linux/drivers/dma/ep93xx_dma.c
<<
>>
Prefs
   1/*
   2 * Driver for the Cirrus Logic EP93xx DMA Controller
   3 *
   4 * Copyright (C) 2011 Mika Westerberg
   5 *
   6 * DMA M2P implementation is based on the original
   7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
   8 *
   9 *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
  10 *   Copyright (C) 2006 Applied Data Systems
  11 *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
  12 *
  13 * This driver is based on dw_dmac and amba-pl08x drivers.
  14 *
  15 * This program is free software; you can redistribute it and/or modify
  16 * it under the terms of the GNU General Public License as published by
  17 * the Free Software Foundation; either version 2 of the License, or
  18 * (at your option) any later version.
  19 */
  20
  21#include <linux/clk.h>
  22#include <linux/init.h>
  23#include <linux/interrupt.h>
  24#include <linux/dmaengine.h>
  25#include <linux/module.h>
  26#include <linux/platform_device.h>
  27#include <linux/slab.h>
  28
  29#include <linux/platform_data/dma-ep93xx.h>
  30
  31#include "dmaengine.h"
  32
  33/* M2P registers */
  34#define M2P_CONTROL                     0x0000
  35#define M2P_CONTROL_STALLINT            BIT(0)
  36#define M2P_CONTROL_NFBINT              BIT(1)
  37#define M2P_CONTROL_CH_ERROR_INT        BIT(3)
  38#define M2P_CONTROL_ENABLE              BIT(4)
  39#define M2P_CONTROL_ICE                 BIT(6)
  40
  41#define M2P_INTERRUPT                   0x0004
  42#define M2P_INTERRUPT_STALL             BIT(0)
  43#define M2P_INTERRUPT_NFB               BIT(1)
  44#define M2P_INTERRUPT_ERROR             BIT(3)
  45
  46#define M2P_PPALLOC                     0x0008
  47#define M2P_STATUS                      0x000c
  48
  49#define M2P_MAXCNT0                     0x0020
  50#define M2P_BASE0                       0x0024
  51#define M2P_MAXCNT1                     0x0030
  52#define M2P_BASE1                       0x0034
  53
  54#define M2P_STATE_IDLE                  0
  55#define M2P_STATE_STALL                 1
  56#define M2P_STATE_ON                    2
  57#define M2P_STATE_NEXT                  3
  58
  59/* M2M registers */
  60#define M2M_CONTROL                     0x0000
  61#define M2M_CONTROL_DONEINT             BIT(2)
  62#define M2M_CONTROL_ENABLE              BIT(3)
  63#define M2M_CONTROL_START               BIT(4)
  64#define M2M_CONTROL_DAH                 BIT(11)
  65#define M2M_CONTROL_SAH                 BIT(12)
  66#define M2M_CONTROL_PW_SHIFT            9
  67#define M2M_CONTROL_PW_8                (0 << M2M_CONTROL_PW_SHIFT)
  68#define M2M_CONTROL_PW_16               (1 << M2M_CONTROL_PW_SHIFT)
  69#define M2M_CONTROL_PW_32               (2 << M2M_CONTROL_PW_SHIFT)
  70#define M2M_CONTROL_PW_MASK             (3 << M2M_CONTROL_PW_SHIFT)
  71#define M2M_CONTROL_TM_SHIFT            13
  72#define M2M_CONTROL_TM_TX               (1 << M2M_CONTROL_TM_SHIFT)
  73#define M2M_CONTROL_TM_RX               (2 << M2M_CONTROL_TM_SHIFT)
  74#define M2M_CONTROL_NFBINT              BIT(21)
  75#define M2M_CONTROL_RSS_SHIFT           22
  76#define M2M_CONTROL_RSS_SSPRX           (1 << M2M_CONTROL_RSS_SHIFT)
  77#define M2M_CONTROL_RSS_SSPTX           (2 << M2M_CONTROL_RSS_SHIFT)
  78#define M2M_CONTROL_RSS_IDE             (3 << M2M_CONTROL_RSS_SHIFT)
  79#define M2M_CONTROL_NO_HDSK             BIT(24)
  80#define M2M_CONTROL_PWSC_SHIFT          25
  81
  82#define M2M_INTERRUPT                   0x0004
  83#define M2M_INTERRUPT_MASK              6
  84
  85#define M2M_STATUS                      0x000c
  86#define M2M_STATUS_CTL_SHIFT            1
  87#define M2M_STATUS_CTL_IDLE             (0 << M2M_STATUS_CTL_SHIFT)
  88#define M2M_STATUS_CTL_STALL            (1 << M2M_STATUS_CTL_SHIFT)
  89#define M2M_STATUS_CTL_MEMRD            (2 << M2M_STATUS_CTL_SHIFT)
  90#define M2M_STATUS_CTL_MEMWR            (3 << M2M_STATUS_CTL_SHIFT)
  91#define M2M_STATUS_CTL_BWCWAIT          (4 << M2M_STATUS_CTL_SHIFT)
  92#define M2M_STATUS_CTL_MASK             (7 << M2M_STATUS_CTL_SHIFT)
  93#define M2M_STATUS_BUF_SHIFT            4
  94#define M2M_STATUS_BUF_NO               (0 << M2M_STATUS_BUF_SHIFT)
  95#define M2M_STATUS_BUF_ON               (1 << M2M_STATUS_BUF_SHIFT)
  96#define M2M_STATUS_BUF_NEXT             (2 << M2M_STATUS_BUF_SHIFT)
  97#define M2M_STATUS_BUF_MASK             (3 << M2M_STATUS_BUF_SHIFT)
  98#define M2M_STATUS_DONE                 BIT(6)
  99
 100#define M2M_BCR0                        0x0010
 101#define M2M_BCR1                        0x0014
 102#define M2M_SAR_BASE0                   0x0018
 103#define M2M_SAR_BASE1                   0x001c
 104#define M2M_DAR_BASE0                   0x002c
 105#define M2M_DAR_BASE1                   0x0030
 106
 107#define DMA_MAX_CHAN_BYTES              0xffff
 108#define DMA_MAX_CHAN_DESCRIPTORS        32
 109
 110struct ep93xx_dma_engine;
 111
 112/**
 113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
 114 * @src_addr: source address of the transaction
 115 * @dst_addr: destination address of the transaction
 116 * @size: size of the transaction (in bytes)
 117 * @complete: this descriptor is completed
 118 * @txd: dmaengine API descriptor
 119 * @tx_list: list of linked descriptors
 120 * @node: link used for putting this into a channel queue
 121 */
 122struct ep93xx_dma_desc {
 123        u32                             src_addr;
 124        u32                             dst_addr;
 125        size_t                          size;
 126        bool                            complete;
 127        struct dma_async_tx_descriptor  txd;
 128        struct list_head                tx_list;
 129        struct list_head                node;
 130};
 131
 132/**
 133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
 134 * @chan: dmaengine API channel
 135 * @edma: pointer to to the engine device
 136 * @regs: memory mapped registers
 137 * @irq: interrupt number of the channel
 138 * @clk: clock used by this channel
 139 * @tasklet: channel specific tasklet used for callbacks
 140 * @lock: lock protecting the fields following
 141 * @flags: flags for the channel
 142 * @buffer: which buffer to use next (0/1)
 143 * @active: flattened chain of descriptors currently being processed
 144 * @queue: pending descriptors which are handled next
 145 * @free_list: list of free descriptors which can be used
 146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
 147 *                is set via %DMA_SLAVE_CONFIG before slave operation is
 148 *                prepared
 149 * @runtime_ctrl: M2M runtime values for the control register.
