linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29#include "cpuid.h"
  30
  31#include <linux/clocksource.h>
  32#include <linux/interrupt.h>
  33#include <linux/kvm.h>
  34#include <linux/fs.h>
  35#include <linux/vmalloc.h>
  36#include <linux/module.h>
  37#include <linux/mman.h>
  38#include <linux/highmem.h>
  39#include <linux/iommu.h>
  40#include <linux/intel-iommu.h>
  41#include <linux/cpufreq.h>
  42#include <linux/user-return-notifier.h>
  43#include <linux/srcu.h>
  44#include <linux/slab.h>
  45#include <linux/perf_event.h>
  46#include <linux/uaccess.h>
  47#include <linux/hash.h>
  48#include <linux/pci.h>
  49#include <linux/timekeeper_internal.h>
  50#include <linux/pvclock_gtod.h>
  51#include <trace/events/kvm.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include "trace.h"
  55
  56#include <asm/debugreg.h>
  57#include <asm/msr.h>
  58#include <asm/desc.h>
  59#include <asm/mtrr.h>
  60#include <asm/mce.h>
  61#include <asm/i387.h>
  62#include <asm/fpu-internal.h> /* Ugh! */
  63#include <asm/xcr.h>
  64#include <asm/pvclock.h>
  65#include <asm/div64.h>
  66
  67#define MAX_IO_MSRS 256
  68#define KVM_MAX_MCE_BANKS 32
  69#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  70
  71#define emul_to_vcpu(ctxt) \
  72        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  73
  74/* EFER defaults:
  75 * - enable syscall per default because its emulated by KVM
  76 * - enable LME and LMA per default on 64 bit KVM
  77 */
  78#ifdef CONFIG_X86_64
  79static
  80u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  81#else
  82static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  83#endif
  84
  85#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  86#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  87
  88static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  89static void process_nmi(struct kvm_vcpu *vcpu);
  90
  91struct kvm_x86_ops *kvm_x86_ops;
  92EXPORT_SYMBOL_GPL(kvm_x86_ops);
  93
  94static bool ignore_msrs = 0;
  95module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  96
  97bool kvm_has_tsc_control;
  98EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  99u32  kvm_max_guest_tsc_khz;
 100EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 101
 102/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 103static u32 tsc_tolerance_ppm = 250;
 104module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 105
 106#define KVM_NR_SHARED_MSRS 16
 107
 108struct kvm_shared_msrs_global {
 109        int nr;
 110        u32 msrs[KVM_NR_SHARED_MSRS];
 111};
 112
 113struct kvm_shared_msrs {
 114        struct user_return_notifier urn;
 115        bool registered;
 116        struct kvm_shared_msr_values {
 117                u64 host;
 118                u64 curr;
 119        } values[KVM_NR_SHARED_MSRS];
 120};
 121
 122static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 123static struct kvm_shared_msrs __percpu *shared_msrs;
 124
 125struct kvm_stats_debugfs_item debugfs_entries[] = {
 126        { "pf_fixed", VCPU_STAT(pf_fixed) },
 127        { "pf_guest", VCPU_STAT(pf_guest) },
 128        { "tlb_flush", VCPU_STAT(tlb_flush) },
 129        { "invlpg", VCPU_STAT(invlpg) },
 130        { "exits", VCPU_STAT(exits) },
 131        { "io_exits", VCPU_STAT(io_exits) },
 132        { "mmio_exits", VCPU_STAT(mmio_exits) },
 133        { "signal_exits", VCPU_STAT(signal_exits) },
 134        { "irq_window", VCPU_STAT(irq_window_exits) },
 135        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 136        { "halt_exits", VCPU_STAT(halt_exits) },
 137        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 138        { "hypercalls", VCPU_STAT(hypercalls) },
 139        { "request_irq", VCPU_STAT(request_irq_exits) },
 140        { "irq_exits", VCPU_STAT(irq_exits) },
 141        { "host_state_reload", VCPU_STAT(host_state_reload) },
 142        { "efer_reload", VCPU_STAT(efer_reload) },
 143        { "fpu_reload", VCPU_STAT(fpu_reload) },
 144        { "insn_emulation", VCPU_STAT(insn_emulation) },
 145        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 146        { "irq_injections", VCPU_STAT(irq_injections) },
 147        { "nmi_injections", VCPU_STAT(nmi_injections) },
 148        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 149        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 150        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 151        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 152        { "mmu_flooded", VM_STAT(mmu_flooded) },
 153        { "mmu_recycled", VM_STAT(mmu_recycled) },
 154        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 155        { "mmu_unsync", VM_STAT(mmu_unsync) },
 156        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 157        { "largepages", VM_STAT(lpages) },
 158        { NULL }
 159};
 160
 161u64 __read_mostly host_xcr0;
 162
 163static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 164
 165static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 166{
 167        int i;
 168        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 169                vcpu->arch.apf.gfns[i] = ~0;
 170}
 171
 172static void kvm_on_user_return(struct user_return_notifier *urn)
 173{
 174        unsigned slot;
 175        struct kvm_shared_msrs *locals
 176                = container_of(urn, struct kvm_shared_msrs, urn);
 177        struct kvm_shared_msr_values *values;
 178
 179        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 180                values = &locals->values[slot];
 181                if (values->host != values->curr) {
 182                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 183                        values->curr = values->host;
 184                }
 185        }
 186        locals->registered = false;
 187        user_return_notifier_unregister(urn);
 188}
 189
 190static void shared_msr_update(unsigned slot, u32 msr)
 191{
 192        u64 value;
 193        unsigned int cpu = smp_processor_id();
 194        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 195
 196        /* only read, and nobody should modify it at this time,
 197         * so don't need lock */
 198        if (slot >= shared_msrs_global.nr) {
 199                printk(KERN_ERR "kvm: invalid MSR slot!");
 200                return;
 201        }
 202        rdmsrl_safe(msr, &value);
 203        smsr->values[slot].host = value;
 204        smsr->values[slot].curr = value;
 205}
 206
 207void kvm_define_shared_msr(unsigned slot, u32 msr)
 208{
 209        if (slot >= shared_msrs_global.nr)
 210                shared_msrs_global.nr = slot + 1;
 211        shared_msrs_global.msrs[slot] = msr;
 212        /* we need ensured the shared_msr_global have been updated */
 213        smp_wmb();
 214}
 215EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 216
 217static void kvm_shared_msr_cpu_online(void)
 218{
 219        unsigned i;
 220
 221        for (i = 0; i < shared_msrs_global.nr; ++i)
 222                shared_msr_update(i, shared_msrs_global.msrs[i]);
 223}
 224
 225void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 226{
 227        unsigned int cpu = smp_processor_id();
 228        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 229
 230        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 231                return;
 232        smsr->values[slot].curr = value;
 233        wrmsrl(shared_msrs_global.msrs[slot], value);
 234        if (!smsr->registered) {
 235                smsr->urn.on_user_return = kvm_on_user_return;
 236                user_return_notifier_register(&smsr->urn);
 237                smsr->registered = true;
 238        }
 239}
 240EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 241
 242static void drop_user_return_notifiers(void *ignore)
 243{
 244        unsigned int cpu = smp_processor_id();
 245        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 246
 247        if (smsr->registered)
 248                kvm_on_user_return(&smsr->urn);
 249}
 250
 251u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 252{
 253        return vcpu->arch.apic_base;
 254}
 255EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 256
 257void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 258{
 259        /* TODO: reserve bits check */
 260        kvm_lapic_set_base(vcpu, data);
 261}
 262EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 263
 264asmlinkage void kvm_spurious_fault(void)
 265{
 266        /* Fault while not rebooting.  We want the trace. */
 267        BUG();
 268}
 269EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 270
 271#define EXCPT_BENIGN            0
 272#define EXCPT_CONTRIBUTORY      1
 273#define EXCPT_PF                2
 274
 275static int exception_class(int vector)
 276{
 277        switch (vector) {
 278        case PF_VECTOR:
 279                return EXCPT_PF;
 280        case DE_VECTOR:
 281        case TS_VECTOR:
 282        case NP_VECTOR:
 283        case SS_VECTOR:
 284        case GP_VECTOR:
 285                return EXCPT_CONTRIBUTORY;
 286        default:
 287                break;
 288        }
 289        return EXCPT_BENIGN;
 290}
 291
 292static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 293                unsigned nr, bool has_error, u32 error_code,
 294                bool reinject)
 295{
 296        u32 prev_nr;
 297        int class1, class2;
 298
 299        kvm_make_request(KVM_REQ_EVENT, vcpu);
 300
 301        if (!vcpu->arch.exception.pending) {
 302        queue:
 303                vcpu->arch.exception.pending = true;
 304                vcpu->arch.exception.has_error_code = has_error;
 305                vcpu->arch.exception.nr = nr;
 306                vcpu->arch.exception.error_code = error_code;
 307                vcpu->arch.exception.reinject = reinject;
 308                return;
 309        }
 310
 311        /* to check exception */
 312        prev_nr = vcpu->arch.exception.nr;
 313        if (prev_nr == DF_VECTOR) {
 314                /* triple fault -> shutdown */
 315                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 316                return;
 317        }
 318        class1 = exception_class(prev_nr);
 319        class2 = exception_class(nr);
 320        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 321                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 322                /* generate double fault per SDM Table 5-5 */
 323                vcpu->arch.exception.pending = true;
 324                vcpu->arch.exception.has_error_code = true;
 325                vcpu->arch.exception.nr = DF_VECTOR;
 326                vcpu->arch.exception.error_code = 0;
 327        } else
 328                /* replace previous exception with a new one in a hope
 329                   that instruction re-execution will regenerate lost
 330                   exception */
 331                goto queue;
 332}
 333
 334void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 335{
 336        kvm_multiple_exception(vcpu, nr, false, 0, false);
 337}
 338EXPORT_SYMBOL_GPL(kvm_queue_exception);
 339
 340void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 341{
 342        kvm_multiple_exception(vcpu, nr, false, 0, true);
 343}
 344EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 345
 346void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 347{
 348        if (err)
 349                kvm_inject_gp(vcpu, 0);
 350        else
 351                kvm_x86_ops->skip_emulated_instruction(vcpu);
 352}
 353EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 354
 355void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 356{
 357        ++vcpu->stat.pf_guest;
 358        vcpu->arch.cr2 = fault->address;
 359        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 360}
 361EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 362
 363void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 364{
 365        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 366                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 367        else
 368                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 369}
 370
 371void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 372{
 373        atomic_inc(&vcpu->arch.nmi_queued);
 374        kvm_make_request(KVM_REQ_NMI, vcpu);
 375}
 376EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 377
 378void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 379{
 380        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 381}
 382EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 383
 384void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 385{
 386        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 387}
 388EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 389
 390/*
 391 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 392 * a #GP and return false.
 393 */
 394bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 395{
 396        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 397                return true;
 398        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 399        return false;
 400}
 401EXPORT_SYMBOL_GPL(kvm_require_cpl);
 402
 403/*
 404 * This function will be used to read from the physical memory of the currently
 405 * running guest. The difference to kvm_read_guest_page is that this function
 406 * can read from guest physical or from the guest's guest physical memory.
 407 */
 408int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 409                            gfn_t ngfn, void *data, int offset, int len,
 410                            u32 access)
 411{
 412        gfn_t real_gfn;
 413        gpa_t ngpa;
 414
 415        ngpa     = gfn_to_gpa(ngfn);
 416        real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
 417        if (real_gfn == UNMAPPED_GVA)
 418                return -EFAULT;
 419
 420        real_gfn = gpa_to_gfn(real_gfn);
 421
 422        return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
 423}
 424EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 425
 426int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 427                               void *data, int offset, int len, u32 access)
 428{
 429        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 430                                       data, offset, len, access);
 431}
 432
 433/*
 434 * Load the pae pdptrs.  Return true is they are all valid.
 435 */
 436int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 437{
 438        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 439        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 440        int i;
 441        int ret;
 442        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 443
 444        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 445                                      offset * sizeof(u64), sizeof(pdpte),
 446                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 447        if (ret < 0) {
 448                ret = 0;
 449                goto out;
 450        }
 451        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 452                if (is_present_gpte(pdpte[i]) &&
 453                    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 454                        ret = 0;
 455                        goto out;
 456                }
 457        }
 458        ret = 1;
 459
 460        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 461        __set_bit(VCPU_EXREG_PDPTR,
 462                  (unsigned long *)&vcpu->arch.regs_avail);
 463        __set_bit(VCPU_EXREG_PDPTR,
 464                  (unsigned long *)&vcpu->arch.regs_dirty);
 465out:
 466
 467        return ret;
 468}
 469EXPORT_SYMBOL_GPL(load_pdptrs);
 470
 471static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 472{
 473        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 474        bool changed = true;
 475        int offset;
 476        gfn_t gfn;
 477        int r;
 478
 479        if (is_long_mode(vcpu) || !is_pae(vcpu))
 480                return false;
 481
 482        if (!test_bit(VCPU_EXREG_PDPTR,
 483                      (unsigned long *)&vcpu->arch.regs_avail))
 484                return true;
 485
 486        gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
 487        offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
 488        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 489                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 490        if (r < 0)
 491                goto out;
 492        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 493out:
 494
 495        return changed;
 496}
 497
 498int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 499{
 500        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 501        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
 502                                    X86_CR0_CD | X86_CR0_NW;
 503
 504        cr0 |= X86_CR0_ET;
 505
 506#ifdef CONFIG_X86_64
 507        if (cr0 & 0xffffffff00000000UL)
 508                return 1;
 509#endif
 510
 511        cr0 &= ~CR0_RESERVED_BITS;
 512
 513        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 514                return 1;
 515
 516        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 517                return 1;
 518
 519        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 520#ifdef CONFIG_X86_64
 521                if ((vcpu->arch.efer & EFER_LME)) {
 522                        int cs_db, cs_l;
 523
 524                        if (!is_pae(vcpu))
 525                                return 1;
 526                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 527                        if (cs_l)
 528                                return 1;
 529                } else
 530#endif
 531                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 532                                                 kvm_read_cr3(vcpu)))
 533                        return 1;
 534        }
 535
 536        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 537                return 1;
 538
 539        kvm_x86_ops->set_cr0(vcpu, cr0);
 540
 541        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 542                kvm_clear_async_pf_completion_queue(vcpu);
 543                kvm_async_pf_hash_reset(vcpu);
 544        }
 545
 546        if ((cr0 ^ old_cr0) & update_bits)
 547                kvm_mmu_reset_context(vcpu);
 548        return 0;
 549}
 550EXPORT_SYMBOL_GPL(kvm_set_cr0);
 551
 552void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 553{
 554        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 555}
 556EXPORT_SYMBOL_GPL(kvm_lmsw);
 557
 558static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
 559{
 560        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
 561                        !vcpu->guest_xcr0_loaded) {
 562                /* kvm_set_xcr() also depends on this */
 563                xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 564                vcpu->guest_xcr0_loaded = 1;
 565        }
 566}
 567
 568static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
 569{
 570        if (vcpu->guest_xcr0_loaded) {
 571                if (vcpu->arch.xcr0 != host_xcr0)
 572                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 573                vcpu->guest_xcr0_loaded = 0;
 574        }
 575}
 576
 577int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 578{
 579        u64 xcr0;
 580
 581        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 582        if (index != XCR_XFEATURE_ENABLED_MASK)
 583                return 1;
 584        xcr0 = xcr;
 585        if (!(xcr0 & XSTATE_FP))
 586                return 1;
 587        if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
 588                return 1;
 589        if (xcr0 & ~host_xcr0)
 590                return 1;
 591        kvm_put_guest_xcr0(vcpu);
 592        vcpu->arch.xcr0 = xcr0;
 593        return 0;
 594}
 595
 596int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 597{
 598        if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
 599            __kvm_set_xcr(vcpu, index, xcr)) {
 600                kvm_inject_gp(vcpu, 0);
 601                return 1;
 602        }
 603        return 0;
 604}
 605EXPORT_SYMBOL_GPL(kvm_set_xcr);
 606
 607int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 608{
 609        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 610        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
 611                                   X86_CR4_PAE | X86_CR4_SMEP;
 612        if (cr4 & CR4_RESERVED_BITS)
 613                return 1;
 614
 615        if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 616                return 1;
 617
 618        if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
 619                return 1;
 620
 621        if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
 622                return 1;
 623
 624        if (is_long_mode(vcpu)) {
 625                if (!(cr4 & X86_CR4_PAE))
 626                        return 1;
 627        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 628                   && ((cr4 ^ old_cr4) & pdptr_bits)
 629                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 630                                   kvm_read_cr3(vcpu)))
 631                return 1;
 632
 633        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 634                if (!guest_cpuid_has_pcid(vcpu))
 635                        return 1;
 636
 637                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 638                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 639                        return 1;
 640        }
 641
 642        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 643                return 1;
 644
 645        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 646            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 647                kvm_mmu_reset_context(vcpu);
 648
 649        if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
 650                kvm_update_cpuid(vcpu);
 651
 652        return 0;
 653}
 654EXPORT_SYMBOL_GPL(kvm_set_cr4);
 655
 656int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 657{
 658        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 659                kvm_mmu_sync_roots(vcpu);
 660                kvm_mmu_flush_tlb(vcpu);
 661                return 0;
 662        }
 663
 664        if (is_long_mode(vcpu)) {
 665                if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
 666                        if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
 667                                return 1;
 668                } else
 669                        if (cr3 & CR3_L_MODE_RESERVED_BITS)
 670                                return 1;
 671        } else {
 672                if (is_pae(vcpu)) {
 673                        if (cr3 & CR3_PAE_RESERVED_BITS)
 674                                return 1;
 675                        if (is_paging(vcpu) &&
 676                            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 677                                return 1;
 678                }
 679                /*
 680                 * We don't check reserved bits in nonpae mode, because
 681                 * this isn't enforced, and VMware depends on this.
 682                 */
 683        }
 684
 685        vcpu->arch.cr3 = cr3;
 686        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 687        vcpu->arch.mmu.new_cr3(vcpu);
 688        return 0;
 689}
 690EXPORT_SYMBOL_GPL(kvm_set_cr3);
 691
 692int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 693{
 694        if (cr8 & CR8_RESERVED_BITS)
 695                return 1;
 696        if (irqchip_in_kernel(vcpu->kvm))
 697                kvm_lapic_set_tpr(vcpu, cr8);
 698        else
 699                vcpu->arch.cr8 = cr8;
 700        return 0;
 701}
 702EXPORT_SYMBOL_GPL(kvm_set_cr8);
 703
 704unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 705{
 706        if (irqchip_in_kernel(vcpu->kvm))
 707                return kvm_lapic_get_cr8(vcpu);
 708        else
 709                return vcpu->arch.cr8;
 710}
 711EXPORT_SYMBOL_GPL(kvm_get_cr8);
 712
 713static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 714{
 715        unsigned long dr7;
 716
 717        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 718                dr7 = vcpu->arch.guest_debug_dr7;
 719        else
 720                dr7 = vcpu->arch.dr7;
 721        kvm_x86_ops->set_dr7(vcpu, dr7);
 722        vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
 723}
 724
 725static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 726{
 727        switch (dr) {
 728        case 0 ... 3:
 729                vcpu->arch.db[dr] = val;
 730                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 731                        vcpu->arch.eff_db[dr] = val;
 732                break;
 733        case 4:
 734                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 735                        return 1; /* #UD */
 736                /* fall through */
 737        case 6:
 738                if (val & 0xffffffff00000000ULL)
 739                        return -1; /* #GP */
 740                vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
 741                break;
 742        case 5:
 743                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 744                        return 1; /* #UD */
 745                /* fall through */
 746        default: /* 7 */
 747                if (val & 0xffffffff00000000ULL)
 748                        return -1; /* #GP */
 749                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 750                kvm_update_dr7(vcpu);
 751                break;
 752        }
 753
 754        return 0;
 755}
 756
 757int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 758{
 759        int res;
 760
 761        res = __kvm_set_dr(vcpu, dr, val);
 762        if (res > 0)
 763                kvm_queue_exception(vcpu, UD_VECTOR);
 764        else if (res < 0)
 765                kvm_inject_gp(vcpu, 0);
 766
 767        return res;
 768}
 769EXPORT_SYMBOL_GPL(kvm_set_dr);
 770
 771static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 772{
 773        switch (dr) {
 774        case 0 ... 3:
 775                *val = vcpu->arch.db[dr];
 776                break;
 777        case 4:
 778                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 779                        return 1;
 780                /* fall through */
 781        case 6:
 782                *val = vcpu->arch.dr6;
 783                break;
 784        case 5:
 785                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 786                        return 1;
 787                /* fall through */
 788        default: /* 7 */
 789                *val = vcpu->arch.dr7;
 790                break;
 791        }
 792
 793        return 0;
 794}
 795
 796int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 797{
 798        if (_kvm_get_dr(vcpu, dr, val)) {
 799                kvm_queue_exception(vcpu, UD_VECTOR);
 800                return 1;
 801        }
 802        return 0;
 803}
 804EXPORT_SYMBOL_GPL(kvm_get_dr);
 805
 806bool kvm_rdpmc(struct kvm_vcpu *vcpu)
 807{
 808        u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 809        u64 data;
 810        int err;
 811
 812        err = kvm_pmu_read_pmc(vcpu, ecx, &data);
 813        if (err)
 814                return err;
 815        kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
 816        kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
 817        return err;
 818}
 819EXPORT_SYMBOL_GPL(kvm_rdpmc);
 820
 821/*
 822 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 823 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 824 *
 825 * This list is modified at module load time to reflect the
 826 * capabilities of the host cpu. This capabilities test skips MSRs that are
 827 * kvm-specific. Those are put in the beginning of the list.
 828 */
 829
 830#define KVM_SAVE_MSRS_BEGIN     10
 831static u32 msrs_to_save[] = {
 832        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 833        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 834        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 835        HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
 836        MSR_KVM_PV_EOI_EN,
 837        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 838        MSR_STAR,
 839#ifdef CONFIG_X86_64
 840        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 841#endif
 842        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
 843        MSR_IA32_FEATURE_CONTROL
 844};
 845
 846static unsigned num_msrs_to_save;
 847
 848static const u32 emulated_msrs[] = {
 849        MSR_IA32_TSC_ADJUST,
 850        MSR_IA32_TSCDEADLINE,
 851        MSR_IA32_MISC_ENABLE,
 852        MSR_IA32_MCG_STATUS,
 853        MSR_IA32_MCG_CTL,
 854};
 855
 856bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
 857{
 858        if (efer & efer_reserved_bits)
 859                return false;
 860
 861        if (efer & EFER_FFXSR) {
 862                struct kvm_cpuid_entry2 *feat;
 863
 864                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 865                if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
 866                        return false;
 867        }
 868
 869        if (efer & EFER_SVME) {
 870                struct kvm_cpuid_entry2 *feat;
 871
 872                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 873                if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
 874                        return false;
 875        }
 876
 877        return true;
 878}
 879EXPORT_SYMBOL_GPL(kvm_valid_efer);
 880
 881static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
 882{
 883        u64 old_efer = vcpu->arch.efer;
 884
 885        if (!kvm_valid_efer(vcpu, efer))
 886                return 1;
 887
 888        if (is_paging(vcpu)
 889            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 890                return 1;
 891
 892        efer &= ~EFER_LMA;
 893        efer |= vcpu->arch.efer & EFER_LMA;
 894
 895        kvm_x86_ops->set_efer(vcpu, efer);
 896
 897        /* Update reserved bits */
 898        if ((efer ^ old_efer) & EFER_NX)
 899                kvm_mmu_reset_context(vcpu);
 900
 901        return 0;
 902}
 903
 904void kvm_enable_efer_bits(u64 mask)
 905{
 906       efer_reserved_bits &= ~mask;
 907}
 908EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 909
 910
 911/*
 912 * Writes msr value into into the appropriate "register".
 913 * Returns 0 on success, non-0 otherwise.
 914 * Assumes vcpu_load() was already called.
 915 */
 916int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
 917{
 918        return kvm_x86_ops->set_msr(vcpu, msr);
 919}
 920
 921/*
 922 * Adapt set_msr() to msr_io()'s calling convention
 923 */
 924static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 925{
 926        struct msr_data msr;
 927
 928        msr.data = *data;
 929        msr.index = index;
 930        msr.host_initiated = true;
 931        return kvm_set_msr(vcpu, &msr);
 932}
 933
 934#ifdef CONFIG_X86_64
 935struct pvclock_gtod_data {
 936        seqcount_t      seq;
 937
 938        struct { /* extract of a clocksource struct */
 939                int vclock_mode;
 940                cycle_t cycle_last;
 941                cycle_t mask;
 942                u32     mult;
 943                u32     shift;
 944        } clock;
 945
 946        /* open coded 'struct timespec' */
 947        u64             monotonic_time_snsec;
 948        time_t          monotonic_time_sec;
 949};
 950
 951static struct pvclock_gtod_data pvclock_gtod_data;
 952
 953static void update_pvclock_gtod(struct timekeeper *tk)
 954{
 955        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
 956
 957        write_seqcount_begin(&vdata->seq);
 958
 959        /* copy pvclock gtod data */
 960        vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
 961        vdata->clock.cycle_last         = tk->clock->cycle_last;
 962        vdata->clock.mask               = tk->clock->mask;
 963        vdata->clock.mult               = tk->mult;
 964        vdata->clock.shift              = tk->shift;
 965
 966        vdata->monotonic_time_sec       = tk->xtime_sec
 967                                        + tk->wall_to_monotonic.tv_sec;
 968        vdata->monotonic_time_snsec     = tk->xtime_nsec
 969                                        + (tk->wall_to_monotonic.tv_nsec
 970                                                << tk->shift);
 971        while (vdata->monotonic_time_snsec >=
 972                                        (((u64)NSEC_PER_SEC) << tk->shift)) {
 973                vdata->monotonic_time_snsec -=
 974                                        ((u64)NSEC_PER_SEC) << tk->shift;
 975                vdata->monotonic_time_sec++;
 976        }
 977
 978        write_seqcount_end(&vdata->seq);
 979}
 980#endif
 981
 982
 983static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 984{
 985        int version;
 986        int r;
 987        struct pvclock_wall_clock wc;
 988        struct timespec boot;
 989
 990        if (!wall_clock)
 991                return;
 992
 993        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
 994        if (r)
 995                return;
 996
 997        if (version & 1)
 998                ++version;  /* first time write, random junk */
 999
1000        ++version;
1001
1002        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1003
1004        /*
1005         * The guest calculates current wall clock time by adding
1006         * system time (updated by kvm_guest_time_update below) to the
1007         * wall clock specified here.  guest system time equals host
1008         * system time for us, thus we must fill in host boot time here.
