1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include <linux/init.h>
21#include <linux/platform_device.h>
22#include <linux/spinlock.h>
23#include <linux/interrupt.h>
24#include <linux/ioport.h>
25#include <linux/io.h>
26#include <linux/clk.h>
27#include <linux/irq.h>
28#include <linux/err.h>
29#include <linux/delay.h>
30#include <linux/clocksource.h>
31#include <linux/clockchips.h>
32#include <linux/sh_timer.h>
33#include <linux/slab.h>
34#include <linux/module.h>
35#include <linux/pm_domain.h>
36#include <linux/pm_runtime.h>
37
38struct sh_cmt_priv {
39 void __iomem *mapbase;
40 void __iomem *mapbase_str;
41 struct clk *clk;
42 unsigned long width;
43 unsigned long overflow_bit;
44 unsigned long clear_bits;
45 struct irqaction irqaction;
46 struct platform_device *pdev;
47
48 unsigned long flags;
49 unsigned long match_value;
50 unsigned long next_match_value;
51 unsigned long max_match_value;
52 unsigned long rate;
53 raw_spinlock_t lock;
54 struct clock_event_device ced;
55 struct clocksource cs;
56 unsigned long total_cycles;
57 bool cs_enabled;
58
59
60 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
61 void (*write_control)(void __iomem *base, unsigned long offs,
62 unsigned long value);
63
64
65 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
66 void (*write_count)(void __iomem *base, unsigned long offs,
67 unsigned long value);
68};
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
92{
93 return ioread16(base + (offs << 1));
94}
95
96static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
97{
98 return ioread32(base + (offs << 2));
99}
100
101static void sh_cmt_write16(void __iomem *base, unsigned long offs,
102 unsigned long value)
103{
104 iowrite16(value, base + (offs << 1));
105}
106
107static void sh_cmt_write32(void __iomem *base, unsigned long offs,
108 unsigned long value)
109{
110 iowrite32(value, base + (offs << 2));
111}
112
113#define CMCSR 0
114#define CMCNT 1
115#define CMCOR 2
116
117static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
118{
119 return p->read_control(p->mapbase_str, 0);
120}
121
122static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
123{
124 return p->read_control(p->mapbase, CMCSR);
125}
126
127static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
128{
129 return p->read_count(p->mapbase, CMCNT);
130}
131
132static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
133 unsigned long value)
134{
135 p->write_control(p->mapbase_str, 0, value);
136}
137
138static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
139 unsigned long value)
140{
141 p->write_control(p->mapbase, CMCSR, value);
142}
143
144static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
145 unsigned long value)
146{
147 p->write_count(p->mapbase, CMCNT, value);
148}
149
150static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
151 unsigned long value)
152{
153 p->write_count(p->mapbase, CMCOR, value);
154}
155
156static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
157 int *has_wrapped)
158{
159 unsigned long v1, v2, v3;
160 int o1, o2;
161
162 o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
163
164
165 do {
166 o2 = o1;
167 v1 = sh_cmt_read_cmcnt(p);
168 v2 = sh_cmt_read_cmcnt(p);
169 v3 = sh_cmt_read_cmcnt(p);
170 o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
171 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
172 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
173
174 *has_wrapped = o1;
175 return v2;
176}
177
178static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
179
180static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
181{
182 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
183 unsigned long flags, value;
184
185
186 raw_spin_lock_irqsave(&sh_cmt_lock, flags);
187 value = sh_cmt_read_cmstr(p);
188
189 if (start)
190 value |= 1 << cfg->timer_bit;
191 else