 150 *
 151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
 152 * will have slightly different scheme here: @active points to a head of
 153 * flattened DMA descriptor chain.
 154 *
 155 * @queue holds pending transactions. These are linked through the first
 156 * descriptor in the chain. When a descriptor is moved to the @active queue,
 157 * the first and chained descriptors are flattened into a single list.
 158 *
 159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
 160 * necessary channel configuration information. For memcpy channels this must
 161 * be %NULL.
 162 */
 163struct ep93xx_dma_chan {
 164        struct dma_chan                 chan;
 165        const struct ep93xx_dma_engine  *edma;
 166        void __iomem                    *regs;
 167        int                             irq;
 168        struct clk                      *clk;
 169        struct tasklet_struct           tasklet;
 170        /* protects the fields following */
 171        spinlock_t                      lock;
 172        unsigned long                   flags;
 173/* Channel is configured for cyclic transfers */
 174#define EP93XX_DMA_IS_CYCLIC            0
 175
 176        int                             buffer;
 177        struct list_head                active;
 178        struct list_head                queue;
 179        struct list_head                free_list;
 180        u32                             runtime_addr;
 181        u32                             runtime_ctrl;
 182};
 183
 184/**
 185 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
 186 * @dma_dev: holds the dmaengine device
 187 * @m2m: is this an M2M or M2P device
 188 * @hw_setup: method which sets the channel up for operation
 189 * @hw_shutdown: shuts the channel down and flushes whatever is left
 190 * @hw_submit: pushes active descriptor(s) to the hardware
 191 * @hw_interrupt: handle the interrupt
 192 * @num_channels: number of channels for this instance
 193 * @channels: array of channels
 194 *
 195 * There is one instance of this struct for the M2P channels and one for the
 196 * M2M channels. hw_xxx() methods are used to perform operations which are
 197 * different on M2M and M2P channels. These methods are called with channel
 198 * lock held and interrupts disabled so they cannot sleep.
 199 */
 200struct ep93xx_dma_engine {
 201        struct dma_device       dma_dev;
 202        bool                    m2m;
 203        int                     (*hw_setup)(struct ep93xx_dma_chan *);
 204        void                    (*hw_shutdown)(struct ep93xx_dma_chan *);
 205        void                    (*hw_submit)(struct ep93xx_dma_chan *);
 206        int                     (*hw_interrupt)(struct ep93xx_dma_chan *);
 207#define INTERRUPT_UNKNOWN       0
 208#define INTERRUPT_DONE          1
 209#define INTERRUPT_NEXT_BUFFER   2
 210
 211        size_t                  num_channels;
 212        struct ep93xx_dma_chan  channels[];
 213};
 214
 215static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
 216{
 217        return &edmac->chan.dev->device;
 218}
 219
 220static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
 221{
 222        return container_of(chan, struct ep93xx_dma_chan, chan);
 223}
 224
 225/**
 226 * ep93xx_dma_set_active - set new active descriptor chain
 227 * @edmac: channel
 228 * @desc: head of the new active descriptor chain
 229 *
 230 * Sets @desc to be the head of the new active descriptor chain. This is the
 231 * chain which is processed next. The active list must be empty before calling
 232 * this function.
 233 *
 234 * Called with @edmac->lock held and interrupts disabled.
 235 */
 236static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
 237                                  struct ep93xx_dma_desc *desc)
 238{
 239        BUG_ON(!list_empty(&edmac->active));
 240
 241        list_add_tail(&desc->node, &edmac->active);
 242
 243        /* Flatten the @desc->tx_list chain into @edmac->active list */
 244        while (!list_empty(&desc->tx_list)) {
 245                struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
 246                        struct ep93xx_dma_desc, node);
 247
 248                /*
 249                 * We copy the callback parameters from the first descriptor
 250                 * to all the chained descriptors. This way we can call the
 251                 * callback without having to find out the first descriptor in
 252                 * the chain. Useful for cyclic transfers.
 253                 */
 254                d->txd.callback = desc->txd.callback;
 255                d->txd.callback_param = desc->txd.callback_param;
 256
 257                list_move_tail(&d->node, &edmac->active);
 258        }
 259}
 260
 261/* Called with @edmac->lock held and interrupts disabled */
 262static struct ep93xx_dma_desc *
 263ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
 264{
 265        if (list_empty(&edmac->active))
 266                return NULL;
 267
 268        return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
 269}
 270
 271/**
 272 * ep93xx_dma_advance_active - advances to the next active descriptor
 273 * @edmac: channel
 274 *
 275 * Function advances active descriptor to the next in the @edmac->active and
 276 * returns %true if we still have descriptors in the chain to process.
 277 * Otherwise returns %false.
 278 *
 279 * When the channel is in cyclic mode always returns %true.
 280 *
 281 * Called with @edmac->lock held and interrupts disabled.
