_input_register
2274      operation; this may speed the execution of @ref netio_get_buffer().
2275      This may be no larger than @ref num_send_buffers_small_total.  See @ref
2276      epp for more details on empty buffer caching.
2277   */
2278  int num_send_buffers_small_prealloc;
2279
2280  /** Maximum number of large send buffers to be held in the local empty
2281      buffer cache.  This specifies the size of the area which holds empty
2282      large egress buffers requested from the IPP but not yet retrieved via
2283      @ref netio_get_buffer().  This value must be greater than zero if the
2284      application will ever use @ref netio_get_buffer() to allocate empty
2285      large egress buffers; it may be no larger than ::NETIO_MAX_SEND_BUFFERS.
2286      See @ref epp for more details on empty buffer caching.
2287   */
2288  int num_send_buffers_large_total;
2289
2290  /** Number of large send buffers to be preallocated at registration.
2291      If this value is nonzero, the specified number of empty large egress
2292      buffers will be requested from the IPP during the netio_input_register
2293      operation; this may speed the execution of @ref netio_get_buffer().
2294      This may be no larger than @ref num_send_buffers_large_total.  See @ref
2295      epp for more details on empty buffer caching.
2296   */
2297  int num_send_buffers_large_prealloc;
2298
2299  /** Maximum number of jumbo send buffers to be held in the local empty
2300      buffer cache.  This specifies the size of the area which holds empty
2301      jumbo egress buffers requested from the IPP but not yet retrieved via
2302      @ref netio_get_buffer().  This value must be greater than zero if the
2303      application will ever use @ref netio_get_buffer() to allocate empty
2304      jumbo egress buffers; it may be no larger than ::NETIO_MAX_SEND_BUFFERS.
2305      See @ref epp for more details on empty buffer caching.
2306   */
2307  int num_send_buffers_jumbo_total;
2308
2309  /** Number of jumbo send buffers to be preallocated at registration.
2310      If this value is nonzero, the specified number of empty jumbo egress
2311      buffers will be requested from the IPP during the netio_input_register
2312      operation; this may speed the execution of @ref netio_get_buffer().
2313      This may be no larger than @ref num_send_buffers_jumbo_total.  See @ref
2314      epp for more details on empty buffer caching.
2315   */
2316  int num_send_buffers_jumbo_prealloc;
2317
2318  /** Total packet buffer size.  This determines the total size, in bytes,
2319      of the NetIO buffer pool.  Note that the maximum number of available
2320      buffers of each size is determined during hypervisor configuration
2321      (see the <em>System Programmer's Guide</em> for details); this just
2322      influences how much host memory is allocated for those buffers.
2323
2324      The buffer pool is allocated from common memory, which will be
2325      automatically initialized if needed.  If your buffer pool is larger
2326      than 240 MB, you might need to explicitly call @c tmc_cmem_init(),
2327      as described in the Application Libraries Reference Manual (UG227).
2328
2329      Packet buffers are currently allocated in chunks of 16 MB; this
2330      value will be rounded up to the next larger multiple of 16 MB.
2331      If this value is zero, a default of 32 MB will be used; this was
2332      the value used by previous versions of NetIO.  Note that taking this
2333      default also affects the placement of buffers on Linux NUMA nodes.
2334      See @ref buffer_node_weights for an explanation of buffer placement.
2335
2336      In order to successfully allocate packet buffers, Linux must have
2337      available huge pages on the relevant Linux NUMA nodes.  See the
2338      <em>System Programmer's Guide</em> for information on configuring
2339      huge page support in Linux.
2340   */
2341  uint64_t total_buffer_size;
2342
2343  /** Buffer placement weighting factors.
2344
2345      This array specifies the relative amount of buffering to place
2346      on each of the available Linux NUMA nodes.  This array is
2347      indexed by the NUMA node, and the values in the array are
2348      proportional to the amount of buffer space to allocate on that
2349      node.
2350
2351      If memory striping is enabled in the Hypervisor, then there is
2352      only one logical NUMA node (node 0). In that case, NetIO will by
2353      default ignore the suggested buffer node weights, and buffers
2354      will be striped across the physical memory controllers. See
2355      UG209 System Programmer's Guide for a description of the
2356      hypervisor option that controls memory striping.
