linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14
  15#include <asm/hpet.h>
  16#include <asm/timer.h>
  17#include <asm/vgtod.h>
  18#include <asm/time.h>
  19#include <asm/delay.h>
  20#include <asm/hypervisor.h>
  21#include <asm/nmi.h>
  22#include <asm/x86_init.h>
  23
  24unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  25EXPORT_SYMBOL(cpu_khz);
  26
  27unsigned int __read_mostly tsc_khz;
  28EXPORT_SYMBOL(tsc_khz);
  29
  30/*
  31 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  32 */
  33static int __read_mostly tsc_unstable;
  34
  35/* native_sched_clock() is called before tsc_init(), so
  36   we must start with the TSC soft disabled to prevent
  37   erroneous rdtsc usage on !cpu_has_tsc processors */
  38static int __read_mostly tsc_disabled = -1;
  39
  40int tsc_clocksource_reliable;
  41/*
  42 * Scheduler clock - returns current time in nanosec units.
  43 */
  44u64 native_sched_clock(void)
  45{
  46        u64 this_offset;
  47
  48        /*
  49         * Fall back to jiffies if there's no TSC available:
  50         * ( But note that we still use it if the TSC is marked
  51         *   unstable. We do this because unlike Time Of Day,
  52         *   the scheduler clock tolerates small errors and it's
  53         *   very important for it to be as fast as the platform
  54         *   can achieve it. )
  55         */
  56        if (unlikely(tsc_disabled)) {
  57                /* No locking but a rare wrong value is not a big deal: */
  58                return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  59        }
  60
  61        /* read the Time Stamp Counter: */
  62        rdtscll(this_offset);
  63
  64        /* return the value in ns */
  65        return __cycles_2_ns(this_offset);
  66}
  67
  68/* We need to define a real function for sched_clock, to override the
  69   weak default version */
  70#ifdef CONFIG_PARAVIRT
  71unsigned long long sched_clock(void)
  72{
  73        return paravirt_sched_clock();
  74}
  75#else
  76unsigned long long
  77sched_clock(void) __attribute__((alias("native_sched_clock")));
  78#endif
  79
  80unsigned long long native_read_tsc(void)
  81{
  82        return __native_read_tsc();
  83}
  84EXPORT_SYMBOL(native_read_tsc);
  85
  86int check_tsc_unstable(void)
  87{
  88        return tsc_unstable;
  89}
  90EXPORT_SYMBOL_GPL(check_tsc_unstable);
  91
  92int check_tsc_disabled(void)
  93{
  94        return tsc_disabled;
  95}
  96EXPORT_SYMBOL_GPL(check_tsc_disabled);
  97
  98#ifdef CONFIG_X86_TSC
  99int __init notsc_setup(char *str)
 100{
 101        pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 102        tsc_disabled = 1;
 103        return 1;
 104}
 105#else
 106/*
 107 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 108 * in cpu/common.c
 109 */
 110int __init notsc_setup(char *str)
 111{
 112        setup_clear_cpu_cap(X86_FEATURE_TSC);
 113        return 1;
 114}
 115#endif
 116
 117__setup("notsc", notsc_setup);
 118
 119static int no_sched_irq_time;
 120
 121static int __init tsc_setup(char *str)
 122{
 123        if (!strcmp(str, "reliable"))
 124                tsc_clocksource_reliable = 1;
 125        if (!strncmp(str, "noirqtime", 9))
 126                no_sched_irq_time = 1;
 127        return 1;
 128}
 129
 130__setup("tsc=", tsc_setup);
 131
 132#define MAX_RETRIES     5
 133#define SMI_TRESHOLD    50000
 134
 135/*
 136 * Read TSC and the reference counters. Take care of SMI disturbance
 137 */
 138static u64 tsc_read_refs(u64 *p, int hpet)
 139{
 140        u64 t1, t2;
 141        int i;
 142
 143        for (i = 0; i < MAX_RETRIES; i++) {
 144                t1 = get_cycles();
 145                if (hpet)
 146                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 147                else
 148                        *p = acpi_pm_read_early();
 149                t2 = get_cycles();
 150                if ((t2 - t1) < SMI_TRESHOLD)
 151                        return t2;
 152        }
 153        return ULLONG_MAX;
 154}
 155
 156/*