 282 */
 283static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
 284{
 285        struct ep93xx_dma_desc *desc;
 286
 287        list_rotate_left(&edmac->active);
 288
 289        if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 290                return true;
 291
 292        desc = ep93xx_dma_get_active(edmac);
 293        if (!desc)
 294                return false;
 295
 296        /*
 297         * If txd.cookie is set it means that we are back in the first
 298         * descriptor in the chain and hence done with it.
 299         */
 300        return !desc->txd.cookie;
 301}
 302
 303/*
 304 * M2P DMA implementation
 305 */
 306
 307static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
 308{
 309        writel(control, edmac->regs + M2P_CONTROL);
 310        /*
 311         * EP93xx User's Guide states that we must perform a dummy read after
 312         * write to the control register.
 313         */
 314        readl(edmac->regs + M2P_CONTROL);
 315}
 316
 317static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
 318{
 319        struct ep93xx_dma_data *data = edmac->chan.private;
 320        u32 control;
 321
 322        writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
 323
 324        control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
 325                | M2P_CONTROL_ENABLE;
 326        m2p_set_control(edmac, control);
 327
 328        return 0;
 329}
 330
 331static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
 332{
 333        return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
 334}
 335
 336static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
 337{
 338        u32 control;
 339
 340        control = readl(edmac->regs + M2P_CONTROL);
 341        control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
 342        m2p_set_control(edmac, control);
 343
 344        while (m2p_channel_state(edmac) >= M2P_STATE_ON)
 345                cpu_relax();
 346
 347        m2p_set_control(edmac, 0);
 348
 349        while (m2p_channel_state(edmac) == M2P_STATE_STALL)
 350                cpu_relax();
 351}
 352
 353static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
 354{
 355        struct ep93xx_dma_desc *desc;
 356        u32 bus_addr;
 357
 358        desc = ep93xx_dma_get_active(edmac);
 359        if (!desc) {
 360                dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
 361                return;
 362        }
 363
 364        if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
 365                bus_addr = desc->src_addr;
 366        else
 367                bus_addr = desc->dst_addr;
 368
 369        if (edmac->buffer == 0) {
 370                writel(desc->size, edmac->regs + M2P_MAXCNT0);
 371                writel(bus_addr, edmac->regs + M2P_BASE0);
 372        } else {
 373                writel(desc->size, edmac->regs + M2P_MAXCNT1);
 374                writel(bus_addr, edmac->regs + M2P_BASE1);
 375        }
 376
 377        edmac->buffer ^= 1;
 378}
 379
 380static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
 381{
 382        u32 control = readl(edmac->regs + M2P_CONTROL);
 383
 384        m2p_fill_desc(edmac);
 385        control |= M2P_CONTROL_STALLINT;
 386
 387        if (ep93xx_dma_advance_active(edmac)) {
 388                m2p_fill_desc(edmac);
 389                control |= M2P_CONTROL_NFBINT;
 390        }
 391
 392        m2p_set_control(edmac, control);
 393}
 394
 395static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
 396{
 397        u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
 398        u32 control;
 399
 400        if (irq_status & M2P_INTERRUPT_ERROR) {
 401                struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
 402
 403                /* Clear the error interrupt */
 404                writel(1, edmac->regs + M2P_INTERRUPT);
 405
 406                /*
 407                 * It seems that there is no easy way of reporting errors back
 408                 * to client so we just report the error here and continue as
 409                 * usual.
 410                 *
 411                 * Revisit this when there is a mechanism to report back the
 412                 * errors.
 413                 */
 414                dev_err(chan2dev(edmac),
 415                        "DMA transfer failed! Details:\n"
 416                        "\tcookie       : %d\n"
 417                        "\tsrc_addr     : 0x%08x\n"
 418                        "\tdst_addr     : 0x%08x\n"
 419                        "\tsize         : %zu\n",
 420                        desc->txd.cookie, desc->src_addr, desc->dst_addr,
 421                        desc->size);
 422        }
 423
 424        switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
 425        case M2P_INTERRUPT_STALL:
 426                /* Disable interrupts */
 427                control = readl(edmac->regs + M2P_CONTROL);
 428                control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
 429                m2p_set_control(edmac, control);
 430
 431                return INTERRUPT_DONE;
 432
 433        case M2P_INTERRUPT_NFB:
 434                if (ep93xx_dma_advance_active(edmac))
 435                        m2p_fill_desc(edmac);
 436
 437                return INTERRUPT_NEXT_BUFFER;
 438        }
 439
 440        return INTERRUPT_UNKNOWN;
 441}
 442
 443/*
 444 * M2M DMA implementation
 445 */
 446
 447static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
 448{
 449        const struct ep93xx_dma_data *data = edmac->chan.private;
 450        u32 control = 0;
 451
 452        if (!data) {
 453                /* This is memcpy channel, nothing to configure */
 454                writel(control, edmac->regs + M2M_CONTROL);
 455                return 0;
 456        }
 457
 458        switch (data->port) {
 459        case EP93XX_DMA_SSP:
 460                /*
 461                 * This was found via experimenting - anything less than 5
 462                 * causes the channel to perform only a partial transfer which
 463                 * leads to problems since we don't get DONE interrupt then.
 464                 */
 465                control = (5 << M2M_CONTROL_PWSC_SHIFT);
 466                control |= M2M_CONTROL_NO_HDSK;
 467
 468                if (data->direction == DMA_MEM_TO_DEV) {
 469                        control |= M2M_CONTROL_DAH;
 470                        control |= M2M_CONTROL_TM_TX;
 471                        control |= M2M_CONTROL_RSS_SSPTX;
 472                } else {
 473                        control |= M2M_CONTROL_SAH;
 474                        control |= M2M_CONTROL_TM_RX;
 475                        control |= M2M_CONTROL_RSS_SSPRX;
 476                }
 477                break;
 478
 479        case EP93XX_DMA_IDE:
 480                /*
 481                 * This IDE part is totally untested. Values below are taken
 482                 * from the EP93xx Users's Guide and might not be correct.