2357
2358      If memory striping is disabled, then there are up to four NUMA
2359      nodes, corresponding to the four DDRAM controllers in the TILE
2360      processor architecture.  See UG100 Tile Processor Architecture
2361      Overview for a diagram showing the location of each of the DDRAM
2362      controllers relative to the tile array.
2363
2364      For instance, if memory striping is disabled, the following
2365      configuration strucure:
2366
2367      @code
2368      netio_input_config_t config = {
2369            .
2370            .
2371            .
2372        .total_buffer_size = 4 * 16 * 1024 * 1024;
2373        .buffer_node_weights = { 1, 0, 1, 0 },
2374      },
2375      @endcode
2376
2377      would result in 32 MB of buffers being placed on controller 0, and
2378      32 MB on controller 2.  (Since buffers are allocated in units of
2379      16 MB, some sets of weights will not be able to be matched exactly.)
2380
2381      For the weights to be effective, @ref total_buffer_size must be
2382      nonzero.  If @ref total_buffer_size is zero, causing the default
2383      32 MB of buffer space to be used, then any specified weights will
2384      be ignored, and buffers will positioned as they were in previous
2385      versions of NetIO:
2386
2387      - For xgbe/0 and gbe/0, 16 MB of buffers will be placed on controller 1,
2388        and the other 16 MB will be placed on controller 2.
2389
2390      - For xgbe/1 and gbe/1, 16 MB of buffers will be placed on controller 2,
2391        and the other 16 MB will be placed on controller 3.
2392
2393      If @ref total_buffer_size is nonzero, but all weights are zero,
2394      then all buffer space will be allocated on Linux NUMA node zero.
2395
2396      By default, the specified buffer placement is treated as a hint;
2397      if sufficient free memory is not available on the specified
2398      controllers, the buffers will be allocated elsewhere.  However,
2399      if the ::NETIO_STRICT_HOMING flag is specified in @ref flags, then a
2400      failure to allocate buffer space exactly as requested will cause the
2401      registration operation to fail with an error of ::NETIO_CANNOT_HOME.
2402
2403      Note that maximal network performance cannot be achieved with
2404      only one memory controller.
2405   */
2406  uint8_t buffer_node_weights[NETIO_NUM_NODE_WEIGHTS];
2407
2408  /** Fixed virtual address for packet buffers.  Only valid when
2409      ::NETIO_FIXED_BUFFER_VA is specified in @ref flags; see the
2410      description of that flag for details.
2411   */
2412  void* fixed_buffer_va;
2413
2414  /**
2415      Maximum number of outstanding send packet requests.  This value is
2416      only relevant when an EPP is in use; it determines the number of
2417      slots in the EPP's outgoing packet queue which this tile is allowed
2418      to consume, and thus the number of packets which may be sent before
2419      the sending tile must wait for an acknowledgment from the EPP.
2420      Modifying this value is generally only helpful when using @ref
2421      netio_send_packet_vector(), where it can help improve performance by
2422      allowing a single vector send operation to process more packets.
2423      Typically it is not specified, and the default, which divides the
2424      outgoing packet slots evenly between all tiles on the chip, is used.
2425
2426      If a registration asks for more outgoing packet queue slots than are
2427      available, ::NETIO_TOOMANY_XMIT will be returned.  The total number
2428      of packet queue slots which are available for all tiles for each EPP
2429      is subject to change, but is currently ::NETIO_TOTAL_SENDS_OUTSTANDING.
2430
2431
2432      This value is ignored if ::NETIO_XMIT is not specified in flags.
2433      If you want to specify a large value here for a specific tile, you are
2434      advised to specify NETIO_NO_XMIT on other, non-transmitting tiles so
2435      that they do not consume a default number of packet slots.  Any tile
2436      transmitting is required to have at least ::NETIO_MIN_SENDS_OUTSTANDING
2437      slots allocated to it; values less than that will be silently
2438      increased by the NetIO library.
