linux/arch/x86/kvm/vmx.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "cpuid.h"
  22
  23#include <linux/kvm_host.h>
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/mm.h>
  27#include <linux/highmem.h>
  28#include <linux/sched.h>
  29#include <linux/moduleparam.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/ftrace_event.h>
  32#include <linux/slab.h>
  33#include <linux/tboot.h>
  34#include "kvm_cache_regs.h"
  35#include "x86.h"
  36
  37#include <asm/io.h>
  38#include <asm/desc.h>
  39#include <asm/vmx.h>
  40#include <asm/virtext.h>
  41#include <asm/mce.h>
  42#include <asm/i387.h>
  43#include <asm/xcr.h>
  44#include <asm/perf_event.h>
  45#include <asm/kexec.h>
  46
  47#include "trace.h"
  48
  49#define __ex(x) __kvm_handle_fault_on_reboot(x)
  50#define __ex_clear(x, reg) \
  51        ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  52
  53MODULE_AUTHOR("Qumranet");
  54MODULE_LICENSE("GPL");
  55
  56static const struct x86_cpu_id vmx_cpu_id[] = {
  57        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  58        {}
  59};
  60MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  61
  62static bool __read_mostly enable_vpid = 1;
  63module_param_named(vpid, enable_vpid, bool, 0444);
  64
  65static bool __read_mostly flexpriority_enabled = 1;
  66module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  67
  68static bool __read_mostly enable_ept = 1;
  69module_param_named(ept, enable_ept, bool, S_IRUGO);
  70
  71static bool __read_mostly enable_unrestricted_guest = 1;
  72module_param_named(unrestricted_guest,
  73                        enable_unrestricted_guest, bool, S_IRUGO);
  74
  75static bool __read_mostly enable_ept_ad_bits = 1;
  76module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  77
  78static bool __read_mostly emulate_invalid_guest_state = true;
  79module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  80
  81static bool __read_mostly vmm_exclusive = 1;
  82module_param(vmm_exclusive, bool, S_IRUGO);
  83
  84static bool __read_mostly fasteoi = 1;
  85module_param(fasteoi, bool, S_IRUGO);
  86
  87static bool __read_mostly enable_apicv = 1;
  88module_param(enable_apicv, bool, S_IRUGO);
  89
  90static bool __read_mostly enable_shadow_vmcs = 1;
  91module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  92/*
  93 * If nested=1, nested virtualization is supported, i.e., guests may use
  94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  95 * use VMX instructions.
  96 */
  97static bool __read_mostly nested = 0;
  98module_param(nested, bool, S_IRUGO);
  99
 100#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
 101#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
 102#define KVM_VM_CR0_ALWAYS_ON                                            \
 103        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
 104#define KVM_CR4_GUEST_OWNED_BITS                                      \
 105        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 106         | X86_CR4_OSXMMEXCPT)
 107
 108#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 109#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 110
 111#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 112
 113/*
 114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 115 * ple_gap:    upper bound on the amount of time between two successive
 116 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 117 *             According to test, this time is usually smaller than 128 cycles.
 118 * ple_window: upper bound on the amount of time a guest is allowed to execute
 119 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 120 *             less than 2^12 cycles
 121 * Time is measured based on a counter that runs at the same rate as the TSC,
 122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 123 */
 124#define KVM_VMX_DEFAULT_PLE_GAP    128
 125#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
 126static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
 127module_param(ple_gap, int, S_IRUGO);
 128
 129static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 130module_param(ple_window, int, S_IRUGO);
 131
 132extern const ulong vmx_return;
 133
 134#define NR_AUTOLOAD_MSRS 8
 135#define VMCS02_POOL_SIZE 1
 136
 137struct vmcs {
 138        u32 revision_id;
 139        u32 abort;
 140        char data[0];
 141};
 142
 143/*
 144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 146 * loaded on this CPU (so we can clear them if the CPU goes down).
 147 */
 148struct loaded_vmcs {
 149        struct vmcs *vmcs;
 150        int cpu;
 151        int launched;
 152        struct list_head loaded_vmcss_on_cpu_link;
 153};
 154
 155struct shared_msr_entry {
 156        unsigned index;
 157        u64 data;
 158        u64 mask;
 159};
 160
 161/*
 162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
 168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
 169 * underlying hardware which will be used to run L2.
 170 * This structure is packed to ensure that its layout is identical across
 171 * machines (necessary for live migration).
 172 * If there are changes in this struct, VMCS12_REVISION must be changed.
 173 */
 174typedef u64 natural_width;
 175struct __packed vmcs12 {
 176        /* According to the Intel spec, a VMCS region must start with the
 177         * following two fields. Then follow implementation-specific data.
 178         */
 179        u32 revision_id;
 180        u32 abort;
 181
 182        u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
 183        u32 padding[7]; /* room for future expansion */
 184
 185        u64 io_bitmap_a;
 186        u64 io_bitmap_b;
 187        u64 msr_bitmap;
 188        u64 vm_exit_msr_store_addr;
 189        u64 vm_exit_msr_load_addr;
 190        u64 vm_entry_msr_load_addr;
 191        u64 tsc_offset;
 192        u64 virtual_apic_page_addr;
 193        u64 apic_access_addr;
 194        u64 ept_pointer;
 195        u64 guest_physical_address;
 196        u64 vmcs_link_pointer;
 197        u64 guest_ia32_debugctl;
 198        u64 guest_ia32_pat;
 199        u64 guest_ia32_efer;
 200        u64 guest_ia32_perf_global_ctrl;
 201        u64 guest_pdptr0;
 202        u64 guest_pdptr1;
 203        u64 guest_pdptr2;
 204        u64 guest_pdptr3;
 205        u64 host_ia32_pat;
 206        u64 host_ia32_efer;
 207        u64 host_ia32_perf_global_ctrl;
 208        u64 padding64[8]; /* room for future expansion */
 209        /*
 210         * To allow migration of L1 (complete with its L2 guests) between
 211         * machines of different natural widths (32 or 64 bit), we cannot have
 212         * unsigned long fields with no explict size. We use u64 (aliased
 213         * natural_width) instead. Luckily, x86 is little-endian.
 214         */
 215        natural_width cr0_guest_host_mask;
 216        natural_width cr4_guest_host_mask;
 217        natural_width cr0_read_shadow;
 218        natural_width cr4_read_shadow;
 219        natural_width cr3_target_value0;
 220        natural_width cr3_target_value1;
 221        natural_width cr3_target_value2;
 222        natural_width cr3_target_value3;
 223        natural_width exit_qualification;
 224        natural_width guest_linear_address;
 225        natural_width guest_cr0;
 226        natural_width guest_cr3;
 227        natural_width guest_cr4;
 228        natural_width guest_es_base;
 229        natural_width guest_cs_base;
 230        natural_width guest_ss_base;
 231        natural_width guest_ds_base;
 232        natural_width guest_fs_base;
 233        natural_width guest_gs_base;
 234        natural_width guest_ldtr_base;
 235        natural_width guest_tr_base;
 236        natural_width guest_gdtr_base;
 237        natural_width guest_idtr_base;
 238        natural_width guest_dr7;
 239        natural_width guest_rsp;
 240        natural_width guest_rip;
 241        natural_width guest_rflags;
 242        natural_width guest_pending_dbg_exceptions;
 243        natural_width guest_sysenter_esp;
 244        natural_width guest_sysenter_eip;
 245        natural_width host_cr0;
 246        natural_width host_cr3;
 247        natural_width host_cr4;
 248        natural_width host_fs_base;
 249        natural_width host_gs_base;
 250        natural_width host_tr_base;
 251        natural_width host_gdtr_base;
 252        natural_width host_idtr_base;
 253        natural_width host_ia32_sysenter_esp;
 254        natural_width host_ia32_sysenter_eip;
 255        natural_width host_rsp;
 256        natural_width host_rip;
 257        natural_width paddingl[8]; /* room for future expansion */
 258        u32 pin_based_vm_exec_control;
 259        u32 cpu_based_vm_exec_control;
 260        u32 exception_bitmap;
 261        u32 page_fault_error_code_mask;
 262        u32 page_fault_error_code_match;
 263        u32 cr3_target_count;
 264        u32 vm_exit_controls;
 265        u32 vm_exit_msr_store_count;
 266        u32 vm_exit_msr_load_count;
 267        u32 vm_entry_controls;
 268        u32 vm_entry_msr_load_count;
 269        u32 vm_entry_intr_info_field;
 270        u32 vm_entry_exception_error_code;
 271        u32 vm_entry_instruction_len;
 272        u32 tpr_threshold;
 273        u32 secondary_vm_exec_control;
 274        u32 vm_instruction_error;
 275        u32 vm_exit_reason;
 276        u32 vm_exit_intr_info;
 277        u32 vm_exit_intr_error_code;
 278        u32 idt_vectoring_info_field;
 279        u32 idt_vectoring_error_code;
 280        u32 vm_exit_instruction_len;
 281        u32 vmx_instruction_info;
 282        u32 guest_es_limit;
 283        u32 guest_cs_limit;
 284        u32 guest_ss_limit;
 285        u32 guest_ds_limit;
 286        u32 guest_fs_limit;
 287        u32 guest_gs_limit;
 288        u32 guest_ldtr_limit;
 289        u32 guest_tr_limit;
 290        u32 guest_gdtr_limit;
 291        u32 guest_idtr_limit;
 292        u32 guest_es_ar_bytes;
 293        u32 guest_cs_ar_bytes;
 294        u32 guest_ss_ar_bytes;
 295        u32 guest_ds_ar_bytes;
 296        u32 guest_fs_ar_bytes;
 297        u32 guest_gs_ar_bytes;
 298        u32 guest_ldtr_ar_bytes;
 299        u32 guest_tr_ar_bytes;
 300        u32 guest_interruptibility_info;
 301        u32 guest_activity_state;
 302        u32 guest_sysenter_cs;
 303        u32 host_ia32_sysenter_cs;
 304        u32 vmx_preemption_timer_value;
 305        u32 padding32[7]; /* room for future expansion */
 306        u16 virtual_processor_id;
 307        u16 guest_es_selector;
 308        u16 guest_cs_selector;
 309        u16 guest_ss_selector;
 310        u16 guest_ds_selector;
 311        u16 guest_fs_selector;
 312        u16 guest_gs_selector;
 313        u16 guest_ldtr_selector;
 314        u16 guest_tr_selector;
 315        u16 host_es_selector;
 316        u16 host_cs_selector;
 317        u16 host_ss_selector;
 318        u16 host_ds_selector;
 319        u16 host_fs_selector;
 320        u16 host_gs_selector;
 321        u16 host_tr_selector;
 322};
 323
 324/*
 325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 328 */
 329#define VMCS12_REVISION 0x11e57ed0
 330
 331/*
 332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 334 * current implementation, 4K are reserved to avoid future complications.
 335 */
 336#define VMCS12_SIZE 0x1000
 337
 338/* Used to remember the last vmcs02 used for some recently used vmcs12s */
 339struct vmcs02_list {
 340        struct list_head list;
 341        gpa_t vmptr;
 342        struct loaded_vmcs vmcs02;
 343};
 344
 345/*
 346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 348 */
 349struct nested_vmx {
 350        /* Has the level1 guest done vmxon? */
 351        bool vmxon;
 352
 353        /* The guest-physical address of the current VMCS L1 keeps for L2 */
 354        gpa_t current_vmptr;
 355        /* The host-usable pointer to the above */
 356        struct page *current_vmcs12_page;
 357        struct vmcs12 *current_vmcs12;
 358        struct vmcs *current_shadow_vmcs;
 359        /*
 360         * Indicates if the shadow vmcs must be updated with the
 361         * data hold by vmcs12
 362         */
 363        bool sync_shadow_vmcs;
 364
 365        /* vmcs02_list cache of VMCSs recently used to run L2 guests */
 366        struct list_head vmcs02_pool;
 367        int vmcs02_num;
 368        u64 vmcs01_tsc_offset;
 369        /* L2 must run next, and mustn't decide to exit to L1. */
 370        bool nested_run_pending;
 371        /*
 372         * Guest pages referred to in vmcs02 with host-physical pointers, so
 373         * we must keep them pinned while L2 runs.
 374         */
 375        struct page *apic_access_page;
 376        u64 msr_ia32_feature_control;
 377};
 378
 379#define POSTED_INTR_ON  0
 380/* Posted-Interrupt Descriptor */
 381struct pi_desc {
 382        u32 pir[8];     /* Posted interrupt requested */
 383        u32 control;    /* bit 0 of control is outstanding notification bit */
 384        u32 rsvd[7];
 385} __aligned(64);
 386
 387static bool pi_test_and_set_on(struct pi_desc *pi_desc)
 388{
 389        return test_and_set_bit(POSTED_INTR_ON,
 390                        (unsigned long *)&pi_desc->control);
 391}
 392
 393static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
 394{
 395        return test_and_clear_bit(POSTED_INTR_ON,
 396                        (unsigned long *)&pi_desc->control);
 397}
 398
 399static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
 400{
 401        return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
 402}
 403
 404struct vcpu_vmx {
 405        struct kvm_vcpu       vcpu;
 406        unsigned long         host_rsp;
 407        u8                    fail;
 408        u8                    cpl;
 409        bool                  nmi_known_unmasked;
 410        u32                   exit_intr_info;
 411        u32                   idt_vectoring_info;
 412        ulong                 rflags;
 413        struct shared_msr_entry *guest_msrs;
 414        int                   nmsrs;
 415        int                   save_nmsrs;
 416        unsigned long         host_idt_base;
 417#ifdef CONFIG_X86_64
 418        u64                   msr_host_kernel_gs_base;
 419        u64                   msr_guest_kernel_gs_base;
 420#endif
 421        /*
 422         * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 423         * non-nested (L1) guest, it always points to vmcs01. For a nested
 424         * guest (L2), it points to a different VMCS.
 425         */
 426        struct loaded_vmcs    vmcs01;
 427        struct loaded_vmcs   *loaded_vmcs;
 428        bool                  __launched; /* temporary, used in vmx_vcpu_run */
 429        struct msr_autoload {
 430                unsigned nr;
 431                struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
 432                struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
 433        } msr_autoload;
 434        struct {
 435                int           loaded;
 436                u16           fs_sel, gs_sel, ldt_sel;
 437#ifdef CONFIG_X86_64
 438                u16           ds_sel, es_sel;
 439#endif
 440                int           gs_ldt_reload_needed;
 441                int           fs_reload_needed;
 442        } host_state;
 443        struct {
 444                int vm86_active;
 445                ulong save_rflags;
 446                struct kvm_segment segs[8];
 447        } rmode;
 448        struct {
 449                u32 bitmask; /* 4 bits per segment (1 bit per field) */
 450                struct kvm_save_segment {
 451                        u16 selector;
 452                        unsigned long base;
 453                        u32 limit;
 454                        u32 ar;
 455                } seg[8];
 456        } segment_cache;
 457        int vpid;
 458        bool emulation_required;
 459
 460        /* Support for vnmi-less CPUs */
 461        int soft_vnmi_blocked;
 462        ktime_t entry_time;
 463        s64 vnmi_blocked_time;
 464        u32 exit_reason;
 465
 466        bool rdtscp_enabled;
 467
 468        /* Posted interrupt descriptor */
 469        struct pi_desc pi_desc;
 470
 471        /* Support for a guest hypervisor (nested VMX) */
 472        struct nested_vmx nested;
 473};
 474
 475enum segment_cache_field {
 476        SEG_FIELD_SEL = 0,
 477        SEG_FIELD_BASE = 1,
 478        SEG_FIELD_LIMIT = 2,
 479        SEG_FIELD_AR = 3,
 480
 481        SEG_FIELD_NR = 4
 482};
 483
 484static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 485{
 486        return container_of(vcpu, struct vcpu_vmx, vcpu);
 487}
 488
 489#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
 490#define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
 491#define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
 492                                [number##_HIGH] = VMCS12_OFFSET(name)+4
 493
 494
 495static const unsigned long shadow_read_only_fields[] = {
 496        /*
 497         * We do NOT shadow fields that are modified when L0
 498         * traps and emulates any vmx instruction (e.g. VMPTRLD,
 499         * VMXON...) executed by L1.
 500         * For example, VM_INSTRUCTION_ERROR is read
 501         * by L1 if a vmx instruction fails (part of the error path).
 502         * Note the code assumes this logic. If for some reason
 503         * we start shadowing these fields then we need to
 504         * force a shadow sync when L0 emulates vmx instructions
 505         * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
 506         * by nested_vmx_failValid)
 507         */
 508        VM_EXIT_REASON,
 509        VM_EXIT_INTR_INFO,
 510        VM_EXIT_INSTRUCTION_LEN,
 511        IDT_VECTORING_INFO_FIELD,
 512        IDT_VECTORING_ERROR_CODE,
 513        VM_EXIT_INTR_ERROR_CODE,
 514        EXIT_QUALIFICATION,
 515        GUEST_LINEAR_ADDRESS,
 516        GUEST_PHYSICAL_ADDRESS
 517};
 518static const int max_shadow_read_only_fields =
 519        ARRAY_SIZE(shadow_read_only_fields);
 520
 521static const unsigned long shadow_read_write_fields[] = {
 522        GUEST_RIP,
 523        GUEST_RSP,
 524        GUEST_CR0,
 525        GUEST_CR3,
 526        GUEST_CR4,
 527        GUEST_INTERRUPTIBILITY_INFO,
 528        GUEST_RFLAGS,
 529        GUEST_CS_SELECTOR,
 530        GUEST_CS_AR_BYTES,
 531        GUEST_CS_LIMIT,
 532        GUEST_CS_BASE,
 533        GUEST_ES_BASE,
 534        CR0_GUEST_HOST_MASK,
 535        CR0_READ_SHADOW,
 536        CR4_READ_SHADOW,
 537        TSC_OFFSET,
 538        EXCEPTION_BITMAP,
 539        CPU_BASED_VM_EXEC_CONTROL,
 540        VM_ENTRY_EXCEPTION_ERROR_CODE,
 541        VM_ENTRY_INTR_INFO_FIELD,
 542        VM_ENTRY_INSTRUCTION_LEN,
 543        VM_ENTRY_EXCEPTION_ERROR_CODE,
 544        HOST_FS_BASE,
 545        HOST_GS_BASE,
 546        HOST_FS_SELECTOR,
 547        HOST_GS_SELECTOR
 548};
 549static const int max_shadow_read_write_fields =
 550        ARRAY_SIZE(shadow_read_write_fields);
 551
 552static const unsigned short vmcs_field_to_offset_table[] = {
 553        FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
 554        FIELD(GUEST_ES_SELECTOR, guest_es_selector),
 555        FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
 556        FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
 557        FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
 558        FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
 559        FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
 560        FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
 561        FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
 562        FIELD(HOST_ES_SELECTOR, host_es_selector),
 563        FIELD(HOST_CS_SELECTOR, host_cs_selector),
 564        FIELD(HOST_SS_SELECTOR, host_ss_selector),
 565        FIELD(HOST_DS_SELECTOR, host_ds_selector),
 566        FIELD(HOST_FS_SELECTOR, host_fs_selector),
 567        FIELD(HOST_GS_SELECTOR, host_gs_selector),
 568        FIELD(HOST_TR_SELECTOR, host_tr_selector),
 569        FIELD64(IO_BITMAP_A, io_bitmap_a),
 570        FIELD64(IO_BITMAP_B, io_bitmap_b),
 571        FIELD64(MSR_BITMAP, msr_bitmap),
 572        FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
 573        FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
 574        FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
 575        FIELD64(TSC_OFFSET, tsc_offset),
 576        FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
 577        FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
 578        FIELD64(EPT_POINTER, ept_pointer),
 579        FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
 580        FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
 581        FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
 582        FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
 583        FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
 584        FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
 585        FIELD64(GUEST_PDPTR0, guest_pdptr0),
 586        FIELD64(GUEST_PDPTR1, guest_pdptr1),
 587        FIELD64(GUEST_PDPTR2, guest_pdptr2),
 588        FIELD64(GUEST_PDPTR3, guest_pdptr3),
 589        FIELD64(HOST_IA32_PAT, host_ia32_pat),
 590        FIELD64(HOST_IA32_EFER, host_ia32_efer),
 591        FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
 592        FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
 593        FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
 594        FIELD(EXCEPTION_BITMAP, exception_bitmap),
 595        FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
 596        FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
 597        FIELD(CR3_TARGET_COUNT, cr3_target_count),
 598        FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
 599        FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
 600        FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
 601        FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
 602        FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
 603        FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
 604        FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
 605        FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
 606        FIELD(TPR_THRESHOLD, tpr_threshold),
 607        FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
 608        FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
 609        FIELD(VM_EXIT_REASON, vm_exit_reason),
 610        FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
 611        FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
 612        FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
 613        FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
 614        FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
 615        FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
 616        FIELD(GUEST_ES_LIMIT, guest_es_limit),
 617        FIELD(GUEST_CS_LIMIT, guest_cs_limit),
 618        FIELD(GUEST_SS_LIMIT, guest_ss_limit),
 619        FIELD(GUEST_DS_LIMIT, guest_ds_limit),
 620        FIELD(GUEST_FS_LIMIT, guest_fs_limit),
 621        FIELD(GUEST_GS_LIMIT, guest_gs_limit),
 622        FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
 623        FIELD(GUEST_TR_LIMIT, guest_tr_limit),
 624        FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
 625        FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
 626        FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
 627        FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
 628        FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
 629        FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
 630        FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
 631        FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
 632        FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
 633        FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
 634        FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
 635        FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
 636        FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
 637        FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
 638        FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
 639        FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
 640        FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
 641        FIELD(CR0_READ_SHADOW, cr0_read_shadow),
 642        FIELD(CR4_READ_SHADOW, cr4_read_shadow),
 643        FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
 644        FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
 645        FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
 646        FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
 647        FIELD(EXIT_QUALIFICATION, exit_qualification),
 648        FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
 649        FIELD(GUEST_CR0, guest_cr0),
 650        FIELD(GUEST_CR3, guest_cr3),
 651        FIELD(GUEST_CR4, guest_cr4),
 652        FIELD(GUEST_ES_BASE, guest_es_base),
 653        FIELD(GUEST_CS_BASE, guest_cs_base),
 654        FIELD(GUEST_SS_BASE, guest_ss_base),
 655        FIELD(GUEST_DS_BASE, guest_ds_base),
 656        FIELD(GUEST_FS_BASE, guest_fs_base),
 657        FIELD(GUEST_GS_BASE, guest_gs_base),
 658        FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
 659        FIELD(GUEST_TR_BASE, guest_tr_base),
 660        FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
 661        FIELD(GUEST_IDTR_BASE, guest_idtr_base),
 662        FIELD(GUEST_DR7, guest_dr7),
 663        FIELD(GUEST_RSP, guest_rsp),
 664        FIELD(GUEST_RIP, guest_rip),
 665        FIELD(GUEST_RFLAGS, guest_rflags),
 666        FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
 667        FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
 668        FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
 669        FIELD(HOST_CR0, host_cr0),
 670        FIELD(HOST_CR3, host_cr3),
 671        FIELD(HOST_CR4, host_cr4),
 672        FIELD(HOST_FS_BASE, host_fs_base),
 673        FIELD(HOST_GS_BASE, host_gs_base),
 674        FIELD(HOST_TR_BASE, host_tr_base),
 675        FIELD(HOST_GDTR_BASE, host_gdtr_base),
 676        FIELD(HOST_IDTR_BASE, host_idtr_base),
 677        FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
 678        FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
 679        FIELD(HOST_RSP, host_rsp),
 680        FIELD(HOST_RIP, host_rip),
 681};
 682static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
 683
 684static inline short vmcs_field_to_offset(unsigned long field)
 685{
 686        if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
 687                return -1;
 688        return vmcs_field_to_offset_table[field];
 689}
 690
 691static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
 692{
 693        return to_vmx(vcpu)->nested.current_vmcs12;
 694}
 695
 696static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
 697{
 698        struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
 699        if (is_error_page(page))
 700                return NULL;
 701
 702        return page;
 703}
 704
 705static void nested_release_page(struct page *page)
 706{
 707        kvm_release_page_dirty(page);
 708}
 709
 710static void nested_release_page_clean(struct page *page)
 711{
 712        kvm_release_page_clean(page);
 713}
 714
 715static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
 716static u64 construct_eptp(unsigned long root_hpa);
 717static void kvm_cpu_vmxon(u64 addr);
 718static void kvm_cpu_vmxoff(void);
 719static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
 720static void vmx_set_segment(struct kvm_vcpu *vcpu,
 721                            struct kvm_segment *var, int seg);
 722static void vmx_get_segment(struct kvm_vcpu *vcpu,
 723                            struct kvm_segment *var, int seg);
 724static bool guest_state_valid(struct kvm_vcpu *vcpu);
 725static u32 vmx_segment_access_rights(struct kvm_segment *var);
 726static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
 727static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
 728static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
 729
 730static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 731static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 732/*
 733 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 734 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 735 */
 736static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 737static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
 738
 739static unsigned long *vmx_io_bitmap_a;
 740static unsigned long *vmx_io_bitmap_b;
 741static unsigned long *vmx_msr_bitmap_legacy;
 742static unsigned long *vmx_msr_bitmap_longmode;
 743static unsigned long *vmx_msr_bitmap_legacy_x2apic;
 744static unsigned long *vmx_msr_bitmap_longmode_x2apic;
 745static unsigned long *vmx_vmread_bitmap;
 746static unsigned long *vmx_vmwrite_bitmap;
 747
 748static bool cpu_has_load_ia32_efer;
 749static bool cpu_has_load_perf_global_ctrl;
 750
 751static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 752static DEFINE_SPINLOCK(vmx_vpid_lock);
 753
 754static struct vmcs_config {
 755        int size;
 756        int order;
 757        u32 revision_id;
 758        u32 pin_based_exec_ctrl;
 759        u32 cpu_based_exec_ctrl;
 760        u32 cpu_based_2nd_exec_ctrl;
 761        u32 vmexit_ctrl;
 762        u32 vmentry_ctrl;
 763} vmcs_config;
 764
 765static struct vmx_capability {
 766        u32 ept;
 767        u32 vpid;
 768} vmx_capability;
 769
 770#define VMX_SEGMENT_FIELD(seg)                                  \
 771        [VCPU_SREG_##seg] = {                                   \
 772                .selector = GUEST_##seg##_SELECTOR,             \
 773                .base = GUEST_##seg##_BASE,                     \
 774                .limit = GUEST_##seg##_LIMIT,                   \
 775                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 776        }
 777
 778static const struct kvm_vmx_segment_field {
 779        unsigned selector;
 780        unsigned base;
 781        unsigned limit;
 782        unsigned ar_bytes;
 783} kvm_vmx_segment_fields[] = {
 784        VMX_SEGMENT_FIELD(CS),
 785        VMX_SEGMENT_FIELD(DS),
 786        VMX_SEGMENT_FIELD(ES),
 787        VMX_SEGMENT_FIELD(FS),
 788        VMX_SEGMENT_FIELD(GS),
 789        VMX_SEGMENT_FIELD(SS),
 790        VMX_SEGMENT_FIELD(TR),
 791        VMX_SEGMENT_FIELD(LDTR),
 792};
 793
 794static u64 host_efer;
 795
 796static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 797
 798/*
 799 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
 800 * away by decrementing the array size.