 157 * Calculate the TSC frequency from HPET reference
 158 */
 159static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 160{
 161        u64 tmp;
 162
 163        if (hpet2 < hpet1)
 164                hpet2 += 0x100000000ULL;
 165        hpet2 -= hpet1;
 166        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 167        do_div(tmp, 1000000);
 168        do_div(deltatsc, tmp);
 169
 170        return (unsigned long) deltatsc;
 171}
 172
 173/*
 174 * Calculate the TSC frequency from PMTimer reference
 175 */
 176static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 177{
 178        u64 tmp;
 179
 180        if (!pm1 && !pm2)
 181                return ULONG_MAX;
 182
 183        if (pm2 < pm1)
 184                pm2 += (u64)ACPI_PM_OVRRUN;
 185        pm2 -= pm1;
 186        tmp = pm2 * 1000000000LL;
 187        do_div(tmp, PMTMR_TICKS_PER_SEC);
 188        do_div(deltatsc, tmp);
 189
 190        return (unsigned long) deltatsc;
 191}
 192
 193#define CAL_MS          10
 194#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 195#define CAL_PIT_LOOPS   1000
 196
 197#define CAL2_MS         50
 198#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 199#define CAL2_PIT_LOOPS  5000
 200
 201
 202/*
 203 * Try to calibrate the TSC against the Programmable
 204 * Interrupt Timer and return the frequency of the TSC
 205 * in kHz.
 206 *
 207 * Return ULONG_MAX on failure to calibrate.
 208 */
 209static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 210{
 211        u64 tsc, t1, t2, delta;
 212        unsigned long tscmin, tscmax;
 213        int pitcnt;
 214
 215        /* Set the Gate high, disable speaker */
 216        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 217
 218        /*
 219         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 220         * count mode), binary count. Set the latch register to 50ms
 221         * (LSB then MSB) to begin countdown.
 222         */
 223        outb(0xb0, 0x43);
 224        outb(latch & 0xff, 0x42);
 225        outb(latch >> 8, 0x42);
 226
 227        tsc = t1 = t2 = get_cycles();
 228
 229        pitcnt = 0;
 230        tscmax = 0;
 231        tscmin = ULONG_MAX;
 232        while ((inb(0x61) & 0x20) == 0) {
 233                t2 = get_cycles();
 234                delta = t2 - tsc;
 235                tsc = t2;
 236                if ((unsigned long) delta < tscmin)
 237                        tscmin = (unsigned int) delta;
 238                if ((unsigned long) delta > tscmax)
 239                        tscmax = (unsigned int) delta;
 240                pitcnt++;
 241        }
 242
 243        /*
 244         * Sanity checks:
 245         *
 246         * If we were not able to read the PIT more than loopmin
 247         * times, then we have been hit by a massive SMI
 248         *
 249         * If the maximum is 10 times larger than the minimum,
 250         * then we got hit by an SMI as well.
 251         */
 252        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 253                return ULONG_MAX;
 254
 255        /* Calculate the PIT value */
 256        delta = t2 - t1;
 257        do_div(delta, ms);
 258        return delta;
 259}
 260
 261/*
 262 * This reads the current MSB of the PIT counter, and
 263 * checks if we are running on sufficiently fast and
 264 * non-virtualized hardware.
 265 *
 266 * Our expectations are:
 267 *
 268 *  - the PIT is running at roughly 1.19MHz
 269 *
 270 *  - each IO is going to take about 1us on real hardware,
 271 *    but we allow it to be much faster (by a factor of 10) or
 272 *    _slightly_ slower (ie we allow up to a 2us read+counter
 273 *    update - anything else implies a unacceptably slow CPU
 274 *    or PIT for the fast calibration to work.
 275 *
 276 *  - with 256 PIT ticks to read the value, we have 214us to
 277 *    see the same MSB (and overhead like doing a single TSC
 278 *    read per MSB value etc).
 279 *
 280 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 281 *    them each to take about a microsecond on real hardware.