192 value &= ~(1 << cfg->timer_bit);
193
194 sh_cmt_write_cmstr(p, value);
195 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
196}
197
198static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
199{
200 int k, ret;
201
202 pm_runtime_get_sync(&p->pdev->dev);
203 dev_pm_syscore_device(&p->pdev->dev, true);
204
205
206 ret = clk_enable(p->clk);
207 if (ret) {
208 dev_err(&p->pdev->dev, "cannot enable clock\n");
209 goto err0;
210 }
211
212
213 sh_cmt_start_stop_ch(p, 0);
214
215
216 if (p->width == 16) {
217 *rate = clk_get_rate(p->clk) / 512;
218 sh_cmt_write_cmcsr(p, 0x43);
219 } else {
220 *rate = clk_get_rate(p->clk) / 8;
221 sh_cmt_write_cmcsr(p, 0x01a4);
222 }
223
224 sh_cmt_write_cmcor(p, 0xffffffff);
225 sh_cmt_write_cmcnt(p, 0);
226
227
228
229
230
231
232
233
234
235
236
237
238 for (k = 0; k < 100; k++) {
239 if (!sh_cmt_read_cmcnt(p))
240 break;
241 udelay(1);
242 }
243
244 if (sh_cmt_read_cmcnt(p)) {
245 dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
246 ret = -ETIMEDOUT;
247 goto err1;
248 }
249
250
251 sh_cmt_start_stop_ch(p, 1);
252 return 0;
253 err1:
254
255 clk_disable(p->clk);
256
257 err0:
258 return ret;
259}
260
261static void sh_cmt_disable(struct sh_cmt_priv *p)
262{
263
264 sh_cmt_start_stop_ch(p, 0);
265
266
267 sh_cmt_write_cmcsr(p, 0);
268
269
270 clk_disable(p->clk);
271
272 dev_pm_syscore_device(&p->pdev->dev, false);
273 pm_runtime_put(&p->pdev->dev);
274}
275
276
277#define FLAG_CLOCKEVENT (1 << 0)
278#define FLAG_CLOCKSOURCE (1 << 1)
279#define FLAG_REPROGRAM (1 << 2)
280#define FLAG_SKIPEVENT (1 << 3)
281#define FLAG_IRQCONTEXT (1 << 4)
282
283static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
284 int absolute)
285{
286 unsigned long new_match;
287 unsigned long value = p->next_match_value;
288 unsigned long delay = 0;
289 unsigned long now = 0;
290 int has_wrapped;
291
292 now = sh_cmt_get_counter(p, &has_wrapped);
293 p->flags |= FLAG_REPROGRAM;
294
295 if (has_wrapped) {
296
297
298
299
300 p->flags |= FLAG_SKIPEVENT;
301 return;
302 }
303
304 if (absolute)
305 now = 0;
306
307 do {
308
309
310
311 new_match = now + value + delay;
312 if (new_match > p->max_match_value)
313 new_match = p->max_match_value;
314
315 sh_cmt_write_cmcor(p, new_match);
316
317 now = sh_cmt_get_counter(p, &has_wrapped);
318 if (has_wrapped && (new_match > p->match_value)) {
319
320
321
322
323
324
325 p->flags |= FLAG_SKIPEVENT;
326 break;
327 }
328
329 if (has_wrapped) {
330
331
332
333
334
335
336 p->match_value = new_match;
337 break;
338 }
339
340
341 if (now < new_match) {
342
343
344
345
346
347 p->match_value = new_match;
348 break;
349 }
350
351
352
353
354
355
356
357 if (delay)
358 delay <<= 1;
359 else
360 delay = 1;
361
362 if (!delay)
363 dev_warn(&p->pdev->dev, "too long delay\n");
364
365 } while (delay);
366}
367
368static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
369{
370 if (delta > p->max_match_value)
371 dev_warn(&p->pdev->dev, "delta out of range\n");
372
373 p->next_match_value = delta;
374 sh_cmt_clock_event_program_verify(p, 0);
375}
376
377static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
378{
379 unsigned long flags;
380
381 raw_spin_lock_irqsave(&p->lock, flags);
382 __sh_cmt_set_next(p, delta);
383 raw_spin_unlock_irqrestore(&p->lock, flags);
384}
385
386static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
387{
388 struct sh_cmt_priv *p = dev_id;
389
390
391 sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
392
393
394
395
396
397 if (p->flags & FLAG_CLOCKSOURCE)
398 p->total_cycles += p->match_value + 1;
399
400 if (!(p->flags & FLAG_REPROGRAM))
401 p->next_match_value = p->max_match_value;
402
403 p->flags |= FLAG_IRQCONTEXT;
404
405 if (p->flags & FLAG_CLOCKEVENT) {
406 if (!(p->flags & FLAG_SKIPEVENT)) {
407 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
