linux/arch/x86/kernel/nmi.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *  Copyright (C) 2011  Don Zickus Red Hat, Inc.
   5 *
   6 *  Pentium III FXSR, SSE support
   7 *      Gareth Hughes <gareth@valinux.com>, May 2000
   8 */
   9
  10/*
  11 * Handle hardware traps and faults.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/kprobes.h>
  15#include <linux/kdebug.h>
  16#include <linux/nmi.h>
  17#include <linux/debugfs.h>
  18#include <linux/delay.h>
  19#include <linux/hardirq.h>
  20#include <linux/slab.h>
  21#include <linux/export.h>
  22
  23#if defined(CONFIG_EDAC)
  24#include <linux/edac.h>
  25#endif
  26
  27#include <linux/atomic.h>
  28#include <asm/traps.h>
  29#include <asm/mach_traps.h>
  30#include <asm/nmi.h>
  31#include <asm/x86_init.h>
  32
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/nmi.h>
  35
  36struct nmi_desc {
  37        spinlock_t lock;
  38        struct list_head head;
  39};
  40
  41static struct nmi_desc nmi_desc[NMI_MAX] = 
  42{
  43        {
  44                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  45                .head = LIST_HEAD_INIT(nmi_desc[0].head),
  46        },
  47        {
  48                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  49                .head = LIST_HEAD_INIT(nmi_desc[1].head),
  50        },
  51        {
  52                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  53                .head = LIST_HEAD_INIT(nmi_desc[2].head),
  54        },
  55        {
  56                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  57                .head = LIST_HEAD_INIT(nmi_desc[3].head),
  58        },
  59
  60};
  61
  62struct nmi_stats {
  63        unsigned int normal;
  64        unsigned int unknown;
  65        unsigned int external;
  66        unsigned int swallow;
  67};
  68
  69static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  70
  71static int ignore_nmis;
  72
  73int unknown_nmi_panic;
  74/*
  75 * Prevent NMI reason port (0x61) being accessed simultaneously, can
  76 * only be used in NMI handler.
  77 */
  78static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  79
  80static int __init setup_unknown_nmi_panic(char *str)
  81{
  82        unknown_nmi_panic = 1;
  83        return 1;
  84}
  85__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  86
  87#define nmi_to_desc(type) (&nmi_desc[type])
  88
  89static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  90static int __init nmi_warning_debugfs(void)
  91{
  92        debugfs_create_u64("nmi_longest_ns", 0644,
  93                        arch_debugfs_dir, &nmi_longest_ns);
  94        return 0;
  95}
  96fs_initcall(nmi_warning_debugfs);
  97
  98static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
  99{
 100        struct nmi_desc *desc = nmi_to_desc(type);
 101        struct nmiaction *a;
 102        int handled=0;
 103
 104        rcu_read_lock();
 105
 106        /*
 107         * NMIs are edge-triggered, which means if you have enough
 108         * of them concurrently, you can lose some because only one
 109         * can be latched at any given time.  Walk the whole list
 110         * to handle those situations.