 282 *    So we expect a count value of around 100. But we'll be
 283 *    generous, and accept anything over 50.
 284 *
 285 *  - if the PIT is stuck, and we see *many* more reads, we
 286 *    return early (and the next caller of pit_expect_msb()
 287 *    then consider it a failure when they don't see the
 288 *    next expected value).
 289 *
 290 * These expectations mean that we know that we have seen the
 291 * transition from one expected value to another with a fairly
 292 * high accuracy, and we didn't miss any events. We can thus
 293 * use the TSC value at the transitions to calculate a pretty
 294 * good value for the TSC frequencty.
 295 */
 296static inline int pit_verify_msb(unsigned char val)
 297{
 298        /* Ignore LSB */
 299        inb(0x42);
 300        return inb(0x42) == val;
 301}
 302
 303static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 304{
 305        int count;
 306        u64 tsc = 0, prev_tsc = 0;
 307
 308        for (count = 0; count < 50000; count++) {
 309                if (!pit_verify_msb(val))
 310                        break;
 311                prev_tsc = tsc;
 312                tsc = get_cycles();
 313        }
 314        *deltap = get_cycles() - prev_tsc;
 315        *tscp = tsc;
 316
 317        /*
 318         * We require _some_ success, but the quality control
 319         * will be based on the error terms on the TSC values.
 320         */
 321        return count > 5;
 322}
 323
 324/*
 325 * How many MSB values do we want to see? We aim for
 326 * a maximum error rate of 500ppm (in practice the
 327 * real error is much smaller), but refuse to spend
 328 * more than 50ms on it.
 329 */
 330#define MAX_QUICK_PIT_MS 50
 331#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 332
 333static unsigned long quick_pit_calibrate(void)
 334{
 335        int i;
 336        u64 tsc, delta;
 337        unsigned long d1, d2;
 338
 339        /* Set the Gate high, disable speaker */
 340        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 341
 342        /*
 343         * Counter 2, mode 0 (one-shot), binary count
 344         *
 345         * NOTE! Mode 2 decrements by two (and then the
 346         * output is flipped each time, giving the same
 347         * final output frequency as a decrement-by-one),
 348         * so mode 0 is much better when looking at the
 349         * individual counts.
 350         */
 351        outb(0xb0, 0x43);
 352
 353        /* Start at 0xffff */
 354        outb(0xff, 0x42);
 355        outb(0xff, 0x42);
 356
 357        /*
 358         * The PIT starts counting at the next edge, so we
 359         * need to delay for a microsecond. The easiest way
 360         * to do that is to just read back the 16-bit counter
 361         * once from the PIT.
 362         */
 363        pit_verify_msb(0);
 364
 365        if (pit_expect_msb(0xff, &tsc, &d1)) {
 366                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 367                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 368                                break;
 369
 370                        /*
 371                         * Iterate until the error is less than 500 ppm
 372                         */
 373                        delta -= tsc;
 374                        if (d1+d2 >= delta >> 11)
 375                                continue;
 376
 377                        /*
 378                         * Check the PIT one more time to verify that
 379                         * all TSC reads were stable wrt the PIT.
 380                         *
 381                         * This also guarantees serialization of the
 382                         * last cycle read ('d2') in pit_expect_msb.
 383                         */
 384                        if (!pit_verify_msb(0xfe - i))
 385                                break;
 386                        goto success;
 387                }
 388        }
 389        pr_err("Fast TSC calibration failed\n");
 390        return 0;
 391
 392success:
 393        /*
 394         * Ok, if we get here, then we've seen the
 395         * MSB of the PIT decrement 'i' times, and the
 396         * error has shrunk to less than 500 ppm.
 397         *
 398         * As a result, we can depend on there not being
 399         * any odd delays anywhere, and the TSC reads are
 400         * reliable (within the error).