 483                 */
 484                if (data->direction == DMA_MEM_TO_DEV) {
 485                        /* Worst case from the UG */
 486                        control = (3 << M2M_CONTROL_PWSC_SHIFT);
 487                        control |= M2M_CONTROL_DAH;
 488                        control |= M2M_CONTROL_TM_TX;
 489                } else {
 490                        control = (2 << M2M_CONTROL_PWSC_SHIFT);
 491                        control |= M2M_CONTROL_SAH;
 492                        control |= M2M_CONTROL_TM_RX;
 493                }
 494
 495                control |= M2M_CONTROL_NO_HDSK;
 496                control |= M2M_CONTROL_RSS_IDE;
 497                control |= M2M_CONTROL_PW_16;
 498                break;
 499
 500        default:
 501                return -EINVAL;
 502        }
 503
 504        writel(control, edmac->regs + M2M_CONTROL);
 505        return 0;
 506}
 507
 508static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
 509{
 510        /* Just disable the channel */
 511        writel(0, edmac->regs + M2M_CONTROL);
 512}
 513
 514static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
 515{
 516        struct ep93xx_dma_desc *desc;
 517
 518        desc = ep93xx_dma_get_active(edmac);
 519        if (!desc) {
 520                dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
 521                return;
 522        }
 523
 524        if (edmac->buffer == 0) {
 525                writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
 526                writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
 527                writel(desc->size, edmac->regs + M2M_BCR0);
 528        } else {
 529                writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
 530                writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
 531                writel(desc->size, edmac->regs + M2M_BCR1);
 532        }
 533
 534        edmac->buffer ^= 1;
 535}
 536
 537static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
 538{
 539        struct ep93xx_dma_data *data = edmac->chan.private;
 540        u32 control = readl(edmac->regs + M2M_CONTROL);
 541
 542        /*
 543         * Since we allow clients to configure PW (peripheral width) we always
 544         * clear PW bits here and then set them according what is given in
 545         * the runtime configuration.
 546         */
 547        control &= ~M2M_CONTROL_PW_MASK;
 548        control |= edmac->runtime_ctrl;
 549
 550        m2m_fill_desc(edmac);
 551        control |= M2M_CONTROL_DONEINT;
 552
 553        if (ep93xx_dma_advance_active(edmac)) {
 554                m2m_fill_desc(edmac);
 555                control |= M2M_CONTROL_NFBINT;
 556        }
 557
 558        /*
 559         * Now we can finally enable the channel. For M2M channel this must be
 560         * done _after_ the BCRx registers are programmed.
 561         */
 562        control |= M2M_CONTROL_ENABLE;
 563        writel(control, edmac->regs + M2M_CONTROL);
 564
 565        if (!data) {
 566                /*
 567                 * For memcpy channels the software trigger must be asserted
 568                 * in order to start the memcpy operation.
 569                 */
 570                control |= M2M_CONTROL_START;
 571                writel(control, edmac->regs + M2M_CONTROL);
 572        }
 573}
 574
 575/*
 576 * According to EP93xx User's Guide, we should receive DONE interrupt when all
 577 * M2M DMA controller transactions complete normally. This is not always the
 578 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
 579 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
 580 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
 581 * In effect, disabling the channel when only DONE bit is set could stop
 582 * currently running DMA transfer. To avoid this, we use Buffer FSM and
 583 * Control FSM to check current state of DMA channel.
 584 */
 585static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
 586{
 587        u32 status = readl(edmac->regs + M2M_STATUS);
 588        u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
 589        u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
 590        bool done = status & M2M_STATUS_DONE;
 591        bool last_done;
 592        u32 control;
 593        struct ep93xx_dma_desc *desc;
 594
 595        /* Accept only DONE and NFB interrupts */
 596        if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
 597                return INTERRUPT_UNKNOWN;
 598
 599        if (done) {
 600                /* Clear the DONE bit */
 601                writel(0, edmac->regs + M2M_INTERRUPT);
 602        }
 603
 604        /*
 605         * Check whether we are done with descriptors or not. This, together
 606         * with DMA channel state, determines action to take in interrupt.
 607         */
 608        desc = ep93xx_dma_get_active(edmac);
 609        last_done = !desc || desc->txd.cookie;
 610
 611        /*
 612         * Use M2M DMA Buffer FSM and Control FSM to check current state of
 613         * DMA channel. Using DONE and NFB bits from channel status register
 614         * or bits from channel interrupt register is not reliable.
 615         */
 616        if (!last_done &&
 617            (buf_fsm == M2M_STATUS_BUF_NO ||
 618             buf_fsm == M2M_STATUS_BUF_ON)) {
 619                /*
 620                 * Two buffers are ready for update when Buffer FSM is in
 621                 * DMA_NO_BUF state. Only one buffer can be prepared without
 622                 * disabling the channel or polling the DONE bit.
 623                 * To simplify things, always prepare only one buffer.
 624                 */
 625                if (ep93xx_dma_advance_active(edmac)) {
 626                        m2m_fill_desc(edmac);
 627                        if (done && !edmac->chan.private) {
 628                                /* Software trigger for memcpy channel */
 629                                control = readl(edmac->regs + M2M_CONTROL);
 630                                control |= M2M_CONTROL_START;
 631                                writel(control, edmac->regs + M2M_CONTROL);
 632                        }
 633                        return INTERRUPT_NEXT_BUFFER;
 634                } else {
 635                        last_done = true;
 636                }
 637        }
 638
 639        /*
 640         * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
 641         * and Control FSM is in DMA_STALL state.
 642         */
 643        if (last_done &&
 644            buf_fsm == M2M_STATUS_BUF_NO &&
 645            ctl_fsm == M2M_STATUS_CTL_STALL) {
 646                /* Disable interrupts and the channel */
 647                control = readl(edmac->regs + M2M_CONTROL);
 648                control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
 649                            | M2M_CONTROL_ENABLE);
 650                writel(control, edmac->regs + M2M_CONTROL);
 651                return INTERRUPT_DONE;
 652        }
 653
 654        /*
 655         * Nothing to do this time.
