linux/arch/tile/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/preempt.h>
  17#include <linux/module.h>
  18#include <linux/fs.h>
  19#include <linux/kprobes.h>
  20#include <linux/elfcore.h>
  21#include <linux/tick.h>
  22#include <linux/init.h>
  23#include <linux/mm.h>
  24#include <linux/compat.h>
  25#include <linux/hardirq.h>
  26#include <linux/syscalls.h>
  27#include <linux/kernel.h>
  28#include <linux/tracehook.h>
  29#include <linux/signal.h>
  30#include <asm/stack.h>
  31#include <asm/switch_to.h>
  32#include <asm/homecache.h>
  33#include <asm/syscalls.h>
  34#include <asm/traps.h>
  35#include <asm/setup.h>
  36#include <asm/uaccess.h>
  37#ifdef CONFIG_HARDWALL
  38#include <asm/hardwall.h>
  39#endif
  40#include <arch/chip.h>
  41#include <arch/abi.h>
  42#include <arch/sim_def.h>
  43
  44/*
  45 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
  46 * idle loop over low power while in the idle loop, e.g. if we have
  47 * one thread per core and we want to get threads out of futex waits fast.
  48 */
  49static int __init idle_setup(char *str)
  50{
  51        if (!str)
  52                return -EINVAL;
  53
  54        if (!strcmp(str, "poll")) {
  55                pr_info("using polling idle threads.\n");
  56                cpu_idle_poll_ctrl(true);
  57                return 0;
  58        } else if (!strcmp(str, "halt")) {
  59                return 0;
  60        }
  61        return -1;
  62}
  63early_param("idle", idle_setup);
  64
  65void arch_cpu_idle(void)
  66{
  67        __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  68        _cpu_idle();
  69}
  70
  71/*
  72 * Release a thread_info structure
  73 */
  74void arch_release_thread_info(struct thread_info *info)
  75{
  76        struct single_step_state *step_state = info->step_state;
  77
  78        if (step_state) {
  79
  80                /*
  81                 * FIXME: we don't munmap step_state->buffer
  82                 * because the mm_struct for this process (info->task->mm)
  83                 * has already been zeroed in exit_mm().  Keeping a
  84                 * reference to it here seems like a bad move, so this
  85                 * means we can't munmap() the buffer, and therefore if we
  86                 * ptrace multiple threads in a process, we will slowly
  87                 * leak user memory.  (Note that as soon as the last
  88                 * thread in a process dies, we will reclaim all user
  89                 * memory including single-step buffers in the usual way.)
  90                 * We should either assign a kernel VA to this buffer
  91                 * somehow, or we should associate the buffer(s) with the
  92                 * mm itself so we can clean them up that way.
  93                 */
  94                kfree(step_state);
  95        }
  96}
  97
  98static void save_arch_state(struct thread_struct *t);
  99
 100int copy_thread(unsigned long clone_flags, unsigned long sp,
 101                unsigned long arg, struct task_struct *p)
 102{
 103        struct pt_regs *childregs = task_pt_regs(p);
 104        unsigned long ksp;
 105        unsigned long *callee_regs;
 106
 107        /*
 108         * Set up the stack and stack pointer appropriately for the
 109         * new child to find itself woken up in __switch_to().
 110         * The callee-saved registers must be on the stack to be read;
 111         * the new task will then jump to assembly support to handle
 112         * calling schedule_tail(), etc., and (for userspace tasks)
 113         * returning to the context set up in the pt_regs.
 114         */
 115        ksp = (unsigned long) childregs;
 116        ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
 117        ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
 118        ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
 119        callee_regs = (unsigned long *)ksp;
 120        ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
 121        ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
 122        p->thread.ksp = ksp;
 123
 124        /* Record the pid of the task that created this one. */
 125        p->thread.creator_pid = current->pid;
 126
 127        if (unlikely(p->flags & PF_KTHREAD)) {
 128                /* kernel thread */
 129                memset(childregs, 0, sizeof(struct pt_regs));
 130                memset(&callee_regs[2], 0,
 131                       (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
 132                callee_regs[0] = sp;   /* r30 = function */
 133                callee_regs[1] = arg;  /* r31 = arg */
 134                childregs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
 135                p->thread.pc = (unsigned long) ret_from_kernel_thread;
 136                return 0;
 137        }
 138
 139        /*
 140         * Start new thread in ret_from_fork so it schedules properly
 141         * and then return from interrupt like the parent.