1009         */
1010        getboottime(&boot);
1011
1012        if (kvm->arch.kvmclock_offset) {
1013                struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1014                boot = timespec_sub(boot, ts);
1015        }
1016        wc.sec = boot.tv_sec;
1017        wc.nsec = boot.tv_nsec;
1018        wc.version = version;
1019
1020        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1021
1022        version++;
1023        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1024}
1025
1026static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1027{
1028        uint32_t quotient, remainder;
1029
1030        /* Don't try to replace with do_div(), this one calculates
1031         * "(dividend << 32) / divisor" */
1032        __asm__ ( "divl %4"
1033                  : "=a" (quotient), "=d" (remainder)
1034                  : "0" (0), "1" (dividend), "r" (divisor) );
1035        return quotient;
1036}
1037
1038static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1039                               s8 *pshift, u32 *pmultiplier)
1040{
1041        uint64_t scaled64;
1042        int32_t  shift = 0;
1043        uint64_t tps64;
1044        uint32_t tps32;
1045
1046        tps64 = base_khz * 1000LL;
1047        scaled64 = scaled_khz * 1000LL;
1048        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1049                tps64 >>= 1;
1050                shift--;
1051        }
1052
1053        tps32 = (uint32_t)tps64;
1054        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1055                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1056                        scaled64 >>= 1;
1057                else
1058                        tps32 <<= 1;
1059                shift++;
1060        }
1061
1062        *pshift = shift;
1063        *pmultiplier = div_frac(scaled64, tps32);
1064
1065        pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1066                 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1067}
1068
1069static inline u64 get_kernel_ns(void)
1070{
1071        struct timespec ts;
1072
1073        WARN_ON(preemptible());
1074        ktime_get_ts(&ts);
1075        monotonic_to_bootbased(&ts);
1076        return timespec_to_ns(&ts);
1077}
1078
1079#ifdef CONFIG_X86_64
1080static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1081#endif
1082
1083static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1084unsigned long max_tsc_khz;
1085
1086static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1087{
1088        return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1089                                   vcpu->arch.virtual_tsc_shift);
1090}
1091
1092static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1093{
1094        u64 v = (u64)khz * (1000000 + ppm);
1095        do_div(v, 1000000);
1096        return v;
1097}
1098
1099static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1100{
1101        u32 thresh_lo, thresh_hi;
1102        int use_scaling = 0;
1103
1104        /* tsc_khz can be zero if TSC calibration fails */
1105        if (this_tsc_khz == 0)
1106                return;
1107
1108        /* Compute a scale to convert nanoseconds in TSC cycles */
1109        kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1110                           &vcpu->arch.virtual_tsc_shift,
1111                           &vcpu->arch.virtual_tsc_mult);
1112        vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1113
1114        /*
1115         * Compute the variation in TSC rate which is acceptable
1116         * within the range of tolerance and decide if the
1117         * rate being applied is within that bounds of the hardware
1118         * rate.  If so, no scaling or compensation need be done.
1119         */
1120        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1121        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1122        if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1123                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1124                use_scaling = 1;
1125        }
1126        kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1127}
1128
1129static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1130{
1131        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1132                                      vcpu->arch.virtual_tsc_mult,
1133                                      vcpu->arch.virtual_tsc_shift);
1134        tsc += vcpu->arch.this_tsc_write;
1135        return tsc;
1136}
1137
1138void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1139{
1140#ifdef CONFIG_X86_64
1141        bool vcpus_matched;
1142        bool do_request = false;
1143        struct kvm_arch *ka = &vcpu->kvm->arch;
1144        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1145
1146        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1147                         atomic_read(&vcpu->kvm->online_vcpus));
1148
1149        if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1150                if (!ka->use_master_clock)
1151                        do_request = 1;
1152
1153        if (!vcpus_matched && ka->use_master_clock)
1154                        do_request = 1;
1155
1156        if (do_request)
1157                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1158
1159        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1160                            atomic_read(&vcpu->kvm->online_vcpus),
1161                            ka->use_master_clock, gtod->clock.vclock_mode);
1162#endif
1163}
1164
1165static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1166{
1167        u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1168        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1169}
1170
1171void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1172{
1173        struct kvm *kvm = vcpu->kvm;
1174        u64 offset, ns, elapsed;
1175        unsigned long flags;
1176        s64 usdiff;
1177        bool matched;
1178        u64 data = msr->data;
1179
1180        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1181        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1182        ns = get_kernel_ns();
1183        elapsed = ns - kvm->arch.last_tsc_nsec;
1184
1185        if (vcpu->arch.virtual_tsc_khz) {
1186                int faulted = 0;
1187
1188                /* n.b - signed multiplication and division required */
1189                usdiff = data - kvm->arch.last_tsc_write;
1190#ifdef CONFIG_X86_64
1191                usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1192#else
1193                /* do_div() only does unsigned */
1194                asm("1: idivl %[divisor]\n"
1195                    "2: xor %%edx, %%edx\n"
1196                    "   movl $0, %[faulted]\n"
1197                    "3:\n"
1198                    ".section .fixup,\"ax\"\n"
1199                    "4: movl $1, %[faulted]\n"
1200                    "   jmp  3b\n"
1201                    ".previous\n"
1202
1203                _ASM_EXTABLE(1b, 4b)
1204
1205                : "=A"(usdiff), [faulted] "=r" (faulted)
1206                : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1207
1208#endif
1209                do_div(elapsed, 1000);
1210                usdiff -= elapsed;
1211                if (usdiff < 0)
1212                        usdiff = -usdiff;
1213
1214                /* idivl overflow => difference is larger than USEC_PER_SEC */
1215                if (faulted)
1216                        usdiff = USEC_PER_SEC;
1217        } else
1218                usdiff = USEC_PER_SEC; /* disable TSC match window below */
1219
1220        /*
1221         * Special case: TSC write with a small delta (1 second) of virtual
1222         * cycle time against real time is interpreted as an attempt to
1223         * synchronize the CPU.
1224         *
1225         * For a reliable TSC, we can match TSC offsets, and for an unstable
1226         * TSC, we add elapsed time in this computation.  We could let the
1227         * compensation code attempt to catch up if we fall behind, but
1228         * it's better to try to match offsets from the beginning.
1229         */
1230        if (usdiff < USEC_PER_SEC &&
1231            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1232                if (!check_tsc_unstable()) {
1233                        offset = kvm->arch.cur_tsc_offset;
1234                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1235                } else {
1236                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1237                        data += delta;
1238                        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1239                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1240                }
1241                matched = true;
1242        } else {
1243                /*
1244                 * We split periods of matched TSC writes into generations.
1245                 * For each generation, we track the original measured
1246                 * nanosecond time, offset, and write, so if TSCs are in
1247                 * sync, we can match exact offset, and if not, we can match
1248                 * exact software computation in compute_guest_tsc()
1249                 *
1250                 * These values are tracked in kvm->arch.cur_xxx variables.
1251                 */
1252                kvm->arch.cur_tsc_generation++;
1253                kvm->arch.cur_tsc_nsec = ns;
1254                kvm->arch.cur_tsc_write = data;
1255                kvm->arch.cur_tsc_offset = offset;
1256                matched = false;
1257                pr_debug("kvm: new tsc generation %u, clock %llu\n",
1258                         kvm->arch.cur_tsc_generation, data);
1259        }
1260
1261        /*
1262         * We also track th most recent recorded KHZ, write and time to
1263         * allow the matching interval to be extended at each write.
1264         */
1265        kvm->arch.last_tsc_nsec = ns;
1266        kvm->arch.last_tsc_write = data;
1267        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1268
1269        /* Reset of TSC must disable overshoot protection below */
1270        vcpu->arch.hv_clock.tsc_timestamp = 0;
1271        vcpu->arch.last_guest_tsc = data;
1272
1273        /* Keep track of which generation this VCPU has synchronized to */
1274        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1275        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1276        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1277
1278        if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1279                update_ia32_tsc_adjust_msr(vcpu, offset);
1280        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1281        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1282
1283        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1284        if (matched)
1285                kvm->arch.nr_vcpus_matched_tsc++;
1286        else
1287                kvm->arch.nr_vcpus_matched_tsc = 0;
1288
1289        kvm_track_tsc_matching(vcpu);
1290        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1291}
1292
1293EXPORT_SYMBOL_GPL(kvm_write_tsc);
1294
1295#ifdef CONFIG_X86_64
1296
1297static cycle_t read_tsc(void)
1298{
1299        cycle_t ret;
1300        u64 last;
1301
1302        /*
1303         * Empirically, a fence (of type that depends on the CPU)
1304         * before rdtsc is enough to ensure that rdtsc is ordered
1305         * with respect to loads.  The various CPU manuals are unclear
1306         * as to whether rdtsc can be reordered with later loads,
1307         * but no one has ever seen it happen.
1308         */
1309        rdtsc_barrier();
1310        ret = (cycle_t)vget_cycles();
1311
1312        last = pvclock_gtod_data.clock.cycle_last;
1313
1314        if (likely(ret >= last))
1315                return ret;
1316
1317        /*
1318         * GCC likes to generate cmov here, but this branch is extremely
1319         * predictable (it's just a funciton of time and the likely is
1320         * very likely) and there's a data dependence, so force GCC
1321         * to generate a branch instead.  I don't barrier() because
1322         * we don't actually need a barrier, and if this function
1323         * ever gets inlined it will generate worse code.
1324         */
1325        asm volatile ("");
1326        return last;
1327}
1328
1329static inline u64 vgettsc(cycle_t *cycle_now)
1330{
1331        long v;
1332        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1333
1334        *cycle_now = read_tsc();
1335
1336        v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1337        return v * gtod->clock.mult;
1338}
1339
1340static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1341{
1342        unsigned long seq;
1343        u64 ns;
1344        int mode;
1345        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346
1347        ts->tv_nsec = 0;
1348        do {
1349                seq = read_seqcount_begin(&gtod->seq);
1350                mode = gtod->clock.vclock_mode;
1351                ts->tv_sec = gtod->monotonic_time_sec;
1352                ns = gtod->monotonic_time_snsec;
1353                ns += vgettsc(cycle_now);
1354                ns >>= gtod->clock.shift;
1355        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1356        timespec_add_ns(ts, ns);
1357
1358        return mode;
1359}
1360
1361/* returns true if host is using tsc clocksource */
1362static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1363{
1364        struct timespec ts;
1365
1366        /* checked again under seqlock below */
1367        if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1368                return false;
1369
1370        if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1371                return false;
1372
1373        monotonic_to_bootbased(&ts);
1374        *kernel_ns = timespec_to_ns(&ts);
1375
1376        return true;
1377}
1378#endif
1379
1380/*
1381 *
1382 * Assuming a stable TSC across physical CPUS, and a stable TSC
1383 * across virtual CPUs, the following condition is possible.
1384 * Each numbered line represents an event visible to both
1385 * CPUs at the next numbered event.
1386 *
1387 * "timespecX" represents host monotonic time. "tscX" represents
1388 * RDTSC value.
1389 *
1390 *              VCPU0 on CPU0           |       VCPU1 on CPU1
1391 *
1392 * 1.  read timespec0,tsc0
1393 * 2.                                   | timespec1 = timespec0 + N
1394 *                                      | tsc1 = tsc0 + M
1395 * 3. transition to guest               | transition to guest
1396 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1397 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1398 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1399 *
1400 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1401 *
1402 *      - ret0 < ret1
1403 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1404 *              ...
1405 *      - 0 < N - M => M < N
1406 *
1407 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1408 * always the case (the difference between two distinct xtime instances
1409 * might be smaller then the difference between corresponding TSC reads,
1410 * when updating guest vcpus pvclock areas).
1411 *
1412 * To avoid that problem, do not allow visibility of distinct
1413 * system_timestamp/tsc_timestamp values simultaneously: use a master
1414 * copy of host monotonic time values. Update that master copy
1415 * in lockstep.
1416 *
1417 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1418 *
1419 */
1420
1421static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1422{
1423#ifdef CONFIG_X86_64
1424        struct kvm_arch *ka = &kvm->arch;
1425        int vclock_mode;
1426        bool host_tsc_clocksource, vcpus_matched;
1427
1428        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1429                        atomic_read(&kvm->online_vcpus));
1430
1431        /*
1432         * If the host uses TSC clock, then passthrough TSC as stable
1433         * to the guest.
1434         */
1435        host_tsc_clocksource = kvm_get_time_and_clockread(
1436                                        &ka->master_kernel_ns,
1437                                        &ka->master_cycle_now);
1438
1439        ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1440
1441        if (ka->use_master_clock)
1442                atomic_set(&kvm_guest_has_master_clock, 1);
1443
1444        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1445        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1446                                        vcpus_matched);
1447#endif
1448}
1449
1450static void kvm_gen_update_masterclock(struct kvm *kvm)
1451{
1452#ifdef CONFIG_X86_64
1453        int i;
1454        struct kvm_vcpu *vcpu;
1455        struct kvm_arch *ka = &kvm->arch;
1456
1457        spin_lock(&ka->pvclock_gtod_sync_lock);
1458        kvm_make_mclock_inprogress_request(kvm);
1459        /* no guest entries from this point */
1460        pvclock_update_vm_gtod_copy(kvm);
1461
1462        kvm_for_each_vcpu(i, vcpu, kvm)
1463                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1464
1465        /* guest entries allowed */
1466        kvm_for_each_vcpu(i, vcpu, kvm)
1467                clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1468
1469        spin_unlock(&ka->pvclock_gtod_sync_lock);
1470#endif
1471}
1472
1473static int kvm_guest_time_update(struct kvm_vcpu *v)
1474{
1475        unsigned long flags, this_tsc_khz;
1476        struct kvm_vcpu_arch *vcpu = &v->arch;
1477        struct kvm_arch *ka = &v->kvm->arch;
1478        s64 kernel_ns, max_kernel_ns;
1479        u64 tsc_timestamp, host_tsc;
1480        struct pvclock_vcpu_time_info guest_hv_clock;
1481        u8 pvclock_flags;
1482        bool use_master_clock;
1483
1484        kernel_ns = 0;
1485        host_tsc = 0;
1486
1487        /*
1488         * If the host uses TSC clock, then passthrough TSC as stable
1489         * to the guest.
1490         */
1491        spin_lock(&ka->pvclock_gtod_sync_lock);
1492        use_master_clock = ka->use_master_clock;
1493        if (use_master_clock) {
1494                host_tsc = ka->master_cycle_now;
1495                kernel_ns = ka->master_kernel_ns;
1496        }
1497        spin_unlock(&ka->pvclock_gtod_sync_lock);
1498
1499        /* Keep irq disabled to prevent changes to the clock */
1500        local_irq_save(flags);
1501        this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1502        if (unlikely(this_tsc_khz == 0)) {
1503                local_irq_restore(flags);
1504                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1505                return 1;
1506        }
1507        if (!use_master_clock) {
1508                host_tsc = native_read_tsc();
1509                kernel_ns = get_kernel_ns();
1510        }
1511
1512        tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1513
1514        /*
1515         * We may have to catch up the TSC to match elapsed wall clock
1516         * time for two reasons, even if kvmclock is used.
1517         *   1) CPU could have been running below the maximum TSC rate
1518         *   2) Broken TSC compensation resets the base at each VCPU
1519         *      entry to avoid unknown leaps of TSC even when running
1520         *      again on the same CPU.  This may cause apparent elapsed
1521         *      time to disappear, and the guest to stand still or run
1522         *      very slowly.
1523         */
1524        if (vcpu->tsc_catchup) {
1525                u64 tsc = compute_guest_tsc(v, kernel_ns);
1526                if (tsc > tsc_timestamp) {
1527                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1528                        tsc_timestamp = tsc;
1529                }
1530        }
1531
1532        local_irq_restore(flags);
1533
1534        if (!vcpu->pv_time_enabled)
1535                return 0;
1536
1537        /*
1538         * Time as measured by the TSC may go backwards when resetting the base
1539         * tsc_timestamp.  The reason for this is that the TSC resolution is
1540         * higher than the resolution of the other clock scales.  Thus, many
1541         * possible measurments of the TSC correspond to one measurement of any
1542         * other clock, and so a spread of values is possible.  This is not a
1543         * problem for the computation of the nanosecond clock; with TSC rates
1544         * around 1GHZ, there can only be a few cycles which correspond to one
1545         * nanosecond value, and any path through this code will inevitably
1546         * take longer than that.  However, with the kernel_ns value itself,
1547         * the precision may be much lower, down to HZ granularity.  If the
1548         * first sampling of TSC against kernel_ns ends in the low part of the
1549         * range, and the second in the high end of the range, we can get:
1550         *
1551         * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1552         *
1553         * As the sampling errors potentially range in the thousands of cycles,
1554         * it is possible such a time value has already been observed by the
1555         * guest.  To protect against this, we must compute the system time as
1556         * observed by the guest and ensure the new system time is greater.
1557         */
1558        max_kernel_ns = 0;
1559        if (vcpu->hv_clock.tsc_timestamp) {
1560                max_kernel_ns = vcpu->last_guest_tsc -
1561                                vcpu->hv_clock.tsc_timestamp;
1562                max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1563                                    vcpu->hv_clock.tsc_to_system_mul,
1564                                    vcpu->hv_clock.tsc_shift);
1565                max_kernel_ns += vcpu->last_kernel_ns;
1566        }
1567
1568        if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1569                kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1570                                   &vcpu->hv_clock.tsc_shift,
1571                                   &vcpu->hv_clock.tsc_to_system_mul);
1572                vcpu->hw_tsc_khz = this_tsc_khz;
1573        }
1574
1575        /* with a master <monotonic time, tsc value> tuple,
1576         * pvclock clock reads always increase at the (scaled) rate
1577         * of guest TSC - no need to deal with sampling errors.
1578         */
1579        if (!use_master_clock) {
1580                if (max_kernel_ns > kernel_ns)
1581                        kernel_ns = max_kernel_ns;
1582        }
1583        /* With all the info we got, fill in the values */
1584        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1585        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1586        vcpu->last_kernel_ns = kernel_ns;
1587        vcpu->last_guest_tsc = tsc_timestamp;
1588
1589        /*
1590         * The interface expects us to write an even number signaling that the
1591         * update is finished. Since the guest won't see the intermediate
1592         * state, we just increase by 2 at the end.
1593         */
1594        vcpu->hv_clock.version += 2;
1595
1596        if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1597                &guest_hv_clock, sizeof(guest_hv_clock))))
1598                return 0;
1599
1600        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1601        pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1602
1603        if (vcpu->pvclock_set_guest_stopped_request) {
1604                pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1605                vcpu->pvclock_set_guest_stopped_request = false;
1606        }
1607
1608        /* If the host uses TSC clocksource, then it is stable */
1609        if (use_master_clock)
1610                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1611
1612        vcpu->hv_clock.flags = pvclock_flags;
1613
1614        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1615                                &vcpu->hv_clock,
1616                                sizeof(vcpu->hv_clock));
1617        return 0;
1618}
1619
1620/*
1621 * kvmclock updates which are isolated to a given vcpu, such as
1622 * vcpu->cpu migration, should not allow system_timestamp from
1623 * the rest of the vcpus to remain static. Otherwise ntp frequency
1624 * correction applies to one vcpu's system_timestamp but not
1625 * the others.
1626 *
1627 * So in those cases, request a kvmclock update for all vcpus.
1628 * The worst case for a remote vcpu to update its kvmclock
1629 * is then bounded by maximum nohz sleep latency.