 656         */
 657        return INTERRUPT_NEXT_BUFFER;
 658}
 659
 660/*
 661 * DMA engine API implementation
 662 */
 663
 664static struct ep93xx_dma_desc *
 665ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
 666{
 667        struct ep93xx_dma_desc *desc, *_desc;
 668        struct ep93xx_dma_desc *ret = NULL;
 669        unsigned long flags;
 670
 671        spin_lock_irqsave(&edmac->lock, flags);
 672        list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
 673                if (async_tx_test_ack(&desc->txd)) {
 674                        list_del_init(&desc->node);
 675
 676                        /* Re-initialize the descriptor */
 677                        desc->src_addr = 0;
 678                        desc->dst_addr = 0;
 679                        desc->size = 0;
 680                        desc->complete = false;
 681                        desc->txd.cookie = 0;
 682                        desc->txd.callback = NULL;
 683                        desc->txd.callback_param = NULL;
 684
 685                        ret = desc;
 686                        break;
 687                }
 688        }
 689        spin_unlock_irqrestore(&edmac->lock, flags);
 690        return ret;
 691}
 692
 693static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
 694                                struct ep93xx_dma_desc *desc)
 695{
 696        if (desc) {
 697                unsigned long flags;
 698
 699                spin_lock_irqsave(&edmac->lock, flags);
 700                list_splice_init(&desc->tx_list, &edmac->free_list);
 701                list_add(&desc->node, &edmac->free_list);
 702                spin_unlock_irqrestore(&edmac->lock, flags);
 703        }
 704}
 705
 706/**
 707 * ep93xx_dma_advance_work - start processing the next pending transaction
 708 * @edmac: channel
 709 *
 710 * If we have pending transactions queued and we are currently idling, this
 711 * function takes the next queued transaction from the @edmac->queue and
 712 * pushes it to the hardware for execution.
 713 */
 714static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
 715{
 716        struct ep93xx_dma_desc *new;
 717        unsigned long flags;
 718
 719        spin_lock_irqsave(&edmac->lock, flags);
 720        if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
 721                spin_unlock_irqrestore(&edmac->lock, flags);
 722                return;
 723        }
 724
 725        /* Take the next descriptor from the pending queue */
 726        new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
 727        list_del_init(&new->node);
 728
 729        ep93xx_dma_set_active(edmac, new);
 730
 731        /* Push it to the hardware */
 732        edmac->edma->hw_submit(edmac);
 733        spin_unlock_irqrestore(&edmac->lock, flags);
 734}
 735
 736static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
 737{
 738        struct device *dev = desc->txd.chan->device->dev;
 739
 740        if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
 741                if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
 742                        dma_unmap_single(dev, desc->src_addr, desc->size,
 743                                         DMA_TO_DEVICE);
 744                else
 745                        dma_unmap_page(dev, desc->src_addr, desc->size,
 746                                       DMA_TO_DEVICE);
 747        }
 748        if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
 749                if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
 750                        dma_unmap_single(dev, desc->dst_addr, desc->size,
 751                                         DMA_FROM_DEVICE);
 752                else
 753                        dma_unmap_page(dev, desc->dst_addr, desc->size,
 754                                       DMA_FROM_DEVICE);
 755        }
 756}
 757
 758static void ep93xx_dma_tasklet(unsigned long data)
 759{
 760        struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
 761        struct ep93xx_dma_desc *desc, *d;
 762        dma_async_tx_callback callback = NULL;
 763        void *callback_param = NULL;
 764        LIST_HEAD(list);
 765
 766        spin_lock_irq(&edmac->lock);
 767        /*
 768         * If dma_terminate_all() was called before we get to run, the active
 769         * list has become empty. If that happens we aren't supposed to do
 770         * anything more than call ep93xx_dma_advance_work().
 771         */
 772        desc = ep93xx_dma_get_active(edmac);
 773        if (desc) {
 774                if (desc->complete) {
 775                        /* mark descriptor complete for non cyclic case only */
 776                        if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 777                                dma_cookie_complete(&desc->txd);
 778                        list_splice_init(&edmac->active, &list);
 779                }
 780                callback = desc->txd.callback;
 781                callback_param = desc->txd.callback_param;
 782        }
 783        spin_unlock_irq(&edmac->lock);
 784
 785        /* Pick up the next descriptor from the queue */
 786        ep93xx_dma_advance_work(edmac);
 787
 788        /* Now we can release all the chained descriptors */
 789        list_for_each_entry_safe(desc, d, &list, node) {
 790                /*
 791                 * For the memcpy channels the API requires us to unmap the
 792                 * buffers unless requested otherwise.
 793                 */
 794                if (!edmac->chan.private)
 795                        ep93xx_dma_unmap_buffers(desc);
 796
 797                ep93xx_dma_desc_put(edmac, desc);
 798        }
 799
 800        if (callback)
 801                callback(callback_param);
 802}
 803
 804static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
 805{
 806        struct ep93xx_dma_chan *edmac = dev_id;
 807        struct ep93xx_dma_desc *desc;
 808        irqreturn_t ret = IRQ_HANDLED;
 809
 810        spin_lock(&edmac->lock);
 811
 812        desc = ep93xx_dma_get_active(edmac);
 813        if (!desc) {
 814                dev_warn(chan2dev(edmac),
 815                         "got interrupt while active list is empty\n");
 816                spin_unlock(&edmac->lock);
 817                return IRQ_NONE;
 818        }
 819
 820        switch (edmac->edma->hw_interrupt(edmac)) {
 821        case INTERRUPT_DONE:
 822                desc->complete = true;
 823                tasklet_schedule(&edmac->tasklet);
 824                break;
 825
 826        case INTERRUPT_NEXT_BUFFER:
 827                if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 828                        tasklet_schedule(&edmac->tasklet);
 829                break;
 830
 831        default:
 832                dev_warn(chan2dev(edmac), "unknown interrupt!\n");
 833                ret = IRQ_NONE;
 834                break;
 835        }
 836
 837        spin_unlock(&edmac->lock);
 838        return ret;
 839}
 840
 841/**
 842 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
 843 * @tx: descriptor to be executed
 844 *
 845 * Function will execute given descriptor on the hardware or if the hardware
 846 * is busy, queue the descriptor to be executed later on. Returns cookie which
 847 * can be used to poll the status of the descriptor.
