linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE          0
  62#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  63#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  64#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  65#define DESCRIPTOR_STATUS               (1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  67#define DESCRIPTOR_PING                 (1 << 7)
  68#define DESCRIPTOR_YY                   (1 << 6)
  69#define DESCRIPTOR_NO_IRQ               (0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  73#define DESCRIPTOR_WAIT                 (3 << 0)
  74
  75#define DESCRIPTOR_CMD                  (0xf << 12)
  76
  77struct descriptor {
  78        __le16 req_count;
  79        __le16 control;
  80        __le32 data_address;
  81        __le32 branch_address;
  82        __le16 res_count;
  83        __le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)       (regs)
  87#define CONTROL_CLEAR(regs)     ((regs) + 4)
  88#define COMMAND_PTR(regs)       ((regs) + 12)
  89#define CONTEXT_MATCH(regs)     ((regs) + 16)
  90
  91#define AR_BUFFER_SIZE  (32*1024)
  92#define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD       4096
  97#define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101        struct fw_ohci *ohci;
 102        struct page *pages[AR_BUFFERS];
 103        void *buffer;
 104        struct descriptor *descriptors;
 105        dma_addr_t descriptors_bus;
 106        void *pointer;
 107        unsigned int last_buffer_index;
 108        u32 regs;
 109        struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115                                     struct descriptor *d,
 116                                     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123        struct list_head list;
 124        dma_addr_t buffer_bus;
 125        size_t buffer_size;
 126        size_t used;
 127        struct descriptor buffer[0];
 128};
 129
 130struct context {
 131        struct fw_ohci *ohci;
 132        u32 regs;
 133        int total_allocation;
 134        u32 current_bus;
 135        bool running;
 136        bool flushing;
 137
 138        /*
 139         * List of page-sized buffers for storing DMA descriptors.
 140         * Head of list contains buffers in use and tail of list contains
 141         * free buffers.
 142         */
 143        struct list_head buffer_list;
 144
 145        /*
 146         * Pointer to a buffer inside buffer_list that contains the tail
 147         * end of the current DMA program.
 148         */
 149        struct descriptor_buffer *buffer_tail;
 150
 151        /*
 152         * The descriptor containing the branch address of the first
 153         * descriptor that has not yet been filled by the device.
 154         */
 155        struct descriptor *last;
 156
 157        /*
 158         * The last descriptor block in the DMA program. It contains the branch
 159         * address that must be updated upon appending a new descriptor.
 160         */
 161        struct descriptor *prev;
 162        int prev_z;
 163
 164        descriptor_callback_t callback;
 165
 166        struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177        struct fw_iso_context base;
 178        struct context context;
 179        void *header;
 180        size_t header_length;
 181        unsigned long flushing_completions;
 182        u32 mc_buffer_bus;
 183        u16 mc_completed;
 184        u16 last_timestamp;
 185        u8 sync;
 186        u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192        struct fw_card card;
 193
 194        __iomem char *registers;
 195        int node_id;
 196        int generation;
 197        int request_generation; /* for timestamping incoming requests */
 198        unsigned quirks;
 199        unsigned int pri_req_max;
 200        u32 bus_time;
 201        bool bus_time_running;
 202        bool is_root;
 203        bool csr_state_setclear_abdicate;
 204        int n_ir;
 205        int n_it;
 206        /*
 207         * Spinlock for accessing fw_ohci data.  Never call out of
 208         * this driver with this lock held.
 209         */
 210        spinlock_t lock;
 211
 212        struct mutex phy_reg_mutex;
 213
 214        void *misc_buffer;
 215        dma_addr_t misc_buffer_bus;
 216
 217        struct ar_context ar_request_ctx;
 218        struct ar_context ar_response_ctx;
 219        struct context at_request_ctx;
 220        struct context at_response_ctx;
 221
 222        u32 it_context_support;
 223        u32 it_context_mask;     /* unoccupied IT contexts */
 224        struct iso_context *it_context_list;
 225        u64 ir_context_channels; /* unoccupied channels */
 226        u32 ir_context_support;
 227        u32 ir_context_mask;     /* unoccupied IR contexts */
 228        struct iso_context *ir_context_list;
 229        u64 mc_channels; /* channels in use by the multichannel IR context */
 230        bool mc_allocated;
 231
 232        __be32    *config_rom;
 233        dma_addr_t config_rom_bus;
 234        __be32    *next_config_rom;
 235        dma_addr_t next_config_rom_bus;
 236        __be32     next_header;
 237
 238        __le32    *self_id;
 239        dma_addr_t self_id_bus;
 240        struct work_struct bus_reset_work;
 241
 242        u32 self_id_buffer[512];
 243};
 244
 245static struct workqueue_struct *selfid_workqueue;
 246
 247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 248{
 249        return container_of(card, struct fw_ohci, card);
 250}
 251
 252#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 253#define IR_CONTEXT_BUFFER_FILL          0x80000000
 254#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 255#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 256#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 257#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 258
 259#define CONTEXT_RUN     0x8000
 260#define CONTEXT_WAKE    0x1000
 261#define CONTEXT_DEAD    0x0800