1630 */
1631
1632static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1633{
1634        int i;
1635        struct kvm *kvm = v->kvm;
1636        struct kvm_vcpu *vcpu;
1637
1638        kvm_for_each_vcpu(i, vcpu, kvm) {
1639                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1640                kvm_vcpu_kick(vcpu);
1641        }
1642}
1643
1644static bool msr_mtrr_valid(unsigned msr)
1645{
1646        switch (msr) {
1647        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1648        case MSR_MTRRfix64K_00000:
1649        case MSR_MTRRfix16K_80000:
1650        case MSR_MTRRfix16K_A0000:
1651        case MSR_MTRRfix4K_C0000:
1652        case MSR_MTRRfix4K_C8000:
1653        case MSR_MTRRfix4K_D0000:
1654        case MSR_MTRRfix4K_D8000:
1655        case MSR_MTRRfix4K_E0000:
1656        case MSR_MTRRfix4K_E8000:
1657        case MSR_MTRRfix4K_F0000:
1658        case MSR_MTRRfix4K_F8000:
1659        case MSR_MTRRdefType:
1660        case MSR_IA32_CR_PAT:
1661                return true;
1662        case 0x2f8:
1663                return true;
1664        }
1665        return false;
1666}
1667
1668static bool valid_pat_type(unsigned t)
1669{
1670        return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1671}
1672
1673static bool valid_mtrr_type(unsigned t)
1674{
1675        return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1676}
1677
1678static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1679{
1680        int i;
1681
1682        if (!msr_mtrr_valid(msr))
1683                return false;
1684
1685        if (msr == MSR_IA32_CR_PAT) {
1686                for (i = 0; i < 8; i++)
1687                        if (!valid_pat_type((data >> (i * 8)) & 0xff))
1688                                return false;
1689                return true;
1690        } else if (msr == MSR_MTRRdefType) {
1691                if (data & ~0xcff)
1692                        return false;
1693                return valid_mtrr_type(data & 0xff);
1694        } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1695                for (i = 0; i < 8 ; i++)
1696                        if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1697                                return false;
1698                return true;
1699        }
1700
1701        /* variable MTRRs */
1702        return valid_mtrr_type(data & 0xff);
1703}
1704
1705static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1706{
1707        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1708
1709        if (!mtrr_valid(vcpu, msr, data))
1710                return 1;
1711
1712        if (msr == MSR_MTRRdefType) {
1713                vcpu->arch.mtrr_state.def_type = data;
1714                vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1715        } else if (msr == MSR_MTRRfix64K_00000)
1716                p[0] = data;
1717        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1718                p[1 + msr - MSR_MTRRfix16K_80000] = data;
1719        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1720                p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1721        else if (msr == MSR_IA32_CR_PAT)
1722                vcpu->arch.pat = data;
1723        else {  /* Variable MTRRs */
1724                int idx, is_mtrr_mask;
1725                u64 *pt;
1726
1727                idx = (msr - 0x200) / 2;
1728                is_mtrr_mask = msr - 0x200 - 2 * idx;
1729                if (!is_mtrr_mask)
1730                        pt =
1731                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1732                else
1733                        pt =
1734                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1735                *pt = data;
1736        }
1737
1738        kvm_mmu_reset_context(vcpu);
1739        return 0;
1740}
1741
1742static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1743{
1744        u64 mcg_cap = vcpu->arch.mcg_cap;
1745        unsigned bank_num = mcg_cap & 0xff;
1746
1747        switch (msr) {
1748        case MSR_IA32_MCG_STATUS:
1749                vcpu->arch.mcg_status = data;
1750                break;
1751        case MSR_IA32_MCG_CTL:
1752                if (!(mcg_cap & MCG_CTL_P))
1753                        return 1;
1754                if (data != 0 && data != ~(u64)0)
1755                        return -1;
1756                vcpu->arch.mcg_ctl = data;
1757                break;
1758        default:
1759                if (msr >= MSR_IA32_MC0_CTL &&
1760                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1761                        u32 offset = msr - MSR_IA32_MC0_CTL;
1762                        /* only 0 or all 1s can be written to IA32_MCi_CTL
1763                         * some Linux kernels though clear bit 10 in bank 4 to
1764                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1765                         * this to avoid an uncatched #GP in the guest
1766                         */
1767                        if ((offset & 0x3) == 0 &&
1768                            data != 0 && (data | (1 << 10)) != ~(u64)0)
1769                                return -1;
1770                        vcpu->arch.mce_banks[offset] = data;
1771                        break;
1772                }
1773                return 1;
1774        }
1775        return 0;
1776}
1777
1778static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1779{
1780        struct kvm *kvm = vcpu->kvm;
1781        int lm = is_long_mode(vcpu);
1782        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1783                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1784        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1785                : kvm->arch.xen_hvm_config.blob_size_32;
1786        u32 page_num = data & ~PAGE_MASK;
1787        u64 page_addr = data & PAGE_MASK;
1788        u8 *page;
1789        int r;
1790
1791        r = -E2BIG;
1792        if (page_num >= blob_size)
1793                goto out;
1794        r = -ENOMEM;
1795        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1796        if (IS_ERR(page)) {
1797                r = PTR_ERR(page);
1798                goto out;
1799        }
1800        if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1801                goto out_free;
1802        r = 0;
1803out_free:
1804        kfree(page);
1805out:
1806        return r;
1807}
1808
1809static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1810{
1811        return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1812}
1813
1814static bool kvm_hv_msr_partition_wide(u32 msr)
1815{
1816        bool r = false;
1817        switch (msr) {
1818        case HV_X64_MSR_GUEST_OS_ID:
1819        case HV_X64_MSR_HYPERCALL:
1820                r = true;
1821                break;
1822        }
1823
1824        return r;
1825}
1826
1827static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1828{
1829        struct kvm *kvm = vcpu->kvm;
1830
1831        switch (msr) {
1832        case HV_X64_MSR_GUEST_OS_ID:
1833                kvm->arch.hv_guest_os_id = data;
1834                /* setting guest os id to zero disables hypercall page */
1835                if (!kvm->arch.hv_guest_os_id)
1836                        kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1837                break;
1838        case HV_X64_MSR_HYPERCALL: {
1839                u64 gfn;
1840                unsigned long addr;
1841                u8 instructions[4];
1842
1843                /* if guest os id is not set hypercall should remain disabled */
1844                if (!kvm->arch.hv_guest_os_id)
1845                        break;
1846                if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1847                        kvm->arch.hv_hypercall = data;
1848                        break;
1849                }
1850                gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1851                addr = gfn_to_hva(kvm, gfn);
1852                if (kvm_is_error_hva(addr))
1853                        return 1;
1854                kvm_x86_ops->patch_hypercall(vcpu, instructions);
1855                ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1856                if (__copy_to_user((void __user *)addr, instructions, 4))
1857                        return 1;
1858                kvm->arch.hv_hypercall = data;
1859                break;
1860        }
1861        default:
1862                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1863                            "data 0x%llx\n", msr, data);
1864                return 1;
1865        }
1866        return 0;
1867}
1868
1869static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1870{
1871        switch (msr) {
1872        case HV_X64_MSR_APIC_ASSIST_PAGE: {
1873                unsigned long addr;
1874
1875                if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1876                        vcpu->arch.hv_vapic = data;
1877                        break;
1878                }
1879                addr = gfn_to_hva(vcpu->kvm, data >>
1880                                  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1881                if (kvm_is_error_hva(addr))
1882                        return 1;
1883                if (__clear_user((void __user *)addr, PAGE_SIZE))
1884                        return 1;
1885                vcpu->arch.hv_vapic = data;
1886                break;
1887        }
1888        case HV_X64_MSR_EOI:
1889                return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1890        case HV_X64_MSR_ICR:
1891                return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1892        case HV_X64_MSR_TPR:
1893                return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1894        default:
1895                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1896                            "data 0x%llx\n", msr, data);
1897                return 1;
1898        }
1899
1900        return 0;
1901}
1902
1903static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1904{
1905        gpa_t gpa = data & ~0x3f;
1906
1907        /* Bits 2:5 are reserved, Should be zero */
1908        if (data & 0x3c)
1909                return 1;
1910
1911        vcpu->arch.apf.msr_val = data;
1912
1913        if (!(data & KVM_ASYNC_PF_ENABLED)) {
1914                kvm_clear_async_pf_completion_queue(vcpu);
1915                kvm_async_pf_hash_reset(vcpu);
1916                return 0;
1917        }
1918
1919        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1920                                        sizeof(u32)))
1921                return 1;
1922
1923        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1924        kvm_async_pf_wakeup_all(vcpu);
1925        return 0;
1926}
1927
1928static void kvmclock_reset(struct kvm_vcpu *vcpu)
1929{
1930        vcpu->arch.pv_time_enabled = false;
1931}
1932
1933static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1934{
1935        u64 delta;
1936
1937        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1938                return;
1939
1940        delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1941        vcpu->arch.st.last_steal = current->sched_info.run_delay;
1942        vcpu->arch.st.accum_steal = delta;
1943}
1944
1945static void record_steal_time(struct kvm_vcpu *vcpu)
1946{
1947        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1948                return;
1949
1950        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1951                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1952                return;
1953
1954        vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1955        vcpu->arch.st.steal.version += 2;
1956        vcpu->arch.st.accum_steal = 0;
1957
1958        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1959                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1960}
1961
1962int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1963{
1964        bool pr = false;
1965        u32 msr = msr_info->index;
1966        u64 data = msr_info->data;
1967
1968        switch (msr) {
1969        case MSR_AMD64_NB_CFG:
1970        case MSR_IA32_UCODE_REV:
1971        case MSR_IA32_UCODE_WRITE:
1972        case MSR_VM_HSAVE_PA:
1973        case MSR_AMD64_PATCH_LOADER:
1974        case MSR_AMD64_BU_CFG2:
1975                break;
1976
1977        case MSR_EFER:
1978                return set_efer(vcpu, data);
1979        case MSR_K7_HWCR:
1980                data &= ~(u64)0x40;     /* ignore flush filter disable */
1981                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1982                data &= ~(u64)0x8;      /* ignore TLB cache disable */
1983                if (data != 0) {
1984                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1985                                    data);
1986                        return 1;
1987                }
1988                break;
1989        case MSR_FAM10H_MMIO_CONF_BASE:
1990                if (data != 0) {
1991                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1992                                    "0x%llx\n", data);
1993                        return 1;
1994                }
1995                break;
1996        case MSR_IA32_DEBUGCTLMSR:
1997                if (!data) {
1998                        /* We support the non-activated case already */
1999                        break;
2000                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2001                        /* Values other than LBR and BTF are vendor-specific,
2002                           thus reserved and should throw a #GP */
2003                        return 1;
2004                }
2005                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2006                            __func__, data);
2007                break;
2008        case 0x200 ... 0x2ff:
2009                return set_msr_mtrr(vcpu, msr, data);
2010        case MSR_IA32_APICBASE:
2011                kvm_set_apic_base(vcpu, data);
2012                break;
2013        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2014                return kvm_x2apic_msr_write(vcpu, msr, data);
2015        case MSR_IA32_TSCDEADLINE:
2016                kvm_set_lapic_tscdeadline_msr(vcpu, data);
2017                break;
2018        case MSR_IA32_TSC_ADJUST:
2019                if (guest_cpuid_has_tsc_adjust(vcpu)) {
2020                        if (!msr_info->host_initiated) {
2021                                u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2022                                kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2023                        }
2024                        vcpu->arch.ia32_tsc_adjust_msr = data;
2025                }
2026                break;
2027        case MSR_IA32_MISC_ENABLE:
2028                vcpu->arch.ia32_misc_enable_msr = data;
2029                break;
2030        case MSR_KVM_WALL_CLOCK_NEW:
2031        case MSR_KVM_WALL_CLOCK:
2032                vcpu->kvm->arch.wall_clock = data;
2033                kvm_write_wall_clock(vcpu->kvm, data);
2034                break;
2035        case MSR_KVM_SYSTEM_TIME_NEW:
2036        case MSR_KVM_SYSTEM_TIME: {
2037                u64 gpa_offset;
2038                kvmclock_reset(vcpu);
2039
2040                vcpu->arch.time = data;
2041                kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2042
2043                /* we verify if the enable bit is set... */
2044                if (!(data & 1))
2045                        break;
2046
2047                gpa_offset = data & ~(PAGE_MASK | 1);
2048
2049                if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2050                     &vcpu->arch.pv_time, data & ~1ULL,
2051                     sizeof(struct pvclock_vcpu_time_info)))
2052                        vcpu->arch.pv_time_enabled = false;
2053                else
2054                        vcpu->arch.pv_time_enabled = true;
2055
2056                break;
2057        }
2058        case MSR_KVM_ASYNC_PF_EN:
2059                if (kvm_pv_enable_async_pf(vcpu, data))
2060                        return 1;
2061                break;
2062        case MSR_KVM_STEAL_TIME:
2063
2064                if (unlikely(!sched_info_on()))
2065                        return 1;
2066
2067                if (data & KVM_STEAL_RESERVED_MASK)
2068                        return 1;
2069
2070                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2071                                                data & KVM_STEAL_VALID_BITS,
2072                                                sizeof(struct kvm_steal_time)))
2073                        return 1;
2074
2075                vcpu->arch.st.msr_val = data;
2076
2077                if (!(data & KVM_MSR_ENABLED))
2078                        break;
2079
2080                vcpu->arch.st.last_steal = current->sched_info.run_delay;
2081
2082                preempt_disable();
2083                accumulate_steal_time(vcpu);
2084                preempt_enable();
2085
2086                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2087
2088                break;
2089        case MSR_KVM_PV_EOI_EN:
2090                if (kvm_lapic_enable_pv_eoi(vcpu, data))
2091                        return 1;
2092                break;
2093
2094        case MSR_IA32_MCG_CTL:
2095        case MSR_IA32_MCG_STATUS:
2096        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2097                return set_msr_mce(vcpu, msr, data);
2098
2099        /* Performance counters are not protected by a CPUID bit,
2100         * so we should check all of them in the generic path for the sake of
2101         * cross vendor migration.
2102         * Writing a zero into the event select MSRs disables them,
2103         * which we perfectly emulate ;-). Any other value should be at least
2104         * reported, some guests depend on them.
2105         */
2106        case MSR_K7_EVNTSEL0:
2107        case MSR_K7_EVNTSEL1:
2108        case MSR_K7_EVNTSEL2:
2109        case MSR_K7_EVNTSEL3:
2110                if (data != 0)
2111                        vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2112                                    "0x%x data 0x%llx\n", msr, data);
2113                break;
2114        /* at least RHEL 4 unconditionally writes to the perfctr registers,
2115         * so we ignore writes to make it happy.
2116         */
2117        case MSR_K7_PERFCTR0:
2118        case MSR_K7_PERFCTR1:
2119        case MSR_K7_PERFCTR2:
2120        case MSR_K7_PERFCTR3:
2121                vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2122                            "0x%x data 0x%llx\n", msr, data);
2123                break;
2124        case MSR_P6_PERFCTR0:
2125        case MSR_P6_PERFCTR1:
2126                pr = true;
2127        case MSR_P6_EVNTSEL0:
2128        case MSR_P6_EVNTSEL1:
2129                if (kvm_pmu_msr(vcpu, msr))
2130                        return kvm_pmu_set_msr(vcpu, msr_info);
2131
2132                if (pr || data != 0)
2133                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2134                                    "0x%x data 0x%llx\n", msr, data);
2135                break;
2136        case MSR_K7_CLK_CTL:
2137                /*
2138                 * Ignore all writes to this no longer documented MSR.
2139                 * Writes are only relevant for old K7 processors,
2140                 * all pre-dating SVM, but a recommended workaround from
2141                 * AMD for these chips. It is possible to specify the
2142                 * affected processor models on the command line, hence
2143                 * the need to ignore the workaround.
2144                 */
2145                break;
2146        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2147                if (kvm_hv_msr_partition_wide(msr)) {
2148                        int r;
2149                        mutex_lock(&vcpu->kvm->lock);
2150                        r = set_msr_hyperv_pw(vcpu, msr, data);
2151                        mutex_unlock(&vcpu->kvm->lock);
2152                        return r;
2153                } else
2154                        return set_msr_hyperv(vcpu, msr, data);
2155                break;
2156        case MSR_IA32_BBL_CR_CTL3:
2157                /* Drop writes to this legacy MSR -- see rdmsr
2158                 * counterpart for further detail.
2159                 */
2160                vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2161                break;
2162        case MSR_AMD64_OSVW_ID_LENGTH:
2163                if (!guest_cpuid_has_osvw(vcpu))
2164                        return 1;
2165                vcpu->arch.osvw.length = data;
2166                break;
2167        case MSR_AMD64_OSVW_STATUS:
2168                if (!guest_cpuid_has_osvw(vcpu))
2169                        return 1;
2170                vcpu->arch.osvw.status = data;
2171                break;
2172        default:
2173                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2174                        return xen_hvm_config(vcpu, data);
2175                if (kvm_pmu_msr(vcpu, msr))
2176                        return kvm_pmu_set_msr(vcpu, msr_info);
2177                if (!ignore_msrs) {
2178                        vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2179                                    msr, data);
2180                        return 1;
2181                } else {
2182                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2183                                    msr, data);
2184                        break;
2185                }
2186        }
2187        return 0;
2188}
2189EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2190
2191
2192/*
2193 * Reads an msr value (of 'msr_index') into 'pdata'.
2194 * Returns 0 on success, non-0 otherwise.
2195 * Assumes vcpu_load() was already called.
2196 */
2197int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2198{
2199        return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2200}
2201
2202static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2203{
2204        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2205
2206        if (!msr_mtrr_valid(msr))
2207                return 1;
2208
2209        if (msr == MSR_MTRRdefType)
2210                *pdata = vcpu->arch.mtrr_state.def_type +
2211                         (vcpu->arch.mtrr_state.enabled << 10);
2212        else if (msr == MSR_MTRRfix64K_00000)
2213                *pdata = p[0];
2214        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2215                *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2216        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2217                *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2218        else if (msr == MSR_IA32_CR_PAT)
2219                *pdata = vcpu->arch.pat;
2220        else {  /* Variable MTRRs */
2221                int idx, is_mtrr_mask;
2222                u64 *pt;
2223
2224                idx = (msr - 0x200) / 2;
2225                is_mtrr_mask = msr - 0x200 - 2 * idx;
2226                if (!is_mtrr_mask)
2227                        pt =
2228                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2229                else
2230                        pt =
2231                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2232                *pdata = *pt;
2233        }
2234
2235        return 0;
2236}
2237
2238static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2239{
2240        u64 data;
2241        u64 mcg_cap = vcpu->arch.mcg_cap;
2242        unsigned bank_num = mcg_cap & 0xff;
2243
2244        switch (msr) {
2245        case MSR_IA32_P5_MC_ADDR:
2246        case MSR_IA32_P5_MC_TYPE:
2247                data = 0;
2248                break;
2249        case MSR_IA32_MCG_CAP:
2250                data = vcpu->arch.mcg_cap;
2251                break;
2252        case MSR_IA32_MCG_CTL:
2253                if (!(mcg_cap & MCG_CTL_P))
2254                        return 1;
2255                data = vcpu->arch.mcg_ctl;
2256                break;
2257        case MSR_IA32_MCG_STATUS:
2258                data = vcpu->arch.mcg_status;
2259                break;
2260        default:
2261                if (msr >= MSR_IA32_MC0_CTL &&
2262                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2263                        u32 offset = msr - MSR_IA32_MC0_CTL;
2264                        data = vcpu->arch.mce_banks[offset];
2265                        break;
2266                }
2267                return 1;
2268        }
2269        *pdata = data;
2270        return 0;
2271}
2272
2273static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2274{
2275        u64 data = 0;
2276        struct kvm *kvm = vcpu->kvm;
2277
2278        switch (msr) {
2279        case HV_X64_MSR_GUEST_OS_ID:
2280                data = kvm->arch.hv_guest_os_id;
2281                break;
2282        case HV_X64_MSR_HYPERCALL:
2283                data = kvm->arch.hv_hypercall;
2284                break;
2285        default:
2286                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2287                return 1;
2288        }
2289
2290        *pdata = data;
2291        return 0;
2292}
2293
2294static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2295{
2296        u64 data = 0;
2297
2298        switch (msr) {
2299        case HV_X64_MSR_VP_INDEX: {
2300                int r;
2301                struct kvm_vcpu *v;
2302                kvm_for_each_vcpu(r, v, vcpu->kvm)
2303                        if (v == vcpu)
2304                                data = r;
2305                break;
2306        }
2307        case HV_X64_MSR_EOI:
2308                return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2309        case HV_X64_MSR_ICR:
2310                return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2311        case HV_X64_MSR_TPR:
2312                return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2313        case HV_X64_MSR_APIC_ASSIST_PAGE:
2314                data = vcpu->arch.hv_vapic;
2315                break;
2316        default:
2317                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2318                return 1;
2319        }
2320        *pdata = data;
2321        return 0;
2322}
2323
2324int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325{
2326        u64 data;
2327
2328        switch (msr) {
2329        case MSR_IA32_PLATFORM_ID:
2330        case MSR_IA32_EBL_CR_POWERON:
2331        case MSR_IA32_DEBUGCTLMSR:
2332        case MSR_IA32_LASTBRANCHFROMIP:
2333        case MSR_IA32_LASTBRANCHTOIP:
2334        case MSR_IA32_LASTINTFROMIP:
2335        case MSR_IA32_LASTINTTOIP:
2336        case MSR_K8_SYSCFG:
2337        case MSR_K7_HWCR:
2338        case MSR_VM_HSAVE_PA:
2339        case MSR_K7_EVNTSEL0:
2340        case MSR_K7_PERFCTR0:
2341        case MSR_K8_INT_PENDING_MSG:
2342        case MSR_AMD64_NB_CFG:
2343        case MSR_FAM10H_MMIO_CONF_BASE:
2344        case MSR_AMD64_BU_CFG2:
2345                data = 0;
2346                break;
2347        case MSR_P6_PERFCTR0:
2348        case MSR_P6_PERFCTR1:
2349        case MSR_P6_EVNTSEL0:
2350        case MSR_P6_EVNTSEL1:
2351                if (kvm_pmu_msr(vcpu, msr))
2352                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2353                data = 0;
2354                break;
2355        case MSR_IA32_UCODE_REV:
2356                data = 0x100000000ULL;
2357                break;
2358        case MSR_MTRRcap:
2359                data = 0x500 | KVM_NR_VAR_MTRR;
2360                break;
2361        case 0x200 ... 0x2ff:
2362                return get_msr_mtrr(vcpu, msr, pdata);
2363        case 0xcd: /* fsb frequency */
2364                data = 3;
2365                break;
2366                /*
2367                 * MSR_EBC_FREQUENCY_ID
2368                 * Conservative value valid for even the basic CPU models.
2369                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2370                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2371                 * and 266MHz for model 3, or 4. Set Core Clock
2372                 * Frequency to System Bus Frequency Ratio to 1 (bits
2373                 * 31:24) even though these are only valid for CPU
2374                 * models > 2, however guests may end up dividing or
2375                 * multiplying by zero otherwise.
2376                 */
2377        case MSR_EBC_FREQUENCY_ID:
2378                data = 1 << 24;
2379                break;
2380        case MSR_IA32_APICBASE:
2381                data = kvm_get_apic_base(vcpu);
2382                break;
2383        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2384                return kvm_x2apic_msr_read(vcpu, msr, pdata);
2385                break;
2386        case MSR_IA32_TSCDEADLINE:
2387                data = kvm_get_lapic_tscdeadline_msr(vcpu);
2388                break;
2389        case MSR_IA32_TSC_ADJUST:
2390                data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2391                break;
2392        case MSR_IA32_MISC_ENABLE:
2393                data = vcpu->arch.ia32_misc_enable_msr;
2394                break;
2395        case MSR_IA32_PERF_STATUS:
2396                /* TSC increment by tick */
2397                data = 1000ULL;
2398                /* CPU multiplier */
2399                data |= (((uint64_t)4ULL) << 40);
2400                break;
2401        case MSR_EFER:
2402                data = vcpu->arch.efer;
2403                break;
2404        case MSR_KVM_WALL_CLOCK:
2405        case MSR_KVM_WALL_CLOCK_NEW:
2406                data = vcpu->kvm->arch.wall_clock;
2407                break;
2408        case MSR_KVM_SYSTEM_TIME:
2409        case MSR_KVM_SYSTEM_TIME_NEW:
2410                data = vcpu->arch.time;
2411                break;
2412        case MSR_KVM_ASYNC_PF_EN:
2413                data = vcpu->arch.apf.msr_val;
2414                break;
2415        case MSR_KVM_STEAL_TIME:
2416                data = vcpu->arch.st.msr_val;
2417                break;
2418        case MSR_KVM_PV_EOI_EN:
2419                data = vcpu->arch.pv_eoi.msr_val;
2420                break;
2421        case MSR_IA32_P5_MC_ADDR:
2422        case MSR_IA32_P5_MC_TYPE:
2423        case MSR_IA32_MCG_CAP:
2424        case MSR_IA32_MCG_CTL:
2425        case MSR_IA32_MCG_STATUS:
2426        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2427                return get_msr_mce(vcpu, msr, pdata);
2428        case MSR_K7_CLK_CTL:
2429                /*
2430                 * Provide expected ramp-up count for K7. All other
2431                 * are set to zero, indicating minimum divisors for
2432                 * every field.
2433                 *
2434                 * This prevents guest kernels on AMD host with CPU
2435                 * type 6, model 8 and higher from exploding due to
2436                 * the rdmsr failing.
2437                 */
2438                data = 0x20000000;
2439                break;
2440        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2441                if (kvm_hv_msr_partition_wide(msr)) {
2442                        int r;
2443                        mutex_lock(&vcpu->kvm->lock);
2444                        r = get_msr_hyperv_pw(vcpu, msr, pdata);
2445                        mutex_unlock(&vcpu->kvm->lock);
2446                        return r;
2447                } else
2448                        return get_msr_hyperv(vcpu, msr, pdata);
2449                break;
2450        case MSR_IA32_BBL_CR_CTL3:
2451                /* This legacy MSR exists but isn't fully documented in current
2452                 * silicon.  It is however accessed by winxp in very narrow
2453                 * scenarios where it sets bit #19, itself documented as
2454                 * a "reserved" bit.  Best effort attempt to source coherent
2455                 * read data here should the balance of the register be
2456                 * interpreted by the guest:
2457                 *
2458                 * L2 cache control register 3: 64GB range, 256KB size,
2459                 * enabled, latency 0x1, configured
2460                 */
2461                data = 0xbe702111;
2462                break;
2463        case MSR_AMD64_OSVW_ID_LENGTH:
2464                if (!guest_cpuid_has_osvw(vcpu))
2465                        return 1;
2466                data = vcpu->arch.osvw.length;
2467                break;
2468        case MSR_AMD64_OSVW_STATUS:
2469                if (!guest_cpuid_has_osvw(vcpu))
2470                        return 1;
2471                data = vcpu->arch.osvw.status;
2472                break;
2473        default:
2474                if (kvm_pmu_msr(vcpu, msr))
2475                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2476                if (!ignore_msrs) {
2477                        vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2478                        return 1;
2479                } else {
2480                        vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2481                        data = 0;
2482                }
2483                break;
2484        }
2485        *pdata = data;
2486        return 0;
2487}
2488EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2489
2490/*
2491 * Read or write a bunch of msrs. All parameters are kernel addresses.
2492 *
2493 * @return number of msrs set successfully.
2494 */
2495static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2496                    struct kvm_msr_entry *entries,
2497                    int (*do_msr)(struct kvm_vcpu *vcpu,
2498                                  unsigned index, u64 *data))
2499{
2500        int i, idx;
2501
2502        idx = srcu_read_lock(&vcpu->kvm->srcu);
2503        for (i = 0; i < msrs->nmsrs; ++i)
2504                if (do_msr(vcpu, entries[i].index, &entries[i].data))
2505                        break;
2506        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2507
2508        return i;
2509}
2510
2511/*
2512 * Read or write a bunch of msrs. Parameters are user addresses.
2513 *
2514 * @return number of msrs set successfully.