 111         */
 112        list_for_each_entry_rcu(a, &desc->head, list) {
 113                u64 before, delta, whole_msecs;
 114                int remainder_ns, decimal_msecs, thishandled;
 115
 116                before = sched_clock();
 117                thishandled = a->handler(type, regs);
 118                handled += thishandled;
 119                delta = sched_clock() - before;
 120                trace_nmi_handler(a->handler, (int)delta, thishandled);
 121
 122                if (delta < nmi_longest_ns)
 123                        continue;
 124
 125                nmi_longest_ns = delta;
 126                whole_msecs = delta;
 127                remainder_ns = do_div(whole_msecs, (1000 * 1000));
 128                decimal_msecs = remainder_ns / 1000;
 129                printk_ratelimited(KERN_INFO
 130                        "INFO: NMI handler (%ps) took too long to run: "
 131                        "%lld.%03d msecs\n", a->handler, whole_msecs,
 132                        decimal_msecs);
 133        }
 134
 135        rcu_read_unlock();
 136
 137        /* return total number of NMI events handled */
 138        return handled;
 139}
 140
 141int __register_nmi_handler(unsigned int type, struct nmiaction *action)
 142{
 143        struct nmi_desc *desc = nmi_to_desc(type);
 144        unsigned long flags;
 145
 146        if (!action->handler)
 147                return -EINVAL;
 148
 149        spin_lock_irqsave(&desc->lock, flags);
 150
 151        /*
 152         * most handlers of type NMI_UNKNOWN never return because
 153         * they just assume the NMI is theirs.  Just a sanity check
 154         * to manage expectations
 155         */
 156        WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
 157        WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
 158        WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
 159
 160        /*
 161         * some handlers need to be executed first otherwise a fake
 162         * event confuses some handlers (kdump uses this flag)
 163         */
 164        if (action->flags & NMI_FLAG_FIRST)
 165                list_add_rcu(&action->list, &desc->head);
 166        else
 167                list_add_tail_rcu(&action->list, &desc->head);
 168        
 169        spin_unlock_irqrestore(&desc->lock, flags);
 170        return 0;
 171}
 172EXPORT_SYMBOL(__register_nmi_handler);
 173
 174void unregister_nmi_handler(unsigned int type, const char *name)
 175{
 176        struct nmi_desc *desc = nmi_to_desc(type);
 177        struct nmiaction *n;
 178        unsigned long flags;
 179
 180        spin_lock_irqsave(&desc->lock, flags);
 181
 182        list_for_each_entry_rcu(n, &desc->head, list) {
 183                /*
 184                 * the name passed in to describe the nmi handler
 185                 * is used as the lookup key
 186                 */
 187                if (!strcmp(n->name, name)) {
 188                        WARN(in_nmi(),
 189                                "Trying to free NMI (%s) from NMI context!\n", n->name);
 190                        list_del_rcu(&n->list);
 191                        break;
 192                }
 193        }
 194
 195        spin_unlock_irqrestore(&desc->lock, flags);
 196        synchronize_rcu();
 197}
 198EXPORT_SYMBOL_GPL(unregister_nmi_handler);
 199
 200static __kprobes void
 201pci_serr_error(unsigned char reason, struct pt_regs *regs)
 202{
 203        /* check to see if anyone registered against these types of errors */
 204        if (nmi_handle(NMI_SERR, regs, false))
 205                return;
 206
 207        pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
 208                 reason, smp_processor_id());
 209
 210        /*
 211         * On some machines, PCI SERR line is used to report memory
 212         * errors. EDAC makes use of it.
 213         */
 214#if defined(CONFIG_EDAC)
 215        if (edac_handler_set()) {
 216                edac_atomic_assert_error();
 217                return;
 218        }
 219#endif
 220
 221        if (panic_on_unrecovered_nmi)
 222                panic("NMI: Not continuing");
 223
 224        pr_emerg("Dazed and confused, but trying to continue\n");
 225
 226        /* Clear and disable the PCI SERR error line. */
 227        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
 228        outb(reason, NMI_REASON_PORT);
 229}
 230
 231static __kprobes void
 232io_check_error(unsigned char reason, struct pt_regs *regs)
 233{
 234        unsigned long i;
 235
 236        /* check to see if anyone registered against these types of errors */
 237        if (nmi_handle(NMI_IO_CHECK, regs, false))
 238                return;
 239
 240        pr_emerg(
 241        "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
 242                 reason, smp_processor_id());
 243        show_regs(regs);
 244
 245        if (panic_on_io_nmi)
 246                panic("NMI IOCK error: Not continuing");
 247
 248        /* Re-enable the IOCK line, wait for a few seconds */
 249        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
 250        outb(reason, NMI_REASON_PORT);
 251
 252        i = 20000;
 253        while (--i) {
 254                touch_nmi_watchdog();
 255                udelay(100);
 256        }
 257
 258        reason &= ~NMI_REASON_CLEAR_IOCHK;
 259        outb(reason, NMI_REASON_PORT);
 260}
 261
 262static __kprobes void
 263unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
 264{
 265        int handled;
 266
 267        /*
 268         * Use 'false' as back-to-back NMIs are dealt with one level up.