2439   */
2440  int num_sends_outstanding;
2441}
2442netio_input_config_t;
2443
2444
2445/** Registration flags; used in the @ref netio_input_config_t structure.
2446 * @addtogroup setup
2447 */
2448/** @{ */
2449
2450/** Fail a registration request if we can't put packet buffers
2451    on the specified memory controllers. */
2452#define NETIO_STRICT_HOMING   0x00000002
2453
2454/** This application expects no tags on its L2 headers. */
2455#define NETIO_TAG_NONE        0x00000004
2456
2457/** This application expects Marvell extended tags on its L2 headers. */
2458#define NETIO_TAG_MRVL        0x00000008
2459
2460/** This application expects Broadcom tags on its L2 headers. */
2461#define NETIO_TAG_BRCM        0x00000010
2462
2463/** This registration may call routines which receive packets. */
2464#define NETIO_RECV            0x00000020
2465
2466/** This registration may not call routines which receive packets. */
2467#define NETIO_NO_RECV         0x00000040
2468
2469/** This registration may call routines which transmit packets. */
2470#define NETIO_XMIT            0x00000080
2471
2472/** This registration may call routines which transmit packets with
2473    checksum acceleration. */
2474#define NETIO_XMIT_CSUM       0x00000100
2475
2476/** This registration may not call routines which transmit packets. */
2477#define NETIO_NO_XMIT         0x00000200
2478
2479/** This registration wants NetIO buffers mapped at an application-specified
2480    virtual address.
2481
2482    NetIO buffers are by default created by the TMC common memory facility,
2483    which must be configured by a common ancestor of all processes sharing
2484    a network interface.  When this flag is specified, NetIO buffers are
2485    instead mapped at an address chosen by the application (and specified
2486    in @ref netio_input_config_t::fixed_buffer_va).  This allows multiple
2487    unrelated but cooperating processes to share a NetIO interface.
2488    All processes sharing the same interface must specify this flag,
2489    and all must specify the same fixed virtual address.
2490
2491    @ref netio_input_config_t::fixed_buffer_va must be a
2492    multiple of 16 MB, and the packet buffers will occupy @ref
2493    netio_input_config_t::total_buffer_size bytes of virtual address
2494    space, beginning at that address.  If any of those virtual addresses
2495    are currently occupied by other memory objects, like application or
2496    shared library code or data, @ref netio_input_register() will return
2497    ::NETIO_FAULT.  While it is impossible to provide a fixed_buffer_va
2498    which will work for all applications, a good first guess might be to
2499    use 0xb0000000 minus @ref netio_input_config_t::total_buffer_size.
2500    If that fails, it might be helpful to consult the running application's
2501    virtual address description file (/proc/<em>pid</em>/maps) to see
2502    which regions of virtual address space are available.
2503 */
2504#define NETIO_FIXED_BUFFER_VA 0x00000400
2505
2506/** This registration call will not complete unless the network link
2507    is up.  The process will wait several seconds for this to happen (the
2508    precise interval is link-dependent), but if the link does not come up,
2509    ::NETIO_LINK_DOWN will be returned.  This flag is the default if
2510    ::NETIO_NOREQUIRE_LINK_UP is not specified.  Note that this flag by
2511    itself does not request that the link be brought up; that can be done
2512    with the ::NETIO_AUTO_LINK_UPDN or ::NETIO_AUTO_LINK_UP flags (the
2513    latter is the default if no NETIO_AUTO_LINK_xxx flags are specified),
2514    or by explicitly setting the link's desired state via netio_set().
2515    If the link is not brought up by one of those methods, and this flag
2516    is specified, the registration operation will return ::NETIO_LINK_DOWN.
2517    This flag is ignored if it is specified along with ::NETIO_NO_XMIT and
2518    ::NETIO_NO_RECV.  See @ref link for more information on link
2519    management.
2520 */
2521#define NETIO_REQUIRE_LINK_UP    0x00000800
2522
2523/** This registration call will complete even if the network link is not up.