2515 */
2516static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2517                  int (*do_msr)(struct kvm_vcpu *vcpu,
2518                                unsigned index, u64 *data),
2519                  int writeback)
2520{
2521        struct kvm_msrs msrs;
2522        struct kvm_msr_entry *entries;
2523        int r, n;
2524        unsigned size;
2525
2526        r = -EFAULT;
2527        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2528                goto out;
2529
2530        r = -E2BIG;
2531        if (msrs.nmsrs >= MAX_IO_MSRS)
2532                goto out;
2533
2534        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2535        entries = memdup_user(user_msrs->entries, size);
2536        if (IS_ERR(entries)) {
2537                r = PTR_ERR(entries);
2538                goto out;
2539        }
2540
2541        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2542        if (r < 0)
2543                goto out_free;
2544
2545        r = -EFAULT;
2546        if (writeback && copy_to_user(user_msrs->entries, entries, size))
2547                goto out_free;
2548
2549        r = n;
2550
2551out_free:
2552        kfree(entries);
2553out:
2554        return r;
2555}
2556
2557int kvm_dev_ioctl_check_extension(long ext)
2558{
2559        int r;
2560
2561        switch (ext) {
2562        case KVM_CAP_IRQCHIP:
2563        case KVM_CAP_HLT:
2564        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2565        case KVM_CAP_SET_TSS_ADDR:
2566        case KVM_CAP_EXT_CPUID:
2567        case KVM_CAP_CLOCKSOURCE:
2568        case KVM_CAP_PIT:
2569        case KVM_CAP_NOP_IO_DELAY:
2570        case KVM_CAP_MP_STATE:
2571        case KVM_CAP_SYNC_MMU:
2572        case KVM_CAP_USER_NMI:
2573        case KVM_CAP_REINJECT_CONTROL:
2574        case KVM_CAP_IRQ_INJECT_STATUS:
2575        case KVM_CAP_IRQFD:
2576        case KVM_CAP_IOEVENTFD:
2577        case KVM_CAP_PIT2:
2578        case KVM_CAP_PIT_STATE2:
2579        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2580        case KVM_CAP_XEN_HVM:
2581        case KVM_CAP_ADJUST_CLOCK:
2582        case KVM_CAP_VCPU_EVENTS:
2583        case KVM_CAP_HYPERV:
2584        case KVM_CAP_HYPERV_VAPIC:
2585        case KVM_CAP_HYPERV_SPIN:
2586        case KVM_CAP_PCI_SEGMENT:
2587        case KVM_CAP_DEBUGREGS:
2588        case KVM_CAP_X86_ROBUST_SINGLESTEP:
2589        case KVM_CAP_XSAVE:
2590        case KVM_CAP_ASYNC_PF:
2591        case KVM_CAP_GET_TSC_KHZ:
2592        case KVM_CAP_KVMCLOCK_CTRL:
2593        case KVM_CAP_READONLY_MEM:
2594#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2595        case KVM_CAP_ASSIGN_DEV_IRQ:
2596        case KVM_CAP_PCI_2_3:
2597#endif
2598                r = 1;
2599                break;
2600        case KVM_CAP_COALESCED_MMIO:
2601                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2602                break;
2603        case KVM_CAP_VAPIC:
2604                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2605                break;
2606        case KVM_CAP_NR_VCPUS:
2607                r = KVM_SOFT_MAX_VCPUS;
2608                break;
2609        case KVM_CAP_MAX_VCPUS:
2610                r = KVM_MAX_VCPUS;
2611                break;
2612        case KVM_CAP_NR_MEMSLOTS:
2613                r = KVM_USER_MEM_SLOTS;
2614                break;
2615        case KVM_CAP_PV_MMU:    /* obsolete */
2616                r = 0;
2617                break;
2618#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2619        case KVM_CAP_IOMMU:
2620                r = iommu_present(&pci_bus_type);
2621                break;
2622#endif
2623        case KVM_CAP_MCE:
2624                r = KVM_MAX_MCE_BANKS;
2625                break;
2626        case KVM_CAP_XCRS:
2627                r = cpu_has_xsave;
2628                break;
2629        case KVM_CAP_TSC_CONTROL:
2630                r = kvm_has_tsc_control;
2631                break;
2632        case KVM_CAP_TSC_DEADLINE_TIMER:
2633                r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2634                break;
2635        default:
2636                r = 0;
2637                break;
2638        }
2639        return r;
2640
2641}
2642
2643long kvm_arch_dev_ioctl(struct file *filp,
2644                        unsigned int ioctl, unsigned long arg)
2645{
2646        void __user *argp = (void __user *)arg;
2647        long r;
2648
2649        switch (ioctl) {
2650        case KVM_GET_MSR_INDEX_LIST: {
2651                struct kvm_msr_list __user *user_msr_list = argp;
2652                struct kvm_msr_list msr_list;
2653                unsigned n;
2654
2655                r = -EFAULT;
2656                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2657                        goto out;
2658                n = msr_list.nmsrs;
2659                msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2660                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2661                        goto out;
2662                r = -E2BIG;
2663                if (n < msr_list.nmsrs)
2664                        goto out;
2665                r = -EFAULT;
2666                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2667                                 num_msrs_to_save * sizeof(u32)))
2668                        goto out;
2669                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2670                                 &emulated_msrs,
2671                                 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2672                        goto out;
2673                r = 0;
2674                break;
2675        }
2676        case KVM_GET_SUPPORTED_CPUID: {
2677                struct kvm_cpuid2 __user *cpuid_arg = argp;
2678                struct kvm_cpuid2 cpuid;
2679
2680                r = -EFAULT;
2681                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2682                        goto out;
2683                r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2684                                                      cpuid_arg->entries);
2685                if (r)
2686                        goto out;
2687
2688                r = -EFAULT;
2689                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2690                        goto out;
2691                r = 0;
2692                break;
2693        }
2694        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2695                u64 mce_cap;
2696
2697                mce_cap = KVM_MCE_CAP_SUPPORTED;
2698                r = -EFAULT;
2699                if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2700                        goto out;
2701                r = 0;
2702                break;
2703        }
2704        default:
2705                r = -EINVAL;
2706        }
2707out:
2708        return r;
2709}
2710
2711static void wbinvd_ipi(void *garbage)
2712{
2713        wbinvd();
2714}
2715
2716static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2717{
2718        return vcpu->kvm->arch.iommu_domain &&
2719                !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2720}
2721
2722void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2723{
2724        /* Address WBINVD may be executed by guest */
2725        if (need_emulate_wbinvd(vcpu)) {
2726                if (kvm_x86_ops->has_wbinvd_exit())
2727                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2728                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2729                        smp_call_function_single(vcpu->cpu,
2730                                        wbinvd_ipi, NULL, 1);
2731        }
2732
2733        kvm_x86_ops->vcpu_load(vcpu, cpu);
2734
2735        /* Apply any externally detected TSC adjustments (due to suspend) */
2736        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2737                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2738                vcpu->arch.tsc_offset_adjustment = 0;
2739                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2740        }
2741
2742        if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2743                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2744                                native_read_tsc() - vcpu->arch.last_host_tsc;
2745                if (tsc_delta < 0)
2746                        mark_tsc_unstable("KVM discovered backwards TSC");
2747                if (check_tsc_unstable()) {
2748                        u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2749                                                vcpu->arch.last_guest_tsc);
2750                        kvm_x86_ops->write_tsc_offset(vcpu, offset);
2751                        vcpu->arch.tsc_catchup = 1;
2752                }
2753                /*
2754                 * On a host with synchronized TSC, there is no need to update
2755                 * kvmclock on vcpu->cpu migration
2756                 */
2757                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2758                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2759                if (vcpu->cpu != cpu)
2760                        kvm_migrate_timers(vcpu);
2761                vcpu->cpu = cpu;
2762        }
2763
2764        accumulate_steal_time(vcpu);
2765        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2766}
2767
2768void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2769{
2770        kvm_x86_ops->vcpu_put(vcpu);
2771        kvm_put_guest_fpu(vcpu);
2772        vcpu->arch.last_host_tsc = native_read_tsc();
2773}
2774
2775static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2776                                    struct kvm_lapic_state *s)
2777{
2778        kvm_x86_ops->sync_pir_to_irr(vcpu);
2779        memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2780
2781        return 0;
2782}
2783
2784static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2785                                    struct kvm_lapic_state *s)
2786{
2787        kvm_apic_post_state_restore(vcpu, s);
2788        update_cr8_intercept(vcpu);
2789
2790        return 0;
2791}
2792
2793static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2794                                    struct kvm_interrupt *irq)
2795{
2796        if (irq->irq >= KVM_NR_INTERRUPTS)
2797                return -EINVAL;
2798        if (irqchip_in_kernel(vcpu->kvm))
2799                return -ENXIO;
2800
2801        kvm_queue_interrupt(vcpu, irq->irq, false);
2802        kvm_make_request(KVM_REQ_EVENT, vcpu);
2803
2804        return 0;
2805}
2806
2807static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2808{
2809        kvm_inject_nmi(vcpu);
2810
2811        return 0;
2812}
2813
2814static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2815                                           struct kvm_tpr_access_ctl *tac)
2816{
2817        if (tac->flags)
2818                return -EINVAL;
2819        vcpu->arch.tpr_access_reporting = !!tac->enabled;
2820        return 0;
2821}
2822
2823static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2824                                        u64 mcg_cap)
2825{
2826        int r;
2827        unsigned bank_num = mcg_cap & 0xff, bank;
2828
2829        r = -EINVAL;
2830        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2831                goto out;
2832        if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2833                goto out;
2834        r = 0;
2835        vcpu->arch.mcg_cap = mcg_cap;
2836        /* Init IA32_MCG_CTL to all 1s */
2837        if (mcg_cap & MCG_CTL_P)
2838                vcpu->arch.mcg_ctl = ~(u64)0;
2839        /* Init IA32_MCi_CTL to all 1s */
2840        for (bank = 0; bank < bank_num; bank++)
2841                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2842out:
2843        return r;
2844}
2845
2846static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2847                                      struct kvm_x86_mce *mce)
2848{
2849        u64 mcg_cap = vcpu->arch.mcg_cap;
2850        unsigned bank_num = mcg_cap & 0xff;
2851        u64 *banks = vcpu->arch.mce_banks;
2852
2853        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2854                return -EINVAL;
2855        /*
2856         * if IA32_MCG_CTL is not all 1s, the uncorrected error
2857         * reporting is disabled
2858         */
2859        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2860            vcpu->arch.mcg_ctl != ~(u64)0)
2861                return 0;
2862        banks += 4 * mce->bank;
2863        /*
2864         * if IA32_MCi_CTL is not all 1s, the uncorrected error
2865         * reporting is disabled for the bank
2866         */
2867        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2868                return 0;
2869        if (mce->status & MCI_STATUS_UC) {
2870                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2871                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2872                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2873                        return 0;
2874                }
2875                if (banks[1] & MCI_STATUS_VAL)
2876                        mce->status |= MCI_STATUS_OVER;
2877                banks[2] = mce->addr;
2878                banks[3] = mce->misc;
2879                vcpu->arch.mcg_status = mce->mcg_status;
2880                banks[1] = mce->status;
2881                kvm_queue_exception(vcpu, MC_VECTOR);
2882        } else if (!(banks[1] & MCI_STATUS_VAL)
2883                   || !(banks[1] & MCI_STATUS_UC)) {
2884                if (banks[1] & MCI_STATUS_VAL)
2885                        mce->status |= MCI_STATUS_OVER;
2886                banks[2] = mce->addr;
2887                banks[3] = mce->misc;
2888                banks[1] = mce->status;
2889        } else
2890                banks[1] |= MCI_STATUS_OVER;
2891        return 0;
2892}
2893
2894static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2895                                               struct kvm_vcpu_events *events)
2896{
2897        process_nmi(vcpu);
2898        events->exception.injected =
2899                vcpu->arch.exception.pending &&
2900                !kvm_exception_is_soft(vcpu->arch.exception.nr);
2901        events->exception.nr = vcpu->arch.exception.nr;
2902        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2903        events->exception.pad = 0;
2904        events->exception.error_code = vcpu->arch.exception.error_code;
2905
2906        events->interrupt.injected =
2907                vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2908        events->interrupt.nr = vcpu->arch.interrupt.nr;
2909        events->interrupt.soft = 0;
2910        events->interrupt.shadow =
2911                kvm_x86_ops->get_interrupt_shadow(vcpu,
2912                        KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2913
2914        events->nmi.injected = vcpu->arch.nmi_injected;
2915        events->nmi.pending = vcpu->arch.nmi_pending != 0;
2916        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2917        events->nmi.pad = 0;
2918
2919        events->sipi_vector = 0; /* never valid when reporting to user space */
2920
2921        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2922                         | KVM_VCPUEVENT_VALID_SHADOW);
2923        memset(&events->reserved, 0, sizeof(events->reserved));
2924}
2925
2926static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2927                                              struct kvm_vcpu_events *events)
2928{
2929        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2930                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2931                              | KVM_VCPUEVENT_VALID_SHADOW))
2932                return -EINVAL;
2933
2934        process_nmi(vcpu);
2935        vcpu->arch.exception.pending = events->exception.injected;
2936        vcpu->arch.exception.nr = events->exception.nr;
2937        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2938        vcpu->arch.exception.error_code = events->exception.error_code;
2939
2940        vcpu->arch.interrupt.pending = events->interrupt.injected;
2941        vcpu->arch.interrupt.nr = events->interrupt.nr;
2942        vcpu->arch.interrupt.soft = events->interrupt.soft;
2943        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2944                kvm_x86_ops->set_interrupt_shadow(vcpu,
2945                                                  events->interrupt.shadow);
2946
2947        vcpu->arch.nmi_injected = events->nmi.injected;
2948        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2949                vcpu->arch.nmi_pending = events->nmi.pending;
2950        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2951
2952        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2953            kvm_vcpu_has_lapic(vcpu))
2954                vcpu->arch.apic->sipi_vector = events->sipi_vector;
2955
2956        kvm_make_request(KVM_REQ_EVENT, vcpu);
2957
2958        return 0;
2959}
2960
2961static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2962                                             struct kvm_debugregs *dbgregs)
2963{
2964        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2965        dbgregs->dr6 = vcpu->arch.dr6;
2966        dbgregs->dr7 = vcpu->arch.dr7;
2967        dbgregs->flags = 0;
2968        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2969}
2970
2971static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2972                                            struct kvm_debugregs *dbgregs)
2973{
2974        if (dbgregs->flags)
2975                return -EINVAL;
2976
2977        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2978        vcpu->arch.dr6 = dbgregs->dr6;
2979        vcpu->arch.dr7 = dbgregs->dr7;
2980
2981        return 0;
2982}
2983
2984static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2985                                         struct kvm_xsave *guest_xsave)
2986{
2987        if (cpu_has_xsave)
2988                memcpy(guest_xsave->region,
2989                        &vcpu->arch.guest_fpu.state->xsave,
2990                        xstate_size);
2991        else {
2992                memcpy(guest_xsave->region,
2993                        &vcpu->arch.guest_fpu.state->fxsave,
2994                        sizeof(struct i387_fxsave_struct));
2995                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2996                        XSTATE_FPSSE;
2997        }
2998}
2999
3000static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3001                                        struct kvm_xsave *guest_xsave)
3002{
3003        u64 xstate_bv =
3004                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3005
3006        if (cpu_has_xsave)
3007                memcpy(&vcpu->arch.guest_fpu.state->xsave,
3008                        guest_xsave->region, xstate_size);
3009        else {
3010                if (xstate_bv & ~XSTATE_FPSSE)
3011                        return -EINVAL;
3012                memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3013                        guest_xsave->region, sizeof(struct i387_fxsave_struct));
3014        }
3015        return 0;
3016}
3017
3018static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3019                                        struct kvm_xcrs *guest_xcrs)
3020{
3021        if (!cpu_has_xsave) {
3022                guest_xcrs->nr_xcrs = 0;
3023                return;
3024        }
3025
3026        guest_xcrs->nr_xcrs = 1;
3027        guest_xcrs->flags = 0;
3028        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3029        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3030}
3031
3032static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3033                                       struct kvm_xcrs *guest_xcrs)
3034{
3035        int i, r = 0;
3036
3037        if (!cpu_has_xsave)
3038                return -EINVAL;
3039
3040        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3041                return -EINVAL;
3042
3043        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3044                /* Only support XCR0 currently */
3045                if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3046                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3047                                guest_xcrs->xcrs[0].value);
3048                        break;
3049                }
3050        if (r)
3051                r = -EINVAL;
3052        return r;
3053}
3054
3055/*
3056 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3057 * stopped by the hypervisor.  This function will be called from the host only.
3058 * EINVAL is returned when the host attempts to set the flag for a guest that
3059 * does not support pv clocks.
3060 */
3061static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3062{
3063        if (!vcpu->arch.pv_time_enabled)
3064                return -EINVAL;
3065        vcpu->arch.pvclock_set_guest_stopped_request = true;
3066        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3067        return 0;
3068}
3069
3070long kvm_arch_vcpu_ioctl(struct file *filp,
3071                         unsigned int ioctl, unsigned long arg)
3072{
3073        struct kvm_vcpu *vcpu = filp->private_data;
3074        void __user *argp = (void __user *)arg;
3075        int r;
3076        union {
3077                struct kvm_lapic_state *lapic;
3078                struct kvm_xsave *xsave;
3079                struct kvm_xcrs *xcrs;
3080                void *buffer;
3081        } u;
3082
3083        u.buffer = NULL;
3084        switch (ioctl) {
3085        case KVM_GET_LAPIC: {
3086                r = -EINVAL;
3087                if (!vcpu->arch.apic)
3088                        goto out;
3089                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3090
3091                r = -ENOMEM;
3092                if (!u.lapic)
3093                        goto out;
3094                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3095                if (r)
3096                        goto out;
3097                r = -EFAULT;
3098                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3099                        goto out;
3100                r = 0;
3101                break;
3102        }
3103        case KVM_SET_LAPIC: {
3104                r = -EINVAL;
3105                if (!vcpu->arch.apic)
3106                        goto out;
3107                u.lapic = memdup_user(argp, sizeof(*u.lapic));
3108                if (IS_ERR(u.lapic))
3109                        return PTR_ERR(u.lapic);
3110
3111                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3112                break;
3113        }
3114        case KVM_INTERRUPT: {
3115                struct kvm_interrupt irq;
3116
3117                r = -EFAULT;
3118                if (copy_from_user(&irq, argp, sizeof irq))
3119                        goto out;
3120                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3121                break;
3122        }
3123        case KVM_NMI: {
3124                r = kvm_vcpu_ioctl_nmi(vcpu);
3125                break;
3126        }
3127        case KVM_SET_CPUID: {
3128                struct kvm_cpuid __user *cpuid_arg = argp;
3129                struct kvm_cpuid cpuid;
3130
3131                r = -EFAULT;
3132                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3133                        goto out;
3134                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3135                break;
3136        }
3137        case KVM_SET_CPUID2: {
3138                struct kvm_cpuid2 __user *cpuid_arg = argp;
3139                struct kvm_cpuid2 cpuid;
3140
3141                r = -EFAULT;
3142                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3143                        goto out;
3144                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3145                                              cpuid_arg->entries);
3146                break;
3147        }
3148        case KVM_GET_CPUID2: {
3149                struct kvm_cpuid2 __user *cpuid_arg = argp;
3150                struct kvm_cpuid2 cpuid;
3151
3152                r = -EFAULT;
3153                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3154                        goto out;
3155                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3156                                              cpuid_arg->entries);
3157                if (r)
3158                        goto out;
3159                r = -EFAULT;
3160                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3161                        goto out;
3162                r = 0;
3163                break;
3164        }
3165        case KVM_GET_MSRS:
3166                r = msr_io(vcpu, argp, kvm_get_msr, 1);
3167                break;
3168        case KVM_SET_MSRS:
3169                r = msr_io(vcpu, argp, do_set_msr, 0);
3170                break;
3171        case KVM_TPR_ACCESS_REPORTING: {
3172                struct kvm_tpr_access_ctl tac;
3173
3174                r = -EFAULT;
3175                if (copy_from_user(&tac, argp, sizeof tac))
3176                        goto out;
3177                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3178                if (r)
3179                        goto out;
3180                r = -EFAULT;
3181                if (copy_to_user(argp, &tac, sizeof tac))
3182                        goto out;
3183                r = 0;
3184                break;
3185        };
3186        case KVM_SET_VAPIC_ADDR: {
3187                struct kvm_vapic_addr va;
3188
3189                r = -EINVAL;
3190                if (!irqchip_in_kernel(vcpu->kvm))
3191                        goto out;
3192                r = -EFAULT;
3193                if (copy_from_user(&va, argp, sizeof va))
3194                        goto out;
3195                r = 0;
3196                kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3197                break;
3198        }
3199        case KVM_X86_SETUP_MCE: {
3200                u64 mcg_cap;
3201
3202                r = -EFAULT;
3203                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3204                        goto out;
3205                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3206                break;
3207        }
3208        case KVM_X86_SET_MCE: {
3209                struct kvm_x86_mce mce;
3210
3211                r = -EFAULT;
3212                if (copy_from_user(&mce, argp, sizeof mce))
3213                        goto out;
3214                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3215                break;
3216        }
3217        case KVM_GET_VCPU_EVENTS: {
3218                struct kvm_vcpu_events events;
3219
3220                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3221
3222                r = -EFAULT;
3223                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3224                        break;
3225                r = 0;
3226                break;
3227        }
3228        case KVM_SET_VCPU_EVENTS: {
3229                struct kvm_vcpu_events events;
3230
3231                r = -EFAULT;
3232                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3233                        break;
3234
3235                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3236                break;
3237        }
3238        case KVM_GET_DEBUGREGS: {
3239                struct kvm_debugregs dbgregs;
3240
3241                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3242
3243                r = -EFAULT;
3244                if (copy_to_user(argp, &dbgregs,
3245                                 sizeof(struct kvm_debugregs)))
3246                        break;
3247                r = 0;
3248                break;
3249        }
3250        case KVM_SET_DEBUGREGS: {
3251                struct kvm_debugregs dbgregs;
3252
3253                r = -EFAULT;
3254                if (copy_from_user(&dbgregs, argp,
3255                                   sizeof(struct kvm_debugregs)))
3256                        break;
3257
3258                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3259                break;
3260        }
3261        case KVM_GET_XSAVE: {
3262                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3263                r = -ENOMEM;
3264                if (!u.xsave)
3265                        break;
3266
3267                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3268
3269                r = -EFAULT;
3270                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3271                        break;
3272                r = 0;
3273                break;
3274        }
3275        case KVM_SET_XSAVE: {
3276                u.xsave = memdup_user(argp, sizeof(*u.xsave));
3277                if (IS_ERR(u.xsave))
3278                        return PTR_ERR(u.xsave);
3279
3280                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3281                break;
3282        }
3283        case KVM_GET_XCRS: {
3284                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3285                r = -ENOMEM;
3286                if (!u.xcrs)
3287                        break;
3288
3289                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3290
3291                r = -EFAULT;
3292                if (copy_to_user(argp, u.xcrs,
3293                                 sizeof(struct kvm_xcrs)))
3294                        break;
3295                r = 0;
3296                break;
3297        }
3298        case KVM_SET_XCRS: {
3299                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3300                if (IS_ERR(u.xcrs))
3301                        return PTR_ERR(u.xcrs);
3302
3303                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3304                break;
3305        }
3306        case KVM_SET_TSC_KHZ: {
3307                u32 user_tsc_khz;
3308
3309                r = -EINVAL;
3310                user_tsc_khz = (u32)arg;
3311
3312                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3313                        goto out;
3314
3315                if (user_tsc_khz == 0)
3316                        user_tsc_khz = tsc_khz;
3317
3318                kvm_set_tsc_khz(vcpu, user_tsc_khz);
3319
3320                r = 0;
3321                goto out;
3322        }
3323        case KVM_GET_TSC_KHZ: {
3324                r = vcpu->arch.virtual_tsc_khz;
3325                goto out;
3326        }
3327        case KVM_KVMCLOCK_CTRL: {
3328                r = kvm_set_guest_paused(vcpu);
3329                goto out;
3330        }
3331        default:
3332                r = -EINVAL;
3333        }
3334out:
3335        kfree(u.buffer);
3336        return r;
3337}
3338
3339int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3340{
3341        return VM_FAULT_SIGBUS;
3342}
3343
3344static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3345{
3346        int ret;
3347
3348        if (addr > (unsigned int)(-3 * PAGE_SIZE))
3349                return -EINVAL;
3350        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3351        return ret;
3352}
3353
3354static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3355                                              u64 ident_addr)
3356{
3357        kvm->arch.ept_identity_map_addr = ident_addr;
3358        return 0;
3359}
3360
3361static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3362                                          u32 kvm_nr_mmu_pages)
3363{
3364        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3365                return -EINVAL;
3366
3367        mutex_lock(&kvm->slots_lock);
3368
3369        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3370        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3371
3372        mutex_unlock(&kvm->slots_lock);
3373        return 0;
3374}
3375
3376static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3377{
3378        return kvm->arch.n_max_mmu_pages;
3379}
3380
3381static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3382{
3383        int r;
3384
3385        r = 0;
3386        switch (chip->chip_id) {
3387        case KVM_IRQCHIP_PIC_MASTER:
3388                memcpy(&chip->chip.pic,
3389                        &pic_irqchip(kvm)->pics[0],
3390                        sizeof(struct kvm_pic_state));
3391                break;
3392        case KVM_IRQCHIP_PIC_SLAVE:
3393                memcpy(&chip->chip.pic,
3394                        &pic_irqchip(kvm)->pics[1],
3395                        sizeof(struct kvm_pic_state));
3396                break;
3397        case KVM_IRQCHIP_IOAPIC:
3398                r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3399                break;
3400        default:
3401                r = -EINVAL;
3402                break;
3403        }
3404        return r;
3405}
3406
3407static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3408{
3409        int r;
3410
3411        r = 0;
3412        switch (chip->chip_id) {
3413        case KVM_IRQCHIP_PIC_MASTER:
3414                spin_lock(&pic_irqchip(kvm)->lock);
3415                memcpy(&pic_irqchip(kvm)->pics[0],
3416                        &chip->chip.pic,
3417                        sizeof(struct kvm_pic_state));
3418                spin_unlock(&pic_irqchip(kvm)->lock);
3419                break;
3420        case KVM_IRQCHIP_PIC_SLAVE:
3421                spin_lock(&pic_irqchip(kvm)->lock);
3422                memcpy(&pic_irqchip(kvm)->pics[1],
3423                        &chip->chip.pic,
3424                        sizeof(struct kvm_pic_state));
3425                spin_unlock(&pic_irqchip(kvm)->lock);
3426                break;
3427        case KVM_IRQCHIP_IOAPIC:
3428                r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3429                break;
3430        default:
3431                r = -EINVAL;
3432                break;
3433        }
3434        kvm_pic_update_irq(pic_irqchip(kvm));
3435        return r;
3436}
3437
3438static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3439{
3440        int r = 0;
3441
3442        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3443        memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3444        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3445        return r;
3446}
3447
3448static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3449{
3450        int r = 0;
3451
3452        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3453        memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3454        kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3455        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3456        return r;
3457}
3458
3459static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3460{
3461        int r = 0;
3462
3463        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3465                sizeof(ps->channels));
3466        ps->flags = kvm->arch.vpit->pit_state.flags;
3467        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3468        memset(&ps->reserved, 0, sizeof(ps->reserved));
3469        return r;
3470}
3471
3472static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3473{
3474        int r = 0, start = 0;
3475        u32 prev_legacy, cur_legacy;
3476        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3477        prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3478        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3479        if (!prev_legacy && cur_legacy)
3480                start = 1;
3481        memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3482               sizeof(kvm->arch.vpit->pit_state.channels));
3483        kvm->arch.vpit->pit_state.flags = ps->flags;
3484        kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3485        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3486        return r;
3487}
3488
3489static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3490                                 struct kvm_reinject_control *control)
3491{
3492        if (!kvm->arch.vpit)
3493                return -ENXIO;
3494        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3495        kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3496        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3497        return 0;
3498}
3499
3500/**
3501 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3502 * @kvm: kvm instance
3503 * @log: slot id and address to which we copy the log
3504 *
3505 * We need to keep it in mind that VCPU threads can write to the bitmap
3506 * concurrently.  So, to avoid losing data, we keep the following order for
3507 * each bit:
3508 *
3509 *   1. Take a snapshot of the bit and clear it if needed.
3510 *   2. Write protect the corresponding page.
3511 *   3. Flush TLB's if needed.
3512 *   4. Copy the snapshot to the userspace.
3513 *
3514 * Between 2 and 3, the guest may write to the page using the remaining TLB
3515 * entry.  This is not a problem because the page will be reported dirty at
3516 * step 4 using the snapshot taken before and step 3 ensures that successive
3517 * writes will be logged for the next call.
3518 */
3519int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3520{
3521        int r;
3522        struct kvm_memory_slot *memslot;
3523        unsigned long n, i;
3524        unsigned long *dirty_bitmap;
3525        unsigned long *dirty_bitmap_buffer;
3526        bool is_dirty = false;
3527
3528        mutex_lock(&kvm->slots_lock);
3529
3530        r = -EINVAL;
3531        if (log->slot >= KVM_USER_MEM_SLOTS)
3532                goto out;
3533
3534        memslot = id_to_memslot(kvm->memslots, log->slot);
3535
3536        dirty_bitmap = memslot->dirty_bitmap;
3537        r = -ENOENT;
3538        if (!dirty_bitmap)
3539                goto out;
3540
3541        n = kvm_dirty_bitmap_bytes(memslot);
3542
3543        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3544        memset(dirty_bitmap_buffer, 0, n);
3545
3546        spin_lock(&kvm->mmu_lock);
3547
3548        for (i = 0; i < n / sizeof(long); i++) {
3549                unsigned long mask;
3550                gfn_t offset;
3551
3552                if (!dirty_bitmap[i])
3553                        continue;
3554
3555                is_dirty = true;
3556
3557                mask = xchg(&dirty_bitmap[i], 0);
3558                dirty_bitmap_buffer[i] = mask;
3559
3560                offset = i * BITS_PER_LONG;
3561                kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3562        }
3563        if (is_dirty)
3564                kvm_flush_remote_tlbs(kvm);
3565
3566        spin_unlock(&kvm->mmu_lock);
3567
3568        r = -EFAULT;
3569        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3570                goto out;
3571
3572        r = 0;
3573out:
3574        mutex_unlock(&kvm->slots_lock);
3575        return r;
3576}
3577
3578int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3579                        bool line_status)
3580{
3581        if (!irqchip_in_kernel(kvm))
3582                return -ENXIO;
3583
3584        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3585                                        irq_event->irq, irq_event->level,
3586                                        line_status);
3587        return 0;
3588}
3589
3590long kvm_arch_vm_ioctl(struct file *filp,
3591                       unsigned int ioctl, unsigned long arg)
3592{
3593        struct kvm *kvm = filp->private_data;
3594        void __user *argp = (void __user *)arg;
3595        int r = -ENOTTY;
3596        /*
3597         * This union makes it completely explicit to gcc-3.x
3598         * that these two variables' stack usage should be
3599         * combined, not added together.