 401         *
 402         * kHz = ticks / time-in-seconds / 1000;
 403         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 404         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 405         */
 406        delta *= PIT_TICK_RATE;
 407        do_div(delta, i*256*1000);
 408        pr_info("Fast TSC calibration using PIT\n");
 409        return delta;
 410}
 411
 412/**
 413 * native_calibrate_tsc - calibrate the tsc on boot
 414 */
 415unsigned long native_calibrate_tsc(void)
 416{
 417        u64 tsc1, tsc2, delta, ref1, ref2;
 418        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 419        unsigned long flags, latch, ms, fast_calibrate;
 420        int hpet = is_hpet_enabled(), i, loopmin;
 421
 422        local_irq_save(flags);
 423        fast_calibrate = quick_pit_calibrate();
 424        local_irq_restore(flags);
 425        if (fast_calibrate)
 426                return fast_calibrate;
 427
 428        /*
 429         * Run 5 calibration loops to get the lowest frequency value
 430         * (the best estimate). We use two different calibration modes
 431         * here:
 432         *
 433         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 434         * load a timeout of 50ms. We read the time right after we
 435         * started the timer and wait until the PIT count down reaches
 436         * zero. In each wait loop iteration we read the TSC and check
 437         * the delta to the previous read. We keep track of the min
 438         * and max values of that delta. The delta is mostly defined
 439         * by the IO time of the PIT access, so we can detect when a
 440         * SMI/SMM disturbance happened between the two reads. If the
 441         * maximum time is significantly larger than the minimum time,
 442         * then we discard the result and have another try.
 443         *
 444         * 2) Reference counter. If available we use the HPET or the
 445         * PMTIMER as a reference to check the sanity of that value.
 446         * We use separate TSC readouts and check inside of the
 447         * reference read for a SMI/SMM disturbance. We dicard
 448         * disturbed values here as well. We do that around the PIT
 449         * calibration delay loop as we have to wait for a certain
 450         * amount of time anyway.
 451         */
 452
 453        /* Preset PIT loop values */
 454        latch = CAL_LATCH;
 455        ms = CAL_MS;
 456        loopmin = CAL_PIT_LOOPS;
 457
 458        for (i = 0; i < 3; i++) {
 459                unsigned long tsc_pit_khz;
 460
 461                /*
 462                 * Read the start value and the reference count of
 463                 * hpet/pmtimer when available. Then do the PIT
 464                 * calibration, which will take at least 50ms, and
 465                 * read the end value.
 466                 */
 467                local_irq_save(flags);
 468                tsc1 = tsc_read_refs(&ref1, hpet);
 469                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 470                tsc2 = tsc_read_refs(&ref2, hpet);
 471                local_irq_restore(flags);
 472
 473                /* Pick the lowest PIT TSC calibration so far */
 474                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 475
 476                /* hpet or pmtimer available ? */
 477                if (ref1 == ref2)
 478                        continue;
 479
 480                /* Check, whether the sampling was disturbed by an SMI */
 481                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 482                        continue;
 483
 484                tsc2 = (tsc2 - tsc1) * 1000000LL;
 485                if (hpet)
 486                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 487                else
 488                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 489
 490                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 491
 492                /* Check the reference deviation */
 493                delta = ((u64) tsc_pit_min) * 100;
 494                do_div(delta, tsc_ref_min);
 495
 496                /*
 497                 * If both calibration results are inside a 10% window
 498                 * then we can be sure, that the calibration
 499                 * succeeded. We break out of the loop right away. We
 500                 * use the reference value, as it is more precise.
 501                 */
 502                if (delta >= 90 && delta <= 110) {
 503                        pr_info("PIT calibration matches %s. %d loops\n",
 504                                hpet ? "HPET" : "PMTIMER", i + 1);
 505                        return tsc_ref_min;
 506                }
 507
 508                /*
 509                 * Check whether PIT failed more than once. This
 510                 * happens in virtualized environments. We need to
 511                 * give the virtual PC a slightly longer timeframe for
 512                 * the HPET/PMTIMER to make the result precise.
 513                 */
 514                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 515                        latch = CAL2_LATCH;
 516                        ms = CAL2_MS;
 517                        loopmin = CAL2_PIT_LOOPS;
 518                }
 519        }
 520
 521        /*
 522         * Now check the results.