2524    Whenever the link is not up, packets will not be sent or received:
2525    netio_get_packet() will return ::NETIO_NOPKT once all queued packets
2526    have been drained, and netio_send_packet() and similar routines will
2527    return NETIO_QUEUE_FULL once the outgoing packet queue in the EPP
2528    or the I/O shim is full.  See @ref link for more information on link
2529    management.
2530 */
2531#define NETIO_NOREQUIRE_LINK_UP  0x00001000
2532
2533#ifndef __DOXYGEN__
2534/*
2535 * These are part of the implementation of the NETIO_AUTO_LINK_xxx flags,
2536 * but should not be used directly by applications, and are thus not
2537 * documented.
2538 */
2539#define _NETIO_AUTO_UP        0x00002000
2540#define _NETIO_AUTO_DN        0x00004000
2541#define _NETIO_AUTO_PRESENT   0x00008000
2542#endif
2543
2544/** Set the desired state of the link to up, allowing any speeds which are
2545    supported by the link hardware, as part of this registration operation.
2546    Do not take down the link automatically.  This is the default if
2547    no other NETIO_AUTO_LINK_xxx flags are specified.  This flag is ignored
2548    if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV.
2549    See @ref link for more information on link management.
2550 */
2551#define NETIO_AUTO_LINK_UP     (_NETIO_AUTO_PRESENT | _NETIO_AUTO_UP)
2552
2553/** Set the desired state of the link to up, allowing any speeds which are
2554    supported by the link hardware, as part of this registration operation.
2555    Set the desired state of the link to down the next time no tiles are
2556    registered for packet reception or transmission.  This flag is ignored
2557    if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV.
2558    See @ref link for more information on link management.
2559 */
2560#define NETIO_AUTO_LINK_UPDN   (_NETIO_AUTO_PRESENT | _NETIO_AUTO_UP | \
2561                                _NETIO_AUTO_DN)
2562
2563/** Set the desired state of the link to down the next time no tiles are
2564    registered for packet reception or transmission.  This flag is ignored
2565    if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV.
2566    See @ref link for more information on link management.
2567 */
2568#define NETIO_AUTO_LINK_DN     (_NETIO_AUTO_PRESENT | _NETIO_AUTO_DN)
2569
2570/** Do not bring up the link automatically as part of this registration
2571    operation.  Do not take down the link automatically.  This flag
2572    is ignored if it is specified along with ::NETIO_NO_XMIT and
2573    ::NETIO_NO_RECV.  See @ref link for more information on link management.
2574  */
2575#define NETIO_AUTO_LINK_NONE   _NETIO_AUTO_PRESENT
2576
2577
2578/** Minimum number of receive packets. */
2579#define NETIO_MIN_RECEIVE_PKTS            16
2580
2581/** Lower bound on the maximum number of receive packets; may be higher
2582    than this on some interfaces. */
2583#define NETIO_MAX_RECEIVE_PKTS           128
2584
2585/** Maximum number of send buffers, per packet size. */
2586#define NETIO_MAX_SEND_BUFFERS            16
2587
2588/** Number of EPP queue slots, and thus outstanding sends, per EPP. */
2589#define NETIO_TOTAL_SENDS_OUTSTANDING   2015
2590
2591/** Minimum number of EPP queue slots, and thus outstanding sends, per
2592 *  transmitting tile. */
2593#define NETIO_MIN_SENDS_OUTSTANDING       16
2594
2595
2596/**@}*/
2597
2598#ifndef __DOXYGEN__
2599
2600/**
2601 * An object for providing Ethernet packets to a process.
2602 */
2603struct __netio_queue_impl_t;
2604
2605/**
2606 * An object for managing the user end of a NetIO queue.
2607 */
2608struct __netio_queue_user_impl_t;
2609
2610#endif /* !__DOXYGEN__ */
2611
2612
2613/** A netio_queue_t describes a NetIO communications endpoint.
2614 * @ingroup setup
2615 */
2616typedef struct
2617{
2618#ifdef __DOXYGEN__
2619  uint8_t opaque[8];                 /**< This is an opaque structure. */
2620#else
2621  struct __netio_queue_impl_t* __system_part;    /**< The system part. */
2622  struct __netio_queue_user_impl_t* __user_part; /**< The user part. */
2623#ifdef _NETIO_PTHREAD
2624  _netio_percpu_mutex_t lock;                    /**< Queue lock. */
2625#endif
2626#endif
2627}
2628netio_queue_t;
2629
2630
2631/**
2632 * @brief Packet send context.