3600         */
3601        union {
3602                struct kvm_pit_state ps;
3603                struct kvm_pit_state2 ps2;
3604                struct kvm_pit_config pit_config;
3605        } u;
3606
3607        switch (ioctl) {
3608        case KVM_SET_TSS_ADDR:
3609                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3610                break;
3611        case KVM_SET_IDENTITY_MAP_ADDR: {
3612                u64 ident_addr;
3613
3614                r = -EFAULT;
3615                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3616                        goto out;
3617                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3618                break;
3619        }
3620        case KVM_SET_NR_MMU_PAGES:
3621                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3622                break;
3623        case KVM_GET_NR_MMU_PAGES:
3624                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3625                break;
3626        case KVM_CREATE_IRQCHIP: {
3627                struct kvm_pic *vpic;
3628
3629                mutex_lock(&kvm->lock);
3630                r = -EEXIST;
3631                if (kvm->arch.vpic)
3632                        goto create_irqchip_unlock;
3633                r = -EINVAL;
3634                if (atomic_read(&kvm->online_vcpus))
3635                        goto create_irqchip_unlock;
3636                r = -ENOMEM;
3637                vpic = kvm_create_pic(kvm);
3638                if (vpic) {
3639                        r = kvm_ioapic_init(kvm);
3640                        if (r) {
3641                                mutex_lock(&kvm->slots_lock);
3642                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3643                                                          &vpic->dev_master);
3644                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3645                                                          &vpic->dev_slave);
3646                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3647                                                          &vpic->dev_eclr);
3648                                mutex_unlock(&kvm->slots_lock);
3649                                kfree(vpic);
3650                                goto create_irqchip_unlock;
3651                        }
3652                } else
3653                        goto create_irqchip_unlock;
3654                smp_wmb();
3655                kvm->arch.vpic = vpic;
3656                smp_wmb();
3657                r = kvm_setup_default_irq_routing(kvm);
3658                if (r) {
3659                        mutex_lock(&kvm->slots_lock);
3660                        mutex_lock(&kvm->irq_lock);
3661                        kvm_ioapic_destroy(kvm);
3662                        kvm_destroy_pic(kvm);
3663                        mutex_unlock(&kvm->irq_lock);
3664                        mutex_unlock(&kvm->slots_lock);
3665                }
3666        create_irqchip_unlock:
3667                mutex_unlock(&kvm->lock);
3668                break;
3669        }
3670        case KVM_CREATE_PIT:
3671                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3672                goto create_pit;
3673        case KVM_CREATE_PIT2:
3674                r = -EFAULT;
3675                if (copy_from_user(&u.pit_config, argp,
3676                                   sizeof(struct kvm_pit_config)))
3677                        goto out;
3678        create_pit:
3679                mutex_lock(&kvm->slots_lock);
3680                r = -EEXIST;
3681                if (kvm->arch.vpit)
3682                        goto create_pit_unlock;
3683                r = -ENOMEM;
3684                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3685                if (kvm->arch.vpit)
3686                        r = 0;
3687        create_pit_unlock:
3688                mutex_unlock(&kvm->slots_lock);
3689                break;
3690        case KVM_GET_IRQCHIP: {
3691                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3692                struct kvm_irqchip *chip;
3693
3694                chip = memdup_user(argp, sizeof(*chip));
3695                if (IS_ERR(chip)) {
3696                        r = PTR_ERR(chip);
3697                        goto out;
3698                }
3699
3700                r = -ENXIO;
3701                if (!irqchip_in_kernel(kvm))
3702                        goto get_irqchip_out;
3703                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3704                if (r)
3705                        goto get_irqchip_out;
3706                r = -EFAULT;
3707                if (copy_to_user(argp, chip, sizeof *chip))
3708                        goto get_irqchip_out;
3709                r = 0;
3710        get_irqchip_out:
3711                kfree(chip);
3712                break;
3713        }
3714        case KVM_SET_IRQCHIP: {
3715                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3716                struct kvm_irqchip *chip;
3717
3718                chip = memdup_user(argp, sizeof(*chip));
3719                if (IS_ERR(chip)) {
3720                        r = PTR_ERR(chip);
3721                        goto out;
3722                }
3723
3724                r = -ENXIO;
3725                if (!irqchip_in_kernel(kvm))
3726                        goto set_irqchip_out;
3727                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3728                if (r)
3729                        goto set_irqchip_out;
3730                r = 0;
3731        set_irqchip_out:
3732                kfree(chip);
3733                break;
3734        }
3735        case KVM_GET_PIT: {
3736                r = -EFAULT;
3737                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3738                        goto out;
3739                r = -ENXIO;
3740                if (!kvm->arch.vpit)
3741                        goto out;
3742                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3743                if (r)
3744                        goto out;
3745                r = -EFAULT;
3746                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3747                        goto out;
3748                r = 0;
3749                break;
3750        }
3751        case KVM_SET_PIT: {
3752                r = -EFAULT;
3753                if (copy_from_user(&u.ps, argp, sizeof u.ps))
3754                        goto out;
3755                r = -ENXIO;
3756                if (!kvm->arch.vpit)
3757                        goto out;
3758                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3759                break;
3760        }
3761        case KVM_GET_PIT2: {
3762                r = -ENXIO;
3763                if (!kvm->arch.vpit)
3764                        goto out;
3765                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3766                if (r)
3767                        goto out;
3768                r = -EFAULT;
3769                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3770                        goto out;
3771                r = 0;
3772                break;
3773        }
3774        case KVM_SET_PIT2: {
3775                r = -EFAULT;
3776                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3777                        goto out;
3778                r = -ENXIO;
3779                if (!kvm->arch.vpit)
3780                        goto out;
3781                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3782                break;
3783        }
3784        case KVM_REINJECT_CONTROL: {
3785                struct kvm_reinject_control control;
3786                r =  -EFAULT;
3787                if (copy_from_user(&control, argp, sizeof(control)))
3788                        goto out;
3789                r = kvm_vm_ioctl_reinject(kvm, &control);
3790                break;
3791        }
3792        case KVM_XEN_HVM_CONFIG: {
3793                r = -EFAULT;
3794                if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3795                                   sizeof(struct kvm_xen_hvm_config)))
3796                        goto out;
3797                r = -EINVAL;
3798                if (kvm->arch.xen_hvm_config.flags)
3799                        goto out;
3800                r = 0;
3801                break;
3802        }
3803        case KVM_SET_CLOCK: {
3804                struct kvm_clock_data user_ns;
3805                u64 now_ns;
3806                s64 delta;
3807
3808                r = -EFAULT;
3809                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3810                        goto out;
3811
3812                r = -EINVAL;
3813                if (user_ns.flags)
3814                        goto out;
3815
3816                r = 0;
3817                local_irq_disable();
3818                now_ns = get_kernel_ns();
3819                delta = user_ns.clock - now_ns;
3820                local_irq_enable();
3821                kvm->arch.kvmclock_offset = delta;
3822                kvm_gen_update_masterclock(kvm);
3823                break;
3824        }
3825        case KVM_GET_CLOCK: {
3826                struct kvm_clock_data user_ns;
3827                u64 now_ns;
3828
3829                local_irq_disable();
3830                now_ns = get_kernel_ns();
3831                user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3832                local_irq_enable();
3833                user_ns.flags = 0;
3834                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3835
3836                r = -EFAULT;
3837                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3838                        goto out;
3839                r = 0;
3840                break;
3841        }
3842
3843        default:
3844                ;
3845        }
3846out:
3847        return r;
3848}
3849
3850static void kvm_init_msr_list(void)
3851{
3852        u32 dummy[2];
3853        unsigned i, j;
3854
3855        /* skip the first msrs in the list. KVM-specific */
3856        for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3857                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3858                        continue;
3859                if (j < i)
3860                        msrs_to_save[j] = msrs_to_save[i];
3861                j++;
3862        }
3863        num_msrs_to_save = j;
3864}
3865
3866static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3867                           const void *v)
3868{
3869        int handled = 0;
3870        int n;
3871
3872        do {
3873                n = min(len, 8);
3874                if (!(vcpu->arch.apic &&
3875                      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3876                    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3877                        break;
3878                handled += n;
3879                addr += n;
3880                len -= n;
3881                v += n;
3882        } while (len);
3883
3884        return handled;
3885}
3886
3887static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3888{
3889        int handled = 0;
3890        int n;
3891
3892        do {
3893                n = min(len, 8);
3894                if (!(vcpu->arch.apic &&
3895                      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3896                    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3897                        break;
3898                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3899                handled += n;
3900                addr += n;
3901                len -= n;
3902                v += n;
3903        } while (len);
3904
3905        return handled;
3906}
3907
3908static void kvm_set_segment(struct kvm_vcpu *vcpu,
3909                        struct kvm_segment *var, int seg)
3910{
3911        kvm_x86_ops->set_segment(vcpu, var, seg);
3912}
3913
3914void kvm_get_segment(struct kvm_vcpu *vcpu,
3915                     struct kvm_segment *var, int seg)
3916{
3917        kvm_x86_ops->get_segment(vcpu, var, seg);
3918}
3919
3920gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3921{
3922        gpa_t t_gpa;
3923        struct x86_exception exception;
3924
3925        BUG_ON(!mmu_is_nested(vcpu));
3926
3927        /* NPT walks are always user-walks */
3928        access |= PFERR_USER_MASK;
3929        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3930
3931        return t_gpa;
3932}
3933
3934gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3935                              struct x86_exception *exception)
3936{
3937        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3938        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3939}
3940
3941 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3942                                struct x86_exception *exception)
3943{
3944        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3945        access |= PFERR_FETCH_MASK;
3946        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3947}
3948
3949gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3950                               struct x86_exception *exception)
3951{
3952        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3953        access |= PFERR_WRITE_MASK;
3954        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3955}
3956
3957/* uses this to access any guest's mapped memory without checking CPL */
3958gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3959                                struct x86_exception *exception)
3960{
3961        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3962}
3963
3964static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3965                                      struct kvm_vcpu *vcpu, u32 access,
3966                                      struct x86_exception *exception)
3967{
3968        void *data = val;
3969        int r = X86EMUL_CONTINUE;
3970
3971        while (bytes) {
3972                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3973                                                            exception);
3974                unsigned offset = addr & (PAGE_SIZE-1);
3975                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3976                int ret;
3977
3978                if (gpa == UNMAPPED_GVA)
3979                        return X86EMUL_PROPAGATE_FAULT;
3980                ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3981                if (ret < 0) {
3982                        r = X86EMUL_IO_NEEDED;
3983                        goto out;
3984                }
3985
3986                bytes -= toread;
3987                data += toread;
3988                addr += toread;
3989        }
3990out:
3991        return r;
3992}
3993
3994/* used for instruction fetching */
3995static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3996                                gva_t addr, void *val, unsigned int bytes,
3997                                struct x86_exception *exception)
3998{
3999        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4000        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4001
4002        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4003                                          access | PFERR_FETCH_MASK,
4004                                          exception);
4005}
4006
4007int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4008                               gva_t addr, void *val, unsigned int bytes,
4009                               struct x86_exception *exception)
4010{
4011        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4012        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4013
4014        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4015                                          exception);
4016}
4017EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4018
4019static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4020                                      gva_t addr, void *val, unsigned int bytes,
4021                                      struct x86_exception *exception)
4022{
4023        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4024        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4025}
4026
4027int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4028                                       gva_t addr, void *val,
4029                                       unsigned int bytes,
4030                                       struct x86_exception *exception)
4031{
4032        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4033        void *data = val;
4034        int r = X86EMUL_CONTINUE;
4035
4036        while (bytes) {
4037                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4038                                                             PFERR_WRITE_MASK,
4039                                                             exception);
4040                unsigned offset = addr & (PAGE_SIZE-1);
4041                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4042                int ret;
4043
4044                if (gpa == UNMAPPED_GVA)
4045                        return X86EMUL_PROPAGATE_FAULT;
4046                ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4047                if (ret < 0) {
4048                        r = X86EMUL_IO_NEEDED;
4049                        goto out;
4050                }
4051
4052                bytes -= towrite;
4053                data += towrite;
4054                addr += towrite;
4055        }
4056out:
4057        return r;
4058}
4059EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4060
4061static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4062                                gpa_t *gpa, struct x86_exception *exception,
4063                                bool write)
4064{
4065        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4066                | (write ? PFERR_WRITE_MASK : 0);
4067
4068        if (vcpu_match_mmio_gva(vcpu, gva)
4069            && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4070                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4071                                        (gva & (PAGE_SIZE - 1));
4072                trace_vcpu_match_mmio(gva, *gpa, write, false);
4073                return 1;
4074        }
4075
4076        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4077
4078        if (*gpa == UNMAPPED_GVA)
4079                return -1;
4080
4081        /* For APIC access vmexit */
4082        if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4083                return 1;
4084
4085        if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4086                trace_vcpu_match_mmio(gva, *gpa, write, true);
4087                return 1;
4088        }
4089
4090        return 0;
4091}
4092
4093int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4094                        const void *val, int bytes)
4095{
4096        int ret;
4097
4098        ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4099        if (ret < 0)
4100                return 0;
4101        kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4102        return 1;
4103}
4104
4105struct read_write_emulator_ops {
4106        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4107                                  int bytes);
4108        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4109                                  void *val, int bytes);
4110        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4111                               int bytes, void *val);
4112        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4113                                    void *val, int bytes);
4114        bool write;
4115};
4116
4117static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4118{
4119        if (vcpu->mmio_read_completed) {
4120                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4121                               vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4122                vcpu->mmio_read_completed = 0;
4123                return 1;
4124        }
4125
4126        return 0;
4127}
4128
4129static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4130                        void *val, int bytes)
4131{
4132        return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4133}
4134
4135static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4136                         void *val, int bytes)
4137{
4138        return emulator_write_phys(vcpu, gpa, val, bytes);
4139}
4140
4141static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4142{
4143        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4144        return vcpu_mmio_write(vcpu, gpa, bytes, val);
4145}
4146
4147static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4148                          void *val, int bytes)
4149{
4150        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4151        return X86EMUL_IO_NEEDED;
4152}
4153
4154static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4155                           void *val, int bytes)
4156{
4157        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4158
4159        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4160        return X86EMUL_CONTINUE;
4161}
4162
4163static const struct read_write_emulator_ops read_emultor = {
4164        .read_write_prepare = read_prepare,
4165        .read_write_emulate = read_emulate,
4166        .read_write_mmio = vcpu_mmio_read,
4167        .read_write_exit_mmio = read_exit_mmio,
4168};
4169
4170static const struct read_write_emulator_ops write_emultor = {
4171        .read_write_emulate = write_emulate,
4172        .read_write_mmio = write_mmio,
4173        .read_write_exit_mmio = write_exit_mmio,
4174        .write = true,
4175};
4176
4177static int emulator_read_write_onepage(unsigned long addr, void *val,
4178                                       unsigned int bytes,
4179                                       struct x86_exception *exception,
4180                                       struct kvm_vcpu *vcpu,
4181                                       const struct read_write_emulator_ops *ops)
4182{
4183        gpa_t gpa;
4184        int handled, ret;
4185        bool write = ops->write;
4186        struct kvm_mmio_fragment *frag;
4187
4188        ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4189
4190        if (ret < 0)
4191                return X86EMUL_PROPAGATE_FAULT;
4192
4193        /* For APIC access vmexit */
4194        if (ret)
4195                goto mmio;
4196
4197        if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4198                return X86EMUL_CONTINUE;
4199
4200mmio:
4201        /*
4202         * Is this MMIO handled locally?
4203         */
4204        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4205        if (handled == bytes)
4206                return X86EMUL_CONTINUE;
4207
4208        gpa += handled;
4209        bytes -= handled;
4210        val += handled;
4211
4212        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4213        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4214        frag->gpa = gpa;
4215        frag->data = val;
4216        frag->len = bytes;
4217        return X86EMUL_CONTINUE;
4218}
4219
4220int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4221                        void *val, unsigned int bytes,
4222                        struct x86_exception *exception,
4223                        const struct read_write_emulator_ops *ops)
4224{
4225        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4226        gpa_t gpa;
4227        int rc;
4228
4229        if (ops->read_write_prepare &&
4230                  ops->read_write_prepare(vcpu, val, bytes))
4231                return X86EMUL_CONTINUE;
4232
4233        vcpu->mmio_nr_fragments = 0;
4234
4235        /* Crossing a page boundary? */
4236        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4237                int now;
4238
4239                now = -addr & ~PAGE_MASK;
4240                rc = emulator_read_write_onepage(addr, val, now, exception,
4241                                                 vcpu, ops);
4242
4243                if (rc != X86EMUL_CONTINUE)
4244                        return rc;
4245                addr += now;
4246                val += now;
4247                bytes -= now;
4248        }
4249
4250        rc = emulator_read_write_onepage(addr, val, bytes, exception,
4251                                         vcpu, ops);
4252        if (rc != X86EMUL_CONTINUE)
4253                return rc;
4254
4255        if (!vcpu->mmio_nr_fragments)
4256                return rc;
4257
4258        gpa = vcpu->mmio_fragments[0].gpa;
4259
4260        vcpu->mmio_needed = 1;
4261        vcpu->mmio_cur_fragment = 0;
4262
4263        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4264        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4265        vcpu->run->exit_reason = KVM_EXIT_MMIO;
4266        vcpu->run->mmio.phys_addr = gpa;
4267
4268        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4269}
4270
4271static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4272                                  unsigned long addr,
4273                                  void *val,
4274                                  unsigned int bytes,
4275                                  struct x86_exception *exception)
4276{
4277        return emulator_read_write(ctxt, addr, val, bytes,
4278                                   exception, &read_emultor);
4279}
4280
4281int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4282                            unsigned long addr,
4283                            const void *val,
4284                            unsigned int bytes,
4285                            struct x86_exception *exception)
4286{
4287        return emulator_read_write(ctxt, addr, (void *)val, bytes,
4288                                   exception, &write_emultor);
4289}
4290
4291#define CMPXCHG_TYPE(t, ptr, old, new) \
4292        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4293
4294#ifdef CONFIG_X86_64
4295#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4296#else
4297#  define CMPXCHG64(ptr, old, new) \
4298        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4299#endif
4300
4301static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4302                                     unsigned long addr,
4303                                     const void *old,
4304                                     const void *new,
4305                                     unsigned int bytes,
4306                                     struct x86_exception *exception)
4307{
4308        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4309        gpa_t gpa;
4310        struct page *page;
4311        char *kaddr;
4312        bool exchanged;
4313
4314        /* guests cmpxchg8b have to be emulated atomically */
4315        if (bytes > 8 || (bytes & (bytes - 1)))
4316                goto emul_write;
4317
4318        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4319
4320        if (gpa == UNMAPPED_GVA ||
4321            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4322                goto emul_write;
4323
4324        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4325                goto emul_write;
4326
4327        page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4328        if (is_error_page(page))
4329                goto emul_write;
4330
4331        kaddr = kmap_atomic(page);
4332        kaddr += offset_in_page(gpa);
4333        switch (bytes) {
4334        case 1:
4335                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4336                break;
4337        case 2:
4338                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4339                break;
4340        case 4:
4341                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4342                break;
4343        case 8:
4344                exchanged = CMPXCHG64(kaddr, old, new);
4345                break;
4346        default:
4347                BUG();
4348        }
4349        kunmap_atomic(kaddr);
4350        kvm_release_page_dirty(page);
4351
4352        if (!exchanged)
4353                return X86EMUL_CMPXCHG_FAILED;
4354
4355        kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4356
4357        return X86EMUL_CONTINUE;
4358
4359emul_write:
4360        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4361
4362        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4363}
4364
4365static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4366{
4367        /* TODO: String I/O for in kernel device */
4368        int r;
4369
4370        if (vcpu->arch.pio.in)
4371                r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4372                                    vcpu->arch.pio.size, pd);
4373        else
4374                r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4375                                     vcpu->arch.pio.port, vcpu->arch.pio.size,
4376                                     pd);
4377        return r;
4378}
4379
4380static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4381                               unsigned short port, void *val,
4382                               unsigned int count, bool in)
4383{
4384        trace_kvm_pio(!in, port, size, count);
4385
4386        vcpu->arch.pio.port = port;
4387        vcpu->arch.pio.in = in;
4388        vcpu->arch.pio.count  = count;
4389        vcpu->arch.pio.size = size;
4390
4391        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4392                vcpu->arch.pio.count = 0;
4393                return 1;
4394        }
4395
4396        vcpu->run->exit_reason = KVM_EXIT_IO;
4397        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4398        vcpu->run->io.size = size;
4399        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4400        vcpu->run->io.count = count;
4401        vcpu->run->io.port = port;
4402
4403        return 0;
4404}
4405
4406static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4407                                    int size, unsigned short port, void *val,
4408                                    unsigned int count)
4409{
4410        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4411        int ret;
4412
4413        if (vcpu->arch.pio.count)
4414                goto data_avail;
4415
4416        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4417        if (ret) {
4418data_avail:
4419                memcpy(val, vcpu->arch.pio_data, size * count);
4420                vcpu->arch.pio.count = 0;
4421                return 1;
4422        }
4423
4424        return 0;
4425}
4426
4427static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4428                                     int size, unsigned short port,
4429                                     const void *val, unsigned int count)
4430{
4431        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4432
4433        memcpy(vcpu->arch.pio_data, val, size * count);
4434        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4435}
4436
4437static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4438{
4439        return kvm_x86_ops->get_segment_base(vcpu, seg);
4440}
4441
4442static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4443{
4444        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4445}
4446
4447int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4448{
4449        if (!need_emulate_wbinvd(vcpu))
4450                return X86EMUL_CONTINUE;
4451
4452        if (kvm_x86_ops->has_wbinvd_exit()) {
4453                int cpu = get_cpu();
4454
4455                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4456                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4457                                wbinvd_ipi, NULL, 1);
4458                put_cpu();
4459                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4460        } else
4461                wbinvd();
4462        return X86EMUL_CONTINUE;
4463}
4464EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4465
4466static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4467{
4468        kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4469}
4470
4471int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4472{
4473        return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4474}
4475
4476int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4477{
4478
4479        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4480}
4481
4482static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4483{
4484        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4485}
4486
4487static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4488{
4489        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4490        unsigned long value;
4491
4492        switch (cr) {
4493        case 0:
4494                value = kvm_read_cr0(vcpu);
4495                break;
4496        case 2:
4497                value = vcpu->arch.cr2;
4498                break;
4499        case 3:
4500                value = kvm_read_cr3(vcpu);
4501                break;
4502        case 4:
4503                value = kvm_read_cr4(vcpu);
4504                break;
4505        case 8:
4506                value = kvm_get_cr8(vcpu);
4507                break;
4508        default:
4509                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4510                return 0;
4511        }
4512
4513        return value;
4514}
4515
4516static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4517{
4518        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4519        int res = 0;
4520
4521        switch (cr) {
4522        case 0:
4523                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4524                break;
4525        case 2:
4526                vcpu->arch.cr2 = val;
4527                break;
4528        case 3:
4529                res = kvm_set_cr3(vcpu, val);
4530                break;
4531        case 4:
4532                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4533                break;
4534        case 8:
4535                res = kvm_set_cr8(vcpu, val);
4536                break;
4537        default:
4538                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4539                res = -1;
4540        }
4541
4542        return res;
4543}
4544
4545static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4546{
4547        kvm_set_rflags(emul_to_vcpu(ctxt), val);
4548}
4549
4550static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4551{
4552        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4553}
4554
4555static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4556{
4557        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4558}
4559
4560static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4561{
4562        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4563}
4564
4565static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4566{
4567        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4568}
4569
4570static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4571{
4572        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4573}
4574
4575static unsigned long emulator_get_cached_segment_base(
4576        struct x86_emulate_ctxt *ctxt, int seg)
4577{
4578        return get_segment_base(emul_to_vcpu(ctxt), seg);
4579}
4580
4581static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4582                                 struct desc_struct *desc, u32 *base3,
4583                                 int seg)
4584{
4585        struct kvm_segment var;
4586
4587        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4588        *selector = var.selector;
4589
4590        if (var.unusable) {
4591                memset(desc, 0, sizeof(*desc));
4592                return false;
4593        }
4594
4595        if (var.g)
4596                var.limit >>= 12;
4597        set_desc_limit(desc, var.limit);
4598        set_desc_base(desc, (unsigned long)var.base);
4599#ifdef CONFIG_X86_64
4600        if (base3)
4601                *base3 = var.base >> 32;
4602#endif
4603        desc->type = var.type;
4604        desc->s = var.s;
4605        desc->dpl = var.dpl;
4606        desc->p = var.present;
4607        desc->avl = var.avl;
4608        desc->l = var.l;
4609        desc->d = var.db;
4610        desc->g = var.g;
4611
4612        return true;
4613}
4614
4615static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4616                                 struct desc_struct *desc, u32 base3,
4617                                 int seg)
4618{
4619        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4620        struct kvm_segment var;
4621
4622        var.selector = selector;
4623        var.base = get_desc_base(desc);
4624#ifdef CONFIG_X86_64
4625        var.base |= ((u64)base3) << 32;
4626#endif
4627        var.limit = get_desc_limit(desc);
4628        if (desc->g)
4629                var.limit = (var.limit << 12) | 0xfff;
4630        var.type = desc->type;
4631        var.present = desc->p;
4632        var.dpl = desc->dpl;
4633        var.db = desc->d;
4634        var.s = desc->s;
4635        var.l = desc->l;
4636        var.g = desc->g;
4637        var.avl = desc->avl;
4638        var.present = desc->p;
4639        var.unusable = !var.present;
4640        var.padding = 0;
4641
4642        kvm_set_segment(vcpu, &var, seg);
4643        return;
4644}
4645
4646static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4647                            u32 msr_index, u64 *pdata)
4648{
4649        return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4650}
4651
4652static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4653                            u32 msr_index, u64 data)
4654{
4655        struct msr_data msr;
4656
4657        msr.data = data;
4658        msr.index = msr_index;
4659        msr.host_initiated = false;
4660        return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4661}
4662
4663static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4664                             u32 pmc, u64 *pdata)
4665{
4666        return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4667}
4668
4669static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4670{
4671        emul_to_vcpu(ctxt)->arch.halt_request = 1;
4672}
4673
4674static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4675{
4676        preempt_disable();
4677        kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4678        /*
4679         * CR0.TS may reference the host fpu state, not the guest fpu state,
4680         * so it may be clear at this point.