 801 */
 802static const u32 vmx_msr_index[] = {
 803#ifdef CONFIG_X86_64
 804        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 805#endif
 806        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 807};
 808#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
 809
 810static inline bool is_page_fault(u32 intr_info)
 811{
 812        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 813                             INTR_INFO_VALID_MASK)) ==
 814                (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
 815}
 816
 817static inline bool is_no_device(u32 intr_info)
 818{
 819        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 820                             INTR_INFO_VALID_MASK)) ==
 821                (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
 822}
 823
 824static inline bool is_invalid_opcode(u32 intr_info)
 825{
 826        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 827                             INTR_INFO_VALID_MASK)) ==
 828                (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
 829}
 830
 831static inline bool is_external_interrupt(u32 intr_info)
 832{
 833        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 834                == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
 835}
 836
 837static inline bool is_machine_check(u32 intr_info)
 838{
 839        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 840                             INTR_INFO_VALID_MASK)) ==
 841                (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
 842}
 843
 844static inline bool cpu_has_vmx_msr_bitmap(void)
 845{
 846        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
 847}
 848
 849static inline bool cpu_has_vmx_tpr_shadow(void)
 850{
 851        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
 852}
 853
 854static inline bool vm_need_tpr_shadow(struct kvm *kvm)
 855{
 856        return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
 857}
 858
 859static inline bool cpu_has_secondary_exec_ctrls(void)
 860{
 861        return vmcs_config.cpu_based_exec_ctrl &
 862                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 863}
 864
 865static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
 866{
 867        return vmcs_config.cpu_based_2nd_exec_ctrl &
 868                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 869}
 870
 871static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
 872{
 873        return vmcs_config.cpu_based_2nd_exec_ctrl &
 874                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 875}
 876
 877static inline bool cpu_has_vmx_apic_register_virt(void)
 878{
 879        return vmcs_config.cpu_based_2nd_exec_ctrl &
 880                SECONDARY_EXEC_APIC_REGISTER_VIRT;
 881}
 882
 883static inline bool cpu_has_vmx_virtual_intr_delivery(void)
 884{
 885        return vmcs_config.cpu_based_2nd_exec_ctrl &
 886                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
 887}
 888
 889static inline bool cpu_has_vmx_posted_intr(void)
 890{
 891        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
 892}
 893
 894static inline bool cpu_has_vmx_apicv(void)
 895{
 896        return cpu_has_vmx_apic_register_virt() &&
 897                cpu_has_vmx_virtual_intr_delivery() &&
 898                cpu_has_vmx_posted_intr();
 899}
 900
 901static inline bool cpu_has_vmx_flexpriority(void)
 902{
 903        return cpu_has_vmx_tpr_shadow() &&
 904                cpu_has_vmx_virtualize_apic_accesses();
 905}
 906
 907static inline bool cpu_has_vmx_ept_execute_only(void)
 908{
 909        return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
 910}
 911
 912static inline bool cpu_has_vmx_eptp_uncacheable(void)
 913{
 914        return vmx_capability.ept & VMX_EPTP_UC_BIT;
 915}
 916
 917static inline bool cpu_has_vmx_eptp_writeback(void)
 918{
 919        return vmx_capability.ept & VMX_EPTP_WB_BIT;
 920}
 921
 922static inline bool cpu_has_vmx_ept_2m_page(void)
 923{
 924        return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
 925}
 926
 927static inline bool cpu_has_vmx_ept_1g_page(void)
 928{
 929        return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
 930}
 931
 932static inline bool cpu_has_vmx_ept_4levels(void)
 933{
 934        return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
 935}
 936
 937static inline bool cpu_has_vmx_ept_ad_bits(void)
 938{
 939        return vmx_capability.ept & VMX_EPT_AD_BIT;
 940}
 941
 942static inline bool cpu_has_vmx_invept_context(void)
 943{
 944        return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
 945}
 946
 947static inline bool cpu_has_vmx_invept_global(void)
 948{
 949        return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
 950}
 951
 952static inline bool cpu_has_vmx_invvpid_single(void)
 953{
 954        return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
 955}
 956
 957static inline bool cpu_has_vmx_invvpid_global(void)
 958{
 959        return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
 960}
 961
 962static inline bool cpu_has_vmx_ept(void)
 963{
 964        return vmcs_config.cpu_based_2nd_exec_ctrl &
 965                SECONDARY_EXEC_ENABLE_EPT;
 966}
 967
 968static inline bool cpu_has_vmx_unrestricted_guest(void)
 969{
 970        return vmcs_config.cpu_based_2nd_exec_ctrl &
 971                SECONDARY_EXEC_UNRESTRICTED_GUEST;
 972}
 973
 974static inline bool cpu_has_vmx_ple(void)
 975{
 976        return vmcs_config.cpu_based_2nd_exec_ctrl &
 977                SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 978}
 979
 980static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
 981{
 982        return flexpriority_enabled && irqchip_in_kernel(kvm);
 983}
 984
 985static inline bool cpu_has_vmx_vpid(void)
 986{
 987        return vmcs_config.cpu_based_2nd_exec_ctrl &
 988                SECONDARY_EXEC_ENABLE_VPID;
 989}
 990
 991static inline bool cpu_has_vmx_rdtscp(void)
 992{
 993        return vmcs_config.cpu_based_2nd_exec_ctrl &
 994                SECONDARY_EXEC_RDTSCP;
 995}
 996
 997static inline bool cpu_has_vmx_invpcid(void)
 998{
 999        return vmcs_config.cpu_based_2nd_exec_ctrl &
1000                SECONDARY_EXEC_ENABLE_INVPCID;
1001}
1002
1003static inline bool cpu_has_virtual_nmis(void)
1004{
1005        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1006}
1007
1008static inline bool cpu_has_vmx_wbinvd_exit(void)
1009{
1010        return vmcs_config.cpu_based_2nd_exec_ctrl &
1011                SECONDARY_EXEC_WBINVD_EXITING;
1012}
1013
1014static inline bool cpu_has_vmx_shadow_vmcs(void)
1015{
1016        u64 vmx_msr;
1017        rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1018        /* check if the cpu supports writing r/o exit information fields */
1019        if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1020                return false;
1021
1022        return vmcs_config.cpu_based_2nd_exec_ctrl &
1023                SECONDARY_EXEC_SHADOW_VMCS;
1024}
1025
1026static inline bool report_flexpriority(void)
1027{
1028        return flexpriority_enabled;
1029}
1030
1031static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1032{
1033        return vmcs12->cpu_based_vm_exec_control & bit;
1034}
1035
1036static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1037{
1038        return (vmcs12->cpu_based_vm_exec_control &
1039                        CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1040                (vmcs12->secondary_vm_exec_control & bit);
1041}
1042
1043static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1044{
1045        return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1046}
1047
1048static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1049{
1050        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1051}
1052
1053static inline bool is_exception(u32 intr_info)
1054{
1055        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1056                == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1057}
1058
1059static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1060static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1061                        struct vmcs12 *vmcs12,
1062                        u32 reason, unsigned long qualification);
1063
1064static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1065{
1066        int i;
1067
1068        for (i = 0; i < vmx->nmsrs; ++i)
1069                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1070                        return i;
1071        return -1;
1072}
1073
1074static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1075{
1076    struct {
1077        u64 vpid : 16;
1078        u64 rsvd : 48;
1079        u64 gva;
1080    } operand = { vpid, 0, gva };
1081
1082    asm volatile (__ex(ASM_VMX_INVVPID)
1083                  /* CF==1 or ZF==1 --> rc = -1 */
1084                  "; ja 1f ; ud2 ; 1:"
1085                  : : "a"(&operand), "c"(ext) : "cc", "memory");
1086}
1087
1088static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1089{
1090        struct {
1091                u64 eptp, gpa;
1092        } operand = {eptp, gpa};
1093
1094        asm volatile (__ex(ASM_VMX_INVEPT)
1095                        /* CF==1 or ZF==1 --> rc = -1 */
1096                        "; ja 1f ; ud2 ; 1:\n"
1097                        : : "a" (&operand), "c" (ext) : "cc", "memory");
1098}
1099
1100static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1101{
1102        int i;
1103
1104        i = __find_msr_index(vmx, msr);
1105        if (i >= 0)
1106                return &vmx->guest_msrs[i];
1107        return NULL;
1108}
1109
1110static void vmcs_clear(struct vmcs *vmcs)
1111{
1112        u64 phys_addr = __pa(vmcs);
1113        u8 error;
1114
1115        asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1116                      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1117                      : "cc", "memory");
1118        if (error)
1119                printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1120                       vmcs, phys_addr);
1121}
1122
1123static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1124{
1125        vmcs_clear(loaded_vmcs->vmcs);
1126        loaded_vmcs->cpu = -1;
1127        loaded_vmcs->launched = 0;
1128}
1129
1130static void vmcs_load(struct vmcs *vmcs)
1131{
1132        u64 phys_addr = __pa(vmcs);
1133        u8 error;
1134
1135        asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1136                        : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1137                        : "cc", "memory");
1138        if (error)
1139                printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1140                       vmcs, phys_addr);
1141}
1142
1143#ifdef CONFIG_KEXEC
1144/*
1145 * This bitmap is used to indicate whether the vmclear
1146 * operation is enabled on all cpus. All disabled by
1147 * default.
1148 */
1149static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1150
1151static inline void crash_enable_local_vmclear(int cpu)
1152{
1153        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1154}
1155
1156static inline void crash_disable_local_vmclear(int cpu)
1157{
1158        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1159}
1160
1161static inline int crash_local_vmclear_enabled(int cpu)
1162{
1163        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1164}
1165
1166static void crash_vmclear_local_loaded_vmcss(void)
1167{
1168        int cpu = raw_smp_processor_id();
1169        struct loaded_vmcs *v;
1170
1171        if (!crash_local_vmclear_enabled(cpu))
1172                return;
1173
1174        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1175                            loaded_vmcss_on_cpu_link)
1176                vmcs_clear(v->vmcs);
1177}
1178#else
1179static inline void crash_enable_local_vmclear(int cpu) { }
1180static inline void crash_disable_local_vmclear(int cpu) { }
1181#endif /* CONFIG_KEXEC */
1182
1183static void __loaded_vmcs_clear(void *arg)
1184{
1185        struct loaded_vmcs *loaded_vmcs = arg;
1186        int cpu = raw_smp_processor_id();
1187
1188        if (loaded_vmcs->cpu != cpu)
1189                return; /* vcpu migration can race with cpu offline */
1190        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1191                per_cpu(current_vmcs, cpu) = NULL;
1192        crash_disable_local_vmclear(cpu);
1193        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1194
1195        /*
1196         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1197         * is before setting loaded_vmcs->vcpu to -1 which is done in
1198         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1199         * then adds the vmcs into percpu list before it is deleted.
1200         */
1201        smp_wmb();
1202
1203        loaded_vmcs_init(loaded_vmcs);
1204        crash_enable_local_vmclear(cpu);
1205}
1206
1207static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1208{
1209        int cpu = loaded_vmcs->cpu;
1210
1211        if (cpu != -1)
1212                smp_call_function_single(cpu,
1213                         __loaded_vmcs_clear, loaded_vmcs, 1);
1214}
1215
1216static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1217{
1218        if (vmx->vpid == 0)
1219                return;
1220
1221        if (cpu_has_vmx_invvpid_single())
1222                __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1223}
1224
1225static inline void vpid_sync_vcpu_global(void)
1226{
1227        if (cpu_has_vmx_invvpid_global())
1228                __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1229}
1230
1231static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1232{
1233        if (cpu_has_vmx_invvpid_single())
1234                vpid_sync_vcpu_single(vmx);
1235        else
1236                vpid_sync_vcpu_global();
1237}
1238
1239static inline void ept_sync_global(void)
1240{
1241        if (cpu_has_vmx_invept_global())
1242                __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1243}
1244
1245static inline void ept_sync_context(u64 eptp)
1246{
1247        if (enable_ept) {
1248                if (cpu_has_vmx_invept_context())
1249                        __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1250                else
1251                        ept_sync_global();
1252        }
1253}
1254
1255static __always_inline unsigned long vmcs_readl(unsigned long field)
1256{
1257        unsigned long value;
1258
1259        asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1260                      : "=a"(value) : "d"(field) : "cc");
1261        return value;
1262}
1263
1264static __always_inline u16 vmcs_read16(unsigned long field)
1265{
1266        return vmcs_readl(field);
1267}
1268
1269static __always_inline u32 vmcs_read32(unsigned long field)
1270{
1271        return vmcs_readl(field);
1272}
1273
1274static __always_inline u64 vmcs_read64(unsigned long field)
1275{
1276#ifdef CONFIG_X86_64
1277        return vmcs_readl(field);
1278#else
1279        return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1280#endif
1281}
1282
1283static noinline void vmwrite_error(unsigned long field, unsigned long value)
1284{
1285        printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1286               field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1287        dump_stack();
1288}
1289
1290static void vmcs_writel(unsigned long field, unsigned long value)
1291{
1292        u8 error;
1293
1294        asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1295                       : "=q"(error) : "a"(value), "d"(field) : "cc");
1296        if (unlikely(error))
1297                vmwrite_error(field, value);
1298}
1299
1300static void vmcs_write16(unsigned long field, u16 value)
1301{
1302        vmcs_writel(field, value);
1303}
1304
1305static void vmcs_write32(unsigned long field, u32 value)
1306{
1307        vmcs_writel(field, value);
1308}
1309
1310static void vmcs_write64(unsigned long field, u64 value)
1311{
1312        vmcs_writel(field, value);
1313#ifndef CONFIG_X86_64
1314        asm volatile ("");
1315        vmcs_writel(field+1, value >> 32);
1316#endif
1317}
1318
1319static void vmcs_clear_bits(unsigned long field, u32 mask)
1320{
1321        vmcs_writel(field, vmcs_readl(field) & ~mask);
1322}
1323
1324static void vmcs_set_bits(unsigned long field, u32 mask)
1325{
1326        vmcs_writel(field, vmcs_readl(field) | mask);
1327}
1328
1329static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1330{
1331        vmx->segment_cache.bitmask = 0;
1332}
1333
1334static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1335                                       unsigned field)
1336{
1337        bool ret;
1338        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1339
1340        if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1341                vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1342                vmx->segment_cache.bitmask = 0;
1343        }
1344        ret = vmx->segment_cache.bitmask & mask;
1345        vmx->segment_cache.bitmask |= mask;
1346        return ret;
1347}
1348
1349static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1350{
1351        u16 *p = &vmx->segment_cache.seg[seg].selector;
1352
1353        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1354                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1355        return *p;
1356}
1357
1358static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1359{
1360        ulong *p = &vmx->segment_cache.seg[seg].base;
1361
1362        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1363                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1364        return *p;
1365}
1366
1367static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1368{
1369        u32 *p = &vmx->segment_cache.seg[seg].limit;
1370
1371        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1372                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1373        return *p;
1374}
1375
1376static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1377{
1378        u32 *p = &vmx->segment_cache.seg[seg].ar;
1379
1380        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1381                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1382        return *p;
1383}
1384
1385static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1386{
1387        u32 eb;
1388
1389        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1390             (1u << NM_VECTOR) | (1u << DB_VECTOR);
1391        if ((vcpu->guest_debug &
1392             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1393            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1394                eb |= 1u << BP_VECTOR;
1395        if (to_vmx(vcpu)->rmode.vm86_active)
1396                eb = ~0;
1397        if (enable_ept)
1398                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1399        if (vcpu->fpu_active)
1400                eb &= ~(1u << NM_VECTOR);
1401
1402        /* When we are running a nested L2 guest and L1 specified for it a
1403         * certain exception bitmap, we must trap the same exceptions and pass
1404         * them to L1. When running L2, we will only handle the exceptions
1405         * specified above if L1 did not want them.
1406         */
1407        if (is_guest_mode(vcpu))
1408                eb |= get_vmcs12(vcpu)->exception_bitmap;
1409
1410        vmcs_write32(EXCEPTION_BITMAP, eb);
1411}
1412
1413static void clear_atomic_switch_msr_special(unsigned long entry,
1414                unsigned long exit)
1415{
1416        vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1417        vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1418}
1419
1420static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1421{
1422        unsigned i;
1423        struct msr_autoload *m = &vmx->msr_autoload;
1424
1425        switch (msr) {
1426        case MSR_EFER:
1427                if (cpu_has_load_ia32_efer) {
1428                        clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1429                                        VM_EXIT_LOAD_IA32_EFER);
1430                        return;
1431                }
1432                break;
1433        case MSR_CORE_PERF_GLOBAL_CTRL:
1434                if (cpu_has_load_perf_global_ctrl) {
1435                        clear_atomic_switch_msr_special(
1436                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1437                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1438                        return;
1439                }
1440                break;
1441        }
1442
1443        for (i = 0; i < m->nr; ++i)
1444                if (m->guest[i].index == msr)
1445                        break;
1446
1447        if (i == m->nr)
1448                return;
1449        --m->nr;
1450        m->guest[i] = m->guest[m->nr];
1451        m->host[i] = m->host[m->nr];
1452        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1453        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1454}
1455
1456static void add_atomic_switch_msr_special(unsigned long entry,
1457                unsigned long exit, unsigned long guest_val_vmcs,
1458                unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1459{
1460        vmcs_write64(guest_val_vmcs, guest_val);
1461        vmcs_write64(host_val_vmcs, host_val);
1462        vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1463        vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1464}
1465
1466static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1467                                  u64 guest_val, u64 host_val)
1468{
1469        unsigned i;
1470        struct msr_autoload *m = &vmx->msr_autoload;
1471
1472        switch (msr) {
1473        case MSR_EFER:
1474                if (cpu_has_load_ia32_efer) {
1475                        add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1476                                        VM_EXIT_LOAD_IA32_EFER,
1477                                        GUEST_IA32_EFER,
1478                                        HOST_IA32_EFER,
1479                                        guest_val, host_val);
1480                        return;
1481                }
1482                break;
1483        case MSR_CORE_PERF_GLOBAL_CTRL:
1484                if (cpu_has_load_perf_global_ctrl) {
1485                        add_atomic_switch_msr_special(
1486                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1487                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1488                                        GUEST_IA32_PERF_GLOBAL_CTRL,
1489                                        HOST_IA32_PERF_GLOBAL_CTRL,
1490                                        guest_val, host_val);
1491                        return;
1492                }
1493                break;
1494        }
1495
1496        for (i = 0; i < m->nr; ++i)
1497                if (m->guest[i].index == msr)
1498                        break;
1499
1500        if (i == NR_AUTOLOAD_MSRS) {
1501                printk_once(KERN_WARNING"Not enough mst switch entries. "
1502                                "Can't add msr %x\n", msr);
1503                return;
1504        } else if (i == m->nr) {
1505                ++m->nr;
1506                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1507                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1508        }
1509
1510        m->guest[i].index = msr;
1511        m->guest[i].value = guest_val;
1512        m->host[i].index = msr;
1513        m->host[i].value = host_val;
1514}
1515
1516static void reload_tss(void)
1517{
1518        /*
1519         * VT restores TR but not its size.  Useless.
1520         */
1521        struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1522        struct desc_struct *descs;
1523
1524        descs = (void *)gdt->address;
1525        descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1526        load_TR_desc();
1527}
1528
1529static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1530{
1531        u64 guest_efer;
1532        u64 ignore_bits;
1533
1534        guest_efer = vmx->vcpu.arch.efer;
1535
1536        /*
1537         * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1538         * outside long mode
1539         */
1540        ignore_bits = EFER_NX | EFER_SCE;
1541#ifdef CONFIG_X86_64
1542        ignore_bits |= EFER_LMA | EFER_LME;
1543        /* SCE is meaningful only in long mode on Intel */
1544        if (guest_efer & EFER_LMA)
1545                ignore_bits &= ~(u64)EFER_SCE;
1546#endif
1547        guest_efer &= ~ignore_bits;
1548        guest_efer |= host_efer & ignore_bits;
1549        vmx->guest_msrs[efer_offset].data = guest_efer;
1550        vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1551
1552        clear_atomic_switch_msr(vmx, MSR_EFER);
1553        /* On ept, can't emulate nx, and must switch nx atomically */
1554        if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1555                guest_efer = vmx->vcpu.arch.efer;
1556                if (!(guest_efer & EFER_LMA))
1557                        guest_efer &= ~EFER_LME;
1558                add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1559                return false;
1560        }
1561
1562        return true;
1563}
1564
1565static unsigned long segment_base(u16 selector)
1566{
1567        struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1568        struct desc_struct *d;
1569        unsigned long table_base;
1570        unsigned long v;
1571
1572        if (!(selector & ~3))
1573                return 0;
1574
1575        table_base = gdt->address;
1576
1577        if (selector & 4) {           /* from ldt */
1578                u16 ldt_selector = kvm_read_ldt();
1579
1580                if (!(ldt_selector & ~3))
1581                        return 0;
1582
1583                table_base = segment_base(ldt_selector);
1584        }
1585        d = (struct desc_struct *)(table_base + (selector & ~7));
1586        v = get_desc_base(d);
1587#ifdef CONFIG_X86_64
1588       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1589               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1590#endif
1591        return v;
1592}
1593
1594static inline unsigned long kvm_read_tr_base(void)
1595{
1596        u16 tr;
1597        asm("str %0" : "=g"(tr));
1598        return segment_base(tr);
1599}
1600
1601static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1602{
1603        struct vcpu_vmx *vmx = to_vmx(vcpu);
1604        int i;
1605
1606        if (vmx->host_state.loaded)
1607                return;
1608
1609        vmx->host_state.loaded = 1;
1610        /*
1611         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1612         * allow segment selectors with cpl > 0 or ti == 1.
1613         */
1614        vmx->host_state.ldt_sel = kvm_read_ldt();
1615        vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1616        savesegment(fs, vmx->host_state.fs_sel);
1617        if (!(vmx->host_state.fs_sel & 7)) {
1618                vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1619                vmx->host_state.fs_reload_needed = 0;
1620        } else {
1621                vmcs_write16(HOST_FS_SELECTOR, 0);
1622                vmx->host_state.fs_reload_needed = 1;
1623        }
1624        savesegment(gs, vmx->host_state.gs_sel);
1625        if (!(vmx->host_state.gs_sel & 7))
1626                vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1627        else {
1628                vmcs_write16(HOST_GS_SELECTOR, 0);
1629                vmx->host_state.gs_ldt_reload_needed = 1;
1630        }
1631
1632#ifdef CONFIG_X86_64
1633        savesegment(ds, vmx->host_state.ds_sel);
1634        savesegment(es, vmx->host_state.es_sel);
1635#endif
1636
1637#ifdef CONFIG_X86_64
1638        vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1639        vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1640#else
1641        vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1642        vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1643#endif
1644
1645#ifdef CONFIG_X86_64
1646        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1647        if (is_long_mode(&vmx->vcpu))
1648                wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1649#endif
1650        for (i = 0; i < vmx->save_nmsrs; ++i)
1651                kvm_set_shared_msr(vmx->guest_msrs[i].index,
1652                                   vmx->guest_msrs[i].data,
1653                                   vmx->guest_msrs[i].mask);
1654}
1655
1656static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1657{
1658        if (!vmx->host_state.loaded)
1659                return;
1660
1661        ++vmx->vcpu.stat.host_state_reload;
1662        vmx->host_state.loaded = 0;
1663#ifdef CONFIG_X86_64
1664        if (is_long_mode(&vmx->vcpu))
1665                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1666#endif
1667        if (vmx->host_state.gs_ldt_reload_needed) {
1668                kvm_load_ldt(vmx->host_state.ldt_sel);
1669#ifdef CONFIG_X86_64
1670                load_gs_index(vmx->host_state.gs_sel);
1671#else
1672                loadsegment(gs, vmx->host_state.gs_sel);
1673#endif
1674        }
1675        if (vmx->host_state.fs_reload_needed)
1676                loadsegment(fs, vmx->host_state.fs_sel);
1677#ifdef CONFIG_X86_64
1678        if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1679                loadsegment(ds, vmx->host_state.ds_sel);
1680                loadsegment(es, vmx->host_state.es_sel);
1681        }
1682#endif
1683        reload_tss();
1684#ifdef CONFIG_X86_64
1685        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1686#endif
1687        /*
1688         * If the FPU is not active (through the host task or
1689         * the guest vcpu), then restore the cr0.TS bit.
1690         */
1691        if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1692                stts();
1693        load_gdt(&__get_cpu_var(host_gdt));
1694}
1695
1696static void vmx_load_host_state(struct vcpu_vmx *vmx)
1697{
1698        preempt_disable();
1699        __vmx_load_host_state(vmx);
1700        preempt_enable();
1701}
1702
1703/*
1704 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1705 * vcpu mutex is already taken.
1706 */
1707static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1708{
1709        struct vcpu_vmx *vmx = to_vmx(vcpu);
1710        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1711
1712        if (!vmm_exclusive)
1713                kvm_cpu_vmxon(phys_addr);
1714        else if (vmx->loaded_vmcs->cpu != cpu)
1715                loaded_vmcs_clear(vmx->loaded_vmcs);
1716
1717        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1718                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1719                vmcs_load(vmx->loaded_vmcs->vmcs);
1720        }
1721
1722        if (vmx->loaded_vmcs->cpu != cpu) {
1723                struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1724                unsigned long sysenter_esp;
1725
1726                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1727                local_irq_disable();
1728                crash_disable_local_vmclear(cpu);
1729
1730                /*
1731                 * Read loaded_vmcs->cpu should be before fetching
1732                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1733                 * See the comments in __loaded_vmcs_clear().
1734                 */
1735                smp_rmb();
1736
1737                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1738                         &per_cpu(loaded_vmcss_on_cpu, cpu));
1739                crash_enable_local_vmclear(cpu);
1740                local_irq_enable();
1741
1742                /*
1743                 * Linux uses per-cpu TSS and GDT, so set these when switching
1744                 * processors.
1745                 */
1746                vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1747                vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1748
1749                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1750                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1751                vmx->loaded_vmcs->cpu = cpu;
1752        }
1753}
1754
1755static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1756{
1757        __vmx_load_host_state(to_vmx(vcpu));
1758        if (!vmm_exclusive) {
1759                __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1760                vcpu->cpu = -1;
1761                kvm_cpu_vmxoff();
1762        }
1763}
1764
1765static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1766{
1767        ulong cr0;
1768
1769        if (vcpu->fpu_active)
1770                return;
1771        vcpu->fpu_active = 1;
1772        cr0 = vmcs_readl(GUEST_CR0);
1773        cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1774        cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1775        vmcs_writel(GUEST_CR0, cr0);
1776        update_exception_bitmap(vcpu);
1777        vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1778        if (is_guest_mode(vcpu))
1779                vcpu->arch.cr0_guest_owned_bits &=
1780                        ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1781        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1782}
1783
1784static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1785
1786/*
1787 * Return the cr0 value that a nested guest would read. This is a combination
1788 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1789 * its hypervisor (cr0_read_shadow).
1790 */
1791static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1792{
1793        return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1794                (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1795}
1796static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1797{
1798        return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1799                (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1800}
1801
1802static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1803{
1804        /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1805         * set this *before* calling this function.
1806         */
1807        vmx_decache_cr0_guest_bits(vcpu);
1808        vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1809        update_exception_bitmap(vcpu);
1810        vcpu->arch.cr0_guest_owned_bits = 0;
1811        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1812        if (is_guest_mode(vcpu)) {
1813                /*
1814                 * L1's specified read shadow might not contain the TS bit,
1815                 * so now that we turned on shadowing of this bit, we need to
1816                 * set this bit of the shadow. Like in nested_vmx_run we need
1817                 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1818                 * up-to-date here because we just decached cr0.TS (and we'll
1819                 * only update vmcs12->guest_cr0 on nested exit).
1820                 */
1821                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1822                vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1823                        (vcpu->arch.cr0 & X86_CR0_TS);
1824                vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1825        } else
1826                vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1827}
1828
1829static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1830{
1831        unsigned long rflags, save_rflags;
1832
1833        if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1834                __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1835                rflags = vmcs_readl(GUEST_RFLAGS);
1836                if (to_vmx(vcpu)->rmode.vm86_active) {
1837                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1838                        save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1839                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1840                }
1841                to_vmx(vcpu)->rflags = rflags;
1842        }
1843        return to_vmx(vcpu)->rflags;
1844}
1845
1846static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1847{
1848        __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1849        to_vmx(vcpu)->rflags = rflags;
1850        if (to_vmx(vcpu)->rmode.vm86_active) {
1851                to_vmx(vcpu)->rmode.save_rflags = rflags;
1852                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1853        }
1854        vmcs_writel(GUEST_RFLAGS, rflags);
1855}
1856
1857static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1858{
1859        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1860        int ret = 0;
1861
1862        if (interruptibility & GUEST_INTR_STATE_STI)
1863                ret |= KVM_X86_SHADOW_INT_STI;
1864        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1865                ret |= KVM_X86_SHADOW_INT_MOV_SS;
1866
1867        return ret & mask;
1868}
1869
1870static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1871{
1872        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1873        u32 interruptibility = interruptibility_old;
1874
1875        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1876
1877        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1878                interruptibility |= GUEST_INTR_STATE_MOV_SS;
1879        else if (mask & KVM_X86_SHADOW_INT_STI)
1880                interruptibility |= GUEST_INTR_STATE_STI;
1881
1882        if ((interruptibility != interruptibility_old))
1883                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1884}
1885
1886static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1887{
1888        unsigned long rip;
1889
1890        rip = kvm_rip_read(vcpu);
1891        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1892        kvm_rip_write(vcpu, rip);
1893
1894        /* skipping an emulated instruction also counts */
1895        vmx_set_interrupt_shadow(vcpu, 0);
1896}
1897
1898/*
1899 * KVM wants to inject page-faults which it got to the guest. This function
1900 * checks whether in a nested guest, we need to inject them to L1 or L2.
1901 * This function assumes it is called with the exit reason in vmcs02 being
1902 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1903 * is running).
1904 */
1905static int nested_pf_handled(struct kvm_vcpu *vcpu)
1906{
1907        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1908
1909        /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1910        if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1911                return 0;
1912
1913        nested_vmx_vmexit(vcpu);
1914        return 1;
1915}
1916
1917static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1918                                bool has_error_code, u32 error_code,
1919                                bool reinject)
1920{
1921        struct vcpu_vmx *vmx = to_vmx(vcpu);
1922        u32 intr_info = nr | INTR_INFO_VALID_MASK;
1923
1924        if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1925            !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
1926                return;
1927
1928        if (has_error_code) {
1929                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1930                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1931        }
1932
1933        if (vmx->rmode.vm86_active) {
1934                int inc_eip = 0;
1935                if (kvm_exception_is_soft(nr))
1936                        inc_eip = vcpu->arch.event_exit_inst_len;
1937                if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1938                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1939                return;
1940        }
1941
1942        if (kvm_exception_is_soft(nr)) {
1943                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1944                             vmx->vcpu.arch.event_exit_inst_len);
1945                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1946        } else
1947                intr_info |= INTR_TYPE_HARD_EXCEPTION;
1948
1949        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1950}
1951
1952static bool vmx_rdtscp_supported(void)
1953{
1954        return cpu_has_vmx_rdtscp();
1955}
1956
1957static bool vmx_invpcid_supported(void)
1958{
1959        return cpu_has_vmx_invpcid() && enable_ept;
1960}
1961
1962/*
1963 * Swap MSR entry in host/guest MSR entry array.
1964 */
1965static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1966{
1967        struct shared_msr_entry tmp;
1968
1969        tmp = vmx->guest_msrs[to];
1970        vmx->guest_msrs[to] = vmx->guest_msrs[from];
1971        vmx->guest_msrs[from] = tmp;
1972}
1973
1974static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1975{
1976        unsigned long *msr_bitmap;
1977
1978        if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1979                if (is_long_mode(vcpu))
1980                        msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1981                else
1982                        msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1983        } else {
1984                if (is_long_mode(vcpu))
1985                        msr_bitmap = vmx_msr_bitmap_longmode;
1986                else
1987                        msr_bitmap = vmx_msr_bitmap_legacy;
1988        }
1989
1990        vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1991}
1992
1993/*
1994 * Set up the vmcs to automatically save and restore system
1995 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1996 * mode, as fiddling with msrs is very expensive.
1997 */
1998static void setup_msrs(struct vcpu_vmx *vmx)
1999{
2000        int save_nmsrs, index;
2001
2002        save_nmsrs = 0;
2003#ifdef CONFIG_X86_64
2004        if (is_long_mode(&vmx->vcpu)) {
2005                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2006                if (index >= 0)
2007                        move_msr_up(vmx, index, save_nmsrs++);
2008                index = __find_msr_index(vmx, MSR_LSTAR);
2009                if (index >= 0)
2010                        move_msr_up(vmx, index, save_nmsrs++);
2011                index = __find_msr_index(vmx, MSR_CSTAR);
2012                if (index >= 0)
2013                        move_msr_up(vmx, index, save_nmsrs++);
2014                index = __find_msr_index(vmx, MSR_TSC_AUX);
2015                if (index >= 0 && vmx->rdtscp_enabled)
2016                        move_msr_up(vmx, index, save_nmsrs++);
2017                /*
2018                 * MSR_STAR is only needed on long mode guests, and only
2019                 * if efer.sce is enabled.
2020                 */
2021                index = __find_msr_index(vmx, MSR_STAR);
2022                if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2023                        move_msr_up(vmx, index, save_nmsrs++);
2024        }
2025#endif
2026        index = __find_msr_index(vmx, MSR_EFER);
2027        if (index >= 0 && update_transition_efer(vmx, index))
2028                move_msr_up(vmx, index, save_nmsrs++);
2029
2030        vmx->save_nmsrs = save_nmsrs;
2031
2032        if (cpu_has_vmx_msr_bitmap())
2033                vmx_set_msr_bitmap(&vmx->vcpu);
2034}
2035
2036/*
2037 * reads and returns guest's timestamp counter "register"
2038 * guest_tsc = host_tsc + tsc_offset    -- 21.3
2039 */
2040static u64 guest_read_tsc(void)
2041{
2042        u64 host_tsc, tsc_offset;
2043
2044        rdtscll(host_tsc);
2045        tsc_offset = vmcs_read64(TSC_OFFSET);
2046        return host_tsc + tsc_offset;
2047}
2048
2049/*
2050 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2051 * counter, even if a nested guest (L2) is currently running.
2052 */
2053u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2054{
2055        u64 tsc_offset;
2056
2057        tsc_offset = is_guest_mode(vcpu) ?
2058                to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2059                vmcs_read64(TSC_OFFSET);
2060        return host_tsc + tsc_offset;
2061}
2062
2063/*
2064 * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2065 * software catchup for faster rates on slower CPUs.
2066 */
2067static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2068{
2069        if (!scale)
2070                return;
2071
2072        if (user_tsc_khz > tsc_khz) {
2073                vcpu->arch.tsc_catchup = 1;
2074                vcpu->arch.tsc_always_catchup = 1;
2075        } else
2076                WARN(1, "user requested TSC rate below hardware speed\n");
2077}
2078
2079static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2080{
2081        return vmcs_read64(TSC_OFFSET);
2082}
2083
2084/*
2085 * writes 'offset' into guest's timestamp counter offset register
2086 */
2087static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2088{
2089        if (is_guest_mode(vcpu)) {
2090                /*
2091                 * We're here if L1 chose not to trap WRMSR to TSC. According
2092                 * to the spec, this should set L1's TSC; The offset that L1
2093                 * set for L2 remains unchanged, and still needs to be added
2094                 * to the newly set TSC to get L2's TSC.