408 p->next_match_value = p->max_match_value;
409 p->flags |= FLAG_REPROGRAM;
410 }
411
412 p->ced.event_handler(&p->ced);
413 }
414 }
415
416 p->flags &= ~FLAG_SKIPEVENT;
417
418 if (p->flags & FLAG_REPROGRAM) {
419 p->flags &= ~FLAG_REPROGRAM;
420 sh_cmt_clock_event_program_verify(p, 1);
421
422 if (p->flags & FLAG_CLOCKEVENT)
423 if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
424 || (p->match_value == p->next_match_value))
425 p->flags &= ~FLAG_REPROGRAM;
426 }
427
428 p->flags &= ~FLAG_IRQCONTEXT;
429
430 return IRQ_HANDLED;
431}
432
433static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
434{
435 int ret = 0;
436 unsigned long flags;
437
438 raw_spin_lock_irqsave(&p->lock, flags);
439
440 if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
441 ret = sh_cmt_enable(p, &p->rate);
442
443 if (ret)
444 goto out;
445 p->flags |= flag;
446
447
448 if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
449 __sh_cmt_set_next(p, p->max_match_value);
450 out:
451 raw_spin_unlock_irqrestore(&p->lock, flags);
452
453 return ret;
454}
455
456static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
457{
458 unsigned long flags;
459 unsigned long f;
460
461 raw_spin_lock_irqsave(&p->lock, flags);
462
463 f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
464 p->flags &= ~flag;
465
466 if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
467 sh_cmt_disable(p);
468
469
470 if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
471 __sh_cmt_set_next(p, p->max_match_value);
472
473 raw_spin_unlock_irqrestore(&p->lock, flags);
474}
475
476static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
477{
478 return container_of(cs, struct sh_cmt_priv, cs);
479}
480
481static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
482{
483 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
484 unsigned long flags, raw;
485 unsigned long value;
486 int has_wrapped;
487
488 raw_spin_lock_irqsave(&p->lock, flags);
489 value = p->total_cycles;
490 raw = sh_cmt_get_counter(p, &has_wrapped);
491
492 if (unlikely(has_wrapped))
493 raw += p->match_value + 1;
494 raw_spin_unlock_irqrestore(&p->lock, flags);
495
496 return value + raw;
497}
498
499static int sh_cmt_clocksource_enable(struct clocksource *cs)
500{
501 int ret;
502 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
503
504 WARN_ON(p->cs_enabled);
505
506 p->total_cycles = 0;
507
508 ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
509 if (!ret) {
510 __clocksource_updatefreq_hz(cs, p->rate);
511 p->cs_enabled = true;
512 }
513 return ret;
514}
515
516static void sh_cmt_clocksource_disable(struct clocksource *cs)
517{
518 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
519
520 WARN_ON(!p->cs_enabled);
521
522 sh_cmt_stop(p, FLAG_CLOCKSOURCE);
523 p->cs_enabled = false;
524}
525
526static void sh_cmt_clocksource_suspend(struct clocksource *cs)
527{
528 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
529
530 sh_cmt_stop(p, FLAG_CLOCKSOURCE);
531 pm_genpd_syscore_poweroff(&p->pdev->dev);
532}
533
534static void sh_cmt_clocksource_resume(struct clocksource *cs)
535{
536 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
537
538 pm_genpd_syscore_poweron(&p->pdev->dev);
539 sh_cmt_start(p, FLAG_CLOCKSOURCE);
540}
541
542static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
543 char *name, unsigned long rating)
544{
545 struct clocksource *cs = &p->cs;
546
547 cs->name = name;
548 cs->rating = rating;
549 cs->read = sh_cmt_clocksource_read;
550 cs->enable = sh_cmt_clocksource_enable;
551 cs->disable = sh_cmt_clocksource_disable;
552 cs->suspend = sh_cmt_clocksource_suspend;
553 cs->resume = sh_cmt_clocksource_resume;
554 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
555 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
556
557 dev_info(&p->pdev->dev, "used as clock source\n");
558
559