4681         */
4682        clts();
4683}
4684
4685static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4686{
4687        preempt_enable();
4688}
4689
4690static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4691                              struct x86_instruction_info *info,
4692                              enum x86_intercept_stage stage)
4693{
4694        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4695}
4696
4697static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4698                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4699{
4700        kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4701}
4702
4703static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4704{
4705        return kvm_register_read(emul_to_vcpu(ctxt), reg);
4706}
4707
4708static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4709{
4710        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4711}
4712
4713static const struct x86_emulate_ops emulate_ops = {
4714        .read_gpr            = emulator_read_gpr,
4715        .write_gpr           = emulator_write_gpr,
4716        .read_std            = kvm_read_guest_virt_system,
4717        .write_std           = kvm_write_guest_virt_system,
4718        .fetch               = kvm_fetch_guest_virt,
4719        .read_emulated       = emulator_read_emulated,
4720        .write_emulated      = emulator_write_emulated,
4721        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4722        .invlpg              = emulator_invlpg,
4723        .pio_in_emulated     = emulator_pio_in_emulated,
4724        .pio_out_emulated    = emulator_pio_out_emulated,
4725        .get_segment         = emulator_get_segment,
4726        .set_segment         = emulator_set_segment,
4727        .get_cached_segment_base = emulator_get_cached_segment_base,
4728        .get_gdt             = emulator_get_gdt,
4729        .get_idt             = emulator_get_idt,
4730        .set_gdt             = emulator_set_gdt,
4731        .set_idt             = emulator_set_idt,
4732        .get_cr              = emulator_get_cr,
4733        .set_cr              = emulator_set_cr,
4734        .set_rflags          = emulator_set_rflags,
4735        .cpl                 = emulator_get_cpl,
4736        .get_dr              = emulator_get_dr,
4737        .set_dr              = emulator_set_dr,
4738        .set_msr             = emulator_set_msr,
4739        .get_msr             = emulator_get_msr,
4740        .read_pmc            = emulator_read_pmc,
4741        .halt                = emulator_halt,
4742        .wbinvd              = emulator_wbinvd,
4743        .fix_hypercall       = emulator_fix_hypercall,
4744        .get_fpu             = emulator_get_fpu,
4745        .put_fpu             = emulator_put_fpu,
4746        .intercept           = emulator_intercept,
4747        .get_cpuid           = emulator_get_cpuid,
4748};
4749
4750static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4751{
4752        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4753        /*
4754         * an sti; sti; sequence only disable interrupts for the first
4755         * instruction. So, if the last instruction, be it emulated or
4756         * not, left the system with the INT_STI flag enabled, it
4757         * means that the last instruction is an sti. We should not
4758         * leave the flag on in this case. The same goes for mov ss
4759         */
4760        if (!(int_shadow & mask))
4761                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4762}
4763
4764static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4765{
4766        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4767        if (ctxt->exception.vector == PF_VECTOR)
4768                kvm_propagate_fault(vcpu, &ctxt->exception);
4769        else if (ctxt->exception.error_code_valid)
4770                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4771                                      ctxt->exception.error_code);
4772        else
4773                kvm_queue_exception(vcpu, ctxt->exception.vector);
4774}
4775
4776static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4777{
4778        memset(&ctxt->twobyte, 0,
4779               (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4780
4781        ctxt->fetch.start = 0;
4782        ctxt->fetch.end = 0;
4783        ctxt->io_read.pos = 0;
4784        ctxt->io_read.end = 0;
4785        ctxt->mem_read.pos = 0;
4786        ctxt->mem_read.end = 0;
4787}
4788
4789static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4790{
4791        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4792        int cs_db, cs_l;
4793
4794        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4795
4796        ctxt->eflags = kvm_get_rflags(vcpu);
4797        ctxt->eip = kvm_rip_read(vcpu);
4798        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4799                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4800                     cs_l                               ? X86EMUL_MODE_PROT64 :
4801                     cs_db                              ? X86EMUL_MODE_PROT32 :
4802                                                          X86EMUL_MODE_PROT16;
4803        ctxt->guest_mode = is_guest_mode(vcpu);
4804
4805        init_decode_cache(ctxt);
4806        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4807}
4808
4809int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4810{
4811        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4812        int ret;
4813
4814        init_emulate_ctxt(vcpu);
4815
4816        ctxt->op_bytes = 2;
4817        ctxt->ad_bytes = 2;
4818        ctxt->_eip = ctxt->eip + inc_eip;
4819        ret = emulate_int_real(ctxt, irq);
4820
4821        if (ret != X86EMUL_CONTINUE)
4822                return EMULATE_FAIL;
4823
4824        ctxt->eip = ctxt->_eip;
4825        kvm_rip_write(vcpu, ctxt->eip);
4826        kvm_set_rflags(vcpu, ctxt->eflags);
4827
4828        if (irq == NMI_VECTOR)
4829                vcpu->arch.nmi_pending = 0;
4830        else
4831                vcpu->arch.interrupt.pending = false;
4832
4833        return EMULATE_DONE;
4834}
4835EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4836
4837static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4838{
4839        int r = EMULATE_DONE;
4840
4841        ++vcpu->stat.insn_emulation_fail;
4842        trace_kvm_emulate_insn_failed(vcpu);
4843        if (!is_guest_mode(vcpu)) {
4844                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4845                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4846                vcpu->run->internal.ndata = 0;
4847                r = EMULATE_FAIL;
4848        }
4849        kvm_queue_exception(vcpu, UD_VECTOR);
4850
4851        return r;
4852}
4853
4854static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4855                                  bool write_fault_to_shadow_pgtable,
4856                                  int emulation_type)
4857{
4858        gpa_t gpa = cr2;
4859        pfn_t pfn;
4860
4861        if (emulation_type & EMULTYPE_NO_REEXECUTE)
4862                return false;
4863
4864        if (!vcpu->arch.mmu.direct_map) {
4865                /*
4866                 * Write permission should be allowed since only
4867                 * write access need to be emulated.
4868                 */
4869                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4870
4871                /*
4872                 * If the mapping is invalid in guest, let cpu retry
4873                 * it to generate fault.
4874                 */
4875                if (gpa == UNMAPPED_GVA)
4876                        return true;
4877        }
4878
4879        /*
4880         * Do not retry the unhandleable instruction if it faults on the
4881         * readonly host memory, otherwise it will goto a infinite loop:
4882         * retry instruction -> write #PF -> emulation fail -> retry
4883         * instruction -> ...
4884         */
4885        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4886
4887        /*
4888         * If the instruction failed on the error pfn, it can not be fixed,
4889         * report the error to userspace.
4890         */
4891        if (is_error_noslot_pfn(pfn))
4892                return false;
4893
4894        kvm_release_pfn_clean(pfn);
4895
4896        /* The instructions are well-emulated on direct mmu. */
4897        if (vcpu->arch.mmu.direct_map) {
4898                unsigned int indirect_shadow_pages;
4899
4900                spin_lock(&vcpu->kvm->mmu_lock);
4901                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4902                spin_unlock(&vcpu->kvm->mmu_lock);
4903
4904                if (indirect_shadow_pages)
4905                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4906
4907                return true;
4908        }
4909
4910        /*
4911         * if emulation was due to access to shadowed page table
4912         * and it failed try to unshadow page and re-enter the
4913         * guest to let CPU execute the instruction.
4914         */
4915        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4916
4917        /*
4918         * If the access faults on its page table, it can not
4919         * be fixed by unprotecting shadow page and it should
4920         * be reported to userspace.
4921         */
4922        return !write_fault_to_shadow_pgtable;
4923}
4924
4925static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4926                              unsigned long cr2,  int emulation_type)
4927{
4928        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4929        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4930
4931        last_retry_eip = vcpu->arch.last_retry_eip;
4932        last_retry_addr = vcpu->arch.last_retry_addr;
4933
4934        /*
4935         * If the emulation is caused by #PF and it is non-page_table
4936         * writing instruction, it means the VM-EXIT is caused by shadow
4937         * page protected, we can zap the shadow page and retry this
4938         * instruction directly.
4939         *
4940         * Note: if the guest uses a non-page-table modifying instruction
4941         * on the PDE that points to the instruction, then we will unmap
4942         * the instruction and go to an infinite loop. So, we cache the
4943         * last retried eip and the last fault address, if we meet the eip
4944         * and the address again, we can break out of the potential infinite
4945         * loop.
4946         */
4947        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4948
4949        if (!(emulation_type & EMULTYPE_RETRY))
4950                return false;
4951
4952        if (x86_page_table_writing_insn(ctxt))
4953                return false;
4954
4955        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4956                return false;
4957
4958        vcpu->arch.last_retry_eip = ctxt->eip;
4959        vcpu->arch.last_retry_addr = cr2;
4960
4961        if (!vcpu->arch.mmu.direct_map)
4962                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4963
4964        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4965
4966        return true;
4967}
4968
4969static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4970static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4971
4972static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4973                                unsigned long *db)
4974{
4975        u32 dr6 = 0;
4976        int i;
4977        u32 enable, rwlen;
4978
4979        enable = dr7;
4980        rwlen = dr7 >> 16;
4981        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
4982                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
4983                        dr6 |= (1 << i);
4984        return dr6;
4985}
4986
4987static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
4988{
4989        struct kvm_run *kvm_run = vcpu->run;
4990
4991        /*
4992         * Use the "raw" value to see if TF was passed to the processor.
4993         * Note that the new value of the flags has not been saved yet.
4994         *
4995         * This is correct even for TF set by the guest, because "the
4996         * processor will not generate this exception after the instruction
4997         * that sets the TF flag".
4998         */
4999        unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5000
5001        if (unlikely(rflags & X86_EFLAGS_TF)) {
5002                if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5003                        kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5004                        kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5005                        kvm_run->debug.arch.exception = DB_VECTOR;
5006                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
5007                        *r = EMULATE_USER_EXIT;
5008                } else {
5009                        vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5010                        /*
5011                         * "Certain debug exceptions may clear bit 0-3.  The
5012                         * remaining contents of the DR6 register are never
5013                         * cleared by the processor".
5014                         */
5015                        vcpu->arch.dr6 &= ~15;
5016                        vcpu->arch.dr6 |= DR6_BS;
5017                        kvm_queue_exception(vcpu, DB_VECTOR);
5018                }
5019        }
5020}
5021
5022static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5023{
5024        struct kvm_run *kvm_run = vcpu->run;
5025        unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5026        u32 dr6 = 0;
5027
5028        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5029            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5030                dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5031                                           vcpu->arch.guest_debug_dr7,
5032                                           vcpu->arch.eff_db);
5033
5034                if (dr6 != 0) {
5035                        kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5036                        kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5037                                get_segment_base(vcpu, VCPU_SREG_CS);
5038
5039                        kvm_run->debug.arch.exception = DB_VECTOR;
5040                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
5041                        *r = EMULATE_USER_EXIT;
5042                        return true;
5043                }
5044        }
5045
5046        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5047                dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5048                                           vcpu->arch.dr7,
5049                                           vcpu->arch.db);
5050
5051                if (dr6 != 0) {
5052                        vcpu->arch.dr6 &= ~15;
5053                        vcpu->arch.dr6 |= dr6;
5054                        kvm_queue_exception(vcpu, DB_VECTOR);
5055                        *r = EMULATE_DONE;
5056                        return true;
5057                }
5058        }
5059
5060        return false;
5061}
5062
5063int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5064                            unsigned long cr2,
5065                            int emulation_type,
5066                            void *insn,
5067                            int insn_len)
5068{
5069        int r;
5070        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5071        bool writeback = true;
5072        bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5073
5074        /*
5075         * Clear write_fault_to_shadow_pgtable here to ensure it is
5076         * never reused.
5077         */
5078        vcpu->arch.write_fault_to_shadow_pgtable = false;
5079        kvm_clear_exception_queue(vcpu);
5080
5081        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5082                init_emulate_ctxt(vcpu);
5083
5084                /*
5085                 * We will reenter on the same instruction since
5086                 * we do not set complete_userspace_io.  This does not
5087                 * handle watchpoints yet, those would be handled in
5088                 * the emulate_ops.
5089                 */
5090                if (kvm_vcpu_check_breakpoint(vcpu, &r))
5091                        return r;
5092
5093                ctxt->interruptibility = 0;
5094                ctxt->have_exception = false;
5095                ctxt->perm_ok = false;
5096
5097                ctxt->only_vendor_specific_insn
5098                        = emulation_type & EMULTYPE_TRAP_UD;
5099
5100                r = x86_decode_insn(ctxt, insn, insn_len);
5101
5102                trace_kvm_emulate_insn_start(vcpu);
5103                ++vcpu->stat.insn_emulation;
5104                if (r != EMULATION_OK)  {
5105                        if (emulation_type & EMULTYPE_TRAP_UD)
5106                                return EMULATE_FAIL;
5107                        if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5108                                                emulation_type))
5109                                return EMULATE_DONE;
5110                        if (emulation_type & EMULTYPE_SKIP)
5111                                return EMULATE_FAIL;
5112                        return handle_emulation_failure(vcpu);
5113                }
5114        }
5115
5116        if (emulation_type & EMULTYPE_SKIP) {
5117                kvm_rip_write(vcpu, ctxt->_eip);
5118                return EMULATE_DONE;
5119        }
5120
5121        if (retry_instruction(ctxt, cr2, emulation_type))
5122                return EMULATE_DONE;
5123
5124        /* this is needed for vmware backdoor interface to work since it
5125           changes registers values  during IO operation */
5126        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5127                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5128                emulator_invalidate_register_cache(ctxt);
5129        }
5130
5131restart:
5132        r = x86_emulate_insn(ctxt);
5133
5134        if (r == EMULATION_INTERCEPTED)
5135                return EMULATE_DONE;
5136
5137        if (r == EMULATION_FAILED) {
5138                if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5139                                        emulation_type))
5140                        return EMULATE_DONE;
5141
5142                return handle_emulation_failure(vcpu);
5143        }
5144
5145        if (ctxt->have_exception) {
5146                inject_emulated_exception(vcpu);
5147                r = EMULATE_DONE;
5148        } else if (vcpu->arch.pio.count) {
5149                if (!vcpu->arch.pio.in) {
5150                        /* FIXME: return into emulator if single-stepping.  */
5151                        vcpu->arch.pio.count = 0;
5152                } else {
5153                        writeback = false;
5154                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
5155                }
5156                r = EMULATE_USER_EXIT;
5157        } else if (vcpu->mmio_needed) {
5158                if (!vcpu->mmio_is_write)
5159                        writeback = false;
5160                r = EMULATE_USER_EXIT;
5161                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5162        } else if (r == EMULATION_RESTART)
5163                goto restart;
5164        else
5165                r = EMULATE_DONE;
5166
5167        if (writeback) {
5168                toggle_interruptibility(vcpu, ctxt->interruptibility);
5169                kvm_make_request(KVM_REQ_EVENT, vcpu);
5170                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5171                kvm_rip_write(vcpu, ctxt->eip);
5172                if (r == EMULATE_DONE)
5173                        kvm_vcpu_check_singlestep(vcpu, &r);
5174                kvm_set_rflags(vcpu, ctxt->eflags);
5175        } else
5176                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5177
5178        return r;
5179}
5180EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5181
5182int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5183{
5184        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5185        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5186                                            size, port, &val, 1);
5187        /* do not return to emulator after return from userspace */
5188        vcpu->arch.pio.count = 0;
5189        return ret;
5190}
5191EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5192
5193static void tsc_bad(void *info)
5194{
5195        __this_cpu_write(cpu_tsc_khz, 0);
5196}
5197
5198static void tsc_khz_changed(void *data)
5199{
5200        struct cpufreq_freqs *freq = data;
5201        unsigned long khz = 0;
5202
5203        if (data)
5204                khz = freq->new;
5205        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5206                khz = cpufreq_quick_get(raw_smp_processor_id());
5207        if (!khz)
5208                khz = tsc_khz;
5209        __this_cpu_write(cpu_tsc_khz, khz);
5210}
5211
5212static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5213                                     void *data)
5214{
5215        struct cpufreq_freqs *freq = data;
5216        struct kvm *kvm;
5217        struct kvm_vcpu *vcpu;
5218        int i, send_ipi = 0;
5219
5220        /*
5221         * We allow guests to temporarily run on slowing clocks,
5222         * provided we notify them after, or to run on accelerating
5223         * clocks, provided we notify them before.  Thus time never
5224         * goes backwards.
5225         *
5226         * However, we have a problem.  We can't atomically update
5227         * the frequency of a given CPU from this function; it is
5228         * merely a notifier, which can be called from any CPU.
5229         * Changing the TSC frequency at arbitrary points in time
5230         * requires a recomputation of local variables related to
5231         * the TSC for each VCPU.  We must flag these local variables
5232         * to be updated and be sure the update takes place with the
5233         * new frequency before any guests proceed.
5234         *
5235         * Unfortunately, the combination of hotplug CPU and frequency
5236         * change creates an intractable locking scenario; the order
5237         * of when these callouts happen is undefined with respect to
5238         * CPU hotplug, and they can race with each other.  As such,
5239         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5240         * undefined; you can actually have a CPU frequency change take
5241         * place in between the computation of X and the setting of the
5242         * variable.  To protect against this problem, all updates of
5243         * the per_cpu tsc_khz variable are done in an interrupt
5244         * protected IPI, and all callers wishing to update the value
5245         * must wait for a synchronous IPI to complete (which is trivial
5246         * if the caller is on the CPU already).  This establishes the
5247         * necessary total order on variable updates.
5248         *
5249         * Note that because a guest time update may take place
5250         * anytime after the setting of the VCPU's request bit, the
5251         * correct TSC value must be set before the request.  However,
5252         * to ensure the update actually makes it to any guest which
5253         * starts running in hardware virtualization between the set
5254         * and the acquisition of the spinlock, we must also ping the
5255         * CPU after setting the request bit.
5256         *
5257         */
5258
5259        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5260                return 0;
5261        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5262                return 0;
5263
5264        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5265
5266        raw_spin_lock(&kvm_lock);
5267        list_for_each_entry(kvm, &vm_list, vm_list) {
5268                kvm_for_each_vcpu(i, vcpu, kvm) {
5269                        if (vcpu->cpu != freq->cpu)
5270                                continue;
5271                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5272                        if (vcpu->cpu != smp_processor_id())
5273                                send_ipi = 1;
5274                }
5275        }
5276        raw_spin_unlock(&kvm_lock);
5277
5278        if (freq->old < freq->new && send_ipi) {
5279                /*
5280                 * We upscale the frequency.  Must make the guest
5281                 * doesn't see old kvmclock values while running with
5282                 * the new frequency, otherwise we risk the guest sees
5283                 * time go backwards.
5284                 *
5285                 * In case we update the frequency for another cpu
5286                 * (which might be in guest context) send an interrupt
5287                 * to kick the cpu out of guest context.  Next time
5288                 * guest context is entered kvmclock will be updated,
5289                 * so the guest will not see stale values.
5290                 */
5291                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5292        }
5293        return 0;
5294}
5295
5296static struct notifier_block kvmclock_cpufreq_notifier_block = {
5297        .notifier_call  = kvmclock_cpufreq_notifier
5298};
5299
5300static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5301                                        unsigned long action, void *hcpu)
5302{
5303        unsigned int cpu = (unsigned long)hcpu;
5304
5305        switch (action) {
5306                case CPU_ONLINE:
5307                case CPU_DOWN_FAILED:
5308                        smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5309                        break;
5310                case CPU_DOWN_PREPARE:
5311                        smp_call_function_single(cpu, tsc_bad, NULL, 1);
5312                        break;
5313        }
5314        return NOTIFY_OK;
5315}
5316
5317static struct notifier_block kvmclock_cpu_notifier_block = {
5318        .notifier_call  = kvmclock_cpu_notifier,
5319        .priority = -INT_MAX
5320};
5321
5322static void kvm_timer_init(void)
5323{
5324        int cpu;
5325
5326        max_tsc_khz = tsc_khz;
5327        register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5328        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5329#ifdef CONFIG_CPU_FREQ
5330                struct cpufreq_policy policy;
5331                memset(&policy, 0, sizeof(policy));
5332                cpu = get_cpu();
5333                cpufreq_get_policy(&policy, cpu);
5334                if (policy.cpuinfo.max_freq)
5335                        max_tsc_khz = policy.cpuinfo.max_freq;
5336                put_cpu();
5337#endif
5338                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5339                                          CPUFREQ_TRANSITION_NOTIFIER);
5340        }
5341        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5342        for_each_online_cpu(cpu)
5343                smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5344}
5345
5346static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5347
5348int kvm_is_in_guest(void)
5349{
5350        return __this_cpu_read(current_vcpu) != NULL;
5351}
5352
5353static int kvm_is_user_mode(void)
5354{
5355        int user_mode = 3;
5356
5357        if (__this_cpu_read(current_vcpu))
5358                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5359
5360        return user_mode != 0;
5361}
5362
5363static unsigned long kvm_get_guest_ip(void)
5364{
5365        unsigned long ip = 0;
5366
5367        if (__this_cpu_read(current_vcpu))
5368                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5369
5370        return ip;
5371}
5372
5373static struct perf_guest_info_callbacks kvm_guest_cbs = {
5374        .is_in_guest            = kvm_is_in_guest,
5375        .is_user_mode           = kvm_is_user_mode,
5376        .get_guest_ip           = kvm_get_guest_ip,
5377};
5378
5379void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5380{
5381        __this_cpu_write(current_vcpu, vcpu);
5382}
5383EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5384
5385void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5386{
5387        __this_cpu_write(current_vcpu, NULL);
5388}
5389EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5390
5391static void kvm_set_mmio_spte_mask(void)
5392{
5393        u64 mask;
5394        int maxphyaddr = boot_cpu_data.x86_phys_bits;
5395
5396        /*
5397         * Set the reserved bits and the present bit of an paging-structure
5398         * entry to generate page fault with PFER.RSV = 1.
5399         */
5400         /* Mask the reserved physical address bits. */
5401        mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5402
5403        /* Bit 62 is always reserved for 32bit host. */
5404        mask |= 0x3ull << 62;
5405
5406        /* Set the present bit. */
5407        mask |= 1ull;
5408
5409#ifdef CONFIG_X86_64
5410        /*
5411         * If reserved bit is not supported, clear the present bit to disable
5412         * mmio page fault.
5413         */
5414        if (maxphyaddr == 52)
5415                mask &= ~1ull;
5416#endif
5417
5418        kvm_mmu_set_mmio_spte_mask(mask);
5419}
5420
5421#ifdef CONFIG_X86_64
5422static void pvclock_gtod_update_fn(struct work_struct *work)
5423{
5424        struct kvm *kvm;
5425
5426        struct kvm_vcpu *vcpu;
5427        int i;
5428
5429        raw_spin_lock(&kvm_lock);
5430        list_for_each_entry(kvm, &vm_list, vm_list)
5431                kvm_for_each_vcpu(i, vcpu, kvm)
5432                        set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5433        atomic_set(&kvm_guest_has_master_clock, 0);
5434        raw_spin_unlock(&kvm_lock);
5435}
5436
5437static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5438
5439/*
5440 * Notification about pvclock gtod data update.
5441 */
5442static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5443                               void *priv)
5444{
5445        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5446        struct timekeeper *tk = priv;
5447
5448        update_pvclock_gtod(tk);
5449
5450        /* disable master clock if host does not trust, or does not
5451         * use, TSC clocksource
5452         */
5453        if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5454            atomic_read(&kvm_guest_has_master_clock) != 0)
5455                queue_work(system_long_wq, &pvclock_gtod_work);
5456
5457        return 0;
5458}
5459
5460static struct notifier_block pvclock_gtod_notifier = {
5461        .notifier_call = pvclock_gtod_notify,
5462};
5463#endif
5464
5465int kvm_arch_init(void *opaque)
5466{
5467        int r;
5468        struct kvm_x86_ops *ops = opaque;
5469
5470        if (kvm_x86_ops) {
5471                printk(KERN_ERR "kvm: already loaded the other module\n");
5472                r = -EEXIST;
5473                goto out;
5474        }
5475
5476        if (!ops->cpu_has_kvm_support()) {
5477                printk(KERN_ERR "kvm: no hardware support\n");
5478                r = -EOPNOTSUPP;
5479                goto out;
5480        }
5481        if (ops->disabled_by_bios()) {
5482                printk(KERN_ERR "kvm: disabled by bios\n");
5483                r = -EOPNOTSUPP;
5484                goto out;
5485        }
5486
5487        r = -ENOMEM;
5488        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5489        if (!shared_msrs) {
5490                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5491                goto out;
5492        }
5493
5494        r = kvm_mmu_module_init();
5495        if (r)
5496                goto out_free_percpu;
5497
5498        kvm_set_mmio_spte_mask();
5499        kvm_init_msr_list();
5500
5501        kvm_x86_ops = ops;
5502        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5503                        PT_DIRTY_MASK, PT64_NX_MASK, 0);
5504
5505        kvm_timer_init();
5506
5507        perf_register_guest_info_callbacks(&kvm_guest_cbs);
5508
5509        if (cpu_has_xsave)
5510                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5511
5512        kvm_lapic_init();
5513#ifdef CONFIG_X86_64
5514        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5515#endif
5516
5517        return 0;
5518
5519out_free_percpu:
5520        free_percpu(shared_msrs);
5521out:
5522        return r;
5523}
5524
5525void kvm_arch_exit(void)
5526{
5527        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5528
5529        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5530                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5531                                            CPUFREQ_TRANSITION_NOTIFIER);
5532        unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5533#ifdef CONFIG_X86_64
5534        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5535#endif
5536        kvm_x86_ops = NULL;
5537        kvm_mmu_module_exit();
5538        free_percpu(shared_msrs);
5539}
5540
5541int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5542{
5543        ++vcpu->stat.halt_exits;
5544        if (irqchip_in_kernel(vcpu->kvm)) {
5545                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5546                return 1;
5547        } else {
5548                vcpu->run->exit_reason = KVM_EXIT_HLT;
5549                return 0;
5550        }
5551}
5552EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5553
5554int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5555{
5556        u64 param, ingpa, outgpa, ret;
5557        uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5558        bool fast, longmode;
5559        int cs_db, cs_l;
5560
5561        /*
5562         * hypercall generates UD from non zero cpl and real mode
5563         * per HYPER-V spec
5564         */
5565        if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5566                kvm_queue_exception(vcpu, UD_VECTOR);
5567                return 0;
5568        }
5569
5570        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5571        longmode = is_long_mode(vcpu) && cs_l == 1;
5572
5573        if (!longmode) {
5574                param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5575                        (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5576                ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5577                        (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5578                outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5579                        (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5580        }
5581#ifdef CONFIG_X86_64
5582        else {
5583                param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5584                ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5585                outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5586        }
5587#endif
5588
5589        code = param & 0xffff;
5590        fast = (param >> 16) & 0x1;
5591        rep_cnt = (param >> 32) & 0xfff;
5592        rep_idx = (param >> 48) & 0xfff;
5593
5594        trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5595
5596        switch (code) {
5597        case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5598                kvm_vcpu_on_spin(vcpu);
5599                break;
5600        default:
5601                res = HV_STATUS_INVALID_HYPERCALL_CODE;
5602                break;
5603        }
5604
5605        ret = res | (((u64)rep_done & 0xfff) << 32);
5606        if (longmode) {
5607                kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5608        } else {
5609                kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5610                kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5611        }
5612
5613        return 1;
5614}
5615
5616/*
5617 * kvm_pv_kick_cpu_op:  Kick a vcpu.