2095                 */
2096                struct vmcs12 *vmcs12;
2097                to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2098                /* recalculate vmcs02.TSC_OFFSET: */
2099                vmcs12 = get_vmcs12(vcpu);
2100                vmcs_write64(TSC_OFFSET, offset +
2101                        (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2102                         vmcs12->tsc_offset : 0));
2103        } else {
2104                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2105                                           vmcs_read64(TSC_OFFSET), offset);
2106                vmcs_write64(TSC_OFFSET, offset);
2107        }
2108}
2109
2110static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2111{
2112        u64 offset = vmcs_read64(TSC_OFFSET);
2113
2114        vmcs_write64(TSC_OFFSET, offset + adjustment);
2115        if (is_guest_mode(vcpu)) {
2116                /* Even when running L2, the adjustment needs to apply to L1 */
2117                to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2118        } else
2119                trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2120                                           offset + adjustment);
2121}
2122
2123static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2124{
2125        return target_tsc - native_read_tsc();
2126}
2127
2128static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2129{
2130        struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2131        return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2132}
2133
2134/*
2135 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2136 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2137 * all guests if the "nested" module option is off, and can also be disabled
2138 * for a single guest by disabling its VMX cpuid bit.
2139 */
2140static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2141{
2142        return nested && guest_cpuid_has_vmx(vcpu);
2143}
2144
2145/*
2146 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2147 * returned for the various VMX controls MSRs when nested VMX is enabled.
2148 * The same values should also be used to verify that vmcs12 control fields are
2149 * valid during nested entry from L1 to L2.
2150 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2151 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2152 * bit in the high half is on if the corresponding bit in the control field
2153 * may be on. See also vmx_control_verify().
2154 * TODO: allow these variables to be modified (downgraded) by module options
2155 * or other means.
2156 */
2157static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2158static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2159static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2160static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2161static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2162static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2163static u32 nested_vmx_ept_caps;
2164static __init void nested_vmx_setup_ctls_msrs(void)
2165{
2166        /*
2167         * Note that as a general rule, the high half of the MSRs (bits in
2168         * the control fields which may be 1) should be initialized by the
2169         * intersection of the underlying hardware's MSR (i.e., features which
2170         * can be supported) and the list of features we want to expose -
2171         * because they are known to be properly supported in our code.
2172         * Also, usually, the low half of the MSRs (bits which must be 1) can
2173         * be set to 0, meaning that L1 may turn off any of these bits. The
2174         * reason is that if one of these bits is necessary, it will appear
2175         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2176         * fields of vmcs01 and vmcs02, will turn these bits off - and
2177         * nested_vmx_exit_handled() will not pass related exits to L1.
2178         * These rules have exceptions below.
2179         */
2180
2181        /* pin-based controls */
2182        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2183              nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2184        /*
2185         * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2186         * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2187         */
2188        nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2189        nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2190                PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2191                PIN_BASED_VMX_PREEMPTION_TIMER;
2192        nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2193
2194        /*
2195         * Exit controls
2196         * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2197         * 17 must be 1.
2198         */
2199        rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2200                nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2201        nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2202        /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2203        nested_vmx_exit_ctls_high &=
2204#ifdef CONFIG_X86_64
2205                VM_EXIT_HOST_ADDR_SPACE_SIZE |
2206#endif
2207                VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2208        nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2209                                      VM_EXIT_LOAD_IA32_EFER);
2210
2211        /* entry controls */
2212        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2213                nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2214        /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2215        nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2216        nested_vmx_entry_ctls_high &=
2217#ifdef CONFIG_X86_64
2218                VM_ENTRY_IA32E_MODE |
2219#endif
2220                VM_ENTRY_LOAD_IA32_PAT;
2221        nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2222                                       VM_ENTRY_LOAD_IA32_EFER);
2223
2224        /* cpu-based controls */
2225        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2226                nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2227        nested_vmx_procbased_ctls_low = 0;
2228        nested_vmx_procbased_ctls_high &=
2229                CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2230                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2231                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2232                CPU_BASED_CR3_STORE_EXITING |
2233#ifdef CONFIG_X86_64
2234                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2235#endif
2236                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2237                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2238                CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2239                CPU_BASED_PAUSE_EXITING |
2240                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2241        /*
2242         * We can allow some features even when not supported by the
2243         * hardware. For example, L1 can specify an MSR bitmap - and we
2244         * can use it to avoid exits to L1 - even when L0 runs L2
2245         * without MSR bitmaps.
2246         */
2247        nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2248
2249        /* secondary cpu-based controls */
2250        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2251                nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2252        nested_vmx_secondary_ctls_low = 0;
2253        nested_vmx_secondary_ctls_high &=
2254                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2255                SECONDARY_EXEC_WBINVD_EXITING;
2256
2257        if (enable_ept) {
2258                /* nested EPT: emulate EPT also to L1 */
2259                nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2260                nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2261                         VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2262                nested_vmx_ept_caps &= vmx_capability.ept;
2263                /*
2264                 * Since invept is completely emulated we support both global
2265                 * and context invalidation independent of what host cpu
2266                 * supports
2267                 */
2268                nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2269                        VMX_EPT_EXTENT_CONTEXT_BIT;
2270        } else
2271                nested_vmx_ept_caps = 0;
2272
2273        /* miscellaneous data */
2274        rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2275        nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2276                VMX_MISC_SAVE_EFER_LMA;
2277        nested_vmx_misc_high = 0;
2278}
2279
2280static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2281{
2282        /*
2283         * Bits 0 in high must be 0, and bits 1 in low must be 1.
2284         */
2285        return ((control & high) | low) == control;
2286}
2287
2288static inline u64 vmx_control_msr(u32 low, u32 high)
2289{
2290        return low | ((u64)high << 32);
2291}
2292
2293/*
2294 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2295 * also let it use VMX-specific MSRs.
2296 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2297 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2298 * like all other MSRs).
2299 */
2300static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2301{
2302        if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2303                     msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2304                /*
2305                 * According to the spec, processors which do not support VMX
2306                 * should throw a #GP(0) when VMX capability MSRs are read.
2307                 */
2308                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2309                return 1;
2310        }
2311
2312        switch (msr_index) {
2313        case MSR_IA32_FEATURE_CONTROL:
2314                if (nested_vmx_allowed(vcpu)) {
2315                        *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2316                        break;
2317                }
2318                return 0;
2319        case MSR_IA32_VMX_BASIC:
2320                /*
2321                 * This MSR reports some information about VMX support. We
2322                 * should return information about the VMX we emulate for the
2323                 * guest, and the VMCS structure we give it - not about the
2324                 * VMX support of the underlying hardware.
2325                 */
2326                *pdata = VMCS12_REVISION |
2327                           ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2328                           (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2329                break;
2330        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2331        case MSR_IA32_VMX_PINBASED_CTLS:
2332                *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2333                                        nested_vmx_pinbased_ctls_high);
2334                break;
2335        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2336        case MSR_IA32_VMX_PROCBASED_CTLS:
2337                *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2338                                        nested_vmx_procbased_ctls_high);
2339                break;
2340        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2341        case MSR_IA32_VMX_EXIT_CTLS:
2342                *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2343                                        nested_vmx_exit_ctls_high);
2344                break;
2345        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2346        case MSR_IA32_VMX_ENTRY_CTLS:
2347                *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2348                                        nested_vmx_entry_ctls_high);
2349                break;
2350        case MSR_IA32_VMX_MISC:
2351                *pdata = vmx_control_msr(nested_vmx_misc_low,
2352                                         nested_vmx_misc_high);
2353                break;
2354        /*
2355         * These MSRs specify bits which the guest must keep fixed (on or off)
2356         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2357         * We picked the standard core2 setting.
2358         */
2359#define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2360#define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2361        case MSR_IA32_VMX_CR0_FIXED0:
2362                *pdata = VMXON_CR0_ALWAYSON;
2363                break;
2364        case MSR_IA32_VMX_CR0_FIXED1:
2365                *pdata = -1ULL;
2366                break;
2367        case MSR_IA32_VMX_CR4_FIXED0:
2368                *pdata = VMXON_CR4_ALWAYSON;
2369                break;
2370        case MSR_IA32_VMX_CR4_FIXED1:
2371                *pdata = -1ULL;
2372                break;
2373        case MSR_IA32_VMX_VMCS_ENUM:
2374                *pdata = 0x1f;
2375                break;
2376        case MSR_IA32_VMX_PROCBASED_CTLS2:
2377                *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2378                                        nested_vmx_secondary_ctls_high);
2379                break;
2380        case MSR_IA32_VMX_EPT_VPID_CAP:
2381                /* Currently, no nested vpid support */
2382                *pdata = nested_vmx_ept_caps;
2383                break;
2384        default:
2385                return 0;
2386        }
2387
2388        return 1;
2389}
2390
2391static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2392{
2393        u32 msr_index = msr_info->index;
2394        u64 data = msr_info->data;
2395        bool host_initialized = msr_info->host_initiated;
2396
2397        if (!nested_vmx_allowed(vcpu))
2398                return 0;
2399
2400        if (msr_index == MSR_IA32_FEATURE_CONTROL) {
2401                if (!host_initialized &&
2402                                to_vmx(vcpu)->nested.msr_ia32_feature_control
2403                                & FEATURE_CONTROL_LOCKED)
2404                        return 0;
2405                to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
2406                return 1;
2407        }
2408
2409        /*
2410         * No need to treat VMX capability MSRs specially: If we don't handle
2411         * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2412         */
2413        return 0;
2414}
2415
2416/*
2417 * Reads an msr value (of 'msr_index') into 'pdata'.
2418 * Returns 0 on success, non-0 otherwise.
2419 * Assumes vcpu_load() was already called.
2420 */
2421static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2422{
2423        u64 data;
2424        struct shared_msr_entry *msr;
2425
2426        if (!pdata) {
2427                printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2428                return -EINVAL;
2429        }
2430
2431        switch (msr_index) {
2432#ifdef CONFIG_X86_64
2433        case MSR_FS_BASE:
2434                data = vmcs_readl(GUEST_FS_BASE);
2435                break;
2436        case MSR_GS_BASE:
2437                data = vmcs_readl(GUEST_GS_BASE);
2438                break;
2439        case MSR_KERNEL_GS_BASE:
2440                vmx_load_host_state(to_vmx(vcpu));
2441                data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2442                break;
2443#endif
2444        case MSR_EFER:
2445                return kvm_get_msr_common(vcpu, msr_index, pdata);
2446        case MSR_IA32_TSC:
2447                data = guest_read_tsc();
2448                break;
2449        case MSR_IA32_SYSENTER_CS:
2450                data = vmcs_read32(GUEST_SYSENTER_CS);
2451                break;
2452        case MSR_IA32_SYSENTER_EIP:
2453                data = vmcs_readl(GUEST_SYSENTER_EIP);
2454                break;
2455        case MSR_IA32_SYSENTER_ESP:
2456                data = vmcs_readl(GUEST_SYSENTER_ESP);
2457                break;
2458        case MSR_TSC_AUX:
2459                if (!to_vmx(vcpu)->rdtscp_enabled)
2460                        return 1;
2461                /* Otherwise falls through */
2462        default:
2463                if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2464                        return 0;
2465                msr = find_msr_entry(to_vmx(vcpu), msr_index);
2466                if (msr) {
2467                        data = msr->data;
2468                        break;
2469                }
2470                return kvm_get_msr_common(vcpu, msr_index, pdata);
2471        }
2472
2473        *pdata = data;
2474        return 0;
2475}
2476
2477/*
2478 * Writes msr value into into the appropriate "register".
2479 * Returns 0 on success, non-0 otherwise.
2480 * Assumes vcpu_load() was already called.
2481 */
2482static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2483{
2484        struct vcpu_vmx *vmx = to_vmx(vcpu);
2485        struct shared_msr_entry *msr;
2486        int ret = 0;
2487        u32 msr_index = msr_info->index;
2488        u64 data = msr_info->data;
2489
2490        switch (msr_index) {
2491        case MSR_EFER:
2492                ret = kvm_set_msr_common(vcpu, msr_info);
2493                break;
2494#ifdef CONFIG_X86_64
2495        case MSR_FS_BASE:
2496                vmx_segment_cache_clear(vmx);
2497                vmcs_writel(GUEST_FS_BASE, data);
2498                break;
2499        case MSR_GS_BASE:
2500                vmx_segment_cache_clear(vmx);
2501                vmcs_writel(GUEST_GS_BASE, data);
2502                break;
2503        case MSR_KERNEL_GS_BASE:
2504                vmx_load_host_state(vmx);
2505                vmx->msr_guest_kernel_gs_base = data;
2506                break;
2507#endif
2508        case MSR_IA32_SYSENTER_CS:
2509                vmcs_write32(GUEST_SYSENTER_CS, data);
2510                break;
2511        case MSR_IA32_SYSENTER_EIP:
2512                vmcs_writel(GUEST_SYSENTER_EIP, data);
2513                break;
2514        case MSR_IA32_SYSENTER_ESP:
2515                vmcs_writel(GUEST_SYSENTER_ESP, data);
2516                break;
2517        case MSR_IA32_TSC:
2518                kvm_write_tsc(vcpu, msr_info);
2519                break;
2520        case MSR_IA32_CR_PAT:
2521                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2522                        vmcs_write64(GUEST_IA32_PAT, data);
2523                        vcpu->arch.pat = data;
2524                        break;
2525                }
2526                ret = kvm_set_msr_common(vcpu, msr_info);
2527                break;
2528        case MSR_IA32_TSC_ADJUST:
2529                ret = kvm_set_msr_common(vcpu, msr_info);
2530                break;
2531        case MSR_TSC_AUX:
2532                if (!vmx->rdtscp_enabled)
2533                        return 1;
2534                /* Check reserved bit, higher 32 bits should be zero */
2535                if ((data >> 32) != 0)
2536                        return 1;
2537                /* Otherwise falls through */
2538        default:
2539                if (vmx_set_vmx_msr(vcpu, msr_info))
2540                        break;
2541                msr = find_msr_entry(vmx, msr_index);
2542                if (msr) {
2543                        msr->data = data;
2544                        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2545                                preempt_disable();
2546                                kvm_set_shared_msr(msr->index, msr->data,
2547                                                   msr->mask);
2548                                preempt_enable();
2549                        }
2550                        break;
2551                }
2552                ret = kvm_set_msr_common(vcpu, msr_info);
2553        }
2554
2555        return ret;
2556}
2557
2558static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2559{
2560        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2561        switch (reg) {
2562        case VCPU_REGS_RSP:
2563                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2564                break;
2565        case VCPU_REGS_RIP:
2566                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2567                break;
2568        case VCPU_EXREG_PDPTR:
2569                if (enable_ept)
2570                        ept_save_pdptrs(vcpu);
2571                break;
2572        default:
2573                break;
2574        }
2575}
2576
2577static __init int cpu_has_kvm_support(void)
2578{
2579        return cpu_has_vmx();
2580}
2581
2582static __init int vmx_disabled_by_bios(void)
2583{
2584        u64 msr;
2585
2586        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2587        if (msr & FEATURE_CONTROL_LOCKED) {
2588                /* launched w/ TXT and VMX disabled */
2589                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2590                        && tboot_enabled())
2591                        return 1;
2592                /* launched w/o TXT and VMX only enabled w/ TXT */
2593                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2594                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2595                        && !tboot_enabled()) {
2596                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2597                                "activate TXT before enabling KVM\n");
2598                        return 1;
2599                }
2600                /* launched w/o TXT and VMX disabled */
2601                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2602                        && !tboot_enabled())
2603                        return 1;
2604        }
2605
2606        return 0;
2607}
2608
2609static void kvm_cpu_vmxon(u64 addr)
2610{
2611        asm volatile (ASM_VMX_VMXON_RAX
2612                        : : "a"(&addr), "m"(addr)
2613                        : "memory", "cc");
2614}
2615
2616static int hardware_enable(void *garbage)
2617{
2618        int cpu = raw_smp_processor_id();
2619        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2620        u64 old, test_bits;
2621
2622        if (read_cr4() & X86_CR4_VMXE)
2623                return -EBUSY;
2624
2625        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2626
2627        /*
2628         * Now we can enable the vmclear operation in kdump
2629         * since the loaded_vmcss_on_cpu list on this cpu
2630         * has been initialized.
2631         *
2632         * Though the cpu is not in VMX operation now, there
2633         * is no problem to enable the vmclear operation
2634         * for the loaded_vmcss_on_cpu list is empty!
2635         */
2636        crash_enable_local_vmclear(cpu);
2637
2638        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2639
2640        test_bits = FEATURE_CONTROL_LOCKED;
2641        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2642        if (tboot_enabled())
2643                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2644
2645        if ((old & test_bits) != test_bits) {
2646                /* enable and lock */
2647                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2648        }
2649        write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2650
2651        if (vmm_exclusive) {
2652                kvm_cpu_vmxon(phys_addr);
2653                ept_sync_global();
2654        }
2655
2656        native_store_gdt(&__get_cpu_var(host_gdt));
2657
2658        return 0;
2659}
2660
2661static void vmclear_local_loaded_vmcss(void)
2662{
2663        int cpu = raw_smp_processor_id();
2664        struct loaded_vmcs *v, *n;
2665
2666        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2667                                 loaded_vmcss_on_cpu_link)
2668                __loaded_vmcs_clear(v);
2669}
2670
2671
2672/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2673 * tricks.
2674 */
2675static void kvm_cpu_vmxoff(void)
2676{
2677        asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2678}
2679
2680static void hardware_disable(void *garbage)
2681{
2682        if (vmm_exclusive) {
2683                vmclear_local_loaded_vmcss();
2684                kvm_cpu_vmxoff();
2685        }
2686        write_cr4(read_cr4() & ~X86_CR4_VMXE);
2687}
2688
2689static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2690                                      u32 msr, u32 *result)
2691{
2692        u32 vmx_msr_low, vmx_msr_high;
2693        u32 ctl = ctl_min | ctl_opt;
2694
2695        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2696
2697        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2698        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2699
2700        /* Ensure minimum (required) set of control bits are supported. */
2701        if (ctl_min & ~ctl)
2702                return -EIO;
2703
2704        *result = ctl;
2705        return 0;
2706}
2707
2708static __init bool allow_1_setting(u32 msr, u32 ctl)
2709{
2710        u32 vmx_msr_low, vmx_msr_high;
2711
2712        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2713        return vmx_msr_high & ctl;
2714}
2715
2716static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2717{
2718        u32 vmx_msr_low, vmx_msr_high;
2719        u32 min, opt, min2, opt2;
2720        u32 _pin_based_exec_control = 0;
2721        u32 _cpu_based_exec_control = 0;
2722        u32 _cpu_based_2nd_exec_control = 0;
2723        u32 _vmexit_control = 0;
2724        u32 _vmentry_control = 0;
2725
2726        min = CPU_BASED_HLT_EXITING |
2727#ifdef CONFIG_X86_64
2728              CPU_BASED_CR8_LOAD_EXITING |
2729              CPU_BASED_CR8_STORE_EXITING |
2730#endif
2731              CPU_BASED_CR3_LOAD_EXITING |
2732              CPU_BASED_CR3_STORE_EXITING |
2733              CPU_BASED_USE_IO_BITMAPS |
2734              CPU_BASED_MOV_DR_EXITING |
2735              CPU_BASED_USE_TSC_OFFSETING |
2736              CPU_BASED_MWAIT_EXITING |
2737              CPU_BASED_MONITOR_EXITING |
2738              CPU_BASED_INVLPG_EXITING |
2739              CPU_BASED_RDPMC_EXITING;
2740
2741        opt = CPU_BASED_TPR_SHADOW |
2742              CPU_BASED_USE_MSR_BITMAPS |
2743              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2744        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2745                                &_cpu_based_exec_control) < 0)
2746                return -EIO;
2747#ifdef CONFIG_X86_64
2748        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2749                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2750                                           ~CPU_BASED_CR8_STORE_EXITING;
2751#endif
2752        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2753                min2 = 0;
2754                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2755                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2756                        SECONDARY_EXEC_WBINVD_EXITING |
2757                        SECONDARY_EXEC_ENABLE_VPID |
2758                        SECONDARY_EXEC_ENABLE_EPT |
2759                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
2760                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2761                        SECONDARY_EXEC_RDTSCP |
2762                        SECONDARY_EXEC_ENABLE_INVPCID |
2763                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
2764                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2765                        SECONDARY_EXEC_SHADOW_VMCS;
2766                if (adjust_vmx_controls(min2, opt2,
2767                                        MSR_IA32_VMX_PROCBASED_CTLS2,
2768                                        &_cpu_based_2nd_exec_control) < 0)
2769                        return -EIO;
2770        }
2771#ifndef CONFIG_X86_64
2772        if (!(_cpu_based_2nd_exec_control &
2773                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2774                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2775#endif
2776
2777        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2778                _cpu_based_2nd_exec_control &= ~(
2779                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2780                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2781                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2782
2783        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2784                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2785                   enabled */
2786                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2787                                             CPU_BASED_CR3_STORE_EXITING |
2788                                             CPU_BASED_INVLPG_EXITING);
2789                rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2790                      vmx_capability.ept, vmx_capability.vpid);
2791        }
2792
2793        min = 0;
2794#ifdef CONFIG_X86_64
2795        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2796#endif
2797        opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2798                VM_EXIT_ACK_INTR_ON_EXIT;
2799        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2800                                &_vmexit_control) < 0)
2801                return -EIO;
2802
2803        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2804        opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2805        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2806                                &_pin_based_exec_control) < 0)
2807                return -EIO;
2808
2809        if (!(_cpu_based_2nd_exec_control &
2810                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2811                !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2812                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2813
2814        min = 0;
2815        opt = VM_ENTRY_LOAD_IA32_PAT;
2816        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2817                                &_vmentry_control) < 0)
2818                return -EIO;
2819
2820        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2821
2822        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2823        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2824                return -EIO;
2825
2826#ifdef CONFIG_X86_64
2827        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2828        if (vmx_msr_high & (1u<<16))
2829                return -EIO;
2830#endif
2831
2832        /* Require Write-Back (WB) memory type for VMCS accesses. */
2833        if (((vmx_msr_high >> 18) & 15) != 6)
2834                return -EIO;
2835
2836        vmcs_conf->size = vmx_msr_high & 0x1fff;
2837        vmcs_conf->order = get_order(vmcs_config.size);
2838        vmcs_conf->revision_id = vmx_msr_low;
2839
2840        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2841        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2842        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2843        vmcs_conf->vmexit_ctrl         = _vmexit_control;
2844        vmcs_conf->vmentry_ctrl        = _vmentry_control;
2845
2846        cpu_has_load_ia32_efer =
2847                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2848                                VM_ENTRY_LOAD_IA32_EFER)
2849                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2850                                   VM_EXIT_LOAD_IA32_EFER);
2851
2852        cpu_has_load_perf_global_ctrl =
2853                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2854                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2855                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2856                                   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2857
2858        /*
2859         * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2860         * but due to arrata below it can't be used. Workaround is to use
2861         * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2862         *
2863         * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2864         *
2865         * AAK155             (model 26)
2866         * AAP115             (model 30)
2867         * AAT100             (model 37)
2868         * BC86,AAY89,BD102   (model 44)
2869         * BA97               (model 46)
2870         *
2871         */
2872        if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2873                switch (boot_cpu_data.x86_model) {
2874                case 26:
2875                case 30:
2876                case 37:
2877                case 44:
2878                case 46:
2879                        cpu_has_load_perf_global_ctrl = false;
2880                        printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2881                                        "does not work properly. Using workaround\n");
2882                        break;
2883                default:
2884                        break;
2885                }
2886        }
2887
2888        return 0;
2889}
2890
2891static struct vmcs *alloc_vmcs_cpu(int cpu)
2892{
2893        int node = cpu_to_node(cpu);
2894        struct page *pages;
2895        struct vmcs *vmcs;
2896
2897        pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2898        if (!pages)
2899                return NULL;
2900        vmcs = page_address(pages);
2901        memset(vmcs, 0, vmcs_config.size);
2902        vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2903        return vmcs;
2904}
2905
2906static struct vmcs *alloc_vmcs(void)
2907{
2908        return alloc_vmcs_cpu(raw_smp_processor_id());
2909}
2910
2911static void free_vmcs(struct vmcs *vmcs)
2912{
2913        free_pages((unsigned long)vmcs, vmcs_config.order);
2914}
2915
2916/*
2917 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2918 */
2919static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2920{
2921        if (!loaded_vmcs->vmcs)
2922                return;
2923        loaded_vmcs_clear(loaded_vmcs);
2924        free_vmcs(loaded_vmcs->vmcs);
2925        loaded_vmcs->vmcs = NULL;
2926}
2927
2928static void free_kvm_area(void)
2929{
2930        int cpu;
2931
2932        for_each_possible_cpu(cpu) {
2933                free_vmcs(per_cpu(vmxarea, cpu));
2934                per_cpu(vmxarea, cpu) = NULL;
2935        }
2936}
2937
2938static __init int alloc_kvm_area(void)
2939{
2940        int cpu;
2941
2942        for_each_possible_cpu(cpu) {
2943                struct vmcs *vmcs;
2944
2945                vmcs = alloc_vmcs_cpu(cpu);
2946                if (!vmcs) {
2947                        free_kvm_area();
2948                        return -ENOMEM;
2949                }
2950
2951                per_cpu(vmxarea, cpu) = vmcs;
2952        }
2953        return 0;
2954}
2955
2956static __init int hardware_setup(void)
2957{
2958        if (setup_vmcs_config(&vmcs_config) < 0)
2959                return -EIO;
2960
2961        if (boot_cpu_has(X86_FEATURE_NX))
2962                kvm_enable_efer_bits(EFER_NX);
2963
2964        if (!cpu_has_vmx_vpid())
2965                enable_vpid = 0;
2966        if (!cpu_has_vmx_shadow_vmcs())
2967                enable_shadow_vmcs = 0;
2968
2969        if (!cpu_has_vmx_ept() ||
2970            !cpu_has_vmx_ept_4levels()) {
2971                enable_ept = 0;
2972                enable_unrestricted_guest = 0;
2973                enable_ept_ad_bits = 0;
2974        }
2975
2976        if (!cpu_has_vmx_ept_ad_bits())
2977                enable_ept_ad_bits = 0;
2978
2979        if (!cpu_has_vmx_unrestricted_guest())
2980                enable_unrestricted_guest = 0;
2981
2982        if (!cpu_has_vmx_flexpriority())
2983                flexpriority_enabled = 0;
2984
2985        if (!cpu_has_vmx_tpr_shadow())
2986                kvm_x86_ops->update_cr8_intercept = NULL;
2987
2988        if (enable_ept && !cpu_has_vmx_ept_2m_page())
2989                kvm_disable_largepages();
2990
2991        if (!cpu_has_vmx_ple())
2992                ple_gap = 0;
2993
2994        if (!cpu_has_vmx_apicv())
2995                enable_apicv = 0;
2996
2997        if (enable_apicv)
2998                kvm_x86_ops->update_cr8_intercept = NULL;
2999        else {
3000                kvm_x86_ops->hwapic_irr_update = NULL;
3001                kvm_x86_ops->deliver_posted_interrupt = NULL;
3002                kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3003        }
3004
3005        if (nested)
3006                nested_vmx_setup_ctls_msrs();
3007
3008        return alloc_kvm_area();
3009}
3010
3011static __exit void hardware_unsetup(void)
3012{
3013        free_kvm_area();
3014}
3015
3016static bool emulation_required(struct kvm_vcpu *vcpu)
3017{
3018        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3019}
3020
3021static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3022                struct kvm_segment *save)
3023{
3024        if (!emulate_invalid_guest_state) {
3025                /*
3026                 * CS and SS RPL should be equal during guest entry according
3027                 * to VMX spec, but in reality it is not always so. Since vcpu
3028                 * is in the middle of the transition from real mode to
3029                 * protected mode it is safe to assume that RPL 0 is a good
3030                 * default value.
3031                 */
3032                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3033                        save->selector &= ~SELECTOR_RPL_MASK;
3034                save->dpl = save->selector & SELECTOR_RPL_MASK;
3035                save->s = 1;
3036        }
3037        vmx_set_segment(vcpu, save, seg);
3038}
3039
3040static void enter_pmode(struct kvm_vcpu *vcpu)
3041{
3042        unsigned long flags;
3043        struct vcpu_vmx *vmx = to_vmx(vcpu);
3044
3045        /*
3046         * Update real mode segment cache. It may be not up-to-date if sement
3047         * register was written while vcpu was in a guest mode.
3048         */
3049        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3050        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3051        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3052        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3053        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3054        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3055
3056        vmx->rmode.vm86_active = 0;
3057
3058        vmx_segment_cache_clear(vmx);
3059
3060        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3061
3062        flags = vmcs_readl(GUEST_RFLAGS);
3063        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3064        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3065        vmcs_writel(GUEST_RFLAGS, flags);
3066
3067        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3068                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3069
3070        update_exception_bitmap(vcpu);
3071
3072        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3073        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3074        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3075        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3076        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3077        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3078
3079        /* CPL is always 0 when CPU enters protected mode */
3080        __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3081        vmx->cpl = 0;
3082}
3083
3084static void fix_rmode_seg(int seg, struct kvm_segment *save)
3085{
3086        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3087        struct kvm_segment var = *save;
3088
3089        var.dpl = 0x3;
3090        if (seg == VCPU_SREG_CS)
3091                var.type = 0x3;
3092
3093        if (!emulate_invalid_guest_state) {
3094                var.selector = var.base >> 4;
3095                var.base = var.base & 0xffff0;
3096                var.limit = 0xffff;
3097                var.g = 0;
3098                var.db = 0;
3099                var.present = 1;
3100                var.s = 1;
3101                var.l = 0;
3102                var.unusable = 0;
3103                var.type = 0x3;
3104                var.avl = 0;
3105                if (save->base & 0xf)
3106                        printk_once(KERN_WARNING "kvm: segment base is not "
3107                                        "paragraph aligned when entering "
3108                                        "protected mode (seg=%d)", seg);
3109        }
3110
3111        vmcs_write16(sf->selector, var.selector);
3112        vmcs_write32(sf->base, var.base);
3113        vmcs_write32(sf->limit, var.limit);
3114        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3115}
3116
3117static void enter_rmode(struct kvm_vcpu *vcpu)
3118{
3119        unsigned long flags;
3120        struct vcpu_vmx *vmx = to_vmx(vcpu);
3121
3122        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3123        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3124        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3125        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3126        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3127        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3128        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3129
3130        vmx->rmode.vm86_active = 1;
3131
3132        /*
3133         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3134         * vcpu. Warn the user that an update is overdue.
3135         */
3136        if (!vcpu->kvm->arch.tss_addr)
3137                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3138                             "called before entering vcpu\n");
3139
3140        vmx_segment_cache_clear(vmx);
3141
3142        vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3143        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3144        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3145
3146        flags = vmcs_readl(GUEST_RFLAGS);
3147        vmx->rmode.save_rflags = flags;
3148
3149        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3150
3151        vmcs_writel(GUEST_RFLAGS, flags);
3152        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3153        update_exception_bitmap(vcpu);
3154
3155        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3156        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3157        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3158        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3159        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3160        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3161
3162        kvm_mmu_reset_context(vcpu);
3163}
3164
3165static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3166{
3167        struct vcpu_vmx *vmx = to_vmx(vcpu);
3168        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3169
3170        if (!msr)
3171                return;
3172
3173        /*
3174         * Force kernel_gs_base reloading before EFER changes, as control
3175         * of this msr depends on is_long_mode().