 142         */
 143        p->thread.pc = (unsigned long) ret_from_fork;
 144
 145        /*
 146         * Do not clone step state from the parent; each thread
 147         * must make its own lazily.
 148         */
 149        task_thread_info(p)->step_state = NULL;
 150
 151#ifdef __tilegx__
 152        /*
 153         * Do not clone unalign jit fixup from the parent; each thread
 154         * must allocate its own on demand.
 155         */
 156        task_thread_info(p)->unalign_jit_base = NULL;
 157#endif
 158
 159        /*
 160         * Copy the registers onto the kernel stack so the
 161         * return-from-interrupt code will reload it into registers.
 162         */
 163        *childregs = *current_pt_regs();
 164        childregs->regs[0] = 0;         /* return value is zero */
 165        if (sp)
 166                childregs->sp = sp;  /* override with new user stack pointer */
 167        memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
 168               CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
 169
 170        /* Save user stack top pointer so we can ID the stack vm area later. */
 171        p->thread.usp0 = childregs->sp;
 172
 173        /*
 174         * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
 175         * which is passed in as arg #5 to sys_clone().
 176         */
 177        if (clone_flags & CLONE_SETTLS)
 178                childregs->tp = childregs->regs[4];
 179
 180
 181#if CHIP_HAS_TILE_DMA()
 182        /*
 183         * No DMA in the new thread.  We model this on the fact that
 184         * fork() clears the pending signals, alarms, and aio for the child.
 185         */
 186        memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
 187        memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
 188#endif
 189
 190        /* New thread has its miscellaneous processor state bits clear. */
 191        p->thread.proc_status = 0;
 192
 193#ifdef CONFIG_HARDWALL
 194        /* New thread does not own any networks. */
 195        memset(&p->thread.hardwall[0], 0,
 196               sizeof(struct hardwall_task) * HARDWALL_TYPES);
 197#endif
 198
 199
 200        /*
 201         * Start the new thread with the current architecture state
 202         * (user interrupt masks, etc.).
 203         */
 204        save_arch_state(&p->thread);
 205
 206        return 0;
 207}
 208
 209int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
 210{
 211        task_thread_info(tsk)->align_ctl = val;
 212        return 0;
 213}
 214
 215int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
 216{
 217        return put_user(task_thread_info(tsk)->align_ctl,
 218                        (unsigned int __user *)adr);
 219}
 220
 221static struct task_struct corrupt_current = { .comm = "<corrupt>" };
 222
 223/*
 224 * Return "current" if it looks plausible, or else a pointer to a dummy.
 225 * This can be helpful if we are just trying to emit a clean panic.
 226 */
 227struct task_struct *validate_current(void)
 228{
 229        struct task_struct *tsk = current;
 230        if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
 231                     (high_memory && (void *)tsk > high_memory) ||
 232                     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
 233                pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
 234                tsk = &corrupt_current;
 235        }
 236        return tsk;
 237}
 238
 239/* Take and return the pointer to the previous task, for schedule_tail(). */
 240struct task_struct *sim_notify_fork(struct task_struct *prev)
 241{
 242        struct task_struct *tsk = current;
 243        __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
 244                     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
 245        __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
 246                     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
 247        return prev;
 248}
 249
 250int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
 251{
 252        struct pt_regs *ptregs = task_pt_regs(tsk);
 253        elf_core_copy_regs(regs, ptregs);
 254        return 1;
 255}
 256
 257#if CHIP_HAS_TILE_DMA()
 258
 259/* Allow user processes to access the DMA SPRs */
 260void grant_dma_mpls(void)
 261{
 262#if CONFIG_KERNEL_PL == 2
 263        __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
 264        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
 265#else
 266        __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
 267        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
 268#endif
 269}
 270
 271/* Forbid user processes from accessing the DMA SPRs */
 272void restrict_dma_mpls(void)
 273{
 274#if CONFIG_KERNEL_PL == 2
 275        __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
 276        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
 277#else
 278        __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
 279        __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
 280#endif
 281}
 282
 283/* Pause the DMA engine, then save off its state registers. */
 284static void save_tile_dma_state(struct tile_dma_state *dma)
 285{
 286        unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
 287        unsigned long post_suspend_state;
 288
 289        /* If we're running, suspend the engine. */
 290        if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
 291                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
 292
 293        /*
 294         * Wait for the engine to idle, then save regs.  Note that we
 295         * want to record the "running" bit from before suspension,
 296         * and the "done" bit from after, so that we can properly
 297         * distinguish a case where the user suspended the engine from
 298         * the case where the kernel suspended as part of the context
 299         * swap.