5618 *
5619 * @apicid - apicid of vcpu to be kicked.
5620 */
5621static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5622{
5623        struct kvm_lapic_irq lapic_irq;
5624
5625        lapic_irq.shorthand = 0;
5626        lapic_irq.dest_mode = 0;
5627        lapic_irq.dest_id = apicid;
5628
5629        lapic_irq.delivery_mode = APIC_DM_REMRD;
5630        kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5631}
5632
5633int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5634{
5635        unsigned long nr, a0, a1, a2, a3, ret;
5636        int r = 1;
5637
5638        if (kvm_hv_hypercall_enabled(vcpu->kvm))
5639                return kvm_hv_hypercall(vcpu);
5640
5641        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5642        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5643        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5644        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5645        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5646
5647        trace_kvm_hypercall(nr, a0, a1, a2, a3);
5648
5649        if (!is_long_mode(vcpu)) {
5650                nr &= 0xFFFFFFFF;
5651                a0 &= 0xFFFFFFFF;
5652                a1 &= 0xFFFFFFFF;
5653                a2 &= 0xFFFFFFFF;
5654                a3 &= 0xFFFFFFFF;
5655        }
5656
5657        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5658                ret = -KVM_EPERM;
5659                goto out;
5660        }
5661
5662        switch (nr) {
5663        case KVM_HC_VAPIC_POLL_IRQ:
5664                ret = 0;
5665                break;
5666        case KVM_HC_KICK_CPU:
5667                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5668                ret = 0;
5669                break;
5670        default:
5671                ret = -KVM_ENOSYS;
5672                break;
5673        }
5674out:
5675        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5676        ++vcpu->stat.hypercalls;
5677        return r;
5678}
5679EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5680
5681static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5682{
5683        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5684        char instruction[3];
5685        unsigned long rip = kvm_rip_read(vcpu);
5686
5687        kvm_x86_ops->patch_hypercall(vcpu, instruction);
5688
5689        return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5690}
5691
5692/*
5693 * Check if userspace requested an interrupt window, and that the
5694 * interrupt window is open.
5695 *
5696 * No need to exit to userspace if we already have an interrupt queued.
5697 */
5698static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5699{
5700        return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5701                vcpu->run->request_interrupt_window &&
5702                kvm_arch_interrupt_allowed(vcpu));
5703}
5704
5705static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5706{
5707        struct kvm_run *kvm_run = vcpu->run;
5708
5709        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5710        kvm_run->cr8 = kvm_get_cr8(vcpu);
5711        kvm_run->apic_base = kvm_get_apic_base(vcpu);
5712        if (irqchip_in_kernel(vcpu->kvm))
5713                kvm_run->ready_for_interrupt_injection = 1;
5714        else
5715                kvm_run->ready_for_interrupt_injection =
5716                        kvm_arch_interrupt_allowed(vcpu) &&
5717                        !kvm_cpu_has_interrupt(vcpu) &&
5718                        !kvm_event_needs_reinjection(vcpu);
5719}
5720
5721static int vapic_enter(struct kvm_vcpu *vcpu)
5722{
5723        struct kvm_lapic *apic = vcpu->arch.apic;
5724        struct page *page;
5725
5726        if (!apic || !apic->vapic_addr)
5727                return 0;
5728
5729        page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5730        if (is_error_page(page))
5731                return -EFAULT;
5732
5733        vcpu->arch.apic->vapic_page = page;
5734        return 0;
5735}
5736
5737static void vapic_exit(struct kvm_vcpu *vcpu)
5738{
5739        struct kvm_lapic *apic = vcpu->arch.apic;
5740        int idx;
5741
5742        if (!apic || !apic->vapic_addr)
5743                return;
5744
5745        idx = srcu_read_lock(&vcpu->kvm->srcu);
5746        kvm_release_page_dirty(apic->vapic_page);
5747        mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5748        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5749}
5750
5751static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5752{
5753        int max_irr, tpr;
5754
5755        if (!kvm_x86_ops->update_cr8_intercept)
5756                return;
5757
5758        if (!vcpu->arch.apic)
5759                return;
5760
5761        if (!vcpu->arch.apic->vapic_addr)
5762                max_irr = kvm_lapic_find_highest_irr(vcpu);
5763        else
5764                max_irr = -1;
5765
5766        if (max_irr != -1)
5767                max_irr >>= 4;
5768
5769        tpr = kvm_lapic_get_cr8(vcpu);
5770
5771        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5772}
5773
5774static void inject_pending_event(struct kvm_vcpu *vcpu)
5775{
5776        /* try to reinject previous events if any */
5777        if (vcpu->arch.exception.pending) {
5778                trace_kvm_inj_exception(vcpu->arch.exception.nr,
5779                                        vcpu->arch.exception.has_error_code,
5780                                        vcpu->arch.exception.error_code);
5781                kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5782                                          vcpu->arch.exception.has_error_code,
5783                                          vcpu->arch.exception.error_code,
5784                                          vcpu->arch.exception.reinject);
5785                return;
5786        }
5787
5788        if (vcpu->arch.nmi_injected) {
5789                kvm_x86_ops->set_nmi(vcpu);
5790                return;
5791        }
5792
5793        if (vcpu->arch.interrupt.pending) {
5794                kvm_x86_ops->set_irq(vcpu);
5795                return;
5796        }
5797
5798        /* try to inject new event if pending */
5799        if (vcpu->arch.nmi_pending) {
5800                if (kvm_x86_ops->nmi_allowed(vcpu)) {
5801                        --vcpu->arch.nmi_pending;
5802                        vcpu->arch.nmi_injected = true;
5803                        kvm_x86_ops->set_nmi(vcpu);
5804                }
5805        } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5806                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5807                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5808                                            false);
5809                        kvm_x86_ops->set_irq(vcpu);
5810                }
5811        }
5812}
5813
5814static void process_nmi(struct kvm_vcpu *vcpu)
5815{
5816        unsigned limit = 2;
5817
5818        /*
5819         * x86 is limited to one NMI running, and one NMI pending after it.
5820         * If an NMI is already in progress, limit further NMIs to just one.
5821         * Otherwise, allow two (and we'll inject the first one immediately).
5822         */
5823        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5824                limit = 1;
5825
5826        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5827        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5828        kvm_make_request(KVM_REQ_EVENT, vcpu);
5829}
5830
5831static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5832{
5833        u64 eoi_exit_bitmap[4];
5834        u32 tmr[8];
5835
5836        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5837                return;
5838
5839        memset(eoi_exit_bitmap, 0, 32);
5840        memset(tmr, 0, 32);
5841
5842        kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5843        kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5844        kvm_apic_update_tmr(vcpu, tmr);
5845}
5846
5847static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5848{
5849        int r;
5850        bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5851                vcpu->run->request_interrupt_window;
5852        bool req_immediate_exit = false;
5853
5854        if (vcpu->requests) {
5855                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5856                        kvm_mmu_unload(vcpu);
5857                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5858                        __kvm_migrate_timers(vcpu);
5859                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5860                        kvm_gen_update_masterclock(vcpu->kvm);
5861                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5862                        kvm_gen_kvmclock_update(vcpu);
5863                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5864                        r = kvm_guest_time_update(vcpu);
5865                        if (unlikely(r))
5866                                goto out;
5867                }
5868                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5869                        kvm_mmu_sync_roots(vcpu);
5870                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5871                        kvm_x86_ops->tlb_flush(vcpu);
5872                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5873                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5874                        r = 0;
5875                        goto out;
5876                }
5877                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5878                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5879                        r = 0;
5880                        goto out;
5881                }
5882                if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5883                        vcpu->fpu_active = 0;
5884                        kvm_x86_ops->fpu_deactivate(vcpu);
5885                }
5886                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5887                        /* Page is swapped out. Do synthetic halt */
5888                        vcpu->arch.apf.halted = true;
5889                        r = 1;
5890                        goto out;
5891                }
5892                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5893                        record_steal_time(vcpu);
5894                if (kvm_check_request(KVM_REQ_NMI, vcpu))
5895                        process_nmi(vcpu);
5896                if (kvm_check_request(KVM_REQ_PMU, vcpu))
5897                        kvm_handle_pmu_event(vcpu);
5898                if (kvm_check_request(KVM_REQ_PMI, vcpu))
5899                        kvm_deliver_pmi(vcpu);
5900                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5901                        vcpu_scan_ioapic(vcpu);
5902        }
5903
5904        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5905                kvm_apic_accept_events(vcpu);
5906                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5907                        r = 1;
5908                        goto out;
5909                }
5910
5911                inject_pending_event(vcpu);
5912
5913                /* enable NMI/IRQ window open exits if needed */
5914                if (vcpu->arch.nmi_pending)
5915                        req_immediate_exit =
5916                                kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5917                else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5918                        req_immediate_exit =
5919                                kvm_x86_ops->enable_irq_window(vcpu) != 0;
5920
5921                if (kvm_lapic_enabled(vcpu)) {
5922                        /*
5923                         * Update architecture specific hints for APIC
5924                         * virtual interrupt delivery.
5925                         */
5926                        if (kvm_x86_ops->hwapic_irr_update)
5927                                kvm_x86_ops->hwapic_irr_update(vcpu,
5928                                        kvm_lapic_find_highest_irr(vcpu));
5929                        update_cr8_intercept(vcpu);
5930                        kvm_lapic_sync_to_vapic(vcpu);
5931                }
5932        }
5933
5934        r = kvm_mmu_reload(vcpu);
5935        if (unlikely(r)) {
5936                goto cancel_injection;
5937        }
5938
5939        preempt_disable();
5940
5941        kvm_x86_ops->prepare_guest_switch(vcpu);
5942        if (vcpu->fpu_active)
5943                kvm_load_guest_fpu(vcpu);
5944        kvm_load_guest_xcr0(vcpu);
5945
5946        vcpu->mode = IN_GUEST_MODE;
5947
5948        /* We should set ->mode before check ->requests,
5949         * see the comment in make_all_cpus_request.
5950         */
5951        smp_mb();
5952
5953        local_irq_disable();
5954
5955        if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5956            || need_resched() || signal_pending(current)) {
5957                vcpu->mode = OUTSIDE_GUEST_MODE;
5958                smp_wmb();
5959                local_irq_enable();
5960                preempt_enable();
5961                r = 1;
5962                goto cancel_injection;
5963        }
5964
5965        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5966
5967        if (req_immediate_exit)
5968                smp_send_reschedule(vcpu->cpu);
5969
5970        kvm_guest_enter();
5971
5972        if (unlikely(vcpu->arch.switch_db_regs)) {
5973                set_debugreg(0, 7);
5974                set_debugreg(vcpu->arch.eff_db[0], 0);
5975                set_debugreg(vcpu->arch.eff_db[1], 1);
5976                set_debugreg(vcpu->arch.eff_db[2], 2);
5977                set_debugreg(vcpu->arch.eff_db[3], 3);
5978        }
5979
5980        trace_kvm_entry(vcpu->vcpu_id);
5981        kvm_x86_ops->run(vcpu);
5982
5983        /*
5984         * If the guest has used debug registers, at least dr7
5985         * will be disabled while returning to the host.
5986         * If we don't have active breakpoints in the host, we don't
5987         * care about the messed up debug address registers. But if
5988         * we have some of them active, restore the old state.
5989         */
5990        if (hw_breakpoint_active())
5991                hw_breakpoint_restore();
5992
5993        vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5994                                                           native_read_tsc());
5995
5996        vcpu->mode = OUTSIDE_GUEST_MODE;
5997        smp_wmb();
5998
5999        /* Interrupt is enabled by handle_external_intr() */
6000        kvm_x86_ops->handle_external_intr(vcpu);
6001
6002        ++vcpu->stat.exits;
6003
6004        /*
6005         * We must have an instruction between local_irq_enable() and
6006         * kvm_guest_exit(), so the timer interrupt isn't delayed by
6007         * the interrupt shadow.  The stat.exits increment will do nicely.
6008         * But we need to prevent reordering, hence this barrier():
6009         */
6010        barrier();
6011
6012        kvm_guest_exit();
6013
6014        preempt_enable();
6015
6016        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6017
6018        /*
6019         * Profile KVM exit RIPs:
6020         */
6021        if (unlikely(prof_on == KVM_PROFILING)) {
6022                unsigned long rip = kvm_rip_read(vcpu);
6023                profile_hit(KVM_PROFILING, (void *)rip);
6024        }
6025
6026        if (unlikely(vcpu->arch.tsc_always_catchup))
6027                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6028
6029        if (vcpu->arch.apic_attention)
6030                kvm_lapic_sync_from_vapic(vcpu);
6031
6032        r = kvm_x86_ops->handle_exit(vcpu);
6033        return r;
6034
6035cancel_injection:
6036        kvm_x86_ops->cancel_injection(vcpu);
6037        if (unlikely(vcpu->arch.apic_attention))
6038                kvm_lapic_sync_from_vapic(vcpu);
6039out:
6040        return r;
6041}
6042
6043
6044static int __vcpu_run(struct kvm_vcpu *vcpu)
6045{
6046        int r;
6047        struct kvm *kvm = vcpu->kvm;
6048
6049        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6050        r = vapic_enter(vcpu);
6051        if (r) {
6052                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6053                return r;
6054        }
6055
6056        r = 1;
6057        while (r > 0) {
6058                if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6059                    !vcpu->arch.apf.halted)
6060                        r = vcpu_enter_guest(vcpu);
6061                else {
6062                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6063                        kvm_vcpu_block(vcpu);
6064                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6065                        if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6066                                kvm_apic_accept_events(vcpu);
6067                                switch(vcpu->arch.mp_state) {
6068                                case KVM_MP_STATE_HALTED:
6069                                        vcpu->arch.pv.pv_unhalted = false;
6070                                        vcpu->arch.mp_state =
6071                                                KVM_MP_STATE_RUNNABLE;
6072                                case KVM_MP_STATE_RUNNABLE:
6073                                        vcpu->arch.apf.halted = false;
6074                                        break;
6075                                case KVM_MP_STATE_INIT_RECEIVED:
6076                                        break;
6077                                default:
6078                                        r = -EINTR;
6079                                        break;
6080                                }
6081                        }
6082                }
6083
6084                if (r <= 0)
6085                        break;
6086
6087                clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6088                if (kvm_cpu_has_pending_timer(vcpu))
6089                        kvm_inject_pending_timer_irqs(vcpu);
6090
6091                if (dm_request_for_irq_injection(vcpu)) {
6092                        r = -EINTR;
6093                        vcpu->run->exit_reason = KVM_EXIT_INTR;
6094                        ++vcpu->stat.request_irq_exits;
6095                }
6096
6097                kvm_check_async_pf_completion(vcpu);
6098
6099                if (signal_pending(current)) {
6100                        r = -EINTR;
6101                        vcpu->run->exit_reason = KVM_EXIT_INTR;
6102                        ++vcpu->stat.signal_exits;
6103                }
6104                if (need_resched()) {
6105                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6106                        kvm_resched(vcpu);
6107                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6108                }
6109        }
6110
6111        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6112
6113        vapic_exit(vcpu);
6114
6115        return r;
6116}
6117
6118static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6119{
6120        int r;
6121        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6122        r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6123        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6124        if (r != EMULATE_DONE)
6125                return 0;
6126        return 1;
6127}
6128
6129static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6130{
6131        BUG_ON(!vcpu->arch.pio.count);
6132
6133        return complete_emulated_io(vcpu);
6134}
6135
6136/*
6137 * Implements the following, as a state machine:
6138 *
6139 * read:
6140 *   for each fragment
6141 *     for each mmio piece in the fragment
6142 *       write gpa, len
6143 *       exit
6144 *       copy data
6145 *   execute insn
6146 *
6147 * write:
6148 *   for each fragment
6149 *     for each mmio piece in the fragment
6150 *       write gpa, len
6151 *       copy data
6152 *       exit
6153 */
6154static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6155{
6156        struct kvm_run *run = vcpu->run;
6157        struct kvm_mmio_fragment *frag;
6158        unsigned len;
6159
6160        BUG_ON(!vcpu->mmio_needed);
6161
6162        /* Complete previous fragment */
6163        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6164        len = min(8u, frag->len);
6165        if (!vcpu->mmio_is_write)
6166                memcpy(frag->data, run->mmio.data, len);
6167
6168        if (frag->len <= 8) {
6169                /* Switch to the next fragment. */
6170                frag++;
6171                vcpu->mmio_cur_fragment++;
6172        } else {
6173                /* Go forward to the next mmio piece. */
6174                frag->data += len;
6175                frag->gpa += len;
6176                frag->len -= len;
6177        }
6178
6179        if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6180                vcpu->mmio_needed = 0;
6181
6182                /* FIXME: return into emulator if single-stepping.  */
6183                if (vcpu->mmio_is_write)
6184                        return 1;
6185                vcpu->mmio_read_completed = 1;
6186                return complete_emulated_io(vcpu);
6187        }
6188
6189        run->exit_reason = KVM_EXIT_MMIO;
6190        run->mmio.phys_addr = frag->gpa;
6191        if (vcpu->mmio_is_write)
6192                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6193        run->mmio.len = min(8u, frag->len);
6194        run->mmio.is_write = vcpu->mmio_is_write;
6195        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6196        return 0;
6197}
6198
6199
6200int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6201{
6202        int r;
6203        sigset_t sigsaved;
6204
6205        if (!tsk_used_math(current) && init_fpu(current))
6206                return -ENOMEM;
6207
6208        if (vcpu->sigset_active)
6209                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6210
6211        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6212                kvm_vcpu_block(vcpu);
6213                kvm_apic_accept_events(vcpu);
6214                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6215                r = -EAGAIN;
6216                goto out;
6217        }
6218
6219        /* re-sync apic's tpr */
6220        if (!irqchip_in_kernel(vcpu->kvm)) {
6221                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6222                        r = -EINVAL;
6223                        goto out;
6224                }
6225        }
6226
6227        if (unlikely(vcpu->arch.complete_userspace_io)) {
6228                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6229                vcpu->arch.complete_userspace_io = NULL;
6230                r = cui(vcpu);
6231                if (r <= 0)
6232                        goto out;
6233        } else
6234                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6235
6236        r = __vcpu_run(vcpu);
6237
6238out:
6239        post_kvm_run_save(vcpu);
6240        if (vcpu->sigset_active)
6241                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6242
6243        return r;
6244}
6245
6246int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6247{
6248        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6249                /*
6250                 * We are here if userspace calls get_regs() in the middle of
6251                 * instruction emulation. Registers state needs to be copied
6252                 * back from emulation context to vcpu. Userspace shouldn't do
6253                 * that usually, but some bad designed PV devices (vmware
6254                 * backdoor interface) need this to work
6255                 */
6256                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6257                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6258        }
6259        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6260        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6261        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6262        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6263        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6264        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6265        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6266        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6267#ifdef CONFIG_X86_64
6268        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6269        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6270        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6271        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6272        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6273        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6274        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6275        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6276#endif
6277
6278        regs->rip = kvm_rip_read(vcpu);
6279        regs->rflags = kvm_get_rflags(vcpu);
6280
6281        return 0;
6282}
6283
6284int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6285{
6286        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6287        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6288
6289        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6290        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6291        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6292        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6293        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6294        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6295        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6296        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6297#ifdef CONFIG_X86_64
6298        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6299        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6300        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6301        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6302        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6303        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6304        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6305        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6306#endif
6307
6308        kvm_rip_write(vcpu, regs->rip);
6309        kvm_set_rflags(vcpu, regs->rflags);
6310
6311        vcpu->arch.exception.pending = false;
6312
6313        kvm_make_request(KVM_REQ_EVENT, vcpu);
6314
6315        return 0;
6316}
6317
6318void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6319{
6320        struct kvm_segment cs;
6321
6322        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6323        *db = cs.db;
6324        *l = cs.l;
6325}
6326EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6327
6328int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6329                                  struct kvm_sregs *sregs)
6330{
6331        struct desc_ptr dt;
6332
6333        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6334        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6335        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6336        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6337        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6338        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6339
6340        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6341        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6342
6343        kvm_x86_ops->get_idt(vcpu, &dt);
6344        sregs->idt.limit = dt.size;
6345        sregs->idt.base = dt.address;
6346        kvm_x86_ops->get_gdt(vcpu, &dt);
6347        sregs->gdt.limit = dt.size;
6348        sregs->gdt.base = dt.address;
6349
6350        sregs->cr0 = kvm_read_cr0(vcpu);
6351        sregs->cr2 = vcpu->arch.cr2;
6352        sregs->cr3 = kvm_read_cr3(vcpu);
6353        sregs->cr4 = kvm_read_cr4(vcpu);
6354        sregs->cr8 = kvm_get_cr8(vcpu);
6355        sregs->efer = vcpu->arch.efer;
6356        sregs->apic_base = kvm_get_apic_base(vcpu);
6357
6358        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6359
6360        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6361                set_bit(vcpu->arch.interrupt.nr,
6362                        (unsigned long *)sregs->interrupt_bitmap);
6363
6364        return 0;
6365}
6366
6367int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6368                                    struct kvm_mp_state *mp_state)
6369{
6370        kvm_apic_accept_events(vcpu);
6371        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6372                                        vcpu->arch.pv.pv_unhalted)
6373                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6374        else
6375                mp_state->mp_state = vcpu->arch.mp_state;
6376
6377        return 0;
6378}
6379
6380int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6381                                    struct kvm_mp_state *mp_state)
6382{
6383        if (!kvm_vcpu_has_lapic(vcpu) &&
6384            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6385                return -EINVAL;
6386
6387        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6388                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6389                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6390        } else
6391                vcpu->arch.mp_state = mp_state->mp_state;
6392        kvm_make_request(KVM_REQ_EVENT, vcpu);
6393        return 0;
6394}
6395
6396int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6397                    int reason, bool has_error_code, u32 error_code)
6398{
6399        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6400        int ret;
6401
6402        init_emulate_ctxt(vcpu);
6403
6404        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6405                                   has_error_code, error_code);
6406
6407        if (ret)
6408                return EMULATE_FAIL;
6409
6410        kvm_rip_write(vcpu, ctxt->eip);
6411        kvm_set_rflags(vcpu, ctxt->eflags);
6412        kvm_make_request(KVM_REQ_EVENT, vcpu);
6413        return EMULATE_DONE;
6414}
6415EXPORT_SYMBOL_GPL(kvm_task_switch);
6416
6417int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6418                                  struct kvm_sregs *sregs)
6419{
6420        int mmu_reset_needed = 0;
6421        int pending_vec, max_bits, idx;
6422        struct desc_ptr dt;
6423
6424        if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6425                return -EINVAL;
6426
6427        dt.size = sregs->idt.limit;
6428        dt.address = sregs->idt.base;
6429        kvm_x86_ops->set_idt(vcpu, &dt);
6430        dt.size = sregs->gdt.limit;
6431        dt.address = sregs->gdt.base;
6432        kvm_x86_ops->set_gdt(vcpu, &dt);
6433
6434        vcpu->arch.cr2 = sregs->cr2;
6435        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6436        vcpu->arch.cr3 = sregs->cr3;
6437        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6438
6439        kvm_set_cr8(vcpu, sregs->cr8);
6440
6441        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6442        kvm_x86_ops->set_efer(vcpu, sregs->efer);
6443        kvm_set_apic_base(vcpu, sregs->apic_base);
6444
6445        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6446        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6447        vcpu->arch.cr0 = sregs->cr0;
6448
6449        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6450        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6451        if (sregs->cr4 & X86_CR4_OSXSAVE)
6452                kvm_update_cpuid(vcpu);
6453
6454        idx = srcu_read_lock(&vcpu->kvm->srcu);
6455        if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6456                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6457                mmu_reset_needed = 1;
6458        }
6459        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6460
6461        if (mmu_reset_needed)
6462                kvm_mmu_reset_context(vcpu);
6463
6464        max_bits = KVM_NR_INTERRUPTS;
6465        pending_vec = find_first_bit(
6466                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6467        if (pending_vec < max_bits) {
6468                kvm_queue_interrupt(vcpu, pending_vec, false);
6469                pr_debug("Set back pending irq %d\n", pending_vec);
6470        }
6471
6472        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6473        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6474        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6475        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6476        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6477        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6478
6479        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6480        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6481
6482        update_cr8_intercept(vcpu);
6483
6484        /* Older userspace won't unhalt the vcpu on reset. */
6485        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6486            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6487            !is_protmode(vcpu))
6488                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6489
6490        kvm_make_request(KVM_REQ_EVENT, vcpu);
6491
6492        return 0;
6493}
6494
6495int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6496                                        struct kvm_guest_debug *dbg)
6497{
6498        unsigned long rflags;
6499        int i, r;
6500
6501        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6502                r = -EBUSY;
6503                if (vcpu->arch.exception.pending)
6504                        goto out;
6505                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6506                        kvm_queue_exception(vcpu, DB_VECTOR);
6507                else
6508                        kvm_queue_exception(vcpu, BP_VECTOR);
6509        }
6510
6511        /*
6512         * Read rflags as long as potentially injected trace flags are still
6513         * filtered out.
6514         */
6515        rflags = kvm_get_rflags(vcpu);
6516
6517        vcpu->guest_debug = dbg->control;
6518        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6519                vcpu->guest_debug = 0;
6520
6521        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6522                for (i = 0; i < KVM_NR_DB_REGS; ++i)
6523                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6524                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6525        } else {
6526                for (i = 0; i < KVM_NR_DB_REGS; i++)
6527                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6528        }
6529        kvm_update_dr7(vcpu);
6530
6531        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6532                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6533                        get_segment_base(vcpu, VCPU_SREG_CS);
6534
6535        /*
6536         * Trigger an rflags update that will inject or remove the trace
6537         * flags.