2633 *
2634 * @ingroup egress
2635 *
2636 * Packet send context for use with netio_send_packet_prepare and _commit.
2637 */
2638typedef struct
2639{
2640#ifdef __DOXYGEN__
2641  uint8_t opaque[44];   /**< This is an opaque structure. */
2642#else
2643  uint8_t flags;        /**< Defined below */
2644  uint8_t datalen;      /**< Number of valid words pointed to by data. */
2645  uint32_t request[9];  /**< Request to be sent to the EPP or shim.  Note
2646                             that this is smaller than the 11-word maximum
2647                             request size, since some constant values are
2648                             not saved in the context. */
2649  uint32_t *data;       /**< Data to be sent to the EPP or shim via IDN. */
2650#endif
2651}
2652netio_send_pkt_context_t;
2653
2654
2655#ifndef __DOXYGEN__
2656#define SEND_PKT_CTX_USE_EPP   1  /**< We're sending to an EPP. */
2657#define SEND_PKT_CTX_SEND_CSUM 2  /**< Request includes a checksum. */
2658#endif
2659
2660/**
2661 * @brief Packet vector entry.
2662 *
2663 * @ingroup egress
2664 *
2665 * This data structure is used with netio_send_packet_vector() to send multiple
2666 * packets with one NetIO call.  The structure should be initialized by
2667 * calling netio_pkt_vector_set(), rather than by setting the fields
2668 * directly.
2669 *
2670 * This structure is guaranteed to be a power of two in size, no
2671 * bigger than one L2 cache line, and to be aligned modulo its size.
2672 */
2673typedef struct
2674#ifndef __DOXYGEN__
2675__attribute__((aligned(8)))
2676#endif
2677{
2678  /** Reserved for use by the user application.  When initialized with
2679   *  the netio_set_pkt_vector_entry() function, this field is guaranteed
2680   *  to be visible to readers only after all other fields are already
2681   *  visible.  This way it can be used as a valid flag or generation
2682   *  counter. */
2683  uint8_t user_data;
2684
2685  /* Structure members below this point should not be accessed directly by
2686   * applications, as they may change in the future. */
2687
2688  /** Low 8 bits of the packet address to send.  The high bits are
2689   *  acquired from the 'handle' field. */
2690  uint8_t buffer_address_low;
2691
2692  /** Number of bytes to transmit. */
2693  uint16_t size;
2694
2695  /** The raw handle from a netio_pkt_t.  If this is NETIO_PKT_HANDLE_NONE,
2696   *  this vector entry will be skipped and no packet will be transmitted. */
2697  netio_pkt_handle_t handle;
2698}
2699netio_pkt_vector_entry_t;
2700
2701
2702/**
2703 * @brief Initialize fields in a packet vector entry.
2704 *
2705 * @ingroup egress
2706 *
2707 * @param[out] v Pointer to the vector entry to be initialized.
2708 * @param[in] pkt Packet to be transmitted when the vector entry is passed to
2709 *        netio_send_packet_vector().  Note that the packet's attributes
2710 *        (e.g., its L2 offset and length) are captured at the time this
2711 *        routine is called; subsequent changes in those attributes will not
2712 *        be reflected in the packet which is actually transmitted.
2713 *        Changes in the packet's contents, however, will be so reflected.
2714 *        If this is NULL, no packet will be transmitted.
2715 * @param[in] user_data User data to be set in the vector entry.
2716 *        This function guarantees that the "user_data" field will become
2717 *        visible to a reader only after all other fields have become visible.
2718 *        This allows a structure in a ring buffer to be written and read
2719 *        by a polling reader without any locks or other synchronization.