3176         */
3177        vmx_load_host_state(to_vmx(vcpu));
3178        vcpu->arch.efer = efer;
3179        if (efer & EFER_LMA) {
3180                vmcs_write32(VM_ENTRY_CONTROLS,
3181                             vmcs_read32(VM_ENTRY_CONTROLS) |
3182                             VM_ENTRY_IA32E_MODE);
3183                msr->data = efer;
3184        } else {
3185                vmcs_write32(VM_ENTRY_CONTROLS,
3186                             vmcs_read32(VM_ENTRY_CONTROLS) &
3187                             ~VM_ENTRY_IA32E_MODE);
3188
3189                msr->data = efer & ~EFER_LME;
3190        }
3191        setup_msrs(vmx);
3192}
3193
3194#ifdef CONFIG_X86_64
3195
3196static void enter_lmode(struct kvm_vcpu *vcpu)
3197{
3198        u32 guest_tr_ar;
3199
3200        vmx_segment_cache_clear(to_vmx(vcpu));
3201
3202        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3203        if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3204                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3205                                     __func__);
3206                vmcs_write32(GUEST_TR_AR_BYTES,
3207                             (guest_tr_ar & ~AR_TYPE_MASK)
3208                             | AR_TYPE_BUSY_64_TSS);
3209        }
3210        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3211}
3212
3213static void exit_lmode(struct kvm_vcpu *vcpu)
3214{
3215        vmcs_write32(VM_ENTRY_CONTROLS,
3216                     vmcs_read32(VM_ENTRY_CONTROLS)
3217                     & ~VM_ENTRY_IA32E_MODE);
3218        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3219}
3220
3221#endif
3222
3223static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3224{
3225        vpid_sync_context(to_vmx(vcpu));
3226        if (enable_ept) {
3227                if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3228                        return;
3229                ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3230        }
3231}
3232
3233static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3234{
3235        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3236
3237        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3238        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3239}
3240
3241static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3242{
3243        if (enable_ept && is_paging(vcpu))
3244                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3245        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3246}
3247
3248static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3249{
3250        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3251
3252        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3253        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3254}
3255
3256static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3257{
3258        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3259
3260        if (!test_bit(VCPU_EXREG_PDPTR,
3261                      (unsigned long *)&vcpu->arch.regs_dirty))
3262                return;
3263
3264        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3265                vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3266                vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3267                vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3268                vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3269        }
3270}
3271
3272static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3273{
3274        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3275
3276        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3277                mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3278                mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3279                mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3280                mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3281        }
3282
3283        __set_bit(VCPU_EXREG_PDPTR,
3284                  (unsigned long *)&vcpu->arch.regs_avail);
3285        __set_bit(VCPU_EXREG_PDPTR,
3286                  (unsigned long *)&vcpu->arch.regs_dirty);
3287}
3288
3289static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3290
3291static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3292                                        unsigned long cr0,
3293                                        struct kvm_vcpu *vcpu)
3294{
3295        if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3296                vmx_decache_cr3(vcpu);
3297        if (!(cr0 & X86_CR0_PG)) {
3298                /* From paging/starting to nonpaging */
3299                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3300                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3301                             (CPU_BASED_CR3_LOAD_EXITING |
3302                              CPU_BASED_CR3_STORE_EXITING));
3303                vcpu->arch.cr0 = cr0;
3304                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3305        } else if (!is_paging(vcpu)) {
3306                /* From nonpaging to paging */
3307                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3308                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3309                             ~(CPU_BASED_CR3_LOAD_EXITING |
3310                               CPU_BASED_CR3_STORE_EXITING));
3311                vcpu->arch.cr0 = cr0;
3312                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3313        }
3314
3315        if (!(cr0 & X86_CR0_WP))
3316                *hw_cr0 &= ~X86_CR0_WP;
3317}
3318
3319static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3320{
3321        struct vcpu_vmx *vmx = to_vmx(vcpu);
3322        unsigned long hw_cr0;
3323
3324        hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3325        if (enable_unrestricted_guest)
3326                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3327        else {
3328                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3329
3330                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3331                        enter_pmode(vcpu);
3332
3333                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3334                        enter_rmode(vcpu);
3335        }
3336
3337#ifdef CONFIG_X86_64
3338        if (vcpu->arch.efer & EFER_LME) {
3339                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3340                        enter_lmode(vcpu);
3341                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3342                        exit_lmode(vcpu);
3343        }
3344#endif
3345
3346        if (enable_ept)
3347                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3348
3349        if (!vcpu->fpu_active)
3350                hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3351
3352        vmcs_writel(CR0_READ_SHADOW, cr0);
3353        vmcs_writel(GUEST_CR0, hw_cr0);
3354        vcpu->arch.cr0 = cr0;
3355
3356        /* depends on vcpu->arch.cr0 to be set to a new value */
3357        vmx->emulation_required = emulation_required(vcpu);
3358}
3359
3360static u64 construct_eptp(unsigned long root_hpa)
3361{
3362        u64 eptp;
3363
3364        /* TODO write the value reading from MSR */
3365        eptp = VMX_EPT_DEFAULT_MT |
3366                VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3367        if (enable_ept_ad_bits)
3368                eptp |= VMX_EPT_AD_ENABLE_BIT;
3369        eptp |= (root_hpa & PAGE_MASK);
3370
3371        return eptp;
3372}
3373
3374static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3375{
3376        unsigned long guest_cr3;
3377        u64 eptp;
3378
3379        guest_cr3 = cr3;
3380        if (enable_ept) {
3381                eptp = construct_eptp(cr3);
3382                vmcs_write64(EPT_POINTER, eptp);
3383                guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3384                        vcpu->kvm->arch.ept_identity_map_addr;
3385                ept_load_pdptrs(vcpu);
3386        }
3387
3388        vmx_flush_tlb(vcpu);
3389        vmcs_writel(GUEST_CR3, guest_cr3);
3390}
3391
3392static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3393{
3394        unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3395                    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3396
3397        if (cr4 & X86_CR4_VMXE) {
3398                /*
3399                 * To use VMXON (and later other VMX instructions), a guest
3400                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3401                 * So basically the check on whether to allow nested VMX
3402                 * is here.
3403                 */
3404                if (!nested_vmx_allowed(vcpu))
3405                        return 1;
3406        }
3407        if (to_vmx(vcpu)->nested.vmxon &&
3408            ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3409                return 1;
3410
3411        vcpu->arch.cr4 = cr4;
3412        if (enable_ept) {
3413                if (!is_paging(vcpu)) {
3414                        hw_cr4 &= ~X86_CR4_PAE;
3415                        hw_cr4 |= X86_CR4_PSE;
3416                        /*
3417                         * SMEP is disabled if CPU is in non-paging mode in
3418                         * hardware. However KVM always uses paging mode to
3419                         * emulate guest non-paging mode with TDP.
3420                         * To emulate this behavior, SMEP needs to be manually
3421                         * disabled when guest switches to non-paging mode.
3422                         */
3423                        hw_cr4 &= ~X86_CR4_SMEP;
3424                } else if (!(cr4 & X86_CR4_PAE)) {
3425                        hw_cr4 &= ~X86_CR4_PAE;
3426                }
3427        }
3428
3429        vmcs_writel(CR4_READ_SHADOW, cr4);
3430        vmcs_writel(GUEST_CR4, hw_cr4);
3431        return 0;
3432}
3433
3434static void vmx_get_segment(struct kvm_vcpu *vcpu,
3435                            struct kvm_segment *var, int seg)
3436{
3437        struct vcpu_vmx *vmx = to_vmx(vcpu);
3438        u32 ar;
3439
3440        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3441                *var = vmx->rmode.segs[seg];
3442                if (seg == VCPU_SREG_TR
3443                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3444                        return;
3445                var->base = vmx_read_guest_seg_base(vmx, seg);
3446                var->selector = vmx_read_guest_seg_selector(vmx, seg);
3447                return;
3448        }
3449        var->base = vmx_read_guest_seg_base(vmx, seg);
3450        var->limit = vmx_read_guest_seg_limit(vmx, seg);
3451        var->selector = vmx_read_guest_seg_selector(vmx, seg);
3452        ar = vmx_read_guest_seg_ar(vmx, seg);
3453        var->unusable = (ar >> 16) & 1;
3454        var->type = ar & 15;
3455        var->s = (ar >> 4) & 1;
3456        var->dpl = (ar >> 5) & 3;
3457        /*
3458         * Some userspaces do not preserve unusable property. Since usable
3459         * segment has to be present according to VMX spec we can use present
3460         * property to amend userspace bug by making unusable segment always
3461         * nonpresent. vmx_segment_access_rights() already marks nonpresent
3462         * segment as unusable.
3463         */
3464        var->present = !var->unusable;
3465        var->avl = (ar >> 12) & 1;
3466        var->l = (ar >> 13) & 1;
3467        var->db = (ar >> 14) & 1;
3468        var->g = (ar >> 15) & 1;
3469}
3470
3471static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3472{
3473        struct kvm_segment s;
3474
3475        if (to_vmx(vcpu)->rmode.vm86_active) {
3476                vmx_get_segment(vcpu, &s, seg);
3477                return s.base;
3478        }
3479        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3480}
3481
3482static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3483{
3484        struct vcpu_vmx *vmx = to_vmx(vcpu);
3485
3486        if (!is_protmode(vcpu))
3487                return 0;
3488
3489        if (!is_long_mode(vcpu)
3490            && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3491                return 3;
3492
3493        if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3494                __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3495                vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3496        }
3497
3498        return vmx->cpl;
3499}
3500
3501
3502static u32 vmx_segment_access_rights(struct kvm_segment *var)
3503{
3504        u32 ar;
3505
3506        if (var->unusable || !var->present)
3507                ar = 1 << 16;
3508        else {
3509                ar = var->type & 15;
3510                ar |= (var->s & 1) << 4;
3511                ar |= (var->dpl & 3) << 5;
3512                ar |= (var->present & 1) << 7;
3513                ar |= (var->avl & 1) << 12;
3514                ar |= (var->l & 1) << 13;
3515                ar |= (var->db & 1) << 14;
3516                ar |= (var->g & 1) << 15;
3517        }
3518
3519        return ar;
3520}
3521
3522static void vmx_set_segment(struct kvm_vcpu *vcpu,
3523                            struct kvm_segment *var, int seg)
3524{
3525        struct vcpu_vmx *vmx = to_vmx(vcpu);
3526        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3527
3528        vmx_segment_cache_clear(vmx);
3529        if (seg == VCPU_SREG_CS)
3530                __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3531
3532        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3533                vmx->rmode.segs[seg] = *var;
3534                if (seg == VCPU_SREG_TR)
3535                        vmcs_write16(sf->selector, var->selector);
3536                else if (var->s)
3537                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3538                goto out;
3539        }
3540
3541        vmcs_writel(sf->base, var->base);
3542        vmcs_write32(sf->limit, var->limit);
3543        vmcs_write16(sf->selector, var->selector);
3544
3545        /*
3546         *   Fix the "Accessed" bit in AR field of segment registers for older
3547         * qemu binaries.
3548         *   IA32 arch specifies that at the time of processor reset the
3549         * "Accessed" bit in the AR field of segment registers is 1. And qemu
3550         * is setting it to 0 in the userland code. This causes invalid guest
3551         * state vmexit when "unrestricted guest" mode is turned on.
3552         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3553         * tree. Newer qemu binaries with that qemu fix would not need this
3554         * kvm hack.
3555         */
3556        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3557                var->type |= 0x1; /* Accessed */
3558
3559        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3560
3561out:
3562        vmx->emulation_required |= emulation_required(vcpu);
3563}
3564
3565static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3566{
3567        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3568
3569        *db = (ar >> 14) & 1;
3570        *l = (ar >> 13) & 1;
3571}
3572
3573static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3574{
3575        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3576        dt->address = vmcs_readl(GUEST_IDTR_BASE);
3577}
3578
3579static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3580{
3581        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3582        vmcs_writel(GUEST_IDTR_BASE, dt->address);
3583}
3584
3585static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3586{
3587        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3588        dt->address = vmcs_readl(GUEST_GDTR_BASE);
3589}
3590
3591static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3592{
3593        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3594        vmcs_writel(GUEST_GDTR_BASE, dt->address);
3595}
3596
3597static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3598{
3599        struct kvm_segment var;
3600        u32 ar;
3601
3602        vmx_get_segment(vcpu, &var, seg);
3603        var.dpl = 0x3;
3604        if (seg == VCPU_SREG_CS)
3605                var.type = 0x3;
3606        ar = vmx_segment_access_rights(&var);
3607
3608        if (var.base != (var.selector << 4))
3609                return false;
3610        if (var.limit != 0xffff)
3611                return false;
3612        if (ar != 0xf3)
3613                return false;
3614
3615        return true;
3616}
3617
3618static bool code_segment_valid(struct kvm_vcpu *vcpu)
3619{
3620        struct kvm_segment cs;
3621        unsigned int cs_rpl;
3622
3623        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3624        cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3625
3626        if (cs.unusable)
3627                return false;
3628        if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3629                return false;
3630        if (!cs.s)
3631                return false;
3632        if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3633                if (cs.dpl > cs_rpl)
3634                        return false;
3635        } else {
3636                if (cs.dpl != cs_rpl)
3637                        return false;
3638        }
3639        if (!cs.present)
3640                return false;
3641
3642        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3643        return true;
3644}
3645
3646static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3647{
3648        struct kvm_segment ss;
3649        unsigned int ss_rpl;
3650
3651        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3652        ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3653
3654        if (ss.unusable)
3655                return true;
3656        if (ss.type != 3 && ss.type != 7)
3657                return false;
3658        if (!ss.s)
3659                return false;
3660        if (ss.dpl != ss_rpl) /* DPL != RPL */
3661                return false;
3662        if (!ss.present)
3663                return false;
3664
3665        return true;
3666}
3667
3668static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3669{
3670        struct kvm_segment var;
3671        unsigned int rpl;
3672
3673        vmx_get_segment(vcpu, &var, seg);
3674        rpl = var.selector & SELECTOR_RPL_MASK;
3675
3676        if (var.unusable)
3677                return true;
3678        if (!var.s)
3679                return false;
3680        if (!var.present)
3681                return false;
3682        if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3683                if (var.dpl < rpl) /* DPL < RPL */
3684                        return false;
3685        }
3686
3687        /* TODO: Add other members to kvm_segment_field to allow checking for other access
3688         * rights flags
3689         */
3690        return true;
3691}
3692
3693static bool tr_valid(struct kvm_vcpu *vcpu)
3694{
3695        struct kvm_segment tr;
3696
3697        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3698
3699        if (tr.unusable)
3700                return false;
3701        if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3702                return false;
3703        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3704                return false;
3705        if (!tr.present)
3706                return false;
3707
3708        return true;
3709}
3710
3711static bool ldtr_valid(struct kvm_vcpu *vcpu)
3712{
3713        struct kvm_segment ldtr;
3714
3715        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3716
3717        if (ldtr.unusable)
3718                return true;
3719        if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3720                return false;
3721        if (ldtr.type != 2)
3722                return false;
3723        if (!ldtr.present)
3724                return false;
3725
3726        return true;
3727}
3728
3729static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3730{
3731        struct kvm_segment cs, ss;
3732
3733        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3734        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3735
3736        return ((cs.selector & SELECTOR_RPL_MASK) ==
3737                 (ss.selector & SELECTOR_RPL_MASK));
3738}
3739
3740/*
3741 * Check if guest state is valid. Returns true if valid, false if
3742 * not.
3743 * We assume that registers are always usable
3744 */
3745static bool guest_state_valid(struct kvm_vcpu *vcpu)
3746{
3747        if (enable_unrestricted_guest)
3748                return true;
3749
3750        /* real mode guest state checks */
3751        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3752                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3753                        return false;
3754                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3755                        return false;
3756                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3757                        return false;
3758                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3759                        return false;
3760                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3761                        return false;
3762                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3763                        return false;
3764        } else {
3765        /* protected mode guest state checks */
3766                if (!cs_ss_rpl_check(vcpu))
3767                        return false;
3768                if (!code_segment_valid(vcpu))
3769                        return false;
3770                if (!stack_segment_valid(vcpu))
3771                        return false;
3772                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3773                        return false;
3774                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3775                        return false;
3776                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3777                        return false;
3778                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3779                        return false;
3780                if (!tr_valid(vcpu))
3781                        return false;
3782                if (!ldtr_valid(vcpu))
3783                        return false;
3784        }
3785        /* TODO:
3786         * - Add checks on RIP
3787         * - Add checks on RFLAGS
3788         */
3789
3790        return true;
3791}
3792
3793static int init_rmode_tss(struct kvm *kvm)
3794{
3795        gfn_t fn;
3796        u16 data = 0;
3797        int r, idx, ret = 0;
3798
3799        idx = srcu_read_lock(&kvm->srcu);
3800        fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3801        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3802        if (r < 0)
3803                goto out;
3804        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3805        r = kvm_write_guest_page(kvm, fn++, &data,
3806                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
3807        if (r < 0)
3808                goto out;
3809        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3810        if (r < 0)
3811                goto out;
3812        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3813        if (r < 0)
3814                goto out;
3815        data = ~0;
3816        r = kvm_write_guest_page(kvm, fn, &data,
3817                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3818                                 sizeof(u8));
3819        if (r < 0)
3820                goto out;
3821
3822        ret = 1;
3823out:
3824        srcu_read_unlock(&kvm->srcu, idx);
3825        return ret;
3826}
3827
3828static int init_rmode_identity_map(struct kvm *kvm)
3829{
3830        int i, idx, r, ret;
3831        pfn_t identity_map_pfn;
3832        u32 tmp;
3833
3834        if (!enable_ept)
3835                return 1;
3836        if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3837                printk(KERN_ERR "EPT: identity-mapping pagetable "
3838                        "haven't been allocated!\n");
3839                return 0;
3840        }
3841        if (likely(kvm->arch.ept_identity_pagetable_done))
3842                return 1;
3843        ret = 0;
3844        identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3845        idx = srcu_read_lock(&kvm->srcu);
3846        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3847        if (r < 0)
3848                goto out;
3849        /* Set up identity-mapping pagetable for EPT in real mode */
3850        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3851                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3852                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3853                r = kvm_write_guest_page(kvm, identity_map_pfn,
3854                                &tmp, i * sizeof(tmp), sizeof(tmp));
3855                if (r < 0)
3856                        goto out;
3857        }
3858        kvm->arch.ept_identity_pagetable_done = true;
3859        ret = 1;
3860out:
3861        srcu_read_unlock(&kvm->srcu, idx);
3862        return ret;
3863}
3864
3865static void seg_setup(int seg)
3866{
3867        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3868        unsigned int ar;
3869
3870        vmcs_write16(sf->selector, 0);
3871        vmcs_writel(sf->base, 0);
3872        vmcs_write32(sf->limit, 0xffff);
3873        ar = 0x93;
3874        if (seg == VCPU_SREG_CS)
3875                ar |= 0x08; /* code segment */
3876
3877        vmcs_write32(sf->ar_bytes, ar);
3878}
3879
3880static int alloc_apic_access_page(struct kvm *kvm)
3881{
3882        struct page *page;
3883        struct kvm_userspace_memory_region kvm_userspace_mem;
3884        int r = 0;
3885
3886        mutex_lock(&kvm->slots_lock);
3887        if (kvm->arch.apic_access_page)
3888                goto out;
3889        kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3890        kvm_userspace_mem.flags = 0;
3891        kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3892        kvm_userspace_mem.memory_size = PAGE_SIZE;
3893        r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3894        if (r)
3895                goto out;
3896
3897        page = gfn_to_page(kvm, 0xfee00);
3898        if (is_error_page(page)) {
3899                r = -EFAULT;
3900                goto out;
3901        }
3902
3903        kvm->arch.apic_access_page = page;
3904out:
3905        mutex_unlock(&kvm->slots_lock);
3906        return r;
3907}
3908
3909static int alloc_identity_pagetable(struct kvm *kvm)
3910{
3911        struct page *page;
3912        struct kvm_userspace_memory_region kvm_userspace_mem;
3913        int r = 0;
3914
3915        mutex_lock(&kvm->slots_lock);
3916        if (kvm->arch.ept_identity_pagetable)
3917                goto out;
3918        kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3919        kvm_userspace_mem.flags = 0;
3920        kvm_userspace_mem.guest_phys_addr =
3921                kvm->arch.ept_identity_map_addr;
3922        kvm_userspace_mem.memory_size = PAGE_SIZE;
3923        r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3924        if (r)
3925                goto out;
3926
3927        page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3928        if (is_error_page(page)) {
3929                r = -EFAULT;
3930                goto out;
3931        }
3932
3933        kvm->arch.ept_identity_pagetable = page;
3934out:
3935        mutex_unlock(&kvm->slots_lock);
3936        return r;
3937}
3938
3939static void allocate_vpid(struct vcpu_vmx *vmx)
3940{
3941        int vpid;
3942
3943        vmx->vpid = 0;
3944        if (!enable_vpid)
3945                return;
3946        spin_lock(&vmx_vpid_lock);
3947        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3948        if (vpid < VMX_NR_VPIDS) {
3949                vmx->vpid = vpid;
3950                __set_bit(vpid, vmx_vpid_bitmap);
3951        }
3952        spin_unlock(&vmx_vpid_lock);
3953}
3954
3955static void free_vpid(struct vcpu_vmx *vmx)
3956{
3957        if (!enable_vpid)
3958                return;
3959        spin_lock(&vmx_vpid_lock);
3960        if (vmx->vpid != 0)
3961                __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3962        spin_unlock(&vmx_vpid_lock);
3963}
3964
3965#define MSR_TYPE_R      1
3966#define MSR_TYPE_W      2
3967static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3968                                                u32 msr, int type)
3969{
3970        int f = sizeof(unsigned long);
3971
3972        if (!cpu_has_vmx_msr_bitmap())
3973                return;
3974
3975        /*
3976         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3977         * have the write-low and read-high bitmap offsets the wrong way round.
3978         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3979         */
3980        if (msr <= 0x1fff) {
3981                if (type & MSR_TYPE_R)
3982                        /* read-low */
3983                        __clear_bit(msr, msr_bitmap + 0x000 / f);
3984
3985                if (type & MSR_TYPE_W)
3986                        /* write-low */
3987                        __clear_bit(msr, msr_bitmap + 0x800 / f);
3988
3989        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3990                msr &= 0x1fff;
3991                if (type & MSR_TYPE_R)
3992                        /* read-high */
3993                        __clear_bit(msr, msr_bitmap + 0x400 / f);
3994
3995                if (type & MSR_TYPE_W)
3996                        /* write-high */
3997                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
3998
3999        }
4000}
4001
4002static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4003                                                u32 msr, int type)
4004{
4005        int f = sizeof(unsigned long);
4006
4007        if (!cpu_has_vmx_msr_bitmap())
4008                return;
4009
4010        /*
4011         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4012         * have the write-low and read-high bitmap offsets the wrong way round.
4013         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4014         */
4015        if (msr <= 0x1fff) {
4016                if (type & MSR_TYPE_R)
4017                        /* read-low */
4018                        __set_bit(msr, msr_bitmap + 0x000 / f);
4019
4020                if (type & MSR_TYPE_W)
4021                        /* write-low */
4022                        __set_bit(msr, msr_bitmap + 0x800 / f);
4023
4024        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4025                msr &= 0x1fff;
4026                if (type & MSR_TYPE_R)
4027                        /* read-high */
4028                        __set_bit(msr, msr_bitmap + 0x400 / f);
4029
4030                if (type & MSR_TYPE_W)
4031                        /* write-high */
4032                        __set_bit(msr, msr_bitmap + 0xc00 / f);
4033
4034        }
4035}
4036
4037static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4038{
4039        if (!longmode_only)
4040                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4041                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4042        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4043                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4044}
4045
4046static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4047{
4048        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4049                        msr, MSR_TYPE_R);
4050        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4051                        msr, MSR_TYPE_R);
4052}
4053
4054static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4055{
4056        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4057                        msr, MSR_TYPE_R);
4058        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4059                        msr, MSR_TYPE_R);
4060}
4061
4062static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4063{
4064        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4065                        msr, MSR_TYPE_W);
4066        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4067                        msr, MSR_TYPE_W);
4068}
4069
4070static int vmx_vm_has_apicv(struct kvm *kvm)
4071{
4072        return enable_apicv && irqchip_in_kernel(kvm);
4073}
4074
4075/*
4076 * Send interrupt to vcpu via posted interrupt way.
4077 * 1. If target vcpu is running(non-root mode), send posted interrupt
4078 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4079 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4080 * interrupt from PIR in next vmentry.
4081 */
4082static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4083{
4084        struct vcpu_vmx *vmx = to_vmx(vcpu);
4085        int r;
4086
4087        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4088                return;
4089
4090        r = pi_test_and_set_on(&vmx->pi_desc);
4091        kvm_make_request(KVM_REQ_EVENT, vcpu);
4092#ifdef CONFIG_SMP
4093        if (!r && (vcpu->mode == IN_GUEST_MODE))
4094                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4095                                POSTED_INTR_VECTOR);
4096        else
4097#endif
4098                kvm_vcpu_kick(vcpu);
4099}
4100
4101static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4102{
4103        struct vcpu_vmx *vmx = to_vmx(vcpu);
4104
4105        if (!pi_test_and_clear_on(&vmx->pi_desc))
4106                return;
4107
4108        kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4109}
4110
4111static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4112{
4113        return;
4114}
4115
4116/*
4117 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4118 * will not change in the lifetime of the guest.
4119 * Note that host-state that does change is set elsewhere. E.g., host-state
4120 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4121 */
4122static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4123{
4124        u32 low32, high32;
4125        unsigned long tmpl;
4126        struct desc_ptr dt;
4127
4128        vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4129        vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4130        vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4131
4132        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4133#ifdef CONFIG_X86_64
4134        /*
4135         * Load null selectors, so we can avoid reloading them in
4136         * __vmx_load_host_state(), in case userspace uses the null selectors
4137         * too (the expected case).
4138         */
4139        vmcs_write16(HOST_DS_SELECTOR, 0);
4140        vmcs_write16(HOST_ES_SELECTOR, 0);
4141#else
4142        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4143        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4144#endif
4145        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4146        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4147
4148        native_store_idt(&dt);
4149        vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4150        vmx->host_idt_base = dt.address;
4151
4152        vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4153
4154        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4155        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4156        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4157        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4158
4159        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4160                rdmsr(MSR_IA32_CR_PAT, low32, high32);
4161                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4162        }
4163}
4164
4165static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4166{
4167        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4168        if (enable_ept)
4169                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4170        if (is_guest_mode(&vmx->vcpu))
4171                vmx->vcpu.arch.cr4_guest_owned_bits &=
4172                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4173        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4174}
4175
4176static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4177{
4178        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4179
4180        if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4181                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4182        return pin_based_exec_ctrl;
4183}
4184
4185static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4186{
4187        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4188        if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4189                exec_control &= ~CPU_BASED_TPR_SHADOW;
4190#ifdef CONFIG_X86_64
4191                exec_control |= CPU_BASED_CR8_STORE_EXITING |
4192                                CPU_BASED_CR8_LOAD_EXITING;
4193#endif
4194        }
4195        if (!enable_ept)
4196                exec_control |= CPU_BASED_CR3_STORE_EXITING |
4197                                CPU_BASED_CR3_LOAD_EXITING  |
4198                                CPU_BASED_INVLPG_EXITING;
4199        return exec_control;
4200}
4201
4202static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4203{
4204        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4205        if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4206                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4207        if (vmx->vpid == 0)
4208                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4209        if (!enable_ept) {
4210                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4211                enable_unrestricted_guest = 0;
4212                /* Enable INVPCID for non-ept guests may cause performance regression. */
4213                exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4214        }
4215        if (!enable_unrestricted_guest)
4216                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4217        if (!ple_gap)
4218                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4219        if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4220                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4221                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4222        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4223        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4224           (handle_vmptrld).
4225           We can NOT enable shadow_vmcs here because we don't have yet
4226           a current VMCS12
4227        */
4228        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4229        return exec_control;
4230}
4231
4232static void ept_set_mmio_spte_mask(void)
4233{
4234        /*
4235         * EPT Misconfigurations can be generated if the value of bits 2:0
4236         * of an EPT paging-structure entry is 110b (write/execute).
4237         * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4238         * spte.
4239         */
4240        kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4241}
4242
4243/*
4244 * Sets up the vmcs for emulated real mode.
4245 */
4246static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4247{
4248#ifdef CONFIG_X86_64
4249        unsigned long a;
4250#endif
4251        int i;
4252
4253        /* I/O */
4254        vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4255        vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4256
4257        if (enable_shadow_vmcs) {
4258                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4259                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4260        }
4261        if (cpu_has_vmx_msr_bitmap())
4262                vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4263
4264        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4265
4266        /* Control */
4267        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4268
4269        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4270
4271        if (cpu_has_secondary_exec_ctrls()) {
4272                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4273                                vmx_secondary_exec_control(vmx));
4274        }
4275
4276        if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4277                vmcs_write64(EOI_EXIT_BITMAP0, 0);
4278                vmcs_write64(EOI_EXIT_BITMAP1, 0);
4279                vmcs_write64(EOI_EXIT_BITMAP2, 0);
4280                vmcs_write64(EOI_EXIT_BITMAP3, 0);
4281
4282                vmcs_write16(GUEST_INTR_STATUS, 0);
4283
4284                vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4285                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4286        }
4287
4288        if (ple_gap) {
4289                vmcs_write32(PLE_GAP, ple_gap);
4290                vmcs_write32(PLE_WINDOW, ple_window);
4291        }
4292
4293        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4294        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4295        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4296
4297        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4298        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4299        vmx_set_constant_host_state(vmx);
4300#ifdef CONFIG_X86_64
4301        rdmsrl(MSR_FS_BASE, a);
4302        vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4303        rdmsrl(MSR_GS_BASE, a);
4304        vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4305#else
4306        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4307        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4308#endif
4309
4310        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4311        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4312        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4313        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4314        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4315
4316        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4317                u32 msr_low, msr_high;
4318                u64 host_pat;
4319                rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4320                host_pat = msr_low | ((u64) msr_high << 32);
4321                /* Write the default value follow host pat */
4322                vmcs_write64(GUEST_IA32_PAT, host_pat);
4323                /* Keep arch.pat sync with GUEST_IA32_PAT */
4324                vmx->vcpu.arch.pat = host_pat;
4325        }
4326
4327        for (i = 0; i < NR_VMX_MSR; ++i) {
4328                u32 index = vmx_msr_index[i];
4329                u32 data_low, data_high;
4330                int j = vmx->nmsrs;
4331
4332                if (rdmsr_safe(index, &data_low, &data_high) < 0)
4333                        continue;
4334                if (wrmsr_safe(index, data_low, data_high) < 0)
4335                        continue;
4336                vmx->guest_msrs[j].index = i;
4337                vmx->guest_msrs[j].data = 0;
4338                vmx->guest_msrs[j].mask = -1ull;
4339                ++vmx->nmsrs;
4340        }
4341
4342        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4343
4344        /* 22.2.1, 20.8.1 */
4345        vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4346
4347        vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4348        set_cr4_guest_host_mask(vmx);
4349
4350        return 0;
4351}
4352
4353static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4354{
4355        struct vcpu_vmx *vmx = to_vmx(vcpu);
4356        u64 msr;
4357
4358        vmx->rmode.vm86_active = 0;
4359
4360        vmx->soft_vnmi_blocked = 0;
4361
4362        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4363        kvm_set_cr8(&vmx->vcpu, 0);
4364        msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4365        if (kvm_vcpu_is_bsp(&vmx->vcpu))
4366                msr |= MSR_IA32_APICBASE_BSP;
4367        kvm_set_apic_base(&vmx->vcpu, msr);
4368
4369        vmx_segment_cache_clear(vmx);
4370
4371        seg_setup(VCPU_SREG_CS);
4372        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4373        vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4374
4375        seg_setup(VCPU_SREG_DS);
4376        seg_setup(VCPU_SREG_ES);
4377        seg_setup(VCPU_SREG_FS);
4378        seg_setup(VCPU_SREG_GS);
4379        seg_setup(VCPU_SREG_SS);
4380
4381        vmcs_write16(GUEST_TR_SELECTOR, 0);
4382        vmcs_writel(GUEST_TR_BASE, 0);
4383        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4384        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4385
4386        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4387        vmcs_writel(GUEST_LDTR_BASE, 0);
4388        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4389        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4390
4391        vmcs_write32(GUEST_SYSENTER_CS, 0);
4392        vmcs_writel(GUEST_SYSENTER_ESP, 0);
4393        vmcs_writel(GUEST_SYSENTER_EIP, 0);
4394
4395        vmcs_writel(GUEST_RFLAGS, 0x02);
4396        kvm_rip_write(vcpu, 0xfff0);
4397
4398        vmcs_writel(GUEST_GDTR_BASE, 0);
4399        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4400
4401        vmcs_writel(GUEST_IDTR_BASE, 0);
4402        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4403
4404        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4405        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4406        vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4407
4408        /* Special registers */
4409        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4410
4411        setup_msrs(vmx);
4412
4413        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4414
4415        if (cpu_has_vmx_tpr_shadow()) {
4416                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4417                if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4418                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4419                                     __pa(vmx->vcpu.arch.apic->regs));
4420                vmcs_write32(TPR_THRESHOLD, 0);
4421        }
4422
4423        if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4424                vmcs_write64(APIC_ACCESS_ADDR,
4425                             page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4426
4427        if (vmx_vm_has_apicv(vcpu->kvm))
4428                memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4429
4430        if (vmx->vpid != 0)
4431                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4432
4433        vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4434        vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4435        vmx_set_cr4(&vmx->vcpu, 0);
4436        vmx_set_efer(&vmx->vcpu, 0);
4437        vmx_fpu_activate(&vmx->vcpu);
4438        update_exception_bitmap(&vmx->vcpu);
4439
4440        vpid_sync_context(vmx);
4441}
4442
4443/*
4444 * In nested virtualization, check if L1 asked to exit on external interrupts.