6538         */
6539        kvm_set_rflags(vcpu, rflags);
6540
6541        kvm_x86_ops->update_db_bp_intercept(vcpu);
6542
6543        r = 0;
6544
6545out:
6546
6547        return r;
6548}
6549
6550/*
6551 * Translate a guest virtual address to a guest physical address.
6552 */
6553int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6554                                    struct kvm_translation *tr)
6555{
6556        unsigned long vaddr = tr->linear_address;
6557        gpa_t gpa;
6558        int idx;
6559
6560        idx = srcu_read_lock(&vcpu->kvm->srcu);
6561        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6562        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6563        tr->physical_address = gpa;
6564        tr->valid = gpa != UNMAPPED_GVA;
6565        tr->writeable = 1;
6566        tr->usermode = 0;
6567
6568        return 0;
6569}
6570
6571int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6572{
6573        struct i387_fxsave_struct *fxsave =
6574                        &vcpu->arch.guest_fpu.state->fxsave;
6575
6576        memcpy(fpu->fpr, fxsave->st_space, 128);
6577        fpu->fcw = fxsave->cwd;
6578        fpu->fsw = fxsave->swd;
6579        fpu->ftwx = fxsave->twd;
6580        fpu->last_opcode = fxsave->fop;
6581        fpu->last_ip = fxsave->rip;
6582        fpu->last_dp = fxsave->rdp;
6583        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6584
6585        return 0;
6586}
6587
6588int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6589{
6590        struct i387_fxsave_struct *fxsave =
6591                        &vcpu->arch.guest_fpu.state->fxsave;
6592
6593        memcpy(fxsave->st_space, fpu->fpr, 128);
6594        fxsave->cwd = fpu->fcw;
6595        fxsave->swd = fpu->fsw;
6596        fxsave->twd = fpu->ftwx;
6597        fxsave->fop = fpu->last_opcode;
6598        fxsave->rip = fpu->last_ip;
6599        fxsave->rdp = fpu->last_dp;
6600        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6601
6602        return 0;
6603}
6604
6605int fx_init(struct kvm_vcpu *vcpu)
6606{
6607        int err;
6608
6609        err = fpu_alloc(&vcpu->arch.guest_fpu);
6610        if (err)
6611                return err;
6612
6613        fpu_finit(&vcpu->arch.guest_fpu);
6614
6615        /*
6616         * Ensure guest xcr0 is valid for loading
6617         */
6618        vcpu->arch.xcr0 = XSTATE_FP;
6619
6620        vcpu->arch.cr0 |= X86_CR0_ET;
6621
6622        return 0;
6623}
6624EXPORT_SYMBOL_GPL(fx_init);
6625
6626static void fx_free(struct kvm_vcpu *vcpu)
6627{
6628        fpu_free(&vcpu->arch.guest_fpu);
6629}
6630
6631void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6632{
6633        if (vcpu->guest_fpu_loaded)
6634                return;
6635
6636        /*
6637         * Restore all possible states in the guest,
6638         * and assume host would use all available bits.
6639         * Guest xcr0 would be loaded later.
6640         */
6641        kvm_put_guest_xcr0(vcpu);
6642        vcpu->guest_fpu_loaded = 1;
6643        __kernel_fpu_begin();
6644        fpu_restore_checking(&vcpu->arch.guest_fpu);
6645        trace_kvm_fpu(1);
6646}
6647
6648void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6649{
6650        kvm_put_guest_xcr0(vcpu);
6651
6652        if (!vcpu->guest_fpu_loaded)
6653                return;
6654
6655        vcpu->guest_fpu_loaded = 0;
6656        fpu_save_init(&vcpu->arch.guest_fpu);
6657        __kernel_fpu_end();
6658        ++vcpu->stat.fpu_reload;
6659        kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6660        trace_kvm_fpu(0);
6661}
6662
6663void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6664{
6665        kvmclock_reset(vcpu);
6666
6667        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6668        fx_free(vcpu);
6669        kvm_x86_ops->vcpu_free(vcpu);
6670}
6671
6672struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6673                                                unsigned int id)
6674{
6675        if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6676                printk_once(KERN_WARNING
6677                "kvm: SMP vm created on host with unstable TSC; "
6678                "guest TSC will not be reliable\n");
6679        return kvm_x86_ops->vcpu_create(kvm, id);
6680}
6681
6682int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6683{
6684        int r;
6685
6686        vcpu->arch.mtrr_state.have_fixed = 1;
6687        r = vcpu_load(vcpu);
6688        if (r)
6689                return r;
6690        kvm_vcpu_reset(vcpu);
6691        r = kvm_mmu_setup(vcpu);
6692        vcpu_put(vcpu);
6693
6694        return r;
6695}
6696
6697int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6698{
6699        int r;
6700        struct msr_data msr;
6701
6702        r = vcpu_load(vcpu);
6703        if (r)
6704                return r;
6705        msr.data = 0x0;
6706        msr.index = MSR_IA32_TSC;
6707        msr.host_initiated = true;
6708        kvm_write_tsc(vcpu, &msr);
6709        vcpu_put(vcpu);
6710
6711        return r;
6712}
6713
6714void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6715{
6716        int r;
6717        vcpu->arch.apf.msr_val = 0;
6718
6719        r = vcpu_load(vcpu);
6720        BUG_ON(r);
6721        kvm_mmu_unload(vcpu);
6722        vcpu_put(vcpu);
6723
6724        fx_free(vcpu);
6725        kvm_x86_ops->vcpu_free(vcpu);
6726}
6727
6728void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6729{
6730        atomic_set(&vcpu->arch.nmi_queued, 0);
6731        vcpu->arch.nmi_pending = 0;
6732        vcpu->arch.nmi_injected = false;
6733
6734        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6735        vcpu->arch.dr6 = DR6_FIXED_1;
6736        vcpu->arch.dr7 = DR7_FIXED_1;
6737        kvm_update_dr7(vcpu);
6738
6739        kvm_make_request(KVM_REQ_EVENT, vcpu);
6740        vcpu->arch.apf.msr_val = 0;
6741        vcpu->arch.st.msr_val = 0;
6742
6743        kvmclock_reset(vcpu);
6744
6745        kvm_clear_async_pf_completion_queue(vcpu);
6746        kvm_async_pf_hash_reset(vcpu);
6747        vcpu->arch.apf.halted = false;
6748
6749        kvm_pmu_reset(vcpu);
6750
6751        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6752        vcpu->arch.regs_avail = ~0;
6753        vcpu->arch.regs_dirty = ~0;
6754
6755        kvm_x86_ops->vcpu_reset(vcpu);
6756}
6757
6758void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6759{
6760        struct kvm_segment cs;
6761
6762        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6763        cs.selector = vector << 8;
6764        cs.base = vector << 12;
6765        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6766        kvm_rip_write(vcpu, 0);
6767}
6768
6769int kvm_arch_hardware_enable(void *garbage)
6770{
6771        struct kvm *kvm;
6772        struct kvm_vcpu *vcpu;
6773        int i;
6774        int ret;
6775        u64 local_tsc;
6776        u64 max_tsc = 0;
6777        bool stable, backwards_tsc = false;
6778
6779        kvm_shared_msr_cpu_online();
6780        ret = kvm_x86_ops->hardware_enable(garbage);
6781        if (ret != 0)
6782                return ret;
6783
6784        local_tsc = native_read_tsc();
6785        stable = !check_tsc_unstable();
6786        list_for_each_entry(kvm, &vm_list, vm_list) {
6787                kvm_for_each_vcpu(i, vcpu, kvm) {
6788                        if (!stable && vcpu->cpu == smp_processor_id())
6789                                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6790                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6791                                backwards_tsc = true;
6792                                if (vcpu->arch.last_host_tsc > max_tsc)
6793                                        max_tsc = vcpu->arch.last_host_tsc;
6794                        }
6795                }
6796        }
6797
6798        /*
6799         * Sometimes, even reliable TSCs go backwards.  This happens on
6800         * platforms that reset TSC during suspend or hibernate actions, but
6801         * maintain synchronization.  We must compensate.  Fortunately, we can
6802         * detect that condition here, which happens early in CPU bringup,
6803         * before any KVM threads can be running.  Unfortunately, we can't
6804         * bring the TSCs fully up to date with real time, as we aren't yet far
6805         * enough into CPU bringup that we know how much real time has actually
6806         * elapsed; our helper function, get_kernel_ns() will be using boot
6807         * variables that haven't been updated yet.
6808         *
6809         * So we simply find the maximum observed TSC above, then record the
6810         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6811         * the adjustment will be applied.  Note that we accumulate
6812         * adjustments, in case multiple suspend cycles happen before some VCPU
6813         * gets a chance to run again.  In the event that no KVM threads get a
6814         * chance to run, we will miss the entire elapsed period, as we'll have
6815         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6816         * loose cycle time.  This isn't too big a deal, since the loss will be
6817         * uniform across all VCPUs (not to mention the scenario is extremely
6818         * unlikely). It is possible that a second hibernate recovery happens
6819         * much faster than a first, causing the observed TSC here to be
6820         * smaller; this would require additional padding adjustment, which is
6821         * why we set last_host_tsc to the local tsc observed here.
6822         *
6823         * N.B. - this code below runs only on platforms with reliable TSC,
6824         * as that is the only way backwards_tsc is set above.  Also note
6825         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6826         * have the same delta_cyc adjustment applied if backwards_tsc
6827         * is detected.  Note further, this adjustment is only done once,
6828         * as we reset last_host_tsc on all VCPUs to stop this from being
6829         * called multiple times (one for each physical CPU bringup).
6830         *
6831         * Platforms with unreliable TSCs don't have to deal with this, they
6832         * will be compensated by the logic in vcpu_load, which sets the TSC to
6833         * catchup mode.  This will catchup all VCPUs to real time, but cannot
6834         * guarantee that they stay in perfect synchronization.
6835         */
6836        if (backwards_tsc) {
6837                u64 delta_cyc = max_tsc - local_tsc;
6838                list_for_each_entry(kvm, &vm_list, vm_list) {
6839                        kvm_for_each_vcpu(i, vcpu, kvm) {
6840                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
6841                                vcpu->arch.last_host_tsc = local_tsc;
6842                                set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6843                                        &vcpu->requests);
6844                        }
6845
6846                        /*
6847                         * We have to disable TSC offset matching.. if you were
6848                         * booting a VM while issuing an S4 host suspend....
6849                         * you may have some problem.  Solving this issue is
6850                         * left as an exercise to the reader.
6851                         */
6852                        kvm->arch.last_tsc_nsec = 0;
6853                        kvm->arch.last_tsc_write = 0;
6854                }
6855
6856        }
6857        return 0;
6858}
6859
6860void kvm_arch_hardware_disable(void *garbage)
6861{
6862        kvm_x86_ops->hardware_disable(garbage);
6863        drop_user_return_notifiers(garbage);
6864}
6865
6866int kvm_arch_hardware_setup(void)
6867{
6868        return kvm_x86_ops->hardware_setup();
6869}
6870
6871void kvm_arch_hardware_unsetup(void)
6872{
6873        kvm_x86_ops->hardware_unsetup();
6874}
6875
6876void kvm_arch_check_processor_compat(void *rtn)
6877{
6878        kvm_x86_ops->check_processor_compatibility(rtn);
6879}
6880
6881bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6882{
6883        return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6884}
6885
6886struct static_key kvm_no_apic_vcpu __read_mostly;
6887
6888int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6889{
6890        struct page *page;
6891        struct kvm *kvm;
6892        int r;
6893
6894        BUG_ON(vcpu->kvm == NULL);
6895        kvm = vcpu->kvm;
6896
6897        vcpu->arch.pv.pv_unhalted = false;
6898        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6899        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6900                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6901        else
6902                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6903
6904        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6905        if (!page) {
6906                r = -ENOMEM;
6907                goto fail;
6908        }
6909        vcpu->arch.pio_data = page_address(page);
6910
6911        kvm_set_tsc_khz(vcpu, max_tsc_khz);
6912
6913        r = kvm_mmu_create(vcpu);
6914        if (r < 0)
6915                goto fail_free_pio_data;
6916
6917        if (irqchip_in_kernel(kvm)) {
6918                r = kvm_create_lapic(vcpu);
6919                if (r < 0)
6920                        goto fail_mmu_destroy;
6921        } else
6922                static_key_slow_inc(&kvm_no_apic_vcpu);
6923
6924        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6925                                       GFP_KERNEL);
6926        if (!vcpu->arch.mce_banks) {
6927                r = -ENOMEM;
6928                goto fail_free_lapic;
6929        }
6930        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6931
6932        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6933                r = -ENOMEM;
6934                goto fail_free_mce_banks;
6935        }
6936
6937        r = fx_init(vcpu);
6938        if (r)
6939                goto fail_free_wbinvd_dirty_mask;
6940
6941        vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6942        vcpu->arch.pv_time_enabled = false;
6943        kvm_async_pf_hash_reset(vcpu);
6944        kvm_pmu_init(vcpu);
6945
6946        return 0;
6947fail_free_wbinvd_dirty_mask:
6948        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6949fail_free_mce_banks:
6950        kfree(vcpu->arch.mce_banks);
6951fail_free_lapic:
6952        kvm_free_lapic(vcpu);
6953fail_mmu_destroy:
6954        kvm_mmu_destroy(vcpu);
6955fail_free_pio_data:
6956        free_page((unsigned long)vcpu->arch.pio_data);
6957fail:
6958        return r;
6959}
6960
6961void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6962{
6963        int idx;
6964
6965        kvm_pmu_destroy(vcpu);
6966        kfree(vcpu->arch.mce_banks);
6967        kvm_free_lapic(vcpu);
6968        idx = srcu_read_lock(&vcpu->kvm->srcu);
6969        kvm_mmu_destroy(vcpu);
6970        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6971        free_page((unsigned long)vcpu->arch.pio_data);
6972        if (!irqchip_in_kernel(vcpu->kvm))
6973                static_key_slow_dec(&kvm_no_apic_vcpu);
6974}
6975
6976int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6977{
6978        if (type)
6979                return -EINVAL;
6980
6981        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6982        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6983        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6984
6985        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6986        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6987        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6988        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6989                &kvm->arch.irq_sources_bitmap);
6990
6991        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6992        mutex_init(&kvm->arch.apic_map_lock);
6993        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6994
6995        pvclock_update_vm_gtod_copy(kvm);
6996
6997        return 0;
6998}
6999
7000static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7001{
7002        int r;
7003        r = vcpu_load(vcpu);
7004        BUG_ON(r);
7005        kvm_mmu_unload(vcpu);
7006        vcpu_put(vcpu);
7007}
7008
7009static void kvm_free_vcpus(struct kvm *kvm)
7010{
7011        unsigned int i;
7012        struct kvm_vcpu *vcpu;
7013
7014        /*
7015         * Unpin any mmu pages first.
7016         */
7017        kvm_for_each_vcpu(i, vcpu, kvm) {
7018                kvm_clear_async_pf_completion_queue(vcpu);
7019                kvm_unload_vcpu_mmu(vcpu);
7020        }
7021        kvm_for_each_vcpu(i, vcpu, kvm)
7022                kvm_arch_vcpu_free(vcpu);
7023
7024        mutex_lock(&kvm->lock);
7025        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7026                kvm->vcpus[i] = NULL;
7027
7028        atomic_set(&kvm->online_vcpus, 0);
7029        mutex_unlock(&kvm->lock);
7030}
7031
7032void kvm_arch_sync_events(struct kvm *kvm)
7033{
7034        kvm_free_all_assigned_devices(kvm);
7035        kvm_free_pit(kvm);
7036}
7037
7038void kvm_arch_destroy_vm(struct kvm *kvm)
7039{
7040        if (current->mm == kvm->mm) {
7041                /*
7042                 * Free memory regions allocated on behalf of userspace,
7043                 * unless the the memory map has changed due to process exit
7044                 * or fd copying.
7045                 */
7046                struct kvm_userspace_memory_region mem;
7047                memset(&mem, 0, sizeof(mem));
7048                mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7049                kvm_set_memory_region(kvm, &mem);
7050
7051                mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7052                kvm_set_memory_region(kvm, &mem);
7053
7054                mem.slot = TSS_PRIVATE_MEMSLOT;
7055                kvm_set_memory_region(kvm, &mem);
7056        }
7057        kvm_iommu_unmap_guest(kvm);
7058        kfree(kvm->arch.vpic);
7059        kfree(kvm->arch.vioapic);
7060        kvm_free_vcpus(kvm);
7061        if (kvm->arch.apic_access_page)
7062                put_page(kvm->arch.apic_access_page);
7063        if (kvm->arch.ept_identity_pagetable)
7064                put_page(kvm->arch.ept_identity_pagetable);
7065        kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7066}
7067
7068void kvm_arch_free_memslot(struct kvm_memory_slot *free,
7069                           struct kvm_memory_slot *dont)
7070{
7071        int i;
7072
7073        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7074                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7075                        kvm_kvfree(free->arch.rmap[i]);
7076                        free->arch.rmap[i] = NULL;
7077                }
7078                if (i == 0)
7079                        continue;
7080
7081                if (!dont || free->arch.lpage_info[i - 1] !=
7082                             dont->arch.lpage_info[i - 1]) {
7083                        kvm_kvfree(free->arch.lpage_info[i - 1]);
7084                        free->arch.lpage_info[i - 1] = NULL;
7085                }
7086        }
7087}
7088
7089int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
7090{
7091        int i;
7092
7093        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7094                unsigned long ugfn;
7095                int lpages;
7096                int level = i + 1;
7097
7098                lpages = gfn_to_index(slot->base_gfn + npages - 1,
7099                                      slot->base_gfn, level) + 1;
7100
7101                slot->arch.rmap[i] =
7102                        kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7103                if (!slot->arch.rmap[i])
7104                        goto out_free;
7105                if (i == 0)
7106                        continue;
7107
7108                slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7109                                        sizeof(*slot->arch.lpage_info[i - 1]));
7110                if (!slot->arch.lpage_info[i - 1])
7111                        goto out_free;
7112
7113                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7114                        slot->arch.lpage_info[i - 1][0].write_count = 1;
7115                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7116                        slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7117                ugfn = slot->userspace_addr >> PAGE_SHIFT;
7118                /*
7119                 * If the gfn and userspace address are not aligned wrt each
7120                 * other, or if explicitly asked to, disable large page
7121                 * support for this slot
7122                 */
7123                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7124                    !kvm_largepages_enabled()) {
7125                        unsigned long j;
7126
7127                        for (j = 0; j < lpages; ++j)
7128                                slot->arch.lpage_info[i - 1][j].write_count = 1;
7129                }
7130        }
7131
7132        return 0;
7133
7134out_free:
7135        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7136                kvm_kvfree(slot->arch.rmap[i]);
7137                slot->arch.rmap[i] = NULL;
7138                if (i == 0)
7139                        continue;
7140
7141                kvm_kvfree(slot->arch.lpage_info[i - 1]);
7142                slot->arch.lpage_info[i - 1] = NULL;
7143        }
7144        return -ENOMEM;
7145}
7146
7147void kvm_arch_memslots_updated(struct kvm *kvm)
7148{
7149        /*
7150         * memslots->generation has been incremented.
7151         * mmio generation may have reached its maximum value.
7152         */
7153        kvm_mmu_invalidate_mmio_sptes(kvm);
7154}
7155
7156int kvm_arch_prepare_memory_region(struct kvm *kvm,
7157                                struct kvm_memory_slot *memslot,
7158                                struct kvm_userspace_memory_region *mem,
7159                                enum kvm_mr_change change)
7160{
7161        /*
7162         * Only private memory slots need to be mapped here since
7163         * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7164         */
7165        if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7166                unsigned long userspace_addr;
7167
7168                /*
7169                 * MAP_SHARED to prevent internal slot pages from being moved
7170                 * by fork()/COW.
7171                 */
7172                userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7173                                         PROT_READ | PROT_WRITE,
7174                                         MAP_SHARED | MAP_ANONYMOUS, 0);
7175
7176                if (IS_ERR((void *)userspace_addr))
7177                        return PTR_ERR((void *)userspace_addr);
7178
7179                memslot->userspace_addr = userspace_addr;
7180        }
7181
7182        return 0;
7183}
7184
7185void kvm_arch_commit_memory_region(struct kvm *kvm,
7186                                struct kvm_userspace_memory_region *mem,
7187                                const struct kvm_memory_slot *old,
7188                                enum kvm_mr_change change)
7189{
7190
7191        int nr_mmu_pages = 0;
7192
7193        if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7194                int ret;
7195
7196                ret = vm_munmap(old->userspace_addr,
7197                                old->npages * PAGE_SIZE);
7198                if (ret < 0)
7199                        printk(KERN_WARNING
7200                               "kvm_vm_ioctl_set_memory_region: "
7201                               "failed to munmap memory\n");
7202        }
7203
7204        if (!kvm->arch.n_requested_mmu_pages)
7205                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7206
7207        if (nr_mmu_pages)
7208                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7209        /*
7210         * Write protect all pages for dirty logging.
7211         * Existing largepage mappings are destroyed here and new ones will
7212         * not be created until the end of the logging.
7213         */
7214        if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7215                kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7216}
7217
7218void kvm_arch_flush_shadow_all(struct kvm *kvm)
7219{
7220        kvm_mmu_invalidate_zap_all_pages(kvm);
7221}
7222
7223void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7224                                   struct kvm_memory_slot *slot)
7225{
7226        kvm_mmu_invalidate_zap_all_pages(kvm);
7227}
7228
7229int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7230{
7231        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7232                !vcpu->arch.apf.halted)
7233                || !list_empty_careful(&vcpu->async_pf.done)
7234                || kvm_apic_has_events(vcpu)
7235                || vcpu->arch.pv.pv_unhalted
7236                || atomic_read(&vcpu->arch.nmi_queued) ||
7237                (kvm_arch_interrupt_allowed(vcpu) &&
7238                 kvm_cpu_has_interrupt(vcpu));
7239}
7240
7241int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7242{
7243        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7244}
7245
7246int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7247{
7248        return kvm_x86_ops->interrupt_allowed(vcpu);
7249}
7250
7251bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7252{
7253        unsigned long current_rip = kvm_rip_read(vcpu) +
7254                get_segment_base(vcpu, VCPU_SREG_CS);
7255
7256        return current_rip == linear_rip;
7257}
7258EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7259
7260unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7261{
7262        unsigned long rflags;
7263
7264        rflags = kvm_x86_ops->get_rflags(vcpu);
7265        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7266                rflags &= ~X86_EFLAGS_TF;
7267        return rflags;
7268}
7269EXPORT_SYMBOL_GPL(kvm_get_rflags);
7270
7271void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7272{
7273        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7274            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7275                rflags |= X86_EFLAGS_TF;
7276        kvm_x86_ops->set_rflags(vcpu, rflags);
7277        kvm_make_request(KVM_REQ_EVENT, vcpu);
7278}
7279EXPORT_SYMBOL_GPL(kvm_set_rflags);
7280
7281void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7282{
7283        int r;
7284
7285        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7286              is_error_page(work->page))
7287                return;
7288
7289        r = kvm_mmu_reload(vcpu);
7290        if (unlikely(r))
7291                return;
7292
7293        if (!vcpu->arch.mmu.direct_map &&
7294              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7295                return;
7296
7297        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7298}
7299
7300static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7301{
7302        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7303}
7304
7305static inline u32 kvm_async_pf_next_probe(u32 key)
7306{
7307        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7308}
7309
7310static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7311{
7312        u32 key = kvm_async_pf_hash_fn(gfn);
7313
7314        while (vcpu->arch.apf.gfns[key] != ~0)
7315                key = kvm_async_pf_next_probe(key);
7316
7317        vcpu->arch.apf.gfns[key] = gfn;
7318}
7319
7320static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7321{
7322        int i;
7323        u32 key = kvm_async_pf_hash_fn(gfn);
7324
7325        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7326                     (vcpu->arch.apf.gfns[key] != gfn &&
7327                      vcpu->arch.apf.gfns[key] != ~0); i++)
7328                key = kvm_async_pf_next_probe(key);
7329
7330        return key;
7331}
7332
7333bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7334{
7335        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7336}
7337
7338static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7339{
7340        u32 i, j, k;
7341
7342        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7343        while (true) {
7344                vcpu->arch.apf.gfns[i] = ~0;
7345                do {
7346                        j = kvm_async_pf_next_probe(j);
7347                        if (vcpu->arch.apf.gfns[j] == ~0)
7348                                return;
7349                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7350                        /*
7351                         * k lies cyclically in ]i,j]
7352                         * |    i.k.j |
7353                         * |....j i.k.| or  |.k..j i...|
7354                         */
7355                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7356                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7357                i = j;
7358        }
7359}
7360
7361static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7362{
7363
7364        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7365                                      sizeof(val));
7366}
7367
7368void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7369                                     struct kvm_async_pf *work)
7370{
7371        struct x86_exception fault;
7372
7373        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7374        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7375
7376        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7377            (vcpu->arch.apf.send_user_only &&
7378             kvm_x86_ops->get_cpl(vcpu) == 0))
7379                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7380        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7381                fault.vector = PF_VECTOR;
7382                fault.error_code_valid = true;
7383                fault.error_code = 0;
7384                fault.nested_page_fault = false;
7385                fault.address = work->arch.token;
7386                kvm_inject_page_fault(vcpu, &fault);
7387        }
7388}
7389
7390void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7391                                 struct kvm_async_pf *work)
7392{
7393        struct x86_exception fault;
7394
7395        trace_kvm_async_pf_ready(work->arch.token, work->gva);
7396        if (is_error_page(work->page))
7397                work->arch.token = ~0; /* broadcast wakeup */
7398        else
7399                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7400
7401        if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7402            !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7403                fault.vector = PF_VECTOR;
7404                fault.error_code_valid = true;
7405                fault.error_code = 0;
7406                fault.nested_page_fault = false;
7407                fault.address = work->arch.token;
7408                kvm_inject_page_fault(vcpu, &fault);
7409        }
7410        vcpu->arch.apf.halted = false;
7411        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7412}
7413
7414bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7415{
7416        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7417                return true;
7418        else
7419                return !kvm_event_needs_reinjection(vcpu) &&
7420                        kvm_x86_ops->interrupt_allowed(vcpu);
7421}
7422
7423EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7424EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7425EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7426EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7427EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7428EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7429EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7430EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7431EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7432EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7433EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7434EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7435EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7436