 300         */
 301        do {
 302                post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
 303        } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
 304
 305        dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
 306        dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
 307        dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
 308        dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
 309        dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
 310        dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
 311        dma->byte = __insn_mfspr(SPR_DMA_BYTE);
 312        dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
 313                (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
 314}
 315
 316/* Restart a DMA that was running before we were context-switched out. */
 317static void restore_tile_dma_state(struct thread_struct *t)
 318{
 319        const struct tile_dma_state *dma = &t->tile_dma_state;
 320
 321        /*
 322         * The only way to restore the done bit is to run a zero
 323         * length transaction.
 324         */
 325        if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
 326            !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
 327                __insn_mtspr(SPR_DMA_BYTE, 0);
 328                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 329                while (__insn_mfspr(SPR_DMA_USER_STATUS) &
 330                       SPR_DMA_STATUS__BUSY_MASK)
 331                        ;
 332        }
 333
 334        __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
 335        __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
 336        __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
 337        __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
 338        __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
 339        __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
 340        __insn_mtspr(SPR_DMA_BYTE, dma->byte);
 341
 342        /*
 343         * Restart the engine if we were running and not done.
 344         * Clear a pending async DMA fault that we were waiting on return
 345         * to user space to execute, since we expect the DMA engine
 346         * to regenerate those faults for us now.  Note that we don't
 347         * try to clear the TIF_ASYNC_TLB flag, since it's relatively
 348         * harmless if set, and it covers both DMA and the SN processor.
 349         */
 350        if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
 351                t->dma_async_tlb.fault_num = 0;
 352                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 353        }
 354}
 355
 356#endif
 357
 358static void save_arch_state(struct thread_struct *t)
 359{
 360#if CHIP_HAS_SPLIT_INTR_MASK()
 361        t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
 362                ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
 363#else
 364        t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
 365#endif
 366        t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
 367        t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
 368        t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
 369        t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
 370        t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
 371        t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
 372        t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
 373        t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
 374#if !CHIP_HAS_FIXED_INTVEC_BASE()
 375        t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
 376#endif
 377        t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
 378#if CHIP_HAS_DSTREAM_PF()
 379        t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
 380#endif
 381}
 382
 383static void restore_arch_state(const struct thread_struct *t)
 384{
 385#if CHIP_HAS_SPLIT_INTR_MASK()
 386        __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
 387        __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
 388#else
 389        __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
 390#endif
 391        __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
 392        __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
 393        __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
 394        __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
 395        __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
 396        __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
 397        __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
 398        __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
 399#if !CHIP_HAS_FIXED_INTVEC_BASE()
 400        __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
 401#endif
 402        __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
 403#if CHIP_HAS_DSTREAM_PF()
 404        __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
 405#endif
 406}
 407
 408
 409void _prepare_arch_switch(struct task_struct *next)
 410{
 411#if CHIP_HAS_TILE_DMA()
 412        struct tile_dma_state *dma = &current->thread.tile_dma_state;
 413        if (dma->enabled)
 414                save_tile_dma_state(dma);
 415#endif
 416}
 417
 418
 419struct task_struct *__sched _switch_to(struct task_struct *prev,
 420                                       struct task_struct *next)
 421{
 422        /* DMA state is already saved; save off other arch state. */
 423        save_arch_state(&prev->thread);
 424
 425#if CHIP_HAS_TILE_DMA()
 426        /*
 427         * Restore DMA in new task if desired.
 428         * Note that it is only safe to restart here since interrupts
 429         * are disabled, so we can't take any DMATLB miss or access
 430         * interrupts before we have finished switching stacks.
 431         */
 432        if (next->thread.tile_dma_state.enabled) {
 433                restore_tile_dma_state(&next->thread);
 434                grant_dma_mpls();
 435        } else {
 436                restrict_dma_mpls();
 437        }
 438#endif
 439
 440        /* Restore other arch state. */
 441        restore_arch_state(&next->thread);
 442
 443#ifdef CONFIG_HARDWALL
 444        /* Enable or disable access to the network registers appropriately. */
 445        hardwall_switch_tasks(prev, next);
 446#endif
 447
 448        /*
 449         * Switch kernel SP, PC, and callee-saved registers.