560 clocksource_register_hz(cs, 1);
561 return 0;
562}
563
564static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
565{
566 return container_of(ced, struct sh_cmt_priv, ced);
567}
568
569static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
570{
571 struct clock_event_device *ced = &p->ced;
572
573 sh_cmt_start(p, FLAG_CLOCKEVENT);
574
575
576
577 ced->shift = 32;
578 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
579 ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
580 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
581
582 if (periodic)
583 sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
584 else
585 sh_cmt_set_next(p, p->max_match_value);
586}
587
588static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
589 struct clock_event_device *ced)
590{
591 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
592
593
594 switch (ced->mode) {
595 case CLOCK_EVT_MODE_PERIODIC:
596 case CLOCK_EVT_MODE_ONESHOT:
597 sh_cmt_stop(p, FLAG_CLOCKEVENT);
598 break;
599 default:
600 break;
601 }
602
603 switch (mode) {
604 case CLOCK_EVT_MODE_PERIODIC:
605 dev_info(&p->pdev->dev, "used for periodic clock events\n");
606 sh_cmt_clock_event_start(p, 1);
607 break;
608 case CLOCK_EVT_MODE_ONESHOT:
609 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
610 sh_cmt_clock_event_start(p, 0);
611 break;
612 case CLOCK_EVT_MODE_SHUTDOWN:
613 case CLOCK_EVT_MODE_UNUSED:
614 sh_cmt_stop(p, FLAG_CLOCKEVENT);
615 break;
616 default:
617 break;
618 }
619}
620
621static int sh_cmt_clock_event_next(unsigned long delta,
622 struct clock_event_device *ced)
623{
624 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
625
626 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
627 if (likely(p->flags & FLAG_IRQCONTEXT))
628 p->next_match_value = delta - 1;
629 else
630 sh_cmt_set_next(p, delta - 1);
631
632 return 0;
633}
634
635static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
636{
637 pm_genpd_syscore_poweroff(&ced_to_sh_cmt(ced)->pdev->dev);
638}
639
640static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
641{
642 pm_genpd_syscore_poweron(&ced_to_sh_cmt(ced)->pdev->dev);
643}
644
645static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
646 char *name, unsigned long rating)
647{
648 struct clock_event_device *ced = &p->ced;
649
650 memset(ced, 0, sizeof(*ced));
651
652 ced->name = name;
653 ced->features = CLOCK_EVT_FEAT_PERIODIC;
654 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
655 ced->rating = rating;
656 ced->cpumask = cpumask_of(0);
657 ced->set_next_event = sh_cmt_clock_event_next;
658 ced->set_mode = sh_cmt_clock_event_mode;
659 ced->suspend = sh_cmt_clock_event_suspend;
660 ced->resume = sh_cmt_clock_event_resume;
661
662 dev_info(&p->pdev->dev, "used for clock events\n");
663 clockevents_register_device(ced);
664}
665
666static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
667 unsigned long clockevent_rating,
668 unsigned long clocksource_rating)
669{
670 if (clockevent_rating)
671 sh_cmt_register_clockevent(p, name, clockevent_rating);
672
673 if (clocksource_rating)
674 sh_cmt_register_clocksource(p, name, clocksource_rating);
675
676 return 0;
677}
678
679static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
680{
681 struct sh_timer_config *cfg = pdev->dev.platform_data;
682 struct resource *res, *res2;
683 int irq, ret;
684 ret = -ENXIO;
685
686 memset(p, 0, sizeof(*p));
687 p->pdev = pdev;
688
689 if (!cfg) {
690 dev_err(&p->pdev->dev, "missing platform data\n");
691 goto err0;
692 }
693
694 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
695 if (!res) {
696 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
697 goto err0;
698 }
699
700
701 res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
702
703 irq = platform_get_irq(p->pdev, 0);
704 if (irq < 0) {
705 dev_err(&p->pdev->dev, "failed to get irq\n");
706 goto err0;