 523         */
 524        if (tsc_pit_min == ULONG_MAX) {
 525                /* PIT gave no useful value */
 526                pr_warn("Unable to calibrate against PIT\n");
 527
 528                /* We don't have an alternative source, disable TSC */
 529                if (!hpet && !ref1 && !ref2) {
 530                        pr_notice("No reference (HPET/PMTIMER) available\n");
 531                        return 0;
 532                }
 533
 534                /* The alternative source failed as well, disable TSC */
 535                if (tsc_ref_min == ULONG_MAX) {
 536                        pr_warn("HPET/PMTIMER calibration failed\n");
 537                        return 0;
 538                }
 539
 540                /* Use the alternative source */
 541                pr_info("using %s reference calibration\n",
 542                        hpet ? "HPET" : "PMTIMER");
 543
 544                return tsc_ref_min;
 545        }
 546
 547        /* We don't have an alternative source, use the PIT calibration value */
 548        if (!hpet && !ref1 && !ref2) {
 549                pr_info("Using PIT calibration value\n");
 550                return tsc_pit_min;
 551        }
 552
 553        /* The alternative source failed, use the PIT calibration value */
 554        if (tsc_ref_min == ULONG_MAX) {
 555                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 556                return tsc_pit_min;
 557        }
 558
 559        /*
 560         * The calibration values differ too much. In doubt, we use
 561         * the PIT value as we know that there are PMTIMERs around
 562         * running at double speed. At least we let the user know:
 563         */
 564        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 565                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 566        pr_info("Using PIT calibration value\n");
 567        return tsc_pit_min;
 568}
 569
 570int recalibrate_cpu_khz(void)
 571{
 572#ifndef CONFIG_SMP
 573        unsigned long cpu_khz_old = cpu_khz;
 574
 575        if (cpu_has_tsc) {
 576                tsc_khz = x86_platform.calibrate_tsc();
 577                cpu_khz = tsc_khz;
 578                cpu_data(0).loops_per_jiffy =
 579                        cpufreq_scale(cpu_data(0).loops_per_jiffy,
 580                                        cpu_khz_old, cpu_khz);
 581                return 0;
 582        } else
 583                return -ENODEV;
 584#else
 585        return -ENODEV;
 586#endif
 587}
 588
 589EXPORT_SYMBOL(recalibrate_cpu_khz);
 590
 591
 592/* Accelerators for sched_clock()
 593 * convert from cycles(64bits) => nanoseconds (64bits)
 594 *  basic equation:
 595 *              ns = cycles / (freq / ns_per_sec)
 596 *              ns = cycles * (ns_per_sec / freq)
 597 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 598 *              ns = cycles * (10^6 / cpu_khz)
 599 *
 600 *      Then we use scaling math (suggested by george@mvista.com) to get:
 601 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 602 *              ns = cycles * cyc2ns_scale / SC
 603 *
 604 *      And since SC is a constant power of two, we can convert the div
 605 *  into a shift.
 606 *
 607 *  We can use khz divisor instead of mhz to keep a better precision, since
 608 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 609 *  (mathieu.desnoyers@polymtl.ca)
 610 *
 611 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 612 */
 613
 614DEFINE_PER_CPU(unsigned long, cyc2ns);
 615DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
 616
 617static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 618{
 619        unsigned long long tsc_now, ns_now, *offset;
 620        unsigned long flags, *scale;
 621
 622        local_irq_save(flags);
 623        sched_clock_idle_sleep_event();
 624
 625        scale = &per_cpu(cyc2ns, cpu);
 626        offset = &per_cpu(cyc2ns_offset, cpu);
 627
 628        rdtscll(tsc_now);
 629        ns_now = __cycles_2_ns(tsc_now);
 630
 631        if (cpu_khz) {
 632                *scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
 633                                cpu_khz / 2) / cpu_khz;
 634                *offset = ns_now - mult_frac(tsc_now, *scale,
 635                                             (1UL << CYC2NS_SCALE_FACTOR));
 636        }
 637
 638        sched_clock_idle_wakeup_event(0);
 639        local_irq_restore(flags);
 640}
 641
 642static unsigned long long cyc2ns_suspend;
 643
 644void tsc_save_sched_clock_state(void)
 645{
 646        if (!sched_clock_stable)
 647                return;
 648
 649        cyc2ns_suspend = sched_clock();
 650}
 651
 652/*
 653 * Even on processors with invariant TSC, TSC gets reset in some the
 654 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 655 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 656 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 657 * that sched_clock() continues from the point where it was left off during
 658 * suspend.