 848 */
 849static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 850{
 851        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
 852        struct ep93xx_dma_desc *desc;
 853        dma_cookie_t cookie;
 854        unsigned long flags;
 855
 856        spin_lock_irqsave(&edmac->lock, flags);
 857        cookie = dma_cookie_assign(tx);
 858
 859        desc = container_of(tx, struct ep93xx_dma_desc, txd);
 860
 861        /*
 862         * If nothing is currently prosessed, we push this descriptor
 863         * directly to the hardware. Otherwise we put the descriptor
 864         * to the pending queue.
 865         */
 866        if (list_empty(&edmac->active)) {
 867                ep93xx_dma_set_active(edmac, desc);
 868                edmac->edma->hw_submit(edmac);
 869        } else {
 870                list_add_tail(&desc->node, &edmac->queue);
 871        }
 872
 873        spin_unlock_irqrestore(&edmac->lock, flags);
 874        return cookie;
 875}
 876
 877/**
 878 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
 879 * @chan: channel to allocate resources
 880 *
 881 * Function allocates necessary resources for the given DMA channel and
 882 * returns number of allocated descriptors for the channel. Negative errno
 883 * is returned in case of failure.
 884 */
 885static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
 886{
 887        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 888        struct ep93xx_dma_data *data = chan->private;
 889        const char *name = dma_chan_name(chan);
 890        int ret, i;
 891
 892        /* Sanity check the channel parameters */
 893        if (!edmac->edma->m2m) {
 894                if (!data)
 895                        return -EINVAL;
 896                if (data->port < EP93XX_DMA_I2S1 ||
 897                    data->port > EP93XX_DMA_IRDA)
 898                        return -EINVAL;
 899                if (data->direction != ep93xx_dma_chan_direction(chan))
 900                        return -EINVAL;
 901        } else {
 902                if (data) {
 903                        switch (data->port) {
 904                        case EP93XX_DMA_SSP:
 905                        case EP93XX_DMA_IDE:
 906                                if (!is_slave_direction(data->direction))
 907                                        return -EINVAL;
 908                                break;
 909                        default:
 910                                return -EINVAL;
 911                        }
 912                }
 913        }
 914
 915        if (data && data->name)
 916                name = data->name;
 917
 918        ret = clk_enable(edmac->clk);
 919        if (ret)
 920                return ret;
 921
 922        ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
 923        if (ret)
 924                goto fail_clk_disable;
 925
 926        spin_lock_irq(&edmac->lock);
 927        dma_cookie_init(&edmac->chan);
 928        ret = edmac->edma->hw_setup(edmac);
 929        spin_unlock_irq(&edmac->lock);
 930
 931        if (ret)
 932                goto fail_free_irq;
 933
 934        for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
 935                struct ep93xx_dma_desc *desc;
 936
 937                desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 938                if (!desc) {
 939                        dev_warn(chan2dev(edmac), "not enough descriptors\n");
 940                        break;
 941                }
 942
 943                INIT_LIST_HEAD(&desc->tx_list);
 944
 945                dma_async_tx_descriptor_init(&desc->txd, chan);
 946                desc->txd.flags = DMA_CTRL_ACK;
 947                desc->txd.tx_submit = ep93xx_dma_tx_submit;
 948
 949                ep93xx_dma_desc_put(edmac, desc);
 950        }
 951
 952        return i;
 953
 954fail_free_irq:
 955        free_irq(edmac->irq, edmac);
 956fail_clk_disable:
 957        clk_disable(edmac->clk);
 958
 959        return ret;
 960}
 961
 962/**
 963 * ep93xx_dma_free_chan_resources - release resources for the channel
 964 * @chan: channel
 965 *
 966 * Function releases all the resources allocated for the given channel.
 967 * The channel must be idle when this is called.
 968 */
 969static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
 970{
 971        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 972        struct ep93xx_dma_desc *desc, *d;
 973        unsigned long flags;
 974        LIST_HEAD(list);
 975
 976        BUG_ON(!list_empty(&edmac->active));
 977        BUG_ON(!list_empty(&edmac->queue));
 978
 979        spin_lock_irqsave(&edmac->lock, flags);
 980        edmac->edma->hw_shutdown(edmac);
 981        edmac->runtime_addr = 0;
 982        edmac->runtime_ctrl = 0;
 983        edmac->buffer = 0;
 984        list_splice_init(&edmac->free_list, &list);
 985        spin_unlock_irqrestore(&edmac->lock, flags);
 986
 987        list_for_each_entry_safe(desc, d, &list, node)
 988                kfree(desc);
 989
 990        clk_disable(edmac->clk);
 991        free_irq(edmac->irq, edmac);
 992}
 993
 994/**
 995 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
 996 * @chan: channel
 997 * @dest: destination bus address
 998 * @src: source bus address
 999 * @len: size of the transaction
1000 * @flags: flags for the descriptor
1001 *
1002 * Returns a valid DMA descriptor or %NULL in case of failure.
1003 */
1004static struct dma_async_tx_descriptor *
1005ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
1006                           dma_addr_t src, size_t len, unsigned long flags)
1007{
1008        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1009        struct ep93xx_dma_desc *desc, *first;
1010        size_t bytes, offset;
1011
1012        first = NULL;
1013        for (offset = 0; offset < len; offset += bytes) {
1014                desc = ep93xx_dma_desc_get(edmac);
1015                if (!desc) {
1016                        dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1017                        goto fail;
1018                }
1019
1020                bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1021
1022                desc->src_addr = src + offset;
1023                desc->dst_addr = dest + offset;
1024                desc->size = bytes;
1025
1026                if (!first)
1027                        first = desc;
1028                else
1029                        list_add_tail(&desc->node, &first->tx_list);
1030        }
1031
1032        first->txd.cookie = -EBUSY;
1033        first->txd.flags = flags;
1034
1035        return &first->txd;
1036fail:
1037        ep93xx_dma_desc_put(edmac, first);
1038        return NULL;
1039}
1040
1041/**
1042 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1043 * @chan: channel
1044 * @sgl: list of buffers to transfer
1045 * @sg_len: number of entries in @sgl
1046 * @dir: direction of tha DMA transfer
1047 * @flags: flags for the descriptor
1048 * @context: operation context (ignored)
1049 *
1050 * Returns a valid DMA descriptor or %NULL in case of failure.