 269         * Of course this makes having multiple 'unknown' handlers useless
 270         * as only the first one is ever run (unless it can actually determine
 271         * if it caused the NMI)
 272         */
 273        handled = nmi_handle(NMI_UNKNOWN, regs, false);
 274        if (handled) {
 275                __this_cpu_add(nmi_stats.unknown, handled);
 276                return;
 277        }
 278
 279        __this_cpu_add(nmi_stats.unknown, 1);
 280
 281        pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
 282                 reason, smp_processor_id());
 283
 284        pr_emerg("Do you have a strange power saving mode enabled?\n");
 285        if (unknown_nmi_panic || panic_on_unrecovered_nmi)
 286                panic("NMI: Not continuing");
 287
 288        pr_emerg("Dazed and confused, but trying to continue\n");
 289}
 290
 291static DEFINE_PER_CPU(bool, swallow_nmi);
 292static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
 293
 294static __kprobes void default_do_nmi(struct pt_regs *regs)
 295{
 296        unsigned char reason = 0;
 297        int handled;
 298        bool b2b = false;
 299
 300        /*
 301         * CPU-specific NMI must be processed before non-CPU-specific
 302         * NMI, otherwise we may lose it, because the CPU-specific
 303         * NMI can not be detected/processed on other CPUs.
 304         */
 305
 306        /*
 307         * Back-to-back NMIs are interesting because they can either
 308         * be two NMI or more than two NMIs (any thing over two is dropped
 309         * due to NMI being edge-triggered).  If this is the second half
 310         * of the back-to-back NMI, assume we dropped things and process
 311         * more handlers.  Otherwise reset the 'swallow' NMI behaviour
 312         */
 313        if (regs->ip == __this_cpu_read(last_nmi_rip))
 314                b2b = true;
 315        else
 316                __this_cpu_write(swallow_nmi, false);
 317
 318        __this_cpu_write(last_nmi_rip, regs->ip);
 319
 320        handled = nmi_handle(NMI_LOCAL, regs, b2b);
 321        __this_cpu_add(nmi_stats.normal, handled);
 322        if (handled) {
 323                /*
 324                 * There are cases when a NMI handler handles multiple
 325                 * events in the current NMI.  One of these events may
 326                 * be queued for in the next NMI.  Because the event is
 327                 * already handled, the next NMI will result in an unknown
 328                 * NMI.  Instead lets flag this for a potential NMI to
 329                 * swallow.
 330                 */
 331                if (handled > 1)
 332                        __this_cpu_write(swallow_nmi, true);
 333                return;
 334        }
 335
 336        /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
 337        raw_spin_lock(&nmi_reason_lock);
 338        reason = x86_platform.get_nmi_reason();
 339
 340        if (reason & NMI_REASON_MASK) {
 341                if (reason & NMI_REASON_SERR)
 342                        pci_serr_error(reason, regs);
 343                else if (reason & NMI_REASON_IOCHK)
 344                        io_check_error(reason, regs);
 345#ifdef CONFIG_X86_32
 346                /*
 347                 * Reassert NMI in case it became active
 348                 * meanwhile as it's edge-triggered:
 349                 */
 350                reassert_nmi();
 351#endif
 352                __this_cpu_add(nmi_stats.external, 1);
 353                raw_spin_unlock(&nmi_reason_lock);
 354                return;
 355        }
 356        raw_spin_unlock(&nmi_reason_lock);
 357
 358        /*
 359         * Only one NMI can be latched at a time.  To handle
 360         * this we may process multiple nmi handlers at once to
 361         * cover the case where an NMI is dropped.  The downside
 362         * to this approach is we may process an NMI prematurely,
 363         * while its real NMI is sitting latched.  This will cause
 364         * an unknown NMI on the next run of the NMI processing.