 450         * In the context of the new task, return the old task pointer
 451         * (i.e. the task that actually called __switch_to).
 452         * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
 453         */
 454        return __switch_to(prev, next, next_current_ksp0(next));
 455}
 456
 457/*
 458 * This routine is called on return from interrupt if any of the
 459 * TIF_WORK_MASK flags are set in thread_info->flags.  It is
 460 * entered with interrupts disabled so we don't miss an event
 461 * that modified the thread_info flags.  If any flag is set, we
 462 * handle it and return, and the calling assembly code will
 463 * re-disable interrupts, reload the thread flags, and call back
 464 * if more flags need to be handled.
 465 *
 466 * We return whether we need to check the thread_info flags again
 467 * or not.  Note that we don't clear TIF_SINGLESTEP here, so it's
 468 * important that it be tested last, and then claim that we don't
 469 * need to recheck the flags.
 470 */
 471int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
 472{
 473        /* If we enter in kernel mode, do nothing and exit the caller loop. */
 474        if (!user_mode(regs))
 475                return 0;
 476
 477        /* Enable interrupts; they are disabled again on return to caller. */
 478        local_irq_enable();
 479
 480        if (thread_info_flags & _TIF_NEED_RESCHED) {
 481                schedule();
 482                return 1;
 483        }
 484#if CHIP_HAS_TILE_DMA()
 485        if (thread_info_flags & _TIF_ASYNC_TLB) {
 486                do_async_page_fault(regs);
 487                return 1;
 488        }
 489#endif
 490        if (thread_info_flags & _TIF_SIGPENDING) {
 491                do_signal(regs);
 492                return 1;
 493        }
 494        if (thread_info_flags & _TIF_NOTIFY_RESUME) {
 495                clear_thread_flag(TIF_NOTIFY_RESUME);
 496                tracehook_notify_resume(regs);
 497                return 1;
 498        }
 499        if (thread_info_flags & _TIF_SINGLESTEP) {
 500                single_step_once(regs);
 501                return 0;
 502        }
 503        panic("work_pending: bad flags %#x\n", thread_info_flags);
 504}
 505
 506unsigned long get_wchan(struct task_struct *p)
 507{
 508        struct KBacktraceIterator kbt;
 509
 510        if (!p || p == current || p->state == TASK_RUNNING)
 511                return 0;
 512
 513        for (KBacktraceIterator_init(&kbt, p, NULL);
 514             !KBacktraceIterator_end(&kbt);
 515             KBacktraceIterator_next(&kbt)) {
 516                if (!in_sched_functions(kbt.it.pc))
 517                        return kbt.it.pc;
 518        }
 519
 520        return 0;
 521}
 522
 523/* Flush thread state. */
 524void flush_thread(void)
 525{
 526        /* Nothing */
 527}
 528
 529/*
 530 * Free current thread data structures etc..
 531 */
 532void exit_thread(void)
 533{
 534#ifdef CONFIG_HARDWALL
 535        /*
 536         * Remove the task from the list of tasks that are associated
 537         * with any live hardwalls.  (If the task that is exiting held
 538         * the last reference to a hardwall fd, it would already have
 539         * been released and deactivated at this point.)
 540         */
 541        hardwall_deactivate_all(current);
 542#endif
 543}
 544
 545void show_regs(struct pt_regs *regs)
 546{
 547        struct task_struct *tsk = validate_current();
 548        int i;
 549
 550        pr_err("\n");
 551        if (tsk != &corrupt_current)
 552                show_regs_print_info(KERN_ERR);
 553#ifdef __tilegx__
 554        for (i = 0; i < 17; i++)
 555                pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
 556                       i, regs->regs[i], i+18, regs->regs[i+18],
 557                       i+36, regs->regs[i+36]);
 558        pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
 559               regs->regs[17], regs->regs[35], regs->tp);
 560        pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
 561#else
 562        for (i = 0; i < 13; i++)
 563                pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
 564                       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
 565                       i, regs->regs[i], i+14, regs->regs[i+14],
 566                       i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
 567        pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
 568               regs->regs[13], regs->tp, regs->sp, regs->lr);
 569#endif
 570        pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld\n",
 571               regs->pc, regs->ex1, regs->faultnum);
 572
 573        dump_stack_regs(regs);
 574}
 575