1051 */
1052static struct dma_async_tx_descriptor *
1053ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1054                         unsigned int sg_len, enum dma_transfer_direction dir,
1055                         unsigned long flags, void *context)
1056{
1057        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1058        struct ep93xx_dma_desc *desc, *first;
1059        struct scatterlist *sg;
1060        int i;
1061
1062        if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1063                dev_warn(chan2dev(edmac),
1064                         "channel was configured with different direction\n");
1065                return NULL;
1066        }
1067
1068        if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1069                dev_warn(chan2dev(edmac),
1070                         "channel is already used for cyclic transfers\n");
1071                return NULL;
1072        }
1073
1074        first = NULL;
1075        for_each_sg(sgl, sg, sg_len, i) {
1076                size_t sg_len = sg_dma_len(sg);
1077
1078                if (sg_len > DMA_MAX_CHAN_BYTES) {
1079                        dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1080                                 sg_len);
1081                        goto fail;
1082                }
1083
1084                desc = ep93xx_dma_desc_get(edmac);
1085                if (!desc) {
1086                        dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1087                        goto fail;
1088                }
1089
1090                if (dir == DMA_MEM_TO_DEV) {
1091                        desc->src_addr = sg_dma_address(sg);
1092                        desc->dst_addr = edmac->runtime_addr;
1093                } else {
1094                        desc->src_addr = edmac->runtime_addr;
1095                        desc->dst_addr = sg_dma_address(sg);
1096                }
1097                desc->size = sg_len;
1098
1099                if (!first)
1100                        first = desc;
1101                else
1102                        list_add_tail(&desc->node, &first->tx_list);
1103        }
1104
1105        first->txd.cookie = -EBUSY;
1106        first->txd.flags = flags;
1107
1108        return &first->txd;
1109
1110fail:
1111        ep93xx_dma_desc_put(edmac, first);
1112        return NULL;
1113}
1114
1115/**
1116 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1117 * @chan: channel
1118 * @dma_addr: DMA mapped address of the buffer
1119 * @buf_len: length of the buffer (in bytes)
1120 * @period_len: length of a single period
1121 * @dir: direction of the operation
1122 * @flags: tx descriptor status flags
1123 * @context: operation context (ignored)
1124 *
1125 * Prepares a descriptor for cyclic DMA operation. This means that once the
1126 * descriptor is submitted, we will be submitting in a @period_len sized
1127 * buffers and calling callback once the period has been elapsed. Transfer
1128 * terminates only when client calls dmaengine_terminate_all() for this
1129 * channel.
1130 *
1131 * Returns a valid DMA descriptor or %NULL in case of failure.
1132 */
1133static struct dma_async_tx_descriptor *
1134ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1135                           size_t buf_len, size_t period_len,
1136                           enum dma_transfer_direction dir, unsigned long flags,
1137                           void *context)
1138{
1139        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1140        struct ep93xx_dma_desc *desc, *first;
1141        size_t offset = 0;
1142
1143        if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1144                dev_warn(chan2dev(edmac),
1145                         "channel was configured with different direction\n");
1146                return NULL;
1147        }
1148
1149        if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1150                dev_warn(chan2dev(edmac),
1151                         "channel is already used for cyclic transfers\n");
1152                return NULL;
1153        }
1154
1155        if (period_len > DMA_MAX_CHAN_BYTES) {
1156                dev_warn(chan2dev(edmac), "too big period length %d\n",
1157                         period_len);
1158                return NULL;
1159        }
1160
1161        /* Split the buffer into period size chunks */
1162        first = NULL;
1163        for (offset = 0; offset < buf_len; offset += period_len) {
1164                desc = ep93xx_dma_desc_get(edmac);
1165                if (!desc) {
1166                        dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1167                        goto fail;
1168                }
1169
1170                if (dir == DMA_MEM_TO_DEV) {
1171                        desc->src_addr = dma_addr + offset;
1172                        desc->dst_addr = edmac->runtime_addr;
1173                } else {
1174                        desc->src_addr = edmac->runtime_addr;
1175                        desc->dst_addr = dma_addr + offset;
1176                }
1177
1178                desc->size = period_len;
1179
1180                if (!first)
1181                        first = desc;
1182                else
1183                        list_add_tail(&desc->node, &first->tx_list);
1184        }
1185
1186        first->txd.cookie = -EBUSY;
1187
1188        return &first->txd;
1189
1190fail:
1191        ep93xx_dma_desc_put(edmac, first);
1192        return NULL;
1193}
1194
1195/**
1196 * ep93xx_dma_terminate_all - terminate all transactions
1197 * @edmac: channel
1198 *
1199 * Stops all DMA transactions. All descriptors are put back to the
1200 * @edmac->free_list and callbacks are _not_ called.
1201 */
1202static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1203{
1204        struct ep93xx_dma_desc *desc, *_d;
1205        unsigned long flags;
1206        LIST_HEAD(list);
1207
1208        spin_lock_irqsave(&edmac->lock, flags);
1209        /* First we disable and flush the DMA channel */
1210        edmac->edma->hw_shutdown(edmac);
1211        clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1212        list_splice_init(&edmac->active, &list);
1213        list_splice_init(&edmac->queue, &list);
1214        /*
1215         * We then re-enable the channel. This way we can continue submitting
1216         * the descriptors by just calling ->hw_submit() again.