 659 */
 660void tsc_restore_sched_clock_state(void)
 661{
 662        unsigned long long offset;
 663        unsigned long flags;
 664        int cpu;
 665
 666        if (!sched_clock_stable)
 667                return;
 668
 669        local_irq_save(flags);
 670
 671        __this_cpu_write(cyc2ns_offset, 0);
 672        offset = cyc2ns_suspend - sched_clock();
 673
 674        for_each_possible_cpu(cpu)
 675                per_cpu(cyc2ns_offset, cpu) = offset;
 676
 677        local_irq_restore(flags);
 678}
 679
 680#ifdef CONFIG_CPU_FREQ
 681
 682/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 683 * changes.
 684 *
 685 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 686 * not that important because current Opteron setups do not support
 687 * scaling on SMP anyroads.
 688 *
 689 * Should fix up last_tsc too. Currently gettimeofday in the
 690 * first tick after the change will be slightly wrong.
 691 */
 692
 693static unsigned int  ref_freq;
 694static unsigned long loops_per_jiffy_ref;
 695static unsigned long tsc_khz_ref;
 696
 697static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 698                                void *data)
 699{
 700        struct cpufreq_freqs *freq = data;
 701        unsigned long *lpj;
 702
 703        if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 704                return 0;
 705
 706        lpj = &boot_cpu_data.loops_per_jiffy;
 707#ifdef CONFIG_SMP
 708        if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 709                lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 710#endif
 711
 712        if (!ref_freq) {
 713                ref_freq = freq->old;
 714                loops_per_jiffy_ref = *lpj;
 715                tsc_khz_ref = tsc_khz;
 716        }
 717        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 718                        (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
 719                        (val == CPUFREQ_RESUMECHANGE)) {
 720                *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 721
 722                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 723                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 724                        mark_tsc_unstable("cpufreq changes");
 725        }
 726
 727        set_cyc2ns_scale(tsc_khz, freq->cpu);
 728
 729        return 0;
 730}
 731
 732static struct notifier_block time_cpufreq_notifier_block = {
 733        .notifier_call  = time_cpufreq_notifier
 734};
 735
 736static int __init cpufreq_tsc(void)
 737{
 738        if (!cpu_has_tsc)
 739                return 0;
 740        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 741                return 0;
 742        cpufreq_register_notifier(&time_cpufreq_notifier_block,
 743                                CPUFREQ_TRANSITION_NOTIFIER);
 744        return 0;
 745}
 746
 747core_initcall(cpufreq_tsc);
 748
 749#endif /* CONFIG_CPU_FREQ */
 750
 751/* clocksource code */
 752
 753static struct clocksource clocksource_tsc;
 754
 755/*
 756 * We compare the TSC to the cycle_last value in the clocksource
 757 * structure to avoid a nasty time-warp. This can be observed in a
 758 * very small window right after one CPU updated cycle_last under
 759 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 760 * is smaller than the cycle_last reference value due to a TSC which
 761 * is slighty behind. This delta is nowhere else observable, but in
 762 * that case it results in a forward time jump in the range of hours
 763 * due to the unsigned delta calculation of the time keeping core
 764 * code, which is necessary to support wrapping clocksources like pm
 765 * timer.
 766 */
 767static cycle_t read_tsc(struct clocksource *cs)
 768{
 769        cycle_t ret = (cycle_t)get_cycles();
 770
 771        return ret >= clocksource_tsc.cycle_last ?