 365         *
 366         * We tried to flag that condition above, by setting the
 367         * swallow_nmi flag when we process more than one event.
 368         * This condition is also only present on the second half
 369         * of a back-to-back NMI, so we flag that condition too.
 370         *
 371         * If both are true, we assume we already processed this
 372         * NMI previously and we swallow it.  Otherwise we reset
 373         * the logic.
 374         *
 375         * There are scenarios where we may accidentally swallow
 376         * a 'real' unknown NMI.  For example, while processing
 377         * a perf NMI another perf NMI comes in along with a
 378         * 'real' unknown NMI.  These two NMIs get combined into
 379         * one (as descibed above).  When the next NMI gets
 380         * processed, it will be flagged by perf as handled, but
 381         * noone will know that there was a 'real' unknown NMI sent
 382         * also.  As a result it gets swallowed.  Or if the first
 383         * perf NMI returns two events handled then the second
 384         * NMI will get eaten by the logic below, again losing a
 385         * 'real' unknown NMI.  But this is the best we can do
 386         * for now.
 387         */
 388        if (b2b && __this_cpu_read(swallow_nmi))
 389                __this_cpu_add(nmi_stats.swallow, 1);
 390        else
 391                unknown_nmi_error(reason, regs);
 392}
 393
 394/*
 395 * NMIs can hit breakpoints which will cause it to lose its
 396 * NMI context with the CPU when the breakpoint does an iret.
 397 */
 398#ifdef CONFIG_X86_32
 399/*
 400 * For i386, NMIs use the same stack as the kernel, and we can
 401 * add a workaround to the iret problem in C (preventing nested
 402 * NMIs if an NMI takes a trap). Simply have 3 states the NMI
 403 * can be in:
 404 *
 405 *  1) not running
 406 *  2) executing
 407 *  3) latched
 408 *
 409 * When no NMI is in progress, it is in the "not running" state.
 410 * When an NMI comes in, it goes into the "executing" state.
 411 * Normally, if another NMI is triggered, it does not interrupt
 412 * the running NMI and the HW will simply latch it so that when
 413 * the first NMI finishes, it will restart the second NMI.
 414 * (Note, the latch is binary, thus multiple NMIs triggering,
 415 *  when one is running, are ignored. Only one NMI is restarted.)
 416 *
 417 * If an NMI hits a breakpoint that executes an iret, another
 418 * NMI can preempt it. We do not want to allow this new NMI
 419 * to run, but we want to execute it when the first one finishes.
 420 * We set the state to "latched", and the exit of the first NMI will
 421 * perform a dec_return, if the result is zero (NOT_RUNNING), then
 422 * it will simply exit the NMI handler. If not, the dec_return
 423 * would have set the state to NMI_EXECUTING (what we want it to
 424 * be when we are running). In this case, we simply jump back
 425 * to rerun the NMI handler again, and restart the 'latched' NMI.
 426 *
 427 * No trap (breakpoint or page fault) should be hit before nmi_restart,
 428 * thus there is no race between the first check of state for NOT_RUNNING
 429 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 430 * at this point.