4445 * For most existing hypervisors, this will always return true.
4446 */
4447static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4448{
4449        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4450                PIN_BASED_EXT_INTR_MASK;
4451}
4452
4453static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4454{
4455        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4456                PIN_BASED_NMI_EXITING;
4457}
4458
4459static int enable_irq_window(struct kvm_vcpu *vcpu)
4460{
4461        u32 cpu_based_vm_exec_control;
4462
4463        if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4464                /*
4465                 * We get here if vmx_interrupt_allowed() said we can't
4466                 * inject to L1 now because L2 must run. The caller will have
4467                 * to make L2 exit right after entry, so we can inject to L1
4468                 * more promptly.
4469                 */
4470                return -EBUSY;
4471
4472        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4473        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4474        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4475        return 0;
4476}
4477
4478static int enable_nmi_window(struct kvm_vcpu *vcpu)
4479{
4480        u32 cpu_based_vm_exec_control;
4481
4482        if (!cpu_has_virtual_nmis())
4483                return enable_irq_window(vcpu);
4484
4485        if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4486                return enable_irq_window(vcpu);
4487
4488        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4489        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4490        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4491        return 0;
4492}
4493
4494static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4495{
4496        struct vcpu_vmx *vmx = to_vmx(vcpu);
4497        uint32_t intr;
4498        int irq = vcpu->arch.interrupt.nr;
4499
4500        trace_kvm_inj_virq(irq);
4501
4502        ++vcpu->stat.irq_injections;
4503        if (vmx->rmode.vm86_active) {
4504                int inc_eip = 0;
4505                if (vcpu->arch.interrupt.soft)
4506                        inc_eip = vcpu->arch.event_exit_inst_len;
4507                if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4508                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4509                return;
4510        }
4511        intr = irq | INTR_INFO_VALID_MASK;
4512        if (vcpu->arch.interrupt.soft) {
4513                intr |= INTR_TYPE_SOFT_INTR;
4514                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4515                             vmx->vcpu.arch.event_exit_inst_len);
4516        } else
4517                intr |= INTR_TYPE_EXT_INTR;
4518        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4519}
4520
4521static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4522{
4523        struct vcpu_vmx *vmx = to_vmx(vcpu);
4524
4525        if (is_guest_mode(vcpu))
4526                return;
4527
4528        if (!cpu_has_virtual_nmis()) {
4529                /*
4530                 * Tracking the NMI-blocked state in software is built upon
4531                 * finding the next open IRQ window. This, in turn, depends on
4532                 * well-behaving guests: They have to keep IRQs disabled at
4533                 * least as long as the NMI handler runs. Otherwise we may
4534                 * cause NMI nesting, maybe breaking the guest. But as this is
4535                 * highly unlikely, we can live with the residual risk.
4536                 */
4537                vmx->soft_vnmi_blocked = 1;
4538                vmx->vnmi_blocked_time = 0;
4539        }
4540
4541        ++vcpu->stat.nmi_injections;
4542        vmx->nmi_known_unmasked = false;
4543        if (vmx->rmode.vm86_active) {
4544                if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4545                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4546                return;
4547        }
4548        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4549                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4550}
4551
4552static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4553{
4554        if (!cpu_has_virtual_nmis())
4555                return to_vmx(vcpu)->soft_vnmi_blocked;
4556        if (to_vmx(vcpu)->nmi_known_unmasked)
4557                return false;
4558        return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4559}
4560
4561static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4562{
4563        struct vcpu_vmx *vmx = to_vmx(vcpu);
4564
4565        if (!cpu_has_virtual_nmis()) {
4566                if (vmx->soft_vnmi_blocked != masked) {
4567                        vmx->soft_vnmi_blocked = masked;
4568                        vmx->vnmi_blocked_time = 0;
4569                }
4570        } else {
4571                vmx->nmi_known_unmasked = !masked;
4572                if (masked)
4573                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4574                                      GUEST_INTR_STATE_NMI);
4575                else
4576                        vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4577                                        GUEST_INTR_STATE_NMI);
4578        }
4579}
4580
4581static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4582{
4583        if (is_guest_mode(vcpu)) {
4584                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4585
4586                if (to_vmx(vcpu)->nested.nested_run_pending)
4587                        return 0;
4588                if (nested_exit_on_nmi(vcpu)) {
4589                        nested_vmx_vmexit(vcpu);
4590                        vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4591                        vmcs12->vm_exit_intr_info = NMI_VECTOR |
4592                                INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4593                        /*
4594                         * The NMI-triggered VM exit counts as injection:
4595                         * clear this one and block further NMIs.
4596                         */
4597                        vcpu->arch.nmi_pending = 0;
4598                        vmx_set_nmi_mask(vcpu, true);
4599                        return 0;
4600                }
4601        }
4602
4603        if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4604                return 0;
4605
4606        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4607                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4608                   | GUEST_INTR_STATE_NMI));
4609}
4610
4611static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4612{
4613        if (is_guest_mode(vcpu)) {
4614                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4615
4616                if (to_vmx(vcpu)->nested.nested_run_pending)
4617                        return 0;
4618                if (nested_exit_on_intr(vcpu)) {
4619                        nested_vmx_vmexit(vcpu);
4620                        vmcs12->vm_exit_reason =
4621                                EXIT_REASON_EXTERNAL_INTERRUPT;
4622                        vmcs12->vm_exit_intr_info = 0;
4623                        /*
4624                         * fall through to normal code, but now in L1, not L2
4625                         */
4626                }
4627        }
4628
4629        return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4630                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4631                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4632}
4633
4634static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4635{
4636        int ret;
4637        struct kvm_userspace_memory_region tss_mem = {
4638                .slot = TSS_PRIVATE_MEMSLOT,
4639                .guest_phys_addr = addr,
4640                .memory_size = PAGE_SIZE * 3,
4641                .flags = 0,
4642        };
4643
4644        ret = kvm_set_memory_region(kvm, &tss_mem);
4645        if (ret)
4646                return ret;
4647        kvm->arch.tss_addr = addr;
4648        if (!init_rmode_tss(kvm))
4649                return  -ENOMEM;
4650
4651        return 0;
4652}
4653
4654static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4655{
4656        switch (vec) {
4657        case BP_VECTOR:
4658                /*
4659                 * Update instruction length as we may reinject the exception
4660                 * from user space while in guest debugging mode.
4661                 */
4662                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4663                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4664                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4665                        return false;
4666                /* fall through */
4667        case DB_VECTOR:
4668                if (vcpu->guest_debug &
4669                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4670                        return false;
4671                /* fall through */
4672        case DE_VECTOR:
4673        case OF_VECTOR:
4674        case BR_VECTOR:
4675        case UD_VECTOR:
4676        case DF_VECTOR:
4677        case SS_VECTOR:
4678        case GP_VECTOR:
4679        case MF_VECTOR:
4680                return true;
4681        break;
4682        }
4683        return false;
4684}
4685
4686static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4687                                  int vec, u32 err_code)
4688{
4689        /*
4690         * Instruction with address size override prefix opcode 0x67
4691         * Cause the #SS fault with 0 error code in VM86 mode.
4692         */
4693        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4694                if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4695                        if (vcpu->arch.halt_request) {
4696                                vcpu->arch.halt_request = 0;
4697                                return kvm_emulate_halt(vcpu);
4698                        }
4699                        return 1;
4700                }
4701                return 0;
4702        }
4703
4704        /*
4705         * Forward all other exceptions that are valid in real mode.
4706         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4707         *        the required debugging infrastructure rework.
4708         */
4709        kvm_queue_exception(vcpu, vec);
4710        return 1;
4711}
4712
4713/*
4714 * Trigger machine check on the host. We assume all the MSRs are already set up
4715 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4716 * We pass a fake environment to the machine check handler because we want
4717 * the guest to be always treated like user space, no matter what context
4718 * it used internally.
4719 */
4720static void kvm_machine_check(void)
4721{
4722#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4723        struct pt_regs regs = {
4724                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4725                .flags = X86_EFLAGS_IF,
4726        };
4727
4728        do_machine_check(&regs, 0);
4729#endif
4730}
4731
4732static int handle_machine_check(struct kvm_vcpu *vcpu)
4733{
4734        /* already handled by vcpu_run */
4735        return 1;
4736}
4737
4738static int handle_exception(struct kvm_vcpu *vcpu)
4739{
4740        struct vcpu_vmx *vmx = to_vmx(vcpu);
4741        struct kvm_run *kvm_run = vcpu->run;
4742        u32 intr_info, ex_no, error_code;
4743        unsigned long cr2, rip, dr6;
4744        u32 vect_info;
4745        enum emulation_result er;
4746
4747        vect_info = vmx->idt_vectoring_info;
4748        intr_info = vmx->exit_intr_info;
4749
4750        if (is_machine_check(intr_info))
4751                return handle_machine_check(vcpu);
4752
4753        if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4754                return 1;  /* already handled by vmx_vcpu_run() */
4755
4756        if (is_no_device(intr_info)) {
4757                vmx_fpu_activate(vcpu);
4758                return 1;
4759        }
4760
4761        if (is_invalid_opcode(intr_info)) {
4762                er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4763                if (er != EMULATE_DONE)
4764                        kvm_queue_exception(vcpu, UD_VECTOR);
4765                return 1;
4766        }
4767
4768        error_code = 0;
4769        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4770                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4771
4772        /*
4773         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4774         * MMIO, it is better to report an internal error.
4775         * See the comments in vmx_handle_exit.
4776         */
4777        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4778            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4779                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4780                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4781                vcpu->run->internal.ndata = 2;
4782                vcpu->run->internal.data[0] = vect_info;
4783                vcpu->run->internal.data[1] = intr_info;
4784                return 0;
4785        }
4786
4787        if (is_page_fault(intr_info)) {
4788                /* EPT won't cause page fault directly */
4789                BUG_ON(enable_ept);
4790                cr2 = vmcs_readl(EXIT_QUALIFICATION);
4791                trace_kvm_page_fault(cr2, error_code);
4792
4793                if (kvm_event_needs_reinjection(vcpu))
4794                        kvm_mmu_unprotect_page_virt(vcpu, cr2);
4795                return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4796        }
4797
4798        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4799
4800        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4801                return handle_rmode_exception(vcpu, ex_no, error_code);
4802
4803        switch (ex_no) {
4804        case DB_VECTOR:
4805                dr6 = vmcs_readl(EXIT_QUALIFICATION);
4806                if (!(vcpu->guest_debug &
4807                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4808                        vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4809                        kvm_queue_exception(vcpu, DB_VECTOR);
4810                        return 1;
4811                }
4812                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4813                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4814                /* fall through */
4815        case BP_VECTOR:
4816                /*
4817                 * Update instruction length as we may reinject #BP from
4818                 * user space while in guest debugging mode. Reading it for
4819                 * #DB as well causes no harm, it is not used in that case.
4820                 */
4821                vmx->vcpu.arch.event_exit_inst_len =
4822                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4823                kvm_run->exit_reason = KVM_EXIT_DEBUG;
4824                rip = kvm_rip_read(vcpu);
4825                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4826                kvm_run->debug.arch.exception = ex_no;
4827                break;
4828        default:
4829                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4830                kvm_run->ex.exception = ex_no;
4831                kvm_run->ex.error_code = error_code;
4832                break;
4833        }
4834        return 0;
4835}
4836
4837static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4838{
4839        ++vcpu->stat.irq_exits;
4840        return 1;
4841}
4842
4843static int handle_triple_fault(struct kvm_vcpu *vcpu)
4844{
4845        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4846        return 0;
4847}
4848
4849static int handle_io(struct kvm_vcpu *vcpu)
4850{
4851        unsigned long exit_qualification;
4852        int size, in, string;
4853        unsigned port;
4854
4855        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4856        string = (exit_qualification & 16) != 0;
4857        in = (exit_qualification & 8) != 0;
4858
4859        ++vcpu->stat.io_exits;
4860
4861        if (string || in)
4862                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4863
4864        port = exit_qualification >> 16;
4865        size = (exit_qualification & 7) + 1;
4866        skip_emulated_instruction(vcpu);
4867
4868        return kvm_fast_pio_out(vcpu, size, port);
4869}
4870
4871static void
4872vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4873{
4874        /*
4875         * Patch in the VMCALL instruction:
4876         */
4877        hypercall[0] = 0x0f;
4878        hypercall[1] = 0x01;
4879        hypercall[2] = 0xc1;
4880}
4881
4882/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4883static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4884{
4885        if (is_guest_mode(vcpu)) {
4886                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4887                unsigned long orig_val = val;
4888
4889                /*
4890                 * We get here when L2 changed cr0 in a way that did not change
4891                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4892                 * but did change L0 shadowed bits. So we first calculate the
4893                 * effective cr0 value that L1 would like to write into the
4894                 * hardware. It consists of the L2-owned bits from the new
4895                 * value combined with the L1-owned bits from L1's guest_cr0.
4896                 */
4897                val = (val & ~vmcs12->cr0_guest_host_mask) |
4898                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4899
4900                /* TODO: will have to take unrestricted guest mode into
4901                 * account */
4902                if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
4903                        return 1;
4904
4905                if (kvm_set_cr0(vcpu, val))
4906                        return 1;
4907                vmcs_writel(CR0_READ_SHADOW, orig_val);
4908                return 0;
4909        } else {
4910                if (to_vmx(vcpu)->nested.vmxon &&
4911                    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4912                        return 1;
4913                return kvm_set_cr0(vcpu, val);
4914        }
4915}
4916
4917static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4918{
4919        if (is_guest_mode(vcpu)) {
4920                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4921                unsigned long orig_val = val;
4922
4923                /* analogously to handle_set_cr0 */
4924                val = (val & ~vmcs12->cr4_guest_host_mask) |
4925                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4926                if (kvm_set_cr4(vcpu, val))
4927                        return 1;
4928                vmcs_writel(CR4_READ_SHADOW, orig_val);
4929                return 0;
4930        } else
4931                return kvm_set_cr4(vcpu, val);
4932}
4933
4934/* called to set cr0 as approriate for clts instruction exit. */
4935static void handle_clts(struct kvm_vcpu *vcpu)
4936{
4937        if (is_guest_mode(vcpu)) {
4938                /*
4939                 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4940                 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4941                 * just pretend it's off (also in arch.cr0 for fpu_activate).
4942                 */
4943                vmcs_writel(CR0_READ_SHADOW,
4944                        vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4945                vcpu->arch.cr0 &= ~X86_CR0_TS;
4946        } else
4947                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4948}
4949
4950static int handle_cr(struct kvm_vcpu *vcpu)
4951{
4952        unsigned long exit_qualification, val;
4953        int cr;
4954        int reg;
4955        int err;
4956
4957        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4958        cr = exit_qualification & 15;
4959        reg = (exit_qualification >> 8) & 15;
4960        switch ((exit_qualification >> 4) & 3) {
4961        case 0: /* mov to cr */
4962                val = kvm_register_read(vcpu, reg);
4963                trace_kvm_cr_write(cr, val);
4964                switch (cr) {
4965                case 0:
4966                        err = handle_set_cr0(vcpu, val);
4967                        kvm_complete_insn_gp(vcpu, err);
4968                        return 1;
4969                case 3:
4970                        err = kvm_set_cr3(vcpu, val);
4971                        kvm_complete_insn_gp(vcpu, err);
4972                        return 1;
4973                case 4:
4974                        err = handle_set_cr4(vcpu, val);
4975                        kvm_complete_insn_gp(vcpu, err);
4976                        return 1;
4977                case 8: {
4978                                u8 cr8_prev = kvm_get_cr8(vcpu);
4979                                u8 cr8 = kvm_register_read(vcpu, reg);
4980                                err = kvm_set_cr8(vcpu, cr8);
4981                                kvm_complete_insn_gp(vcpu, err);
4982                                if (irqchip_in_kernel(vcpu->kvm))
4983                                        return 1;
4984                                if (cr8_prev <= cr8)
4985                                        return 1;
4986                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4987                                return 0;
4988                        }
4989                }
4990                break;
4991        case 2: /* clts */
4992                handle_clts(vcpu);
4993                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4994                skip_emulated_instruction(vcpu);
4995                vmx_fpu_activate(vcpu);
4996                return 1;
4997        case 1: /*mov from cr*/
4998                switch (cr) {
4999                case 3:
5000                        val = kvm_read_cr3(vcpu);
5001                        kvm_register_write(vcpu, reg, val);
5002                        trace_kvm_cr_read(cr, val);
5003                        skip_emulated_instruction(vcpu);
5004                        return 1;
5005                case 8:
5006                        val = kvm_get_cr8(vcpu);
5007                        kvm_register_write(vcpu, reg, val);
5008                        trace_kvm_cr_read(cr, val);
5009                        skip_emulated_instruction(vcpu);
5010                        return 1;
5011                }
5012                break;
5013        case 3: /* lmsw */
5014                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5015                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5016                kvm_lmsw(vcpu, val);
5017
5018                skip_emulated_instruction(vcpu);
5019                return 1;
5020        default:
5021                break;
5022        }
5023        vcpu->run->exit_reason = 0;
5024        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5025               (int)(exit_qualification >> 4) & 3, cr);
5026        return 0;
5027}
5028
5029static int handle_dr(struct kvm_vcpu *vcpu)
5030{
5031        unsigned long exit_qualification;
5032        int dr, reg;
5033
5034        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5035        if (!kvm_require_cpl(vcpu, 0))
5036                return 1;
5037        dr = vmcs_readl(GUEST_DR7);
5038        if (dr & DR7_GD) {
5039                /*
5040                 * As the vm-exit takes precedence over the debug trap, we
5041                 * need to emulate the latter, either for the host or the
5042                 * guest debugging itself.
5043                 */
5044                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5045                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5046                        vcpu->run->debug.arch.dr7 = dr;
5047                        vcpu->run->debug.arch.pc =
5048                                vmcs_readl(GUEST_CS_BASE) +
5049                                vmcs_readl(GUEST_RIP);
5050                        vcpu->run->debug.arch.exception = DB_VECTOR;
5051                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5052                        return 0;
5053                } else {
5054                        vcpu->arch.dr7 &= ~DR7_GD;
5055                        vcpu->arch.dr6 |= DR6_BD;
5056                        vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5057                        kvm_queue_exception(vcpu, DB_VECTOR);
5058                        return 1;
5059                }
5060        }
5061
5062        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5063        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5064        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5065        if (exit_qualification & TYPE_MOV_FROM_DR) {
5066                unsigned long val;
5067                if (!kvm_get_dr(vcpu, dr, &val))
5068                        kvm_register_write(vcpu, reg, val);
5069        } else
5070                kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
5071        skip_emulated_instruction(vcpu);
5072        return 1;
5073}
5074
5075static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5076{
5077        vmcs_writel(GUEST_DR7, val);
5078}
5079
5080static int handle_cpuid(struct kvm_vcpu *vcpu)
5081{
5082        kvm_emulate_cpuid(vcpu);
5083        return 1;
5084}
5085
5086static int handle_rdmsr(struct kvm_vcpu *vcpu)
5087{
5088        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5089        u64 data;
5090
5091        if (vmx_get_msr(vcpu, ecx, &data)) {
5092                trace_kvm_msr_read_ex(ecx);
5093                kvm_inject_gp(vcpu, 0);
5094                return 1;
5095        }
5096
5097        trace_kvm_msr_read(ecx, data);
5098
5099        /* FIXME: handling of bits 32:63 of rax, rdx */
5100        vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5101        vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5102        skip_emulated_instruction(vcpu);
5103        return 1;
5104}
5105
5106static int handle_wrmsr(struct kvm_vcpu *vcpu)
5107{
5108        struct msr_data msr;
5109        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5110        u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5111                | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5112
5113        msr.data = data;
5114        msr.index = ecx;
5115        msr.host_initiated = false;
5116        if (vmx_set_msr(vcpu, &msr) != 0) {
5117                trace_kvm_msr_write_ex(ecx, data);
5118                kvm_inject_gp(vcpu, 0);
5119                return 1;
5120        }
5121
5122        trace_kvm_msr_write(ecx, data);
5123        skip_emulated_instruction(vcpu);
5124        return 1;
5125}
5126
5127static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5128{
5129        kvm_make_request(KVM_REQ_EVENT, vcpu);
5130        return 1;
5131}
5132
5133static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5134{
5135        u32 cpu_based_vm_exec_control;
5136
5137        /* clear pending irq */
5138        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5139        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5140        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5141
5142        kvm_make_request(KVM_REQ_EVENT, vcpu);
5143
5144        ++vcpu->stat.irq_window_exits;
5145
5146        /*
5147         * If the user space waits to inject interrupts, exit as soon as
5148         * possible
5149         */
5150        if (!irqchip_in_kernel(vcpu->kvm) &&
5151            vcpu->run->request_interrupt_window &&
5152            !kvm_cpu_has_interrupt(vcpu)) {
5153                vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5154                return 0;
5155        }
5156        return 1;
5157}
5158
5159static int handle_halt(struct kvm_vcpu *vcpu)
5160{
5161        skip_emulated_instruction(vcpu);
5162        return kvm_emulate_halt(vcpu);
5163}
5164
5165static int handle_vmcall(struct kvm_vcpu *vcpu)
5166{
5167        skip_emulated_instruction(vcpu);
5168        kvm_emulate_hypercall(vcpu);
5169        return 1;
5170}
5171
5172static int handle_invd(struct kvm_vcpu *vcpu)
5173{
5174        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5175}
5176
5177static int handle_invlpg(struct kvm_vcpu *vcpu)
5178{
5179        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5180
5181        kvm_mmu_invlpg(vcpu, exit_qualification);
5182        skip_emulated_instruction(vcpu);
5183        return 1;
5184}
5185
5186static int handle_rdpmc(struct kvm_vcpu *vcpu)
5187{
5188        int err;
5189
5190        err = kvm_rdpmc(vcpu);
5191        kvm_complete_insn_gp(vcpu, err);
5192
5193        return 1;
5194}
5195
5196static int handle_wbinvd(struct kvm_vcpu *vcpu)
5197{
5198        skip_emulated_instruction(vcpu);
5199        kvm_emulate_wbinvd(vcpu);
5200        return 1;
5201}
5202
5203static int handle_xsetbv(struct kvm_vcpu *vcpu)
5204{
5205        u64 new_bv = kvm_read_edx_eax(vcpu);
5206        u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5207
5208        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5209                skip_emulated_instruction(vcpu);
5210        return 1;
5211}
5212
5213static int handle_apic_access(struct kvm_vcpu *vcpu)
5214{
5215        if (likely(fasteoi)) {
5216                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5217                int access_type, offset;
5218
5219                access_type = exit_qualification & APIC_ACCESS_TYPE;
5220                offset = exit_qualification & APIC_ACCESS_OFFSET;
5221                /*
5222                 * Sane guest uses MOV to write EOI, with written value
5223                 * not cared. So make a short-circuit here by avoiding
5224                 * heavy instruction emulation.
5225                 */
5226                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5227                    (offset == APIC_EOI)) {
5228                        kvm_lapic_set_eoi(vcpu);
5229                        skip_emulated_instruction(vcpu);
5230                        return 1;
5231                }
5232        }
5233        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5234}
5235
5236static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5237{
5238        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5239        int vector = exit_qualification & 0xff;
5240
5241        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5242        kvm_apic_set_eoi_accelerated(vcpu, vector);
5243        return 1;
5244}
5245
5246static int handle_apic_write(struct kvm_vcpu *vcpu)
5247{
5248        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5249        u32 offset = exit_qualification & 0xfff;
5250
5251        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5252        kvm_apic_write_nodecode(vcpu, offset);
5253        return 1;
5254}
5255
5256static int handle_task_switch(struct kvm_vcpu *vcpu)
5257{
5258        struct vcpu_vmx *vmx = to_vmx(vcpu);
5259        unsigned long exit_qualification;
5260        bool has_error_code = false;
5261        u32 error_code = 0;
5262        u16 tss_selector;
5263        int reason, type, idt_v, idt_index;
5264
5265        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5266        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5267        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5268
5269        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5270
5271        reason = (u32)exit_qualification >> 30;
5272        if (reason == TASK_SWITCH_GATE && idt_v) {
5273                switch (type) {
5274                case INTR_TYPE_NMI_INTR:
5275                        vcpu->arch.nmi_injected = false;
5276                        vmx_set_nmi_mask(vcpu, true);
5277                        break;
5278                case INTR_TYPE_EXT_INTR:
5279                case INTR_TYPE_SOFT_INTR:
5280                        kvm_clear_interrupt_queue(vcpu);
5281                        break;
5282                case INTR_TYPE_HARD_EXCEPTION:
5283                        if (vmx->idt_vectoring_info &
5284                            VECTORING_INFO_DELIVER_CODE_MASK) {
5285                                has_error_code = true;
5286                                error_code =
5287                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
5288                        }
5289                        /* fall through */
5290                case INTR_TYPE_SOFT_EXCEPTION:
5291                        kvm_clear_exception_queue(vcpu);
5292                        break;
5293                default:
5294                        break;
5295                }
5296        }
5297        tss_selector = exit_qualification;
5298
5299        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5300                       type != INTR_TYPE_EXT_INTR &&
5301                       type != INTR_TYPE_NMI_INTR))
5302                skip_emulated_instruction(vcpu);
5303
5304        if (kvm_task_switch(vcpu, tss_selector,
5305                            type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5306                            has_error_code, error_code) == EMULATE_FAIL) {
5307                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5308                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5309                vcpu->run->internal.ndata = 0;
5310                return 0;
5311        }
5312
5313        /* clear all local breakpoint enable flags */
5314        vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5315
5316        /*
5317         * TODO: What about debug traps on tss switch?
5318         *       Are we supposed to inject them and update dr6?
5319         */
5320
5321        return 1;
5322}
5323
5324static int handle_ept_violation(struct kvm_vcpu *vcpu)
5325{
5326        unsigned long exit_qualification;
5327        gpa_t gpa;
5328        u32 error_code;
5329        int gla_validity;
5330
5331        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5332
5333        gla_validity = (exit_qualification >> 7) & 0x3;
5334        if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5335                printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5336                printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5337                        (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5338                        vmcs_readl(GUEST_LINEAR_ADDRESS));
5339                printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5340                        (long unsigned int)exit_qualification);
5341                vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5342                vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5343                return 0;
5344        }
5345
5346        /*
5347         * EPT violation happened while executing iret from NMI,
5348         * "blocked by NMI" bit has to be set before next VM entry.
5349         * There are errata that may cause this bit to not be set:
5350         * AAK134, BY25.
5351         */
5352        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5353                        cpu_has_virtual_nmis() &&
5354                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5355                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5356
5357        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5358        trace_kvm_page_fault(gpa, exit_qualification);
5359
5360        /* It is a write fault? */
5361        error_code = exit_qualification & (1U << 1);
5362        /* It is a fetch fault? */
5363        error_code |= (exit_qualification & (1U << 2)) << 2;
5364        /* ept page table is present? */
5365        error_code |= (exit_qualification >> 3) & 0x1;
5366
5367        vcpu->arch.exit_qualification = exit_qualification;
5368
5369        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5370}
5371
5372static u64 ept_rsvd_mask(u64 spte, int level)
5373{
5374        int i;
5375        u64 mask = 0;
5376
5377        for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5378                mask |= (1ULL << i);
5379
5380        if (level > 2)
5381                /* bits 7:3 reserved */
5382                mask |= 0xf8;
5383        else if (level == 2) {
5384                if (spte & (1ULL << 7))
5385                        /* 2MB ref, bits 20:12 reserved */
5386                        mask |= 0x1ff000;
5387                else
5388                        /* bits 6:3 reserved */
5389                        mask |= 0x78;
5390        }
5391
5392        return mask;
5393}
5394
5395static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5396                                       int level)
5397{
5398        printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5399
5400        /* 010b (write-only) */
5401        WARN_ON((spte & 0x7) == 0x2);
5402
5403        /* 110b (write/execute) */
5404        WARN_ON((spte & 0x7) == 0x6);
5405
5406        /* 100b (execute-only) and value not supported by logical processor */
5407        if (!cpu_has_vmx_ept_execute_only())
5408                WARN_ON((spte & 0x7) == 0x4);
5409
5410        /* not 000b */
5411        if ((spte & 0x7)) {
5412                u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5413
5414                if (rsvd_bits != 0) {
5415                        printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5416                                         __func__, rsvd_bits);
5417                        WARN_ON(1);
5418                }
5419
5420                if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5421                        u64 ept_mem_type = (spte & 0x38) >> 3;
5422
5423                        if (ept_mem_type == 2 || ept_mem_type == 3 ||
5424                            ept_mem_type == 7) {
5425                                printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5426                                                __func__, ept_mem_type);
5427                                WARN_ON(1);
5428                        }
5429                }
5430        }
5431}
5432
5433static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5434{
5435        u64 sptes[4];
5436        int nr_sptes, i, ret;
5437        gpa_t gpa;
5438
5439        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5440
5441        ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5442        if (likely(ret == RET_MMIO_PF_EMULATE))
5443                return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5444                                              EMULATE_DONE;
5445
5446        if (unlikely(ret == RET_MMIO_PF_INVALID))
5447                return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5448
5449        if (unlikely(ret == RET_MMIO_PF_RETRY))
5450                return 1;
5451
5452        /* It is the real ept misconfig */
5453        printk(KERN_ERR "EPT: Misconfiguration.\n");
5454        printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5455
5456        nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5457
5458        for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5459                ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5460
5461        vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5462        vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5463
5464        return 0;
5465}
5466
5467static int handle_nmi_window(struct kvm_vcpu *vcpu)
5468{
5469        u32 cpu_based_vm_exec_control;
5470
5471        /* clear pending NMI */
5472        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5473        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5474        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5475        ++vcpu->stat.nmi_window_exits;
5476        kvm_make_request(KVM_REQ_EVENT, vcpu);
5477
5478        return 1;
5479}
5480
5481static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5482{
5483        struct vcpu_vmx *vmx = to_vmx(vcpu);
5484        enum emulation_result err = EMULATE_DONE;
5485        int ret = 1;
5486        u32 cpu_exec_ctrl;
5487        bool intr_window_requested;
5488        unsigned count = 130;
5489
5490        cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5491        intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5492
5493        while (!guest_state_valid(vcpu) && count-- != 0) {
5494                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5495                        return handle_interrupt_window(&vmx->vcpu);
5496
5497                if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5498                        return 1;
5499
5500                err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5501
5502                if (err == EMULATE_USER_EXIT) {
5503                        ++vcpu->stat.mmio_exits;
5504                        ret = 0;
5505                        goto out;
5506                }
5507
5508                if (err != EMULATE_DONE) {
5509                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5510                        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5511                        vcpu->run->internal.ndata = 0;
5512                        return 0;
5513                }
5514
5515                if (vcpu->arch.halt_request) {
5516                        vcpu->arch.halt_request = 0;
5517                        ret = kvm_emulate_halt(vcpu);
5518                        goto out;
5519                }
5520
5521                if (signal_pending(current))
5522                        goto out;
5523                if (need_resched())
5524                        schedule();
5525        }
5526
5527        vmx->emulation_required = emulation_required(vcpu);
5528out:
5529        return ret;
5530}
5531
5532/*
5533 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5534 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5535 */
5536static int handle_pause(struct kvm_vcpu *vcpu)
5537{
5538        skip_emulated_instruction(vcpu);
5539        kvm_vcpu_on_spin(vcpu);
5540
5541        return 1;
5542}
5543
5544static int handle_invalid_op(struct kvm_vcpu *vcpu)
5545{
5546        kvm_queue_exception(vcpu, UD_VECTOR);
5547        return 1;
5548}
5549
5550/*
5551 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5552 * We could reuse a single VMCS for all the L2 guests, but we also want the
5553 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5554 * allows keeping them loaded on the processor, and in the future will allow
5555 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5556 * every entry if they never change.