1217         */
1218        edmac->edma->hw_setup(edmac);
1219        spin_unlock_irqrestore(&edmac->lock, flags);
1220
1221        list_for_each_entry_safe(desc, _d, &list, node)
1222                ep93xx_dma_desc_put(edmac, desc);
1223
1224        return 0;
1225}
1226
1227static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1228                                   struct dma_slave_config *config)
1229{
1230        enum dma_slave_buswidth width;
1231        unsigned long flags;
1232        u32 addr, ctrl;
1233
1234        if (!edmac->edma->m2m)
1235                return -EINVAL;
1236
1237        switch (config->direction) {
1238        case DMA_DEV_TO_MEM:
1239                width = config->src_addr_width;
1240                addr = config->src_addr;
1241                break;
1242
1243        case DMA_MEM_TO_DEV:
1244                width = config->dst_addr_width;
1245                addr = config->dst_addr;
1246                break;
1247
1248        default:
1249                return -EINVAL;
1250        }
1251
1252        switch (width) {
1253        case DMA_SLAVE_BUSWIDTH_1_BYTE:
1254                ctrl = 0;
1255                break;
1256        case DMA_SLAVE_BUSWIDTH_2_BYTES:
1257                ctrl = M2M_CONTROL_PW_16;
1258                break;
1259        case DMA_SLAVE_BUSWIDTH_4_BYTES:
1260                ctrl = M2M_CONTROL_PW_32;
1261                break;
1262        default:
1263                return -EINVAL;
1264        }
1265
1266        spin_lock_irqsave(&edmac->lock, flags);
1267        edmac->runtime_addr = addr;
1268        edmac->runtime_ctrl = ctrl;
1269        spin_unlock_irqrestore(&edmac->lock, flags);
1270
1271        return 0;
1272}
1273
1274/**
1275 * ep93xx_dma_control - manipulate all pending operations on a channel
1276 * @chan: channel
1277 * @cmd: control command to perform
1278 * @arg: optional argument
1279 *
1280 * Controls the channel. Function returns %0 in case of success or negative
1281 * error in case of failure.
1282 */
1283static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1284                              unsigned long arg)
1285{
1286        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1287        struct dma_slave_config *config;
1288
1289        switch (cmd) {
1290        case DMA_TERMINATE_ALL:
1291                return ep93xx_dma_terminate_all(edmac);
1292
1293        case DMA_SLAVE_CONFIG:
1294                config = (struct dma_slave_config *)arg;
1295                return ep93xx_dma_slave_config(edmac, config);
1296
1297        default:
1298                break;
1299        }
1300
1301        return -ENOSYS;
1302}
1303
1304/**
1305 * ep93xx_dma_tx_status - check if a transaction is completed
1306 * @chan: channel
1307 * @cookie: transaction specific cookie
1308 * @state: state of the transaction is stored here if given
1309 *
1310 * This function can be used to query state of a given transaction.
1311 */
1312static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1313                                            dma_cookie_t cookie,
1314                                            struct dma_tx_state *state)
1315{
1316        return dma_cookie_status(chan, cookie, state);
1317}
1318
1319/**
1320 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1321 * @chan: channel
1322 *
1323 * When this function is called, all pending transactions are pushed to the
1324 * hardware and executed.
1325 */
1326static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1327{
1328        ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1329}
1330
1331static int __init ep93xx_dma_probe(struct platform_device *pdev)
1332{
1333        struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1334        struct ep93xx_dma_engine *edma;
1335        struct dma_device *dma_dev;
1336        size_t edma_size;
1337        int ret, i;
1338
1339        edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1340        edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1341        if (!edma)
1342                return -ENOMEM;
1343
1344        dma_dev = &edma->dma_dev;
1345        edma->m2m = platform_get_device_id(pdev)->driver_data;
1346        edma->num_channels = pdata->num_channels;
1347
1348        INIT_LIST_HEAD(&dma_dev->channels);
1349        for (i = 0; i < pdata->num_channels; i++) {
1350                const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1351                struct ep93xx_dma_chan *edmac = &edma->channels[i];
1352
1353                edmac->chan.device = dma_dev;
1354                edmac->regs = cdata->base;
1355                edmac->irq = cdata->irq;
1356                edmac->edma = edma;
1357
1358                edmac->clk = clk_get(NULL, cdata->name);
1359                if (IS_ERR(edmac->clk)) {
1360                        dev_warn(&pdev->dev, "failed to get clock for %s\n",
1361                                 cdata->name);
1362                        continue;
1363                }
1364
1365                spin_lock_init(&edmac->lock);
1366                INIT_LIST_HEAD(&edmac->active);
1367                INIT_LIST_HEAD(&edmac->queue);
1368                INIT_LIST_HEAD(&edmac->free_list);
1369                tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1370                             (unsigned long)edmac);
1371
1372                list_add_tail(&edmac->chan.device_node,
1373                              &dma_dev->channels);
1374        }
1375
1376        dma_cap_zero(dma_dev->cap_mask);
1377        dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1378        dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1379
1380        dma_dev->dev = &pdev->dev;
1381        dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1382        dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1383        dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1384        dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1385        dma_dev->device_control = ep93xx_dma_control;
1386        dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1387        dma_dev->device_tx_status = ep93xx_dma_tx_status;
1388
1389        dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1390
1391        if (edma->m2m) {
1392                dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1393                dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1394
1395                edma->hw_setup = m2m_hw_setup;
1396                edma->hw_shutdown = m2m_hw_shutdown;
1397                edma->hw_submit = m2m_hw_submit;
1398                edma->hw_interrupt = m2m_hw_interrupt;
1399        } else {
1400                dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1401
1402                edma->hw_setup = m2p_hw_setup;
1403                edma->hw_shutdown = m2p_hw_shutdown;
1404                edma->hw_submit = m2p_hw_submit;
1405                edma->hw_interrupt = m2p_hw_interrupt;
1406        }
1407
1408        ret = dma_async_device_register(dma_dev);
1409        if (unlikely(ret)) {
1410                for (i = 0; i < edma->num_channels; i++) {
1411                        struct ep93xx_dma_chan *edmac = &edma->channels[i];
1412                        if (!IS_ERR_OR_NULL(edmac->clk))
1413                                clk_put(edmac->clk);
1414                }
1415                kfree(edma);
1416        } else {
1417                dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1418                         edma->m2m ? "M" : "P");
1419        }
1420
1421        return ret;
1422}
1423
1424static struct platform_device_id ep93xx_dma_driver_ids[] = {
1425        { "ep93xx-dma-m2p", 0 },
1426        { "ep93xx-dma-m2m", 1 },
1427        { },
1428};
1429
1430static struct platform_driver ep93xx_dma_driver = {
1431        .driver         = {
1432                .name   = "ep93xx-dma",
1433        },
1434        .id_table       = ep93xx_dma_driver_ids,
1435};
1436
1437static int __init ep93xx_dma_module_init(void)
1438{
1439        return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1440}
1441subsys_initcall(ep93xx_dma_module_init);
1442
1443MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1444MODULE_DESCRIPTION("EP93xx DMA driver");
1445MODULE_LICENSE("GPL");
1446