 772                ret : clocksource_tsc.cycle_last;
 773}
 774
 775static void resume_tsc(struct clocksource *cs)
 776{
 777        if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
 778                clocksource_tsc.cycle_last = 0;
 779}
 780
 781static struct clocksource clocksource_tsc = {
 782        .name                   = "tsc",
 783        .rating                 = 300,
 784        .read                   = read_tsc,
 785        .resume                 = resume_tsc,
 786        .mask                   = CLOCKSOURCE_MASK(64),
 787        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
 788                                  CLOCK_SOURCE_MUST_VERIFY,
 789#ifdef CONFIG_X86_64
 790        .archdata               = { .vclock_mode = VCLOCK_TSC },
 791#endif
 792};
 793
 794void mark_tsc_unstable(char *reason)
 795{
 796        if (!tsc_unstable) {
 797                tsc_unstable = 1;
 798                sched_clock_stable = 0;
 799                disable_sched_clock_irqtime();
 800                pr_info("Marking TSC unstable due to %s\n", reason);
 801                /* Change only the rating, when not registered */
 802                if (clocksource_tsc.mult)
 803                        clocksource_mark_unstable(&clocksource_tsc);
 804                else {
 805                        clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
 806                        clocksource_tsc.rating = 0;
 807                }
 808        }
 809}
 810
 811EXPORT_SYMBOL_GPL(mark_tsc_unstable);
 812
 813static void __init check_system_tsc_reliable(void)
 814{
 815#ifdef CONFIG_MGEODE_LX
 816        /* RTSC counts during suspend */
 817#define RTSC_SUSP 0x100
 818        unsigned long res_low, res_high;
 819
 820        rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
 821        /* Geode_LX - the OLPC CPU has a very reliable TSC */
 822        if (res_low & RTSC_SUSP)
 823                tsc_clocksource_reliable = 1;
 824#endif
 825        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
 826                tsc_clocksource_reliable = 1;
 827}
 828
 829/*
 830 * Make an educated guess if the TSC is trustworthy and synchronized
 831 * over all CPUs.
 832 */
 833int unsynchronized_tsc(void)
 834{
 835        if (!cpu_has_tsc || tsc_unstable)
 836                return 1;
 837
 838#ifdef CONFIG_SMP
 839        if (apic_is_clustered_box())
 840                return 1;
 841#endif
 842
 843        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 844                return 0;
 845
 846        if (tsc_clocksource_reliable)
 847                return 0;
 848        /*
 849         * Intel systems are normally all synchronized.
 850         * Exceptions must mark TSC as unstable:
 851         */
 852        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
 853                /* assume multi socket systems are not synchronized: */
 854                if (num_possible_cpus() > 1)
 855                        return 1;
 856        }
 857
 858        return 0;
 859}
 860
 861
 862static void tsc_refine_calibration_work(struct work_struct *work);
 863static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
 864/**
 865 * tsc_refine_calibration_work - Further refine tsc freq calibration
 866 * @work - ignored.
 867 *
 868 * This functions uses delayed work over a period of a
 869 * second to further refine the TSC freq value. Since this is
 870 * timer based, instead of loop based, we don't block the boot
 871 * process while this longer calibration is done.
 872 *
 873 * If there are any calibration anomalies (too many SMIs, etc),
 874 * or the refined calibration is off by 1% of the fast early
 875 * calibration, we throw out the new calibration and use the
 876 * early calibration.
 877 */
 878static void tsc_refine_calibration_work(struct work_struct *work)
 879{
 880        static u64 tsc_start = -1, ref_start;
 881        static int hpet;
 882        u64 tsc_stop, ref_stop, delta;
 883        unsigned long freq;
 884
 885        /* Don't bother refining TSC on unstable systems */
 886        if (check_tsc_unstable())
 887                goto out;
 888
 889        /*
 890         * Since the work is started early in boot, we may be
 891         * delayed the first time we expire. So set the workqueue
 892         * again once we know timers are working.
 893         */
 894        if (tsc_start == -1) {
 895                /*
 896                 * Only set hpet once, to avoid mixing hardware
 897                 * if the hpet becomes enabled later.