2720 */
2721static __inline void
2722netio_pkt_vector_set(volatile netio_pkt_vector_entry_t* v, netio_pkt_t* pkt,
2723                     uint8_t user_data)
2724{
2725  if (pkt)
2726  {
2727    if (NETIO_PKT_IS_MINIMAL(pkt))
2728    {
2729      netio_pkt_minimal_metadata_t* mmd =
2730        (netio_pkt_minimal_metadata_t*) &pkt->__metadata;
2731      v->buffer_address_low = (uintptr_t) NETIO_PKT_L2_DATA_MM(mmd, pkt) & 0xFF;
2732      v->size = NETIO_PKT_L2_LENGTH_MM(mmd, pkt);
2733    }
2734    else
2735    {
2736      netio_pkt_metadata_t* mda = &pkt->__metadata;
2737      v->buffer_address_low = (uintptr_t) NETIO_PKT_L2_DATA_M(mda, pkt) & 0xFF;
2738      v->size = NETIO_PKT_L2_LENGTH_M(mda, pkt);
2739    }
2740    v->handle.word = pkt->__packet.word;
2741  }
2742  else
2743  {
2744    v->handle.word = 0;   /* Set handle to NETIO_PKT_HANDLE_NONE. */
2745  }
2746
2747  __asm__("" : : : "memory");
2748
2749  v->user_data = user_data;
2750}
2751
2752
2753/**
2754 * Flags and structures for @ref netio_get() and @ref netio_set().
2755 * @ingroup config
2756 */
2757
2758/** @{ */
2759/** Parameter class; addr is a NETIO_PARAM_xxx value. */
2760#define NETIO_PARAM       0
2761/** Interface MAC address. This address is only valid with @ref netio_get().
2762 *  The value is a 6-byte MAC address.  Depending upon the overall system
2763 *  design, a MAC address may or may not be available for each interface. */
2764#define NETIO_PARAM_MAC        0
2765
2766/** Determine whether to suspend output on the receipt of pause frames.
2767 *  If the value is nonzero, the I/O shim will suspend output when a pause
2768 *  frame is received.  If the value is zero, pause frames will be ignored. */
2769#define NETIO_PARAM_PAUSE_IN   1
2770
2771/** Determine whether to send pause frames if the I/O shim packet FIFOs are
2772 *  nearly full.  If the value is zero, pause frames are not sent.  If
2773 *  the value is nonzero, it is the delay value which will be sent in any
2774 *  pause frames which are output, in units of 512 bit times. */
2775#define NETIO_PARAM_PAUSE_OUT  2
2776
2777/** Jumbo frame support.  The value is a 4-byte integer.  If the value is
2778 *  nonzero, the MAC will accept frames of up to 10240 bytes.  If the value
2779 *  is zero, the MAC will only accept frames of up to 1544 bytes. */
2780#define NETIO_PARAM_JUMBO      3
2781
2782/** I/O shim's overflow statistics register.  The value is two 16-bit integers.
2783 *  The first 16-bit value (or the low 16 bits, if the value is treated as a
2784 *  32-bit number) is the count of packets which were completely dropped and
2785 *  not delivered by the shim.  The second 16-bit value (or the high 16 bits,
2786 *  if the value is treated as a 32-bit number) is the count of packets
2787 *  which were truncated and thus only partially delivered by the shim.  This
2788 *  register is automatically reset to zero after it has been read.
2789 */
2790#define NETIO_PARAM_OVERFLOW   4
2791
2792/** IPP statistics.  This address is only valid with @ref netio_get().  The
2793 *  value is a netio_stat_t structure.  Unlike the I/O shim statistics, the
2794 *  IPP statistics are not all reset to zero on read; see the description
2795 *  of the netio_stat_t for details. */
2796#define NETIO_PARAM_STAT 5
2797
2798/** Possible link state.  The value is a combination of "NETIO_LINK_xxx"
2799 *  flags.  With @ref netio_get(), this will indicate which flags are
2800 *  actually supported by the hardware.
2801 *
2802 *  For historical reasons, specifying this value to netio_set() will have
2803 *  the same behavior as using ::NETIO_PARAM_LINK_CONFIG, but this usage is
2804 *  discouraged.
2805 */
2806#define NETIO_PARAM_LINK_POSSIBLE_STATE 6
2807
2808/** Link configuration. The value is a combination of "NETIO_LINK_xxx" flags.