 431 *
 432 * In case the NMI takes a page fault, we need to save off the CR2
 433 * because the NMI could have preempted another page fault and corrupt
 434 * the CR2 that is about to be read. As nested NMIs must be restarted
 435 * and they can not take breakpoints or page faults, the update of the
 436 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 437 * Otherwise, there would be a race of another nested NMI coming in
 438 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
 439 */
 440enum nmi_states {
 441        NMI_NOT_RUNNING = 0,
 442        NMI_EXECUTING,
 443        NMI_LATCHED,
 444};
 445static DEFINE_PER_CPU(enum nmi_states, nmi_state);
 446static DEFINE_PER_CPU(unsigned long, nmi_cr2);
 447
 448#define nmi_nesting_preprocess(regs)                                    \
 449        do {                                                            \
 450                if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {      \
 451                        this_cpu_write(nmi_state, NMI_LATCHED);         \
 452                        return;                                         \
 453                }                                                       \
 454                this_cpu_write(nmi_state, NMI_EXECUTING);               \
 455                this_cpu_write(nmi_cr2, read_cr2());                    \
 456        } while (0);                                                    \
 457        nmi_restart:
 458
 459#define nmi_nesting_postprocess()                                       \
 460        do {                                                            \
 461                if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))     \
 462                        write_cr2(this_cpu_read(nmi_cr2));              \
 463                if (this_cpu_dec_return(nmi_state))                     \
 464                        goto nmi_restart;                               \
 465        } while (0)
 466#else /* x86_64 */
 467/*
 468 * In x86_64 things are a bit more difficult. This has the same problem
 469 * where an NMI hitting a breakpoint that calls iret will remove the
 470 * NMI context, allowing a nested NMI to enter. What makes this more
 471 * difficult is that both NMIs and breakpoints have their own stack.
 472 * When a new NMI or breakpoint is executed, the stack is set to a fixed
 473 * point. If an NMI is nested, it will have its stack set at that same
 474 * fixed address that the first NMI had, and will start corrupting the
 475 * stack. This is handled in entry_64.S, but the same problem exists with
 476 * the breakpoint stack.
 477 *
 478 * If a breakpoint is being processed, and the debug stack is being used,
 479 * if an NMI comes in and also hits a breakpoint, the stack pointer
 480 * will be set to the same fixed address as the breakpoint that was
 481 * interrupted, causing that stack to be corrupted. To handle this case,
 482 * check if the stack that was interrupted is the debug stack, and if
 483 * so, change the IDT so that new breakpoints will use the current stack
 484 * and not switch to the fixed address. On return of the NMI, switch back
 485 * to the original IDT.
 486 */
 487static DEFINE_PER_CPU(int, update_debug_stack);
 488
 489static inline void nmi_nesting_preprocess(struct pt_regs *regs)
 490{
 491        /*
 492         * If we interrupted a breakpoint, it is possible that
 493         * the nmi handler will have breakpoints too. We need to
 494         * change the IDT such that breakpoints that happen here
 495         * continue to use the NMI stack.
 496         */
 497        if (unlikely(is_debug_stack(regs->sp))) {
 498                debug_stack_set_zero();
 499                this_cpu_write(update_debug_stack, 1);
 500        }
 501}
 502
 503static inline void nmi_nesting_postprocess(void)
 504{
 505        if (unlikely(this_cpu_read(update_debug_stack))) {
 506                debug_stack_reset();
 507                this_cpu_write(update_debug_stack, 0);
 508        }
 509}
 510#endif
 511
 512dotraplinkage notrace __kprobes void
 513do_nmi(struct pt_regs *regs, long error_code)
 514{
 515        nmi_nesting_preprocess(regs);
 516
 517        nmi_enter();
 518
 519        inc_irq_stat(__nmi_count);
 520
 521        if (!ignore_nmis)
 522                default_do_nmi(regs);
 523
 524        nmi_exit();
 525
 526        /* On i386, may loop back to preprocess */
 527        nmi_nesting_postprocess();
 528}
 529
 530void stop_nmi(void)
 531{
 532        ignore_nmis++;
 533}
 534
 535void restart_nmi(void)
 536{
 537        ignore_nmis--;
 538}
 539
 540/* reset the back-to-back NMI logic */
 541void local_touch_nmi(void)
 542{
 543        __this_cpu_write(last_nmi_rip, 0);
 544}
 545EXPORT_SYMBOL_GPL(local_touch_nmi);
 546