 898                 */
 899                hpet = is_hpet_enabled();
 900                schedule_delayed_work(&tsc_irqwork, HZ);
 901                tsc_start = tsc_read_refs(&ref_start, hpet);
 902                return;
 903        }
 904
 905        tsc_stop = tsc_read_refs(&ref_stop, hpet);
 906
 907        /* hpet or pmtimer available ? */
 908        if (ref_start == ref_stop)
 909                goto out;
 910
 911        /* Check, whether the sampling was disturbed by an SMI */
 912        if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
 913                goto out;
 914
 915        delta = tsc_stop - tsc_start;
 916        delta *= 1000000LL;
 917        if (hpet)
 918                freq = calc_hpet_ref(delta, ref_start, ref_stop);
 919        else
 920                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
 921
 922        /* Make sure we're within 1% */
 923        if (abs(tsc_khz - freq) > tsc_khz/100)
 924                goto out;
 925
 926        tsc_khz = freq;
 927        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
 928                (unsigned long)tsc_khz / 1000,
 929                (unsigned long)tsc_khz % 1000);
 930
 931out:
 932        clocksource_register_khz(&clocksource_tsc, tsc_khz);
 933}
 934
 935
 936static int __init init_tsc_clocksource(void)
 937{
 938        if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
 939                return 0;
 940
 941        if (tsc_clocksource_reliable)
 942                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
 943        /* lower the rating if we already know its unstable: */
 944        if (check_tsc_unstable()) {
 945                clocksource_tsc.rating = 0;
 946                clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
 947        }
 948
 949        if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
 950                clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
 951
 952        /*
 953         * Trust the results of the earlier calibration on systems
 954         * exporting a reliable TSC.
 955         */
 956        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
 957                clocksource_register_khz(&clocksource_tsc, tsc_khz);
 958                return 0;
 959        }
 960
 961        schedule_delayed_work(&tsc_irqwork, 0);
 962        return 0;
 963}
 964/*
 965 * We use device_initcall here, to ensure we run after the hpet
 966 * is fully initialized, which may occur at fs_initcall time.
 967 */
 968device_initcall(init_tsc_clocksource);
 969
 970void __init tsc_init(void)
 971{
 972        u64 lpj;
 973        int cpu;
 974
 975        x86_init.timers.tsc_pre_init();
 976
 977        if (!cpu_has_tsc)
 978                return;
 979
 980        tsc_khz = x86_platform.calibrate_tsc();
 981        cpu_khz = tsc_khz;
 982
 983        if (!tsc_khz) {
 984                mark_tsc_unstable("could not calculate TSC khz");
 985                return;
 986        }
 987
 988        pr_info("Detected %lu.%03lu MHz processor\n",
 989                (unsigned long)cpu_khz / 1000,
 990                (unsigned long)cpu_khz % 1000);
 991
 992        /*
 993         * Secondary CPUs do not run through tsc_init(), so set up
 994         * all the scale factors for all CPUs, assuming the same
 995         * speed as the bootup CPU. (cpufreq notifiers will fix this
 996         * up if their speed diverges)
 997         */
 998        for_each_possible_cpu(cpu)
 999                set_cyc2ns_scale(cpu_khz, cpu);
1000
1001        if (tsc_disabled > 0)
1002                return;
1003
1004        /* now allow native_sched_clock() to use rdtsc */
1005        tsc_disabled = 0;
1006
1007        if (!no_sched_irq_time)
1008                enable_sched_clock_irqtime();
1009
1010        lpj = ((u64)tsc_khz * 1000);
1011        do_div(lpj, HZ);
1012        lpj_fine = lpj;
1013
1014        use_tsc_delay();
1015
1016        if (unsynchronized_tsc())
1017                mark_tsc_unstable("TSCs unsynchronized");
1018
1019        check_system_tsc_reliable();
1020}
1021
1022#ifdef CONFIG_SMP
1023/*
1024 * If we have a constant TSC and are using the TSC for the delay loop,
1025 * we can skip clock calibration if another cpu in the same socket has already
1026 * been calibrated. This assumes that CONSTANT_TSC applies to all
1027 * cpus in the socket - this should be a safe assumption.
1028 */
1029unsigned long calibrate_delay_is_known(void)
1030{
1031        int i, cpu = smp_processor_id();
1032
1033        if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1034                return 0;
1035
1036        for_each_online_cpu(i)
1037                if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1038                        return cpu_data(i).loops_per_jiffy;
1039        return 0;
1040}
1041#endif
1042