5557 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5558 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5559 *
5560 * The following functions allocate and free a vmcs02 in this pool.
5561 */
5562
5563/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5564static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5565{
5566        struct vmcs02_list *item;
5567        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5568                if (item->vmptr == vmx->nested.current_vmptr) {
5569                        list_move(&item->list, &vmx->nested.vmcs02_pool);
5570                        return &item->vmcs02;
5571                }
5572
5573        if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5574                /* Recycle the least recently used VMCS. */
5575                item = list_entry(vmx->nested.vmcs02_pool.prev,
5576                        struct vmcs02_list, list);
5577                item->vmptr = vmx->nested.current_vmptr;
5578                list_move(&item->list, &vmx->nested.vmcs02_pool);
5579                return &item->vmcs02;
5580        }
5581
5582        /* Create a new VMCS */
5583        item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5584        if (!item)
5585                return NULL;
5586        item->vmcs02.vmcs = alloc_vmcs();
5587        if (!item->vmcs02.vmcs) {
5588                kfree(item);
5589                return NULL;
5590        }
5591        loaded_vmcs_init(&item->vmcs02);
5592        item->vmptr = vmx->nested.current_vmptr;
5593        list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5594        vmx->nested.vmcs02_num++;
5595        return &item->vmcs02;
5596}
5597
5598/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5599static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5600{
5601        struct vmcs02_list *item;
5602        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5603                if (item->vmptr == vmptr) {
5604                        free_loaded_vmcs(&item->vmcs02);
5605                        list_del(&item->list);
5606                        kfree(item);
5607                        vmx->nested.vmcs02_num--;
5608                        return;
5609                }
5610}
5611
5612/*
5613 * Free all VMCSs saved for this vcpu, except the one pointed by
5614 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5615 * currently used, if running L2), and vmcs01 when running L2.
5616 */
5617static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5618{
5619        struct vmcs02_list *item, *n;
5620        list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5621                if (vmx->loaded_vmcs != &item->vmcs02)
5622                        free_loaded_vmcs(&item->vmcs02);
5623                list_del(&item->list);
5624                kfree(item);
5625        }
5626        vmx->nested.vmcs02_num = 0;
5627
5628        if (vmx->loaded_vmcs != &vmx->vmcs01)
5629                free_loaded_vmcs(&vmx->vmcs01);
5630}
5631
5632/*
5633 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5634 * set the success or error code of an emulated VMX instruction, as specified
5635 * by Vol 2B, VMX Instruction Reference, "Conventions".
5636 */
5637static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5638{
5639        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5640                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5641                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5642}
5643
5644static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5645{
5646        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5647                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5648                            X86_EFLAGS_SF | X86_EFLAGS_OF))
5649                        | X86_EFLAGS_CF);
5650}
5651
5652static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5653                                        u32 vm_instruction_error)
5654{
5655        if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5656                /*
5657                 * failValid writes the error number to the current VMCS, which
5658                 * can't be done there isn't a current VMCS.
5659                 */
5660                nested_vmx_failInvalid(vcpu);
5661                return;
5662        }
5663        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5664                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5665                            X86_EFLAGS_SF | X86_EFLAGS_OF))
5666                        | X86_EFLAGS_ZF);
5667        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5668        /*
5669         * We don't need to force a shadow sync because
5670         * VM_INSTRUCTION_ERROR is not shadowed
5671         */
5672}
5673
5674/*
5675 * Emulate the VMXON instruction.
5676 * Currently, we just remember that VMX is active, and do not save or even
5677 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5678 * do not currently need to store anything in that guest-allocated memory
5679 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5680 * argument is different from the VMXON pointer (which the spec says they do).
5681 */
5682static int handle_vmon(struct kvm_vcpu *vcpu)
5683{
5684        struct kvm_segment cs;
5685        struct vcpu_vmx *vmx = to_vmx(vcpu);
5686        struct vmcs *shadow_vmcs;
5687        const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5688                | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5689
5690        /* The Intel VMX Instruction Reference lists a bunch of bits that
5691         * are prerequisite to running VMXON, most notably cr4.VMXE must be
5692         * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5693         * Otherwise, we should fail with #UD. We test these now:
5694         */
5695        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5696            !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5697            (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5698                kvm_queue_exception(vcpu, UD_VECTOR);
5699                return 1;
5700        }
5701
5702        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5703        if (is_long_mode(vcpu) && !cs.l) {
5704                kvm_queue_exception(vcpu, UD_VECTOR);
5705                return 1;
5706        }
5707
5708        if (vmx_get_cpl(vcpu)) {
5709                kvm_inject_gp(vcpu, 0);
5710                return 1;
5711        }
5712        if (vmx->nested.vmxon) {
5713                nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5714                skip_emulated_instruction(vcpu);
5715                return 1;
5716        }
5717
5718        if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5719                        != VMXON_NEEDED_FEATURES) {
5720                kvm_inject_gp(vcpu, 0);
5721                return 1;
5722        }
5723
5724        if (enable_shadow_vmcs) {
5725                shadow_vmcs = alloc_vmcs();
5726                if (!shadow_vmcs)
5727                        return -ENOMEM;
5728                /* mark vmcs as shadow */
5729                shadow_vmcs->revision_id |= (1u << 31);
5730                /* init shadow vmcs */
5731                vmcs_clear(shadow_vmcs);
5732                vmx->nested.current_shadow_vmcs = shadow_vmcs;
5733        }
5734
5735        INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5736        vmx->nested.vmcs02_num = 0;
5737
5738        vmx->nested.vmxon = true;
5739
5740        skip_emulated_instruction(vcpu);
5741        nested_vmx_succeed(vcpu);
5742        return 1;
5743}
5744
5745/*
5746 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5747 * for running VMX instructions (except VMXON, whose prerequisites are
5748 * slightly different). It also specifies what exception to inject otherwise.
5749 */
5750static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5751{
5752        struct kvm_segment cs;
5753        struct vcpu_vmx *vmx = to_vmx(vcpu);
5754
5755        if (!vmx->nested.vmxon) {
5756                kvm_queue_exception(vcpu, UD_VECTOR);
5757                return 0;
5758        }
5759
5760        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5761        if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5762            (is_long_mode(vcpu) && !cs.l)) {
5763                kvm_queue_exception(vcpu, UD_VECTOR);
5764                return 0;
5765        }
5766
5767        if (vmx_get_cpl(vcpu)) {
5768                kvm_inject_gp(vcpu, 0);
5769                return 0;
5770        }
5771
5772        return 1;
5773}
5774
5775static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5776{
5777        u32 exec_control;
5778        if (enable_shadow_vmcs) {
5779                if (vmx->nested.current_vmcs12 != NULL) {
5780                        /* copy to memory all shadowed fields in case
5781                           they were modified */
5782                        copy_shadow_to_vmcs12(vmx);
5783                        vmx->nested.sync_shadow_vmcs = false;
5784                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5785                        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5786                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5787                        vmcs_write64(VMCS_LINK_POINTER, -1ull);
5788                }
5789        }
5790        kunmap(vmx->nested.current_vmcs12_page);
5791        nested_release_page(vmx->nested.current_vmcs12_page);
5792}
5793
5794/*
5795 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5796 * just stops using VMX.
5797 */
5798static void free_nested(struct vcpu_vmx *vmx)
5799{
5800        if (!vmx->nested.vmxon)
5801                return;
5802        vmx->nested.vmxon = false;
5803        if (vmx->nested.current_vmptr != -1ull) {
5804                nested_release_vmcs12(vmx);
5805                vmx->nested.current_vmptr = -1ull;
5806                vmx->nested.current_vmcs12 = NULL;
5807        }
5808        if (enable_shadow_vmcs)
5809                free_vmcs(vmx->nested.current_shadow_vmcs);
5810        /* Unpin physical memory we referred to in current vmcs02 */
5811        if (vmx->nested.apic_access_page) {
5812                nested_release_page(vmx->nested.apic_access_page);
5813                vmx->nested.apic_access_page = 0;
5814        }
5815
5816        nested_free_all_saved_vmcss(vmx);
5817}
5818
5819/* Emulate the VMXOFF instruction */
5820static int handle_vmoff(struct kvm_vcpu *vcpu)
5821{
5822        if (!nested_vmx_check_permission(vcpu))
5823                return 1;
5824        free_nested(to_vmx(vcpu));
5825        skip_emulated_instruction(vcpu);
5826        nested_vmx_succeed(vcpu);
5827        return 1;
5828}
5829
5830/*
5831 * Decode the memory-address operand of a vmx instruction, as recorded on an
5832 * exit caused by such an instruction (run by a guest hypervisor).
5833 * On success, returns 0. When the operand is invalid, returns 1 and throws
5834 * #UD or #GP.
5835 */
5836static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5837                                 unsigned long exit_qualification,
5838                                 u32 vmx_instruction_info, gva_t *ret)
5839{
5840        /*
5841         * According to Vol. 3B, "Information for VM Exits Due to Instruction
5842         * Execution", on an exit, vmx_instruction_info holds most of the
5843         * addressing components of the operand. Only the displacement part
5844         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5845         * For how an actual address is calculated from all these components,
5846         * refer to Vol. 1, "Operand Addressing".
5847         */
5848        int  scaling = vmx_instruction_info & 3;
5849        int  addr_size = (vmx_instruction_info >> 7) & 7;
5850        bool is_reg = vmx_instruction_info & (1u << 10);
5851        int  seg_reg = (vmx_instruction_info >> 15) & 7;
5852        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5853        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5854        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5855        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5856
5857        if (is_reg) {
5858                kvm_queue_exception(vcpu, UD_VECTOR);
5859                return 1;
5860        }
5861
5862        /* Addr = segment_base + offset */
5863        /* offset = base + [index * scale] + displacement */
5864        *ret = vmx_get_segment_base(vcpu, seg_reg);
5865        if (base_is_valid)
5866                *ret += kvm_register_read(vcpu, base_reg);
5867        if (index_is_valid)
5868                *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5869        *ret += exit_qualification; /* holds the displacement */
5870
5871        if (addr_size == 1) /* 32 bit */
5872                *ret &= 0xffffffff;
5873
5874        /*
5875         * TODO: throw #GP (and return 1) in various cases that the VM*
5876         * instructions require it - e.g., offset beyond segment limit,
5877         * unusable or unreadable/unwritable segment, non-canonical 64-bit
5878         * address, and so on. Currently these are not checked.
5879         */
5880        return 0;
5881}
5882
5883/* Emulate the VMCLEAR instruction */
5884static int handle_vmclear(struct kvm_vcpu *vcpu)
5885{
5886        struct vcpu_vmx *vmx = to_vmx(vcpu);
5887        gva_t gva;
5888        gpa_t vmptr;
5889        struct vmcs12 *vmcs12;
5890        struct page *page;
5891        struct x86_exception e;
5892
5893        if (!nested_vmx_check_permission(vcpu))
5894                return 1;
5895
5896        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5897                        vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5898                return 1;
5899
5900        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5901                                sizeof(vmptr), &e)) {
5902                kvm_inject_page_fault(vcpu, &e);
5903                return 1;
5904        }
5905
5906        if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5907                nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5908                skip_emulated_instruction(vcpu);
5909                return 1;
5910        }
5911
5912        if (vmptr == vmx->nested.current_vmptr) {
5913                nested_release_vmcs12(vmx);
5914                vmx->nested.current_vmptr = -1ull;
5915                vmx->nested.current_vmcs12 = NULL;
5916        }
5917
5918        page = nested_get_page(vcpu, vmptr);
5919        if (page == NULL) {
5920                /*
5921                 * For accurate processor emulation, VMCLEAR beyond available
5922                 * physical memory should do nothing at all. However, it is
5923                 * possible that a nested vmx bug, not a guest hypervisor bug,
5924                 * resulted in this case, so let's shut down before doing any
5925                 * more damage:
5926                 */
5927                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5928                return 1;
5929        }
5930        vmcs12 = kmap(page);
5931        vmcs12->launch_state = 0;
5932        kunmap(page);
5933        nested_release_page(page);
5934
5935        nested_free_vmcs02(vmx, vmptr);
5936
5937        skip_emulated_instruction(vcpu);
5938        nested_vmx_succeed(vcpu);
5939        return 1;
5940}
5941
5942static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5943
5944/* Emulate the VMLAUNCH instruction */
5945static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5946{
5947        return nested_vmx_run(vcpu, true);
5948}
5949
5950/* Emulate the VMRESUME instruction */
5951static int handle_vmresume(struct kvm_vcpu *vcpu)
5952{
5953
5954        return nested_vmx_run(vcpu, false);
5955}
5956
5957enum vmcs_field_type {
5958        VMCS_FIELD_TYPE_U16 = 0,
5959        VMCS_FIELD_TYPE_U64 = 1,
5960        VMCS_FIELD_TYPE_U32 = 2,
5961        VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5962};
5963
5964static inline int vmcs_field_type(unsigned long field)
5965{
5966        if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5967                return VMCS_FIELD_TYPE_U32;
5968        return (field >> 13) & 0x3 ;
5969}
5970
5971static inline int vmcs_field_readonly(unsigned long field)
5972{
5973        return (((field >> 10) & 0x3) == 1);
5974}
5975
5976/*
5977 * Read a vmcs12 field. Since these can have varying lengths and we return
5978 * one type, we chose the biggest type (u64) and zero-extend the return value
5979 * to that size. Note that the caller, handle_vmread, might need to use only
5980 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5981 * 64-bit fields are to be returned).
5982 */
5983static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5984                                        unsigned long field, u64 *ret)
5985{
5986        short offset = vmcs_field_to_offset(field);
5987        char *p;
5988
5989        if (offset < 0)
5990                return 0;
5991
5992        p = ((char *)(get_vmcs12(vcpu))) + offset;
5993
5994        switch (vmcs_field_type(field)) {
5995        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5996                *ret = *((natural_width *)p);
5997                return 1;
5998        case VMCS_FIELD_TYPE_U16:
5999                *ret = *((u16 *)p);
6000                return 1;
6001        case VMCS_FIELD_TYPE_U32:
6002                *ret = *((u32 *)p);
6003                return 1;
6004        case VMCS_FIELD_TYPE_U64:
6005                *ret = *((u64 *)p);
6006                return 1;
6007        default:
6008                return 0; /* can never happen. */
6009        }
6010}
6011
6012
6013static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6014                                    unsigned long field, u64 field_value){
6015        short offset = vmcs_field_to_offset(field);
6016        char *p = ((char *) get_vmcs12(vcpu)) + offset;
6017        if (offset < 0)
6018                return false;
6019
6020        switch (vmcs_field_type(field)) {
6021        case VMCS_FIELD_TYPE_U16:
6022                *(u16 *)p = field_value;
6023                return true;
6024        case VMCS_FIELD_TYPE_U32:
6025                *(u32 *)p = field_value;
6026                return true;
6027        case VMCS_FIELD_TYPE_U64:
6028                *(u64 *)p = field_value;
6029                return true;
6030        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6031                *(natural_width *)p = field_value;
6032                return true;
6033        default:
6034                return false; /* can never happen. */
6035        }
6036
6037}
6038
6039static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6040{
6041        int i;
6042        unsigned long field;
6043        u64 field_value;
6044        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6045        const unsigned long *fields = shadow_read_write_fields;
6046        const int num_fields = max_shadow_read_write_fields;
6047
6048        vmcs_load(shadow_vmcs);
6049
6050        for (i = 0; i < num_fields; i++) {
6051                field = fields[i];
6052                switch (vmcs_field_type(field)) {
6053                case VMCS_FIELD_TYPE_U16:
6054                        field_value = vmcs_read16(field);
6055                        break;
6056                case VMCS_FIELD_TYPE_U32:
6057                        field_value = vmcs_read32(field);
6058                        break;
6059                case VMCS_FIELD_TYPE_U64:
6060                        field_value = vmcs_read64(field);
6061                        break;
6062                case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6063                        field_value = vmcs_readl(field);
6064                        break;
6065                }
6066                vmcs12_write_any(&vmx->vcpu, field, field_value);
6067        }
6068
6069        vmcs_clear(shadow_vmcs);
6070        vmcs_load(vmx->loaded_vmcs->vmcs);
6071}
6072
6073static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6074{
6075        const unsigned long *fields[] = {
6076                shadow_read_write_fields,
6077                shadow_read_only_fields
6078        };
6079        const int max_fields[] = {
6080                max_shadow_read_write_fields,
6081                max_shadow_read_only_fields
6082        };
6083        int i, q;
6084        unsigned long field;
6085        u64 field_value = 0;
6086        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6087
6088        vmcs_load(shadow_vmcs);
6089
6090        for (q = 0; q < ARRAY_SIZE(fields); q++) {
6091                for (i = 0; i < max_fields[q]; i++) {
6092                        field = fields[q][i];
6093                        vmcs12_read_any(&vmx->vcpu, field, &field_value);
6094
6095                        switch (vmcs_field_type(field)) {
6096                        case VMCS_FIELD_TYPE_U16:
6097                                vmcs_write16(field, (u16)field_value);
6098                                break;
6099                        case VMCS_FIELD_TYPE_U32:
6100                                vmcs_write32(field, (u32)field_value);
6101                                break;
6102                        case VMCS_FIELD_TYPE_U64:
6103                                vmcs_write64(field, (u64)field_value);
6104                                break;
6105                        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6106                                vmcs_writel(field, (long)field_value);
6107                                break;
6108                        }
6109                }
6110        }
6111
6112        vmcs_clear(shadow_vmcs);
6113        vmcs_load(vmx->loaded_vmcs->vmcs);
6114}
6115
6116/*
6117 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6118 * used before) all generate the same failure when it is missing.
6119 */
6120static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6121{
6122        struct vcpu_vmx *vmx = to_vmx(vcpu);
6123        if (vmx->nested.current_vmptr == -1ull) {
6124                nested_vmx_failInvalid(vcpu);
6125                skip_emulated_instruction(vcpu);
6126                return 0;
6127        }
6128        return 1;
6129}
6130
6131static int handle_vmread(struct kvm_vcpu *vcpu)
6132{
6133        unsigned long field;
6134        u64 field_value;
6135        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6136        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6137        gva_t gva = 0;
6138
6139        if (!nested_vmx_check_permission(vcpu) ||
6140            !nested_vmx_check_vmcs12(vcpu))
6141                return 1;
6142
6143        /* Decode instruction info and find the field to read */
6144        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6145        /* Read the field, zero-extended to a u64 field_value */
6146        if (!vmcs12_read_any(vcpu, field, &field_value)) {
6147                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6148                skip_emulated_instruction(vcpu);
6149                return 1;
6150        }
6151        /*
6152         * Now copy part of this value to register or memory, as requested.
6153         * Note that the number of bits actually copied is 32 or 64 depending
6154         * on the guest's mode (32 or 64 bit), not on the given field's length.
6155         */
6156        if (vmx_instruction_info & (1u << 10)) {
6157                kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6158                        field_value);
6159        } else {
6160                if (get_vmx_mem_address(vcpu, exit_qualification,
6161                                vmx_instruction_info, &gva))
6162                        return 1;
6163                /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6164                kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6165                             &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6166        }
6167
6168        nested_vmx_succeed(vcpu);
6169        skip_emulated_instruction(vcpu);
6170        return 1;
6171}
6172
6173
6174static int handle_vmwrite(struct kvm_vcpu *vcpu)
6175{
6176        unsigned long field;
6177        gva_t gva;
6178        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6179        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6180        /* The value to write might be 32 or 64 bits, depending on L1's long
6181         * mode, and eventually we need to write that into a field of several
6182         * possible lengths. The code below first zero-extends the value to 64
6183         * bit (field_value), and then copies only the approriate number of
6184         * bits into the vmcs12 field.
6185         */
6186        u64 field_value = 0;
6187        struct x86_exception e;
6188
6189        if (!nested_vmx_check_permission(vcpu) ||
6190            !nested_vmx_check_vmcs12(vcpu))
6191                return 1;
6192
6193        if (vmx_instruction_info & (1u << 10))
6194                field_value = kvm_register_read(vcpu,
6195                        (((vmx_instruction_info) >> 3) & 0xf));
6196        else {
6197                if (get_vmx_mem_address(vcpu, exit_qualification,
6198                                vmx_instruction_info, &gva))
6199                        return 1;
6200                if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6201                           &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6202                        kvm_inject_page_fault(vcpu, &e);
6203                        return 1;
6204                }
6205        }
6206
6207
6208        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6209        if (vmcs_field_readonly(field)) {
6210                nested_vmx_failValid(vcpu,
6211                        VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6212                skip_emulated_instruction(vcpu);
6213                return 1;
6214        }
6215
6216        if (!vmcs12_write_any(vcpu, field, field_value)) {
6217                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6218                skip_emulated_instruction(vcpu);
6219                return 1;
6220        }
6221
6222        nested_vmx_succeed(vcpu);
6223        skip_emulated_instruction(vcpu);
6224        return 1;
6225}
6226
6227/* Emulate the VMPTRLD instruction */
6228static int handle_vmptrld(struct kvm_vcpu *vcpu)
6229{
6230        struct vcpu_vmx *vmx = to_vmx(vcpu);
6231        gva_t gva;
6232        gpa_t vmptr;
6233        struct x86_exception e;
6234        u32 exec_control;
6235
6236        if (!nested_vmx_check_permission(vcpu))
6237                return 1;
6238
6239        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6240                        vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6241                return 1;
6242
6243        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6244                                sizeof(vmptr), &e)) {
6245                kvm_inject_page_fault(vcpu, &e);
6246                return 1;
6247        }
6248
6249        if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6250                nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6251                skip_emulated_instruction(vcpu);
6252                return 1;
6253        }
6254
6255        if (vmx->nested.current_vmptr != vmptr) {
6256                struct vmcs12 *new_vmcs12;
6257                struct page *page;
6258                page = nested_get_page(vcpu, vmptr);
6259                if (page == NULL) {
6260                        nested_vmx_failInvalid(vcpu);
6261                        skip_emulated_instruction(vcpu);
6262                        return 1;
6263                }
6264                new_vmcs12 = kmap(page);
6265                if (new_vmcs12->revision_id != VMCS12_REVISION) {
6266                        kunmap(page);
6267                        nested_release_page_clean(page);
6268                        nested_vmx_failValid(vcpu,
6269                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6270                        skip_emulated_instruction(vcpu);
6271                        return 1;
6272                }
6273                if (vmx->nested.current_vmptr != -1ull)
6274                        nested_release_vmcs12(vmx);
6275
6276                vmx->nested.current_vmptr = vmptr;
6277                vmx->nested.current_vmcs12 = new_vmcs12;
6278                vmx->nested.current_vmcs12_page = page;
6279                if (enable_shadow_vmcs) {
6280                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6281                        exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6282                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6283                        vmcs_write64(VMCS_LINK_POINTER,
6284                                     __pa(vmx->nested.current_shadow_vmcs));
6285                        vmx->nested.sync_shadow_vmcs = true;
6286                }
6287        }
6288
6289        nested_vmx_succeed(vcpu);
6290        skip_emulated_instruction(vcpu);
6291        return 1;
6292}
6293
6294/* Emulate the VMPTRST instruction */
6295static int handle_vmptrst(struct kvm_vcpu *vcpu)
6296{
6297        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6298        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6299        gva_t vmcs_gva;
6300        struct x86_exception e;
6301
6302        if (!nested_vmx_check_permission(vcpu))
6303                return 1;
6304
6305        if (get_vmx_mem_address(vcpu, exit_qualification,
6306                        vmx_instruction_info, &vmcs_gva))
6307                return 1;
6308        /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6309        if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6310                                 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6311                                 sizeof(u64), &e)) {
6312                kvm_inject_page_fault(vcpu, &e);
6313                return 1;
6314        }
6315        nested_vmx_succeed(vcpu);
6316        skip_emulated_instruction(vcpu);
6317        return 1;
6318}
6319
6320/* Emulate the INVEPT instruction */
6321static int handle_invept(struct kvm_vcpu *vcpu)
6322{
6323        u32 vmx_instruction_info, types;
6324        unsigned long type;
6325        gva_t gva;
6326        struct x86_exception e;
6327        struct {
6328                u64 eptp, gpa;
6329        } operand;
6330        u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6331
6332        if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6333            !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6334                kvm_queue_exception(vcpu, UD_VECTOR);
6335                return 1;
6336        }
6337
6338        if (!nested_vmx_check_permission(vcpu))
6339                return 1;
6340
6341        if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6342                kvm_queue_exception(vcpu, UD_VECTOR);
6343                return 1;
6344        }
6345
6346        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6347        type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6348
6349        types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6350
6351        if (!(types & (1UL << type))) {
6352                nested_vmx_failValid(vcpu,
6353                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6354                return 1;
6355        }
6356
6357        /* According to the Intel VMX instruction reference, the memory
6358         * operand is read even if it isn't needed (e.g., for type==global)
6359         */
6360        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6361                        vmx_instruction_info, &gva))
6362                return 1;
6363        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6364                                sizeof(operand), &e)) {
6365                kvm_inject_page_fault(vcpu, &e);
6366                return 1;
6367        }
6368
6369        switch (type) {
6370        case VMX_EPT_EXTENT_CONTEXT:
6371                if ((operand.eptp & eptp_mask) !=
6372                                (nested_ept_get_cr3(vcpu) & eptp_mask))
6373                        break;
6374        case VMX_EPT_EXTENT_GLOBAL:
6375                kvm_mmu_sync_roots(vcpu);
6376                kvm_mmu_flush_tlb(vcpu);
6377                nested_vmx_succeed(vcpu);
6378                break;
6379        default:
6380                BUG_ON(1);
6381                break;
6382        }
6383
6384        skip_emulated_instruction(vcpu);
6385        return 1;
6386}
6387
6388/*
6389 * The exit handlers return 1 if the exit was handled fully and guest execution
6390 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6391 * to be done to userspace and return 0.
6392 */
6393static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6394        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6395        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6396        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6397        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6398        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6399        [EXIT_REASON_CR_ACCESS]               = handle_cr,
6400        [EXIT_REASON_DR_ACCESS]               = handle_dr,
6401        [EXIT_REASON_CPUID]                   = handle_cpuid,
6402        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6403        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6404        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6405        [EXIT_REASON_HLT]                     = handle_halt,
6406        [EXIT_REASON_INVD]                    = handle_invd,
6407        [EXIT_REASON_INVLPG]                  = handle_invlpg,
6408        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6409        [EXIT_REASON_VMCALL]                  = handle_vmcall,
6410        [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6411        [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6412        [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6413        [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6414        [EXIT_REASON_VMREAD]                  = handle_vmread,
6415        [EXIT_REASON_VMRESUME]                = handle_vmresume,
6416        [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6417        [EXIT_REASON_VMOFF]                   = handle_vmoff,
6418        [EXIT_REASON_VMON]                    = handle_vmon,
6419        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6420        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6421        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6422        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6423        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6424        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6425        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6426        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6427        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6428        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6429        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6430        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6431        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6432        [EXIT_REASON_INVEPT]                  = handle_invept,
6433};
6434
6435static const int kvm_vmx_max_exit_handlers =
6436        ARRAY_SIZE(kvm_vmx_exit_handlers);
6437
6438static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6439                                       struct vmcs12 *vmcs12)
6440{
6441        unsigned long exit_qualification;
6442        gpa_t bitmap, last_bitmap;
6443        unsigned int port;
6444        int size;
6445        u8 b;
6446
6447        if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6448                return 1;
6449
6450        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6451                return 0;
6452
6453        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6454
6455        port = exit_qualification >> 16;
6456        size = (exit_qualification & 7) + 1;
6457
6458        last_bitmap = (gpa_t)-1;
6459        b = -1;
6460
6461        while (size > 0) {
6462                if (port < 0x8000)
6463                        bitmap = vmcs12->io_bitmap_a;
6464                else if (port < 0x10000)
6465                        bitmap = vmcs12->io_bitmap_b;
6466                else
6467                        return 1;
6468                bitmap += (port & 0x7fff) / 8;
6469
6470                if (last_bitmap != bitmap)
6471                        if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6472                                return 1;
6473                if (b & (1 << (port & 7)))
6474                        return 1;
6475
6476                port++;
6477                size--;
6478                last_bitmap = bitmap;
6479        }
6480
6481        return 0;
6482}
6483
6484/*
6485 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6486 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6487 * disinterest in the current event (read or write a specific MSR) by using an
6488 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6489 */
6490static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6491        struct vmcs12 *vmcs12, u32 exit_reason)
6492{
6493        u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6494        gpa_t bitmap;
6495
6496        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6497                return 1;
6498
6499        /*
6500         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6501         * for the four combinations of read/write and low/high MSR numbers.
6502         * First we need to figure out which of the four to use:
6503         */
6504        bitmap = vmcs12->msr_bitmap;
6505        if (exit_reason == EXIT_REASON_MSR_WRITE)
6506                bitmap += 2048;
6507        if (msr_index >= 0xc0000000) {
6508                msr_index -= 0xc0000000;
6509                bitmap += 1024;
6510        }
6511
6512        /* Then read the msr_index'th bit from this bitmap: */
6513        if (msr_index < 1024*8) {
6514                unsigned char b;
6515                if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6516                        return 1;
6517                return 1 & (b >> (msr_index & 7));
6518        } else
6519                return 1; /* let L1 handle the wrong parameter */
6520}
6521
6522/*
6523 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6524 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6525 * intercept (via guest_host_mask etc.) the current event.