707 }
708
709
710 p->mapbase = ioremap_nocache(res->start, resource_size(res));
711 if (p->mapbase == NULL) {
712 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
713 goto err0;
714 }
715
716
717 p->mapbase_str = ioremap_nocache(res2 ? res2->start :
718 res->start - cfg->channel_offset,
719 res2 ? resource_size(res2) : 2);
720 if (p->mapbase_str == NULL) {
721 dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
722 goto err1;
723 }
724
725
726 p->irqaction.name = dev_name(&p->pdev->dev);
727 p->irqaction.handler = sh_cmt_interrupt;
728 p->irqaction.dev_id = p;
729 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
730 IRQF_IRQPOLL | IRQF_NOBALANCING;
731
732
733 p->clk = clk_get(&p->pdev->dev, "cmt_fck");
734 if (IS_ERR(p->clk)) {
735 dev_err(&p->pdev->dev, "cannot get clock\n");
736 ret = PTR_ERR(p->clk);
737 goto err2;
738 }
739
740 if (res2 && (resource_size(res2) == 4)) {
741
742 p->read_control = sh_cmt_read32;
743 p->write_control = sh_cmt_write32;
744 } else {
745 p->read_control = sh_cmt_read16;
746 p->write_control = sh_cmt_write16;
747 }
748
749 if (resource_size(res) == 6) {
750 p->width = 16;
751 p->read_count = sh_cmt_read16;
752 p->write_count = sh_cmt_write16;
753 p->overflow_bit = 0x80;
754 p->clear_bits = ~0x80;
755 } else {
756 p->width = 32;
757 p->read_count = sh_cmt_read32;
758 p->write_count = sh_cmt_write32;
759 p->overflow_bit = 0x8000;
760 p->clear_bits = ~0xc000;
761 }
762
763 if (p->width == (sizeof(p->max_match_value) * 8))
764 p->max_match_value = ~0;
765 else
766 p->max_match_value = (1 << p->width) - 1;
767
768 p->match_value = p->max_match_value;
769 raw_spin_lock_init(&p->lock);
770
771 ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
772 cfg->clockevent_rating,
773 cfg->clocksource_rating);
774 if (ret) {
775 dev_err(&p->pdev->dev, "registration failed\n");
776 goto err3;
777 }
778 p->cs_enabled = false;
779
780 ret = setup_irq(irq, &p->irqaction);
781 if (ret) {
782 dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
783 goto err3;
784 }
785
786 platform_set_drvdata(pdev, p);
787
788 return 0;
789err3:
790 clk_put(p->clk);
791err2:
792 iounmap(p->mapbase_str);
793err1:
794 iounmap(p->mapbase);
795err0:
796 return ret;
797}
798
799static int sh_cmt_probe(struct platform_device *pdev)
800{
801 struct sh_cmt_priv *p = platform_get_drvdata(pdev);
802 struct sh_timer_config *cfg = pdev->dev.platform_data;
803 int ret;
804
805 if (!is_early_platform_device(pdev)) {
806 pm_runtime_set_active(&pdev->dev);
807 pm_runtime_enable(&pdev->dev);
808 }
809
810 if (p) {
811 dev_info(&pdev->dev, "kept as earlytimer\n");
812 goto out;
813 }
814
815 p = kmalloc(sizeof(*p), GFP_KERNEL);
816 if (p == NULL) {
817 dev_err(&pdev->dev, "failed to allocate driver data\n");
818 return -ENOMEM;
819 }
820
821 ret = sh_cmt_setup(p, pdev);
822 if (ret) {
823 kfree(p);
824 pm_runtime_idle(&pdev->dev);
825 return ret;
826 }
827 if (is_early_platform_device(pdev))
828 return 0;
829
830 out:
831 if (cfg->clockevent_rating || cfg->clocksource_rating)
832 pm_runtime_irq_safe(&pdev->dev);
833 else
834 pm_runtime_idle(&pdev->dev);
835
836 return 0;
837}
838
839static int sh_cmt_remove(struct platform_device *pdev)
840{
841 return -EBUSY;
842}
843
844static struct platform_driver sh_cmt_device_driver = {
845 .probe = sh_cmt_probe,
846 .remove = sh_cmt_remove,
847 .driver = {
848 .name = "sh_cmt",
849 }
850};
851
852static int __init sh_cmt_init(void)
853{
854 return platform_driver_register(&sh_cmt_device_driver);
855}
856
857static void __exit sh_cmt_exit(void)
858{
859 platform_driver_unregister(&sh_cmt_device_driver);
860}
861
862early_platform_init("earlytimer", &sh_cmt_device_driver);
863subsys_initcall(sh_cmt_init);
864module_exit(sh_cmt_exit);
865
866MODULE_AUTHOR("Magnus Damm");
867MODULE_DESCRIPTION("SuperH CMT Timer Driver");
868MODULE_LICENSE("GPL v2");
869