2809 *  With @ref netio_set(), this will attempt to immediately bring up the
2810 *  link using whichever of the requested flags are supported by the
2811 *  hardware, or take down the link if the flags are zero; if this is
2812 *  not possible, an error will be returned.  Many programs will want
2813 *  to use ::NETIO_PARAM_LINK_DESIRED_STATE instead.
2814 *
2815 *  For historical reasons, specifying this value to netio_get() will
2816 *  have the same behavior as using ::NETIO_PARAM_LINK_POSSIBLE_STATE,
2817 *  but this usage is discouraged.
2818 */
2819#define NETIO_PARAM_LINK_CONFIG NETIO_PARAM_LINK_POSSIBLE_STATE
2820
2821/** Current link state. This address is only valid with @ref netio_get().
2822 *  The value is zero or more of the "NETIO_LINK_xxx" flags, ORed together.
2823 *  If the link is down, the value ANDed with NETIO_LINK_SPEED will be
2824 *  zero; if the link is up, the value ANDed with NETIO_LINK_SPEED will
2825 *  result in exactly one of the NETIO_LINK_xxx values, indicating the
2826 *  current speed. */
2827#define NETIO_PARAM_LINK_CURRENT_STATE 7
2828
2829/** Variant symbol for current state, retained for compatibility with
2830 *  pre-MDE-2.1 programs. */
2831#define NETIO_PARAM_LINK_STATUS NETIO_PARAM_LINK_CURRENT_STATE
2832
2833/** Packet Coherence protocol. This address is only valid with @ref netio_get().
2834 *  The value is nonzero if the interface is configured for cache-coherent DMA.
2835 */
2836#define NETIO_PARAM_COHERENT 8
2837
2838/** Desired link state. The value is a conbination of "NETIO_LINK_xxx"
2839 *  flags, which specify the desired state for the link.  With @ref
2840 *  netio_set(), this will, in the background, attempt to bring up the link
2841 *  using whichever of the requested flags are reasonable, or take down the
2842 *  link if the flags are zero.  The actual link up or down operation may
2843 *  happen after this call completes.  If the link state changes in the
2844 *  future, the system will continue to try to get back to the desired link
2845 *  state; for instance, if the link is brought up successfully, and then
2846 *  the network cable is disconnected, the link will go down.  However, the
2847 *  desired state of the link is still up, so if the cable is reconnected,
2848 *  the link will be brought up again.
2849 *
2850 *  With @ref netio_get(), this will indicate the desired state for the
2851 *  link, as set with a previous netio_set() call, or implicitly by a
2852 *  netio_input_register() or netio_input_unregister() operation.  This may
2853 *  not reflect the current state of the link; to get that, use
2854 *  ::NETIO_PARAM_LINK_CURRENT_STATE. */
2855#define NETIO_PARAM_LINK_DESIRED_STATE 9
2856
2857/** NetIO statistics structure.  Retrieved using the ::NETIO_PARAM_STAT
2858 *  address passed to @ref netio_get(). */
2859typedef struct
2860{
2861  /** Number of packets which have been received by the IPP and forwarded
2862   *  to a tile's receive queue for processing.  This value wraps at its
2863   *  maximum, and is not cleared upon read. */
2864  uint32_t packets_received;
2865
2866  /** Number of packets which have been dropped by the IPP, because they could
2867   *  not be received, or could not be forwarded to a tile.  The former happens
2868   *  when the IPP does not have a free packet buffer of suitable size for an
2869   *  incoming frame.  The latter happens when all potential destination tiles
2870   *  for a packet, as defined by the group, bucket, and queue configuration,
2871   *  have full receive queues.   This value wraps at its maximum, and is not
2872   *  cleared upon read. */
2873  uint32_t packets_dropped;
2874
2875  /*
2876   * Note: the #defines after each of the following four one-byte values
2877   * denote their location within the third word of the netio_stat_t.  They
2878   * are intended for use only by the IPP implementation and are thus omitted
2879   * from the Doxygen output.