6526 */
6527static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6528        struct vmcs12 *vmcs12)
6529{
6530        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6531        int cr = exit_qualification & 15;
6532        int reg = (exit_qualification >> 8) & 15;
6533        unsigned long val = kvm_register_read(vcpu, reg);
6534
6535        switch ((exit_qualification >> 4) & 3) {
6536        case 0: /* mov to cr */
6537                switch (cr) {
6538                case 0:
6539                        if (vmcs12->cr0_guest_host_mask &
6540                            (val ^ vmcs12->cr0_read_shadow))
6541                                return 1;
6542                        break;
6543                case 3:
6544                        if ((vmcs12->cr3_target_count >= 1 &&
6545                                        vmcs12->cr3_target_value0 == val) ||
6546                                (vmcs12->cr3_target_count >= 2 &&
6547                                        vmcs12->cr3_target_value1 == val) ||
6548                                (vmcs12->cr3_target_count >= 3 &&
6549                                        vmcs12->cr3_target_value2 == val) ||
6550                                (vmcs12->cr3_target_count >= 4 &&
6551                                        vmcs12->cr3_target_value3 == val))
6552                                return 0;
6553                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6554                                return 1;
6555                        break;
6556                case 4:
6557                        if (vmcs12->cr4_guest_host_mask &
6558                            (vmcs12->cr4_read_shadow ^ val))
6559                                return 1;
6560                        break;
6561                case 8:
6562                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6563                                return 1;
6564                        break;
6565                }
6566                break;
6567        case 2: /* clts */
6568                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6569                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6570                        return 1;
6571                break;
6572        case 1: /* mov from cr */
6573                switch (cr) {
6574                case 3:
6575                        if (vmcs12->cpu_based_vm_exec_control &
6576                            CPU_BASED_CR3_STORE_EXITING)
6577                                return 1;
6578                        break;
6579                case 8:
6580                        if (vmcs12->cpu_based_vm_exec_control &
6581                            CPU_BASED_CR8_STORE_EXITING)
6582                                return 1;
6583                        break;
6584                }
6585                break;
6586        case 3: /* lmsw */
6587                /*
6588                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6589                 * cr0. Other attempted changes are ignored, with no exit.
6590                 */
6591                if (vmcs12->cr0_guest_host_mask & 0xe &
6592                    (val ^ vmcs12->cr0_read_shadow))
6593                        return 1;
6594                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6595                    !(vmcs12->cr0_read_shadow & 0x1) &&
6596                    (val & 0x1))
6597                        return 1;
6598                break;
6599        }
6600        return 0;
6601}
6602
6603/*
6604 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6605 * should handle it ourselves in L0 (and then continue L2). Only call this
6606 * when in is_guest_mode (L2).
6607 */
6608static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6609{
6610        u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6611        struct vcpu_vmx *vmx = to_vmx(vcpu);
6612        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6613        u32 exit_reason = vmx->exit_reason;
6614
6615        if (vmx->nested.nested_run_pending)
6616                return 0;
6617
6618        if (unlikely(vmx->fail)) {
6619                pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6620                                    vmcs_read32(VM_INSTRUCTION_ERROR));
6621                return 1;
6622        }
6623
6624        switch (exit_reason) {
6625        case EXIT_REASON_EXCEPTION_NMI:
6626                if (!is_exception(intr_info))
6627                        return 0;
6628                else if (is_page_fault(intr_info))
6629                        return enable_ept;
6630                return vmcs12->exception_bitmap &
6631                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6632        case EXIT_REASON_EXTERNAL_INTERRUPT:
6633                return 0;
6634        case EXIT_REASON_TRIPLE_FAULT:
6635                return 1;
6636        case EXIT_REASON_PENDING_INTERRUPT:
6637                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6638        case EXIT_REASON_NMI_WINDOW:
6639                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6640        case EXIT_REASON_TASK_SWITCH:
6641                return 1;
6642        case EXIT_REASON_CPUID:
6643                return 1;
6644        case EXIT_REASON_HLT:
6645                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6646        case EXIT_REASON_INVD:
6647                return 1;
6648        case EXIT_REASON_INVLPG:
6649                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6650        case EXIT_REASON_RDPMC:
6651                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6652        case EXIT_REASON_RDTSC:
6653                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6654        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6655        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6656        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6657        case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6658        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6659        case EXIT_REASON_INVEPT:
6660                /*
6661                 * VMX instructions trap unconditionally. This allows L1 to
6662                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6663                 */
6664                return 1;
6665        case EXIT_REASON_CR_ACCESS:
6666                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6667        case EXIT_REASON_DR_ACCESS:
6668                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6669        case EXIT_REASON_IO_INSTRUCTION:
6670                return nested_vmx_exit_handled_io(vcpu, vmcs12);
6671        case EXIT_REASON_MSR_READ:
6672        case EXIT_REASON_MSR_WRITE:
6673                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6674        case EXIT_REASON_INVALID_STATE:
6675                return 1;
6676        case EXIT_REASON_MWAIT_INSTRUCTION:
6677                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6678        case EXIT_REASON_MONITOR_INSTRUCTION:
6679                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6680        case EXIT_REASON_PAUSE_INSTRUCTION:
6681                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6682                        nested_cpu_has2(vmcs12,
6683                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6684        case EXIT_REASON_MCE_DURING_VMENTRY:
6685                return 0;
6686        case EXIT_REASON_TPR_BELOW_THRESHOLD:
6687                return 1;
6688        case EXIT_REASON_APIC_ACCESS:
6689                return nested_cpu_has2(vmcs12,
6690                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6691        case EXIT_REASON_EPT_VIOLATION:
6692                /*
6693                 * L0 always deals with the EPT violation. If nested EPT is
6694                 * used, and the nested mmu code discovers that the address is
6695                 * missing in the guest EPT table (EPT12), the EPT violation
6696                 * will be injected with nested_ept_inject_page_fault()
6697                 */
6698                return 0;
6699        case EXIT_REASON_EPT_MISCONFIG:
6700                /*
6701                 * L2 never uses directly L1's EPT, but rather L0's own EPT
6702                 * table (shadow on EPT) or a merged EPT table that L0 built
6703                 * (EPT on EPT). So any problems with the structure of the
6704                 * table is L0's fault.
6705                 */
6706                return 0;
6707        case EXIT_REASON_PREEMPTION_TIMER:
6708                return vmcs12->pin_based_vm_exec_control &
6709                        PIN_BASED_VMX_PREEMPTION_TIMER;
6710        case EXIT_REASON_WBINVD:
6711                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6712        case EXIT_REASON_XSETBV:
6713                return 1;
6714        default:
6715                return 1;
6716        }
6717}
6718
6719static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6720{
6721        *info1 = vmcs_readl(EXIT_QUALIFICATION);
6722        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6723}
6724
6725/*
6726 * The guest has exited.  See if we can fix it or if we need userspace
6727 * assistance.
6728 */
6729static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6730{
6731        struct vcpu_vmx *vmx = to_vmx(vcpu);
6732        u32 exit_reason = vmx->exit_reason;
6733        u32 vectoring_info = vmx->idt_vectoring_info;
6734
6735        /* If guest state is invalid, start emulating */
6736        if (vmx->emulation_required)
6737                return handle_invalid_guest_state(vcpu);
6738
6739        /*
6740         * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6741         * we did not inject a still-pending event to L1 now because of
6742         * nested_run_pending, we need to re-enable this bit.
6743         */
6744        if (vmx->nested.nested_run_pending)
6745                kvm_make_request(KVM_REQ_EVENT, vcpu);
6746
6747        if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6748            exit_reason == EXIT_REASON_VMRESUME))
6749                vmx->nested.nested_run_pending = 1;
6750        else
6751                vmx->nested.nested_run_pending = 0;
6752
6753        if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6754                nested_vmx_vmexit(vcpu);
6755                return 1;
6756        }
6757
6758        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6759                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6760                vcpu->run->fail_entry.hardware_entry_failure_reason
6761                        = exit_reason;
6762                return 0;
6763        }
6764
6765        if (unlikely(vmx->fail)) {
6766                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6767                vcpu->run->fail_entry.hardware_entry_failure_reason
6768                        = vmcs_read32(VM_INSTRUCTION_ERROR);
6769                return 0;
6770        }
6771
6772        /*
6773         * Note:
6774         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6775         * delivery event since it indicates guest is accessing MMIO.
6776         * The vm-exit can be triggered again after return to guest that
6777         * will cause infinite loop.
6778         */
6779        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6780                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6781                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
6782                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
6783                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6784                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6785                vcpu->run->internal.ndata = 2;
6786                vcpu->run->internal.data[0] = vectoring_info;
6787                vcpu->run->internal.data[1] = exit_reason;
6788                return 0;
6789        }
6790
6791        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6792            !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6793                                        get_vmcs12(vcpu))))) {
6794                if (vmx_interrupt_allowed(vcpu)) {
6795                        vmx->soft_vnmi_blocked = 0;
6796                } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6797                           vcpu->arch.nmi_pending) {
6798                        /*
6799                         * This CPU don't support us in finding the end of an
6800                         * NMI-blocked window if the guest runs with IRQs
6801                         * disabled. So we pull the trigger after 1 s of
6802                         * futile waiting, but inform the user about this.
6803                         */
6804                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6805                               "state on VCPU %d after 1 s timeout\n",
6806                               __func__, vcpu->vcpu_id);
6807                        vmx->soft_vnmi_blocked = 0;
6808                }
6809        }
6810
6811        if (exit_reason < kvm_vmx_max_exit_handlers
6812            && kvm_vmx_exit_handlers[exit_reason])
6813                return kvm_vmx_exit_handlers[exit_reason](vcpu);
6814        else {
6815                vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6816                vcpu->run->hw.hardware_exit_reason = exit_reason;
6817        }
6818        return 0;
6819}
6820
6821static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6822{
6823        if (irr == -1 || tpr < irr) {
6824                vmcs_write32(TPR_THRESHOLD, 0);
6825                return;
6826        }
6827
6828        vmcs_write32(TPR_THRESHOLD, irr);
6829}
6830
6831static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6832{
6833        u32 sec_exec_control;
6834
6835        /*
6836         * There is not point to enable virtualize x2apic without enable
6837         * apicv
6838         */
6839        if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6840                                !vmx_vm_has_apicv(vcpu->kvm))
6841                return;
6842
6843        if (!vm_need_tpr_shadow(vcpu->kvm))
6844                return;
6845
6846        sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6847
6848        if (set) {
6849                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6850                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6851        } else {
6852                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6853                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6854        }
6855        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6856
6857        vmx_set_msr_bitmap(vcpu);
6858}
6859
6860static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6861{
6862        u16 status;
6863        u8 old;
6864
6865        if (!vmx_vm_has_apicv(kvm))
6866                return;
6867
6868        if (isr == -1)
6869                isr = 0;
6870
6871        status = vmcs_read16(GUEST_INTR_STATUS);
6872        old = status >> 8;
6873        if (isr != old) {
6874                status &= 0xff;
6875                status |= isr << 8;
6876                vmcs_write16(GUEST_INTR_STATUS, status);
6877        }
6878}
6879
6880static void vmx_set_rvi(int vector)
6881{
6882        u16 status;
6883        u8 old;
6884
6885        status = vmcs_read16(GUEST_INTR_STATUS);
6886        old = (u8)status & 0xff;
6887        if ((u8)vector != old) {
6888                status &= ~0xff;
6889                status |= (u8)vector;
6890                vmcs_write16(GUEST_INTR_STATUS, status);
6891        }
6892}
6893
6894static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6895{
6896        if (max_irr == -1)
6897                return;
6898
6899        vmx_set_rvi(max_irr);
6900}
6901
6902static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6903{
6904        if (!vmx_vm_has_apicv(vcpu->kvm))
6905                return;
6906
6907        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6908        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6909        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6910        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6911}
6912
6913static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6914{
6915        u32 exit_intr_info;
6916
6917        if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6918              || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6919                return;
6920
6921        vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6922        exit_intr_info = vmx->exit_intr_info;
6923
6924        /* Handle machine checks before interrupts are enabled */
6925        if (is_machine_check(exit_intr_info))
6926                kvm_machine_check();
6927
6928        /* We need to handle NMIs before interrupts are enabled */
6929        if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6930            (exit_intr_info & INTR_INFO_VALID_MASK)) {
6931                kvm_before_handle_nmi(&vmx->vcpu);
6932                asm("int $2");
6933                kvm_after_handle_nmi(&vmx->vcpu);
6934        }
6935}
6936
6937static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6938{
6939        u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6940
6941        /*
6942         * If external interrupt exists, IF bit is set in rflags/eflags on the
6943         * interrupt stack frame, and interrupt will be enabled on a return
6944         * from interrupt handler.
6945         */
6946        if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6947                        == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6948                unsigned int vector;
6949                unsigned long entry;
6950                gate_desc *desc;
6951                struct vcpu_vmx *vmx = to_vmx(vcpu);
6952#ifdef CONFIG_X86_64
6953                unsigned long tmp;
6954#endif
6955
6956                vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6957                desc = (gate_desc *)vmx->host_idt_base + vector;
6958                entry = gate_offset(*desc);
6959                asm volatile(
6960#ifdef CONFIG_X86_64
6961                        "mov %%" _ASM_SP ", %[sp]\n\t"
6962                        "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6963                        "push $%c[ss]\n\t"
6964                        "push %[sp]\n\t"
6965#endif
6966                        "pushf\n\t"
6967                        "orl $0x200, (%%" _ASM_SP ")\n\t"
6968                        __ASM_SIZE(push) " $%c[cs]\n\t"
6969                        "call *%[entry]\n\t"
6970                        :
6971#ifdef CONFIG_X86_64
6972                        [sp]"=&r"(tmp)
6973#endif
6974                        :
6975                        [entry]"r"(entry),
6976                        [ss]"i"(__KERNEL_DS),
6977                        [cs]"i"(__KERNEL_CS)
6978                        );
6979        } else
6980                local_irq_enable();
6981}
6982
6983static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6984{
6985        u32 exit_intr_info;
6986        bool unblock_nmi;
6987        u8 vector;
6988        bool idtv_info_valid;
6989
6990        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6991
6992        if (cpu_has_virtual_nmis()) {
6993                if (vmx->nmi_known_unmasked)
6994                        return;
6995                /*
6996                 * Can't use vmx->exit_intr_info since we're not sure what
6997                 * the exit reason is.
6998                 */
6999                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7000                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7001                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7002                /*
7003                 * SDM 3: 27.7.1.2 (September 2008)
7004                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7005                 * a guest IRET fault.
7006                 * SDM 3: 23.2.2 (September 2008)
7007                 * Bit 12 is undefined in any of the following cases:
7008                 *  If the VM exit sets the valid bit in the IDT-vectoring
7009                 *   information field.
7010                 *  If the VM exit is due to a double fault.
7011                 */
7012                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7013                    vector != DF_VECTOR && !idtv_info_valid)
7014                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7015                                      GUEST_INTR_STATE_NMI);
7016                else
7017                        vmx->nmi_known_unmasked =
7018                                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7019                                  & GUEST_INTR_STATE_NMI);
7020        } else if (unlikely(vmx->soft_vnmi_blocked))
7021                vmx->vnmi_blocked_time +=
7022                        ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7023}
7024
7025static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7026                                      u32 idt_vectoring_info,
7027                                      int instr_len_field,
7028                                      int error_code_field)
7029{
7030        u8 vector;
7031        int type;
7032        bool idtv_info_valid;
7033
7034        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7035
7036        vcpu->arch.nmi_injected = false;
7037        kvm_clear_exception_queue(vcpu);
7038        kvm_clear_interrupt_queue(vcpu);
7039
7040        if (!idtv_info_valid)
7041                return;
7042
7043        kvm_make_request(KVM_REQ_EVENT, vcpu);
7044
7045        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7046        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7047
7048        switch (type) {
7049        case INTR_TYPE_NMI_INTR:
7050                vcpu->arch.nmi_injected = true;
7051                /*
7052                 * SDM 3: 27.7.1.2 (September 2008)
7053                 * Clear bit "block by NMI" before VM entry if a NMI
7054                 * delivery faulted.
7055                 */
7056                vmx_set_nmi_mask(vcpu, false);
7057                break;
7058        case INTR_TYPE_SOFT_EXCEPTION:
7059                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7060                /* fall through */
7061        case INTR_TYPE_HARD_EXCEPTION:
7062                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7063                        u32 err = vmcs_read32(error_code_field);
7064                        kvm_queue_exception_e(vcpu, vector, err);
7065                } else
7066                        kvm_queue_exception(vcpu, vector);
7067                break;
7068        case INTR_TYPE_SOFT_INTR:
7069                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7070                /* fall through */
7071        case INTR_TYPE_EXT_INTR:
7072                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7073                break;
7074        default:
7075                break;
7076        }
7077}
7078
7079static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7080{
7081        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7082                                  VM_EXIT_INSTRUCTION_LEN,
7083                                  IDT_VECTORING_ERROR_CODE);
7084}
7085
7086static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7087{
7088        __vmx_complete_interrupts(vcpu,
7089                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7090                                  VM_ENTRY_INSTRUCTION_LEN,
7091                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
7092
7093        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7094}
7095
7096static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7097{
7098        int i, nr_msrs;
7099        struct perf_guest_switch_msr *msrs;
7100
7101        msrs = perf_guest_get_msrs(&nr_msrs);
7102
7103        if (!msrs)
7104                return;
7105
7106        for (i = 0; i < nr_msrs; i++)
7107                if (msrs[i].host == msrs[i].guest)
7108                        clear_atomic_switch_msr(vmx, msrs[i].msr);
7109                else
7110                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7111                                        msrs[i].host);
7112}
7113
7114static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7115{
7116        struct vcpu_vmx *vmx = to_vmx(vcpu);
7117        unsigned long debugctlmsr;
7118
7119        /* Record the guest's net vcpu time for enforced NMI injections. */
7120        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7121                vmx->entry_time = ktime_get();
7122
7123        /* Don't enter VMX if guest state is invalid, let the exit handler
7124           start emulation until we arrive back to a valid state */
7125        if (vmx->emulation_required)
7126                return;
7127
7128        if (vmx->nested.sync_shadow_vmcs) {
7129                copy_vmcs12_to_shadow(vmx);
7130                vmx->nested.sync_shadow_vmcs = false;
7131        }
7132
7133        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7134                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7135        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7136                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7137
7138        /* When single-stepping over STI and MOV SS, we must clear the
7139         * corresponding interruptibility bits in the guest state. Otherwise
7140         * vmentry fails as it then expects bit 14 (BS) in pending debug
7141         * exceptions being set, but that's not correct for the guest debugging
7142         * case. */
7143        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7144                vmx_set_interrupt_shadow(vcpu, 0);
7145
7146        atomic_switch_perf_msrs(vmx);
7147        debugctlmsr = get_debugctlmsr();
7148
7149        vmx->__launched = vmx->loaded_vmcs->launched;
7150        asm(
7151                /* Store host registers */
7152                "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7153                "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7154                "push %%" _ASM_CX " \n\t"
7155                "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7156                "je 1f \n\t"
7157                "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7158                __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7159                "1: \n\t"
7160                /* Reload cr2 if changed */
7161                "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7162                "mov %%cr2, %%" _ASM_DX " \n\t"
7163                "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7164                "je 2f \n\t"
7165                "mov %%" _ASM_AX", %%cr2 \n\t"
7166                "2: \n\t"
7167                /* Check if vmlaunch of vmresume is needed */
7168                "cmpl $0, %c[launched](%0) \n\t"
7169                /* Load guest registers.  Don't clobber flags. */
7170                "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7171                "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7172                "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7173                "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7174                "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7175                "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7176#ifdef CONFIG_X86_64
7177                "mov %c[r8](%0),  %%r8  \n\t"
7178                "mov %c[r9](%0),  %%r9  \n\t"
7179                "mov %c[r10](%0), %%r10 \n\t"
7180                "mov %c[r11](%0), %%r11 \n\t"
7181                "mov %c[r12](%0), %%r12 \n\t"
7182                "mov %c[r13](%0), %%r13 \n\t"
7183                "mov %c[r14](%0), %%r14 \n\t"
7184                "mov %c[r15](%0), %%r15 \n\t"
7185#endif
7186                "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7187
7188                /* Enter guest mode */
7189                "jne 1f \n\t"
7190                __ex(ASM_VMX_VMLAUNCH) "\n\t"
7191                "jmp 2f \n\t"
7192                "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7193                "2: "
7194                /* Save guest registers, load host registers, keep flags */
7195                "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7196                "pop %0 \n\t"
7197                "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7198                "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7199                __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7200                "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7201                "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7202                "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7203                "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7204#ifdef CONFIG_X86_64
7205                "mov %%r8,  %c[r8](%0) \n\t"
7206                "mov %%r9,  %c[r9](%0) \n\t"
7207                "mov %%r10, %c[r10](%0) \n\t"
7208                "mov %%r11, %c[r11](%0) \n\t"
7209                "mov %%r12, %c[r12](%0) \n\t"
7210                "mov %%r13, %c[r13](%0) \n\t"
7211                "mov %%r14, %c[r14](%0) \n\t"
7212                "mov %%r15, %c[r15](%0) \n\t"
7213#endif
7214                "mov %%cr2, %%" _ASM_AX "   \n\t"
7215                "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7216
7217                "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7218                "setbe %c[fail](%0) \n\t"
7219                ".pushsection .rodata \n\t"
7220                ".global vmx_return \n\t"
7221                "vmx_return: " _ASM_PTR " 2b \n\t"
7222                ".popsection"
7223              : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7224                [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7225                [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7226                [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7227                [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7228                [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7229                [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7230                [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7231                [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7232                [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7233                [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7234#ifdef CONFIG_X86_64
7235                [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7236                [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7237                [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7238                [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7239                [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7240                [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7241                [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7242                [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7243#endif
7244                [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7245                [wordsize]"i"(sizeof(ulong))
7246              : "cc", "memory"
7247#ifdef CONFIG_X86_64
7248                , "rax", "rbx", "rdi", "rsi"
7249                , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7250#else
7251                , "eax", "ebx", "edi", "esi"
7252#endif
7253              );
7254
7255        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7256        if (debugctlmsr)
7257                update_debugctlmsr(debugctlmsr);
7258
7259#ifndef CONFIG_X86_64
7260        /*
7261         * The sysexit path does not restore ds/es, so we must set them to
7262         * a reasonable value ourselves.
7263         *
7264         * We can't defer this to vmx_load_host_state() since that function
7265         * may be executed in interrupt context, which saves and restore segments
7266         * around it, nullifying its effect.
7267         */
7268        loadsegment(ds, __USER_DS);
7269        loadsegment(es, __USER_DS);
7270#endif
7271
7272        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7273                                  | (1 << VCPU_EXREG_RFLAGS)
7274                                  | (1 << VCPU_EXREG_CPL)
7275                                  | (1 << VCPU_EXREG_PDPTR)
7276                                  | (1 << VCPU_EXREG_SEGMENTS)
7277                                  | (1 << VCPU_EXREG_CR3));
7278        vcpu->arch.regs_dirty = 0;
7279
7280        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7281
7282        vmx->loaded_vmcs->launched = 1;
7283
7284        vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7285        trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7286
7287        vmx_complete_atomic_exit(vmx);
7288        vmx_recover_nmi_blocking(vmx);
7289        vmx_complete_interrupts(vmx);
7290}
7291
7292static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7293{
7294        struct vcpu_vmx *vmx = to_vmx(vcpu);
7295
7296        free_vpid(vmx);
7297        free_nested(vmx);
7298        free_loaded_vmcs(vmx->loaded_vmcs);
7299        kfree(vmx->guest_msrs);
7300        kvm_vcpu_uninit(vcpu);
7301        kmem_cache_free(kvm_vcpu_cache, vmx);
7302}
7303
7304static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7305{
7306        int err;
7307        struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7308        int cpu;
7309
7310        if (!vmx)
7311                return ERR_PTR(-ENOMEM);
7312
7313        allocate_vpid(vmx);
7314
7315        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7316        if (err)
7317                goto free_vcpu;
7318
7319        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7320        err = -ENOMEM;
7321        if (!vmx->guest_msrs) {
7322                goto uninit_vcpu;
7323        }
7324
7325        vmx->loaded_vmcs = &vmx->vmcs01;
7326        vmx->loaded_vmcs->vmcs = alloc_vmcs();
7327        if (!vmx->loaded_vmcs->vmcs)
7328                goto free_msrs;
7329        if (!vmm_exclusive)
7330                kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7331        loaded_vmcs_init(vmx->loaded_vmcs);
7332        if (!vmm_exclusive)
7333                kvm_cpu_vmxoff();
7334
7335        cpu = get_cpu();
7336        vmx_vcpu_load(&vmx->vcpu, cpu);
7337        vmx->vcpu.cpu = cpu;
7338        err = vmx_vcpu_setup(vmx);
7339        vmx_vcpu_put(&vmx->vcpu);
7340        put_cpu();
7341        if (err)
7342                goto free_vmcs;
7343        if (vm_need_virtualize_apic_accesses(kvm)) {
7344                err = alloc_apic_access_page(kvm);
7345                if (err)
7346                        goto free_vmcs;
7347        }
7348
7349        if (enable_ept) {
7350                if (!kvm->arch.ept_identity_map_addr)
7351                        kvm->arch.ept_identity_map_addr =
7352                                VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7353                err = -ENOMEM;
7354                if (alloc_identity_pagetable(kvm) != 0)
7355                        goto free_vmcs;
7356                if (!init_rmode_identity_map(kvm))
7357                        goto free_vmcs;
7358        }
7359
7360        vmx->nested.current_vmptr = -1ull;
7361        vmx->nested.current_vmcs12 = NULL;
7362
7363        return &vmx->vcpu;
7364
7365free_vmcs:
7366        free_loaded_vmcs(vmx->loaded_vmcs);
7367free_msrs:
7368        kfree(vmx->guest_msrs);
7369uninit_vcpu:
7370        kvm_vcpu_uninit(&vmx->vcpu);
7371free_vcpu:
7372        free_vpid(vmx);
7373        kmem_cache_free(kvm_vcpu_cache, vmx);
7374        return ERR_PTR(err);
7375}
7376
7377static void __init vmx_check_processor_compat(void *rtn)
7378{
7379        struct vmcs_config vmcs_conf;
7380
7381        *(int *)rtn = 0;
7382        if (setup_vmcs_config(&vmcs_conf) < 0)
7383                *(int *)rtn = -EIO;
7384        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7385                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7386                                smp_processor_id());
7387                *(int *)rtn = -EIO;
7388        }
7389}
7390
7391static int get_ept_level(void)
7392{
7393        return VMX_EPT_DEFAULT_GAW + 1;
7394}
7395
7396static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7397{
7398        u64 ret;
7399
7400        /* For VT-d and EPT combination
7401         * 1. MMIO: always map as UC
7402         * 2. EPT with VT-d:
7403         *   a. VT-d without snooping control feature: can't guarantee the
7404         *      result, try to trust guest.
7405         *   b. VT-d with snooping control feature: snooping control feature of
7406         *      VT-d engine can guarantee the cache correctness. Just set it
7407         *      to WB to keep consistent with host. So the same as item 3.
7408         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7409         *    consistent with host MTRR
7410         */
7411        if (is_mmio)
7412                ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7413        else if (vcpu->kvm->arch.iommu_domain &&
7414                !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7415                ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7416                      VMX_EPT_MT_EPTE_SHIFT;
7417        else
7418                ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7419                        | VMX_EPT_IPAT_BIT;
7420
7421        return ret;
7422}
7423
7424static int vmx_get_lpage_level(void)
7425{
7426        if (enable_ept && !cpu_has_vmx_ept_1g_page())
7427                return PT_DIRECTORY_LEVEL;
7428        else
7429                /* For shadow and EPT supported 1GB page */
7430                return PT_PDPE_LEVEL;
7431}
7432
7433static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7434{
7435        struct kvm_cpuid_entry2 *best;
7436        struct vcpu_vmx *vmx = to_vmx(vcpu);
7437        u32 exec_control;
7438
7439        vmx->rdtscp_enabled = false;
7440        if (vmx_rdtscp_supported()) {
7441                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7442                if (exec_control & SECONDARY_EXEC_RDTSCP) {
7443                        best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7444                        if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7445                                vmx->rdtscp_enabled = true;
7446                        else {
7447                                exec_control &= ~SECONDARY_EXEC_RDTSCP;
7448                                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7449                                                exec_control);
7450                        }
7451                }
7452        }
7453
7454        /* Exposing INVPCID only when PCID is exposed */
7455        best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7456        if (vmx_invpcid_supported() &&
7457            best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7458            guest_cpuid_has_pcid(vcpu)) {
7459                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7460                exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7461                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7462                             exec_control);
7463        } else {
7464                if (cpu_has_secondary_exec_ctrls()) {
7465                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7466                        exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7467                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7468                                     exec_control);
7469                }
7470                if (best)
7471                        best->ebx &= ~bit(X86_FEATURE_INVPCID);
7472        }
7473}
7474
7475static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7476{
7477        if (func == 1 && nested)
7478                entry->ecx |= bit(X86_FEATURE_VMX);
7479}
7480
7481static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7482                struct x86_exception *fault)
7483{
7484        struct vmcs12 *vmcs12;
7485        nested_vmx_vmexit(vcpu);
7486        vmcs12 = get_vmcs12(vcpu);
7487
7488        if (fault->error_code & PFERR_RSVD_MASK)
7489                vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
7490        else
7491                vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
7492        vmcs12->exit_qualification = vcpu->arch.exit_qualification;
7493        vmcs12->guest_physical_address = fault->address;
7494}
7495
7496/* Callbacks for nested_ept_init_mmu_context: */
7497
7498static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7499{
7500        /* return the page table to be shadowed - in our case, EPT12 */
7501        return get_vmcs12(vcpu)->ept_pointer;
7502}
7503
7504static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7505{
7506        int r = kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7507                        nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7508
7509        vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7510        vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7511        vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7512
7513        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7514
7515        return r;
7516}
7517
7518static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7519{
7520        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7521}
7522
7523/*
7524 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7525 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7526 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7527 * guest in a way that will both be appropriate to L1's requests, and our
7528 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7529 * function also has additional necessary side-effects, like setting various
7530 * vcpu->arch fields.
7531 */
7532static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7533{
7534        struct vcpu_vmx *vmx = to_vmx(vcpu);
7535        u32 exec_control;
7536
7537        vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7538        vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7539        vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7540        vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7541        vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7542        vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7543        vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7544        vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7545        vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7546        vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7547        vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7548        vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7549        vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7550        vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7551        vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7552        vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7553        vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7554        vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7555        vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7556        vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7557        vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7558        vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7559        vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7560        vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7561        vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7562        vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7563        vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7564        vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7565        vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7566        vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7567        vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7568        vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7569        vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7570        vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7571        vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7572        vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7573
7574        vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7575        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7576                vmcs12->vm_entry_intr_info_field);
7577        vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7578                vmcs12->vm_entry_exception_error_code);
7579        vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7580                vmcs12->vm_entry_instruction_len);
7581        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7582                vmcs12->guest_interruptibility_info);
7583        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7584        kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7585        vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7586        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7587                vmcs12->guest_pending_dbg_exceptions);
7588        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7589        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7590
7591        vmcs_write64(VMCS_LINK_POINTER, -1ull);
7592
7593        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7594                (vmcs_config.pin_based_exec_ctrl |
7595                 vmcs12->pin_based_vm_exec_control));
7596
7597        if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7598                vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7599                             vmcs12->vmx_preemption_timer_value);
7600
7601        /*
7602         * Whether page-faults are trapped is determined by a combination of
7603         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7604         * If enable_ept, L0 doesn't care about page faults and we should
7605         * set all of these to L1's desires. However, if !enable_ept, L0 does
7606         * care about (at least some) page faults, and because it is not easy
7607         * (if at all possible?) to merge L0 and L1's desires, we simply ask
7608         * to exit on each and every L2 page fault. This is done by setting
7609         * MASK=MATCH=0 and (see below) EB.PF=1.