2880   */
2881
2882  /** Number of packets dropped because no worker was able to accept a new
2883   *  packet.  This value saturates at its maximum, and is cleared upon
2884   *  read. */
2885  uint8_t drops_no_worker;
2886#ifndef __DOXYGEN__
2887#define NETIO_STAT_DROPS_NO_WORKER   0
2888#endif
2889
2890  /** Number of packets dropped because no small buffers were available.
2891   *  This value saturates at its maximum, and is cleared upon read. */
2892  uint8_t drops_no_smallbuf;
2893#ifndef __DOXYGEN__
2894#define NETIO_STAT_DROPS_NO_SMALLBUF 1
2895#endif
2896
2897  /** Number of packets dropped because no large buffers were available.
2898   *  This value saturates at its maximum, and is cleared upon read. */
2899  uint8_t drops_no_largebuf;
2900#ifndef __DOXYGEN__
2901#define NETIO_STAT_DROPS_NO_LARGEBUF 2
2902#endif
2903
2904  /** Number of packets dropped because no jumbo buffers were available.
2905   *  This value saturates at its maximum, and is cleared upon read. */
2906  uint8_t drops_no_jumbobuf;
2907#ifndef __DOXYGEN__
2908#define NETIO_STAT_DROPS_NO_JUMBOBUF 3
2909#endif
2910}
2911netio_stat_t;
2912
2913
2914/** Link can run, should run, or is running at 10 Mbps. */
2915#define NETIO_LINK_10M         0x01
2916
2917/** Link can run, should run, or is running at 100 Mbps. */
2918#define NETIO_LINK_100M        0x02
2919
2920/** Link can run, should run, or is running at 1 Gbps. */
2921#define NETIO_LINK_1G          0x04
2922
2923/** Link can run, should run, or is running at 10 Gbps. */
2924#define NETIO_LINK_10G         0x08
2925
2926/** Link should run at the highest speed supported by the link and by
2927 *  the device connected to the link.  Only usable as a value for
2928 *  the link's desired state; never returned as a value for the current
2929 *  or possible states. */
2930#define NETIO_LINK_ANYSPEED    0x10
2931
2932/** All legal link speeds. */
2933#define NETIO_LINK_SPEED  (NETIO_LINK_10M  | \
2934                           NETIO_LINK_100M | \
2935                           NETIO_LINK_1G   | \
2936                           NETIO_LINK_10G  | \
2937                           NETIO_LINK_ANYSPEED)
2938
2939
2940/** MAC register class.  Addr is a register offset within the MAC.
2941 *  Registers within the XGbE and GbE MACs are documented in the Tile
2942 *  Processor I/O Device Guide (UG104). MAC registers start at address
2943 *  0x4000, and do not include the MAC_INTERFACE registers. */
2944#define NETIO_MAC             1
2945
2946/** MDIO register class (IEEE 802.3 clause 22 format).  Addr is the "addr"
2947 *  member of a netio_mdio_addr_t structure. */
2948#define NETIO_MDIO            2
2949
2950/** MDIO register class (IEEE 802.3 clause 45 format).  Addr is the "addr"
2951 *  member of a netio_mdio_addr_t structure. */
2952#define NETIO_MDIO_CLAUSE45   3
2953
2954/** NetIO MDIO address type.  Retrieved or provided using the ::NETIO_MDIO
2955 *  address passed to @ref netio_get() or @ref netio_set(). */
2956typedef union
2957{
2958  struct
2959  {
2960    unsigned int reg:16;  /**< MDIO register offset.  For clause 22 access,
2961                               must be less than 32. */
2962    unsigned int phy:5;   /**< Which MDIO PHY to access. */
2963    unsigned int dev:5;   /**< Which MDIO device to access within that PHY.
2964                               Applicable for clause 45 access only; ignored
2965                               for clause 22 access. */
2966  }
2967  bits;                   /**< Container for bitfields. */
2968  uint64_t addr;          /**< Value to pass to @ref netio_get() or
2969                           *   @ref netio_set(). */
2970}
2971netio_mdio_addr_t;
2972
2973/** @} */
2974
2975#endif /* __NETIO_INTF_H__ */
2976