7610         * Note that below we don't need special code to set EB.PF beyond the
7611         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7612         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7613         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7614         *
7615         * A problem with this approach (when !enable_ept) is that L1 may be
7616         * injected with more page faults than it asked for. This could have
7617         * caused problems, but in practice existing hypervisors don't care.
7618         * To fix this, we will need to emulate the PFEC checking (on the L1
7619         * page tables), using walk_addr(), when injecting PFs to L1.
7620         */
7621        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7622                enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7623        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7624                enable_ept ? vmcs12->page_fault_error_code_match : 0);
7625
7626        if (cpu_has_secondary_exec_ctrls()) {
7627                u32 exec_control = vmx_secondary_exec_control(vmx);
7628                if (!vmx->rdtscp_enabled)
7629                        exec_control &= ~SECONDARY_EXEC_RDTSCP;
7630                /* Take the following fields only from vmcs12 */
7631                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7632                if (nested_cpu_has(vmcs12,
7633                                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7634                        exec_control |= vmcs12->secondary_vm_exec_control;
7635
7636                if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7637                        /*
7638                         * Translate L1 physical address to host physical
7639                         * address for vmcs02. Keep the page pinned, so this
7640                         * physical address remains valid. We keep a reference
7641                         * to it so we can release it later.
7642                         */
7643                        if (vmx->nested.apic_access_page) /* shouldn't happen */
7644                                nested_release_page(vmx->nested.apic_access_page);
7645                        vmx->nested.apic_access_page =
7646                                nested_get_page(vcpu, vmcs12->apic_access_addr);
7647                        /*
7648                         * If translation failed, no matter: This feature asks
7649                         * to exit when accessing the given address, and if it
7650                         * can never be accessed, this feature won't do
7651                         * anything anyway.
7652                         */
7653                        if (!vmx->nested.apic_access_page)
7654                                exec_control &=
7655                                  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7656                        else
7657                                vmcs_write64(APIC_ACCESS_ADDR,
7658                                  page_to_phys(vmx->nested.apic_access_page));
7659                }
7660
7661                vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7662        }
7663
7664
7665        /*
7666         * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7667         * Some constant fields are set here by vmx_set_constant_host_state().
7668         * Other fields are different per CPU, and will be set later when
7669         * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7670         */
7671        vmx_set_constant_host_state(vmx);
7672
7673        /*
7674         * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7675         * entry, but only if the current (host) sp changed from the value
7676         * we wrote last (vmx->host_rsp). This cache is no longer relevant
7677         * if we switch vmcs, and rather than hold a separate cache per vmcs,
7678         * here we just force the write to happen on entry.
7679         */
7680        vmx->host_rsp = 0;
7681
7682        exec_control = vmx_exec_control(vmx); /* L0's desires */
7683        exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7684        exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7685        exec_control &= ~CPU_BASED_TPR_SHADOW;
7686        exec_control |= vmcs12->cpu_based_vm_exec_control;
7687        /*
7688         * Merging of IO and MSR bitmaps not currently supported.
7689         * Rather, exit every time.
7690         */
7691        exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7692        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7693        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7694
7695        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7696
7697        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7698         * bitwise-or of what L1 wants to trap for L2, and what we want to
7699         * trap. Note that CR0.TS also needs updating - we do this later.
7700         */
7701        update_exception_bitmap(vcpu);
7702        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7703        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7704
7705        /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7706         * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7707         * bits are further modified by vmx_set_efer() below.
7708         */
7709        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
7710
7711        /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7712         * emulated by vmx_set_efer(), below.
7713         */
7714        vmcs_write32(VM_ENTRY_CONTROLS,
7715                (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7716                        ~VM_ENTRY_IA32E_MODE) |
7717                (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7718
7719        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7720                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7721                vcpu->arch.pat = vmcs12->guest_ia32_pat;
7722        } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7723                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7724
7725
7726        set_cr4_guest_host_mask(vmx);
7727
7728        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7729                vmcs_write64(TSC_OFFSET,
7730                        vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7731        else
7732                vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7733
7734        if (enable_vpid) {
7735                /*
7736                 * Trivially support vpid by letting L2s share their parent
7737                 * L1's vpid. TODO: move to a more elaborate solution, giving
7738                 * each L2 its own vpid and exposing the vpid feature to L1.
7739                 */
7740                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7741                vmx_flush_tlb(vcpu);
7742        }
7743
7744        if (nested_cpu_has_ept(vmcs12)) {
7745                kvm_mmu_unload(vcpu);
7746                nested_ept_init_mmu_context(vcpu);
7747        }
7748
7749        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7750                vcpu->arch.efer = vmcs12->guest_ia32_efer;
7751        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7752                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7753        else
7754                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7755        /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7756        vmx_set_efer(vcpu, vcpu->arch.efer);
7757
7758        /*
7759         * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7760         * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7761         * The CR0_READ_SHADOW is what L2 should have expected to read given
7762         * the specifications by L1; It's not enough to take
7763         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7764         * have more bits than L1 expected.
7765         */
7766        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7767        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7768
7769        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7770        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7771
7772        /* shadow page tables on either EPT or shadow page tables */
7773        kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7774        kvm_mmu_reset_context(vcpu);
7775
7776        /*
7777         * L1 may access the L2's PDPTR, so save them to construct vmcs12
7778         */
7779        if (enable_ept) {
7780                vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7781                vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7782                vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7783                vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7784        }
7785
7786        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7787        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7788}
7789
7790/*
7791 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7792 * for running an L2 nested guest.
7793 */
7794static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7795{
7796        struct vmcs12 *vmcs12;
7797        struct vcpu_vmx *vmx = to_vmx(vcpu);
7798        int cpu;
7799        struct loaded_vmcs *vmcs02;
7800        bool ia32e;
7801
7802        if (!nested_vmx_check_permission(vcpu) ||
7803            !nested_vmx_check_vmcs12(vcpu))
7804                return 1;
7805
7806        skip_emulated_instruction(vcpu);
7807        vmcs12 = get_vmcs12(vcpu);
7808
7809        if (enable_shadow_vmcs)
7810                copy_shadow_to_vmcs12(vmx);
7811
7812        /*
7813         * The nested entry process starts with enforcing various prerequisites
7814         * on vmcs12 as required by the Intel SDM, and act appropriately when
7815         * they fail: As the SDM explains, some conditions should cause the
7816         * instruction to fail, while others will cause the instruction to seem
7817         * to succeed, but return an EXIT_REASON_INVALID_STATE.
7818         * To speed up the normal (success) code path, we should avoid checking
7819         * for misconfigurations which will anyway be caught by the processor
7820         * when using the merged vmcs02.
7821         */
7822        if (vmcs12->launch_state == launch) {
7823                nested_vmx_failValid(vcpu,
7824                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7825                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7826                return 1;
7827        }
7828
7829        if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7830                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7831                return 1;
7832        }
7833
7834        if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7835                        !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7836                /*TODO: Also verify bits beyond physical address width are 0*/
7837                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7838                return 1;
7839        }
7840
7841        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7842                        !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7843                /*TODO: Also verify bits beyond physical address width are 0*/
7844                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7845                return 1;
7846        }
7847
7848        if (vmcs12->vm_entry_msr_load_count > 0 ||
7849            vmcs12->vm_exit_msr_load_count > 0 ||
7850            vmcs12->vm_exit_msr_store_count > 0) {
7851                pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7852                                    __func__);
7853                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7854                return 1;
7855        }
7856
7857        if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7858              nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7859            !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7860              nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7861            !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7862              nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7863            !vmx_control_verify(vmcs12->vm_exit_controls,
7864              nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7865            !vmx_control_verify(vmcs12->vm_entry_controls,
7866              nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7867        {
7868                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7869                return 1;
7870        }
7871
7872        if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7873            ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7874                nested_vmx_failValid(vcpu,
7875                        VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7876                return 1;
7877        }
7878
7879        if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7880            ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7881                nested_vmx_entry_failure(vcpu, vmcs12,
7882                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7883                return 1;
7884        }
7885        if (vmcs12->vmcs_link_pointer != -1ull) {
7886                nested_vmx_entry_failure(vcpu, vmcs12,
7887                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7888                return 1;
7889        }
7890
7891        /*
7892         * If the load IA32_EFER VM-entry control is 1, the following checks
7893         * are performed on the field for the IA32_EFER MSR:
7894         * - Bits reserved in the IA32_EFER MSR must be 0.
7895         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7896         *   the IA-32e mode guest VM-exit control. It must also be identical
7897         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7898         *   CR0.PG) is 1.
7899         */
7900        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
7901                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
7902                if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
7903                    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
7904                    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
7905                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
7906                        nested_vmx_entry_failure(vcpu, vmcs12,
7907                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7908                        return 1;
7909                }
7910        }
7911
7912        /*
7913         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7914         * IA32_EFER MSR must be 0 in the field for that register. In addition,
7915         * the values of the LMA and LME bits in the field must each be that of
7916         * the host address-space size VM-exit control.
7917         */
7918        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
7919                ia32e = (vmcs12->vm_exit_controls &
7920                         VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
7921                if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
7922                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
7923                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
7924                        nested_vmx_entry_failure(vcpu, vmcs12,
7925                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7926                        return 1;
7927                }
7928        }
7929
7930        /*
7931         * We're finally done with prerequisite checking, and can start with
7932         * the nested entry.
7933         */
7934
7935        vmcs02 = nested_get_current_vmcs02(vmx);
7936        if (!vmcs02)
7937                return -ENOMEM;
7938
7939        enter_guest_mode(vcpu);
7940
7941        vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7942
7943        cpu = get_cpu();
7944        vmx->loaded_vmcs = vmcs02;
7945        vmx_vcpu_put(vcpu);
7946        vmx_vcpu_load(vcpu, cpu);
7947        vcpu->cpu = cpu;
7948        put_cpu();
7949
7950        vmx_segment_cache_clear(vmx);
7951
7952        vmcs12->launch_state = 1;
7953
7954        prepare_vmcs02(vcpu, vmcs12);
7955
7956        /*
7957         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7958         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7959         * returned as far as L1 is concerned. It will only return (and set
7960         * the success flag) when L2 exits (see nested_vmx_vmexit()).
7961         */
7962        return 1;
7963}
7964
7965/*
7966 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7967 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7968 * This function returns the new value we should put in vmcs12.guest_cr0.
7969 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7970 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7971 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7972 *     didn't trap the bit, because if L1 did, so would L0).
7973 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7974 *     been modified by L2, and L1 knows it. So just leave the old value of
7975 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7976 *     isn't relevant, because if L0 traps this bit it can set it to anything.
7977 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7978 *     changed these bits, and therefore they need to be updated, but L0
7979 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7980 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7981 */
7982static inline unsigned long
7983vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7984{
7985        return
7986        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7987        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7988        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7989                        vcpu->arch.cr0_guest_owned_bits));
7990}
7991
7992static inline unsigned long
7993vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7994{
7995        return
7996        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7997        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7998        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7999                        vcpu->arch.cr4_guest_owned_bits));
8000}
8001
8002static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8003                                       struct vmcs12 *vmcs12)
8004{
8005        u32 idt_vectoring;
8006        unsigned int nr;
8007
8008        if (vcpu->arch.exception.pending) {
8009                nr = vcpu->arch.exception.nr;
8010                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8011
8012                if (kvm_exception_is_soft(nr)) {
8013                        vmcs12->vm_exit_instruction_len =
8014                                vcpu->arch.event_exit_inst_len;
8015                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8016                } else
8017                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8018
8019                if (vcpu->arch.exception.has_error_code) {
8020                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8021                        vmcs12->idt_vectoring_error_code =
8022                                vcpu->arch.exception.error_code;
8023                }
8024
8025                vmcs12->idt_vectoring_info_field = idt_vectoring;
8026        } else if (vcpu->arch.nmi_pending) {
8027                vmcs12->idt_vectoring_info_field =
8028                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8029        } else if (vcpu->arch.interrupt.pending) {
8030                nr = vcpu->arch.interrupt.nr;
8031                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8032
8033                if (vcpu->arch.interrupt.soft) {
8034                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
8035                        vmcs12->vm_entry_instruction_len =
8036                                vcpu->arch.event_exit_inst_len;
8037                } else
8038                        idt_vectoring |= INTR_TYPE_EXT_INTR;
8039
8040                vmcs12->idt_vectoring_info_field = idt_vectoring;
8041        }
8042}
8043
8044/*
8045 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8046 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8047 * and this function updates it to reflect the changes to the guest state while
8048 * L2 was running (and perhaps made some exits which were handled directly by L0
8049 * without going back to L1), and to reflect the exit reason.
8050 * Note that we do not have to copy here all VMCS fields, just those that
8051 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8052 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8053 * which already writes to vmcs12 directly.
8054 */
8055static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8056{
8057        /* update guest state fields: */
8058        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8059        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8060
8061        kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8062        vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8063        vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8064        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8065
8066        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8067        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8068        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8069        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8070        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8071        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8072        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8073        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8074        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8075        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8076        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8077        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8078        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8079        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8080        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8081        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8082        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8083        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8084        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8085        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8086        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8087        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8088        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8089        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8090        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8091        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8092        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8093        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8094        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8095        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8096        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8097        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8098        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8099        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8100        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8101        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8102
8103        vmcs12->guest_interruptibility_info =
8104                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8105        vmcs12->guest_pending_dbg_exceptions =
8106                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8107
8108        /*
8109         * In some cases (usually, nested EPT), L2 is allowed to change its
8110         * own CR3 without exiting. If it has changed it, we must keep it.
8111         * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8112         * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8113         *
8114         * Additionally, restore L2's PDPTR to vmcs12.
8115         */
8116        if (enable_ept) {
8117                vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8118                vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8119                vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8120                vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8121                vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8122        }
8123
8124        vmcs12->vm_entry_controls =
8125                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8126                (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
8127
8128        /* TODO: These cannot have changed unless we have MSR bitmaps and
8129         * the relevant bit asks not to trap the change */
8130        vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8131        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8132                vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8133        vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8134        vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8135        vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8136
8137        /* update exit information fields: */
8138
8139        vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
8140        vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8141
8142        vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8143        if ((vmcs12->vm_exit_intr_info &
8144             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8145            (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8146                vmcs12->vm_exit_intr_error_code =
8147                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8148        vmcs12->idt_vectoring_info_field = 0;
8149        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8150        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8151
8152        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8153                /* vm_entry_intr_info_field is cleared on exit. Emulate this
8154                 * instead of reading the real value. */
8155                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8156
8157                /*
8158                 * Transfer the event that L0 or L1 may wanted to inject into
8159                 * L2 to IDT_VECTORING_INFO_FIELD.
8160                 */
8161                vmcs12_save_pending_event(vcpu, vmcs12);
8162        }
8163
8164        /*
8165         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8166         * preserved above and would only end up incorrectly in L1.
8167         */
8168        vcpu->arch.nmi_injected = false;
8169        kvm_clear_exception_queue(vcpu);
8170        kvm_clear_interrupt_queue(vcpu);
8171}
8172
8173/*
8174 * A part of what we need to when the nested L2 guest exits and we want to
8175 * run its L1 parent, is to reset L1's guest state to the host state specified
8176 * in vmcs12.
8177 * This function is to be called not only on normal nested exit, but also on
8178 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8179 * Failures During or After Loading Guest State").
8180 * This function should be called when the active VMCS is L1's (vmcs01).
8181 */
8182static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8183                                   struct vmcs12 *vmcs12)
8184{
8185        struct kvm_segment seg;
8186
8187        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8188                vcpu->arch.efer = vmcs12->host_ia32_efer;
8189        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8190                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8191        else
8192                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8193        vmx_set_efer(vcpu, vcpu->arch.efer);
8194
8195        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8196        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8197        vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8198        /*
8199         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8200         * actually changed, because it depends on the current state of
8201         * fpu_active (which may have changed).
8202         * Note that vmx_set_cr0 refers to efer set above.
8203         */
8204        kvm_set_cr0(vcpu, vmcs12->host_cr0);
8205        /*
8206         * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8207         * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8208         * but we also need to update cr0_guest_host_mask and exception_bitmap.
8209         */
8210        update_exception_bitmap(vcpu);
8211        vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8212        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8213
8214        /*
8215         * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8216         * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8217         */
8218        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8219        kvm_set_cr4(vcpu, vmcs12->host_cr4);
8220
8221        if (nested_cpu_has_ept(vmcs12))
8222                nested_ept_uninit_mmu_context(vcpu);
8223
8224        kvm_set_cr3(vcpu, vmcs12->host_cr3);
8225        kvm_mmu_reset_context(vcpu);
8226
8227        if (enable_vpid) {
8228                /*
8229                 * Trivially support vpid by letting L2s share their parent
8230                 * L1's vpid. TODO: move to a more elaborate solution, giving
8231                 * each L2 its own vpid and exposing the vpid feature to L1.
8232                 */
8233                vmx_flush_tlb(vcpu);
8234        }
8235
8236
8237        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8238        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8239        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8240        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8241        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8242
8243        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8244                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8245                vcpu->arch.pat = vmcs12->host_ia32_pat;
8246        }
8247        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8248                vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8249                        vmcs12->host_ia32_perf_global_ctrl);
8250
8251        /* Set L1 segment info according to Intel SDM
8252            27.5.2 Loading Host Segment and Descriptor-Table Registers */
8253        seg = (struct kvm_segment) {
8254                .base = 0,
8255                .limit = 0xFFFFFFFF,
8256                .selector = vmcs12->host_cs_selector,
8257                .type = 11,
8258                .present = 1,
8259                .s = 1,
8260                .g = 1
8261        };
8262        if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8263                seg.l = 1;
8264        else
8265                seg.db = 1;
8266        vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8267        seg = (struct kvm_segment) {
8268                .base = 0,
8269                .limit = 0xFFFFFFFF,
8270                .type = 3,
8271                .present = 1,
8272                .s = 1,
8273                .db = 1,
8274                .g = 1
8275        };
8276        seg.selector = vmcs12->host_ds_selector;
8277        vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8278        seg.selector = vmcs12->host_es_selector;
8279        vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8280        seg.selector = vmcs12->host_ss_selector;
8281        vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8282        seg.selector = vmcs12->host_fs_selector;
8283        seg.base = vmcs12->host_fs_base;
8284        vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8285        seg.selector = vmcs12->host_gs_selector;
8286        seg.base = vmcs12->host_gs_base;
8287        vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8288        seg = (struct kvm_segment) {
8289                .base = vmcs12->host_tr_base,
8290                .limit = 0x67,
8291                .selector = vmcs12->host_tr_selector,
8292                .type = 11,
8293                .present = 1
8294        };
8295        vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8296
8297        kvm_set_dr(vcpu, 7, 0x400);
8298        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8299}
8300
8301/*
8302 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8303 * and modify vmcs12 to make it see what it would expect to see there if
8304 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8305 */
8306static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8307{
8308        struct vcpu_vmx *vmx = to_vmx(vcpu);
8309        int cpu;
8310        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8311
8312        /* trying to cancel vmlaunch/vmresume is a bug */
8313        WARN_ON_ONCE(vmx->nested.nested_run_pending);
8314
8315        leave_guest_mode(vcpu);
8316        prepare_vmcs12(vcpu, vmcs12);
8317
8318        cpu = get_cpu();
8319        vmx->loaded_vmcs = &vmx->vmcs01;
8320        vmx_vcpu_put(vcpu);
8321        vmx_vcpu_load(vcpu, cpu);
8322        vcpu->cpu = cpu;
8323        put_cpu();
8324
8325        vmx_segment_cache_clear(vmx);
8326
8327        /* if no vmcs02 cache requested, remove the one we used */
8328        if (VMCS02_POOL_SIZE == 0)
8329                nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8330
8331        load_vmcs12_host_state(vcpu, vmcs12);
8332
8333        /* Update TSC_OFFSET if TSC was changed while L2 ran */
8334        vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8335
8336        /* This is needed for same reason as it was needed in prepare_vmcs02 */
8337        vmx->host_rsp = 0;
8338
8339        /* Unpin physical memory we referred to in vmcs02 */
8340        if (vmx->nested.apic_access_page) {
8341                nested_release_page(vmx->nested.apic_access_page);
8342                vmx->nested.apic_access_page = 0;
8343        }
8344
8345        /*
8346         * Exiting from L2 to L1, we're now back to L1 which thinks it just
8347         * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8348         * success or failure flag accordingly.
8349         */
8350        if (unlikely(vmx->fail)) {
8351                vmx->fail = 0;
8352                nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8353        } else
8354                nested_vmx_succeed(vcpu);
8355        if (enable_shadow_vmcs)
8356                vmx->nested.sync_shadow_vmcs = true;
8357}
8358
8359/*
8360 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8361 * 23.7 "VM-entry failures during or after loading guest state" (this also
8362 * lists the acceptable exit-reason and exit-qualification parameters).
8363 * It should only be called before L2 actually succeeded to run, and when
8364 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8365 */
8366static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8367                        struct vmcs12 *vmcs12,
8368                        u32 reason, unsigned long qualification)
8369{
8370        load_vmcs12_host_state(vcpu, vmcs12);
8371        vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8372        vmcs12->exit_qualification = qualification;
8373        nested_vmx_succeed(vcpu);
8374        if (enable_shadow_vmcs)
8375                to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8376}
8377
8378static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8379                               struct x86_instruction_info *info,
8380                               enum x86_intercept_stage stage)
8381{
8382        return X86EMUL_CONTINUE;
8383}
8384
8385static struct kvm_x86_ops vmx_x86_ops = {
8386        .cpu_has_kvm_support = cpu_has_kvm_support,
8387        .disabled_by_bios = vmx_disabled_by_bios,
8388        .hardware_setup = hardware_setup,
8389        .hardware_unsetup = hardware_unsetup,
8390        .check_processor_compatibility = vmx_check_processor_compat,
8391        .hardware_enable = hardware_enable,
8392        .hardware_disable = hardware_disable,
8393        .cpu_has_accelerated_tpr = report_flexpriority,
8394
8395        .vcpu_create = vmx_create_vcpu,
8396        .vcpu_free = vmx_free_vcpu,
8397        .vcpu_reset = vmx_vcpu_reset,
8398
8399        .prepare_guest_switch = vmx_save_host_state,
8400        .vcpu_load = vmx_vcpu_load,
8401        .vcpu_put = vmx_vcpu_put,
8402
8403        .update_db_bp_intercept = update_exception_bitmap,
8404        .get_msr = vmx_get_msr,
8405        .set_msr = vmx_set_msr,
8406        .get_segment_base = vmx_get_segment_base,
8407        .get_segment = vmx_get_segment,
8408        .set_segment = vmx_set_segment,
8409        .get_cpl = vmx_get_cpl,
8410        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8411        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8412        .decache_cr3 = vmx_decache_cr3,
8413        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8414        .set_cr0 = vmx_set_cr0,
8415        .set_cr3 = vmx_set_cr3,
8416        .set_cr4 = vmx_set_cr4,
8417        .set_efer = vmx_set_efer,
8418        .get_idt = vmx_get_idt,
8419        .set_idt = vmx_set_idt,
8420        .get_gdt = vmx_get_gdt,
8421        .set_gdt = vmx_set_gdt,
8422        .set_dr7 = vmx_set_dr7,
8423        .cache_reg = vmx_cache_reg,
8424        .get_rflags = vmx_get_rflags,
8425        .set_rflags = vmx_set_rflags,
8426        .fpu_activate = vmx_fpu_activate,
8427        .fpu_deactivate = vmx_fpu_deactivate,
8428
8429        .tlb_flush = vmx_flush_tlb,
8430
8431        .run = vmx_vcpu_run,
8432        .handle_exit = vmx_handle_exit,
8433        .skip_emulated_instruction = skip_emulated_instruction,
8434        .set_interrupt_shadow = vmx_set_interrupt_shadow,
8435        .get_interrupt_shadow = vmx_get_interrupt_shadow,
8436        .patch_hypercall = vmx_patch_hypercall,
8437        .set_irq = vmx_inject_irq,
8438        .set_nmi = vmx_inject_nmi,
8439        .queue_exception = vmx_queue_exception,
8440        .cancel_injection = vmx_cancel_injection,
8441        .interrupt_allowed = vmx_interrupt_allowed,
8442        .nmi_allowed = vmx_nmi_allowed,
8443        .get_nmi_mask = vmx_get_nmi_mask,
8444        .set_nmi_mask = vmx_set_nmi_mask,
8445        .enable_nmi_window = enable_nmi_window,
8446        .enable_irq_window = enable_irq_window,
8447        .update_cr8_intercept = update_cr8_intercept,
8448        .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8449        .vm_has_apicv = vmx_vm_has_apicv,
8450        .load_eoi_exitmap = vmx_load_eoi_exitmap,
8451        .hwapic_irr_update = vmx_hwapic_irr_update,
8452        .hwapic_isr_update = vmx_hwapic_isr_update,
8453        .sync_pir_to_irr = vmx_sync_pir_to_irr,
8454        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8455
8456        .set_tss_addr = vmx_set_tss_addr,
8457        .get_tdp_level = get_ept_level,
8458        .get_mt_mask = vmx_get_mt_mask,
8459
8460        .get_exit_info = vmx_get_exit_info,
8461
8462        .get_lpage_level = vmx_get_lpage_level,
8463
8464        .cpuid_update = vmx_cpuid_update,
8465
8466        .rdtscp_supported = vmx_rdtscp_supported,
8467        .invpcid_supported = vmx_invpcid_supported,
8468
8469        .set_supported_cpuid = vmx_set_supported_cpuid,
8470
8471        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8472
8473        .set_tsc_khz = vmx_set_tsc_khz,
8474        .read_tsc_offset = vmx_read_tsc_offset,
8475        .write_tsc_offset = vmx_write_tsc_offset,
8476        .adjust_tsc_offset = vmx_adjust_tsc_offset,
8477        .compute_tsc_offset = vmx_compute_tsc_offset,
8478        .read_l1_tsc = vmx_read_l1_tsc,
8479
8480        .set_tdp_cr3 = vmx_set_cr3,
8481
8482        .check_intercept = vmx_check_intercept,
8483        .handle_external_intr = vmx_handle_external_intr,
8484};
8485
8486static int __init vmx_init(void)
8487{
8488        int r, i, msr;
8489
8490        rdmsrl_safe(MSR_EFER, &host_efer);
8491
8492        for (i = 0; i < NR_VMX_MSR; ++i)
8493                kvm_define_shared_msr(i, vmx_msr_index[i]);
8494
8495        vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8496        if (!vmx_io_bitmap_a)
8497                return -ENOMEM;
8498
8499        r = -ENOMEM;
8500
8501        vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8502        if (!vmx_io_bitmap_b)
8503                goto out;
8504
8505        vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8506        if (!vmx_msr_bitmap_legacy)
8507                goto out1;
8508
8509        vmx_msr_bitmap_legacy_x2apic =
8510                                (unsigned long *)__get_free_page(GFP_KERNEL);
8511        if (!vmx_msr_bitmap_legacy_x2apic)
8512                goto out2;
8513
8514        vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8515        if (!vmx_msr_bitmap_longmode)
8516                goto out3;
8517
8518        vmx_msr_bitmap_longmode_x2apic =
8519                                (unsigned long *)__get_free_page(GFP_KERNEL);
8520        if (!vmx_msr_bitmap_longmode_x2apic)
8521                goto out4;
8522        vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8523        if (!vmx_vmread_bitmap)
8524                goto out5;
8525
8526        vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8527        if (!vmx_vmwrite_bitmap)
8528                goto out6;
8529
8530        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8531        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8532        /* shadowed read/write fields */
8533        for (i = 0; i < max_shadow_read_write_fields; i++) {
8534                clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8535                clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8536        }
8537        /* shadowed read only fields */
8538        for (i = 0; i < max_shadow_read_only_fields; i++)
8539                clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8540
8541        /*
8542         * Allow direct access to the PC debug port (it is often used for I/O
8543         * delays, but the vmexits simply slow things down).
8544         */
8545        memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8546        clear_bit(0x80, vmx_io_bitmap_a);
8547
8548        memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8549
8550        memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8551        memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8552
8553        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8554
8555        r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8556                     __alignof__(struct vcpu_vmx), THIS_MODULE);
8557        if (r)
8558                goto out7;
8559
8560#ifdef CONFIG_KEXEC
8561        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8562                           crash_vmclear_local_loaded_vmcss);
8563#endif
8564
8565        vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8566        vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8567        vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8568        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8569        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8570        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8571        memcpy(vmx_msr_bitmap_legacy_x2apic,
8572                        vmx_msr_bitmap_legacy, PAGE_SIZE);
8573        memcpy(vmx_msr_bitmap_longmode_x2apic,
8574                        vmx_msr_bitmap_longmode, PAGE_SIZE);
8575
8576        if (enable_apicv) {
8577                for (msr = 0x800; msr <= 0x8ff; msr++)
8578                        vmx_disable_intercept_msr_read_x2apic(msr);
8579
8580                /* According SDM, in x2apic mode, the whole id reg is used.
8581                 * But in KVM, it only use the highest eight bits. Need to
8582                 * intercept it */
8583                vmx_enable_intercept_msr_read_x2apic(0x802);
8584                /* TMCCT */
8585                vmx_enable_intercept_msr_read_x2apic(0x839);
8586                /* TPR */
8587                vmx_disable_intercept_msr_write_x2apic(0x808);
8588                /* EOI */
8589                vmx_disable_intercept_msr_write_x2apic(0x80b);
8590                /* SELF-IPI */
8591                vmx_disable_intercept_msr_write_x2apic(0x83f);
8592        }
8593
8594        if (enable_ept) {
8595                kvm_mmu_set_mask_ptes(0ull,
8596                        (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8597                        (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8598                        0ull, VMX_EPT_EXECUTABLE_MASK);
8599                ept_set_mmio_spte_mask();
8600                kvm_enable_tdp();
8601        } else
8602                kvm_disable_tdp();
8603
8604        return 0;
8605
8606out7:
8607        free_page((unsigned long)vmx_vmwrite_bitmap);
8608out6:
8609        free_page((unsigned long)vmx_vmread_bitmap);
8610out5:
8611        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8612out4:
8613        free_page((unsigned long)vmx_msr_bitmap_longmode);
8614out3:
8615        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8616out2:
8617        free_page((unsigned long)vmx_msr_bitmap_legacy);
8618out1:
8619        free_page((unsigned long)vmx_io_bitmap_b);
8620out:
8621        free_page((unsigned long)vmx_io_bitmap_a);
8622        return r;
8623}
8624
8625static void __exit vmx_exit(void)
8626{
8627        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8628        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8629        free_page((unsigned long)vmx_msr_bitmap_legacy);
8630        free_page((unsigned long)vmx_msr_bitmap_longmode);
8631        free_page((unsigned long)vmx_io_bitmap_b);
8632        free_page((unsigned long)vmx_io_bitmap_a);
8633        free_page((unsigned long)vmx_vmwrite_bitmap);
8634        free_page((unsigned long)vmx_vmread_bitmap);
8635
8636#ifdef CONFIG_KEXEC
8637        rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8638        synchronize_rcu();
8639#endif
8640
8641        kvm_exit();
8642}
8643
8644module_init(vmx_init)
8645module_exit(vmx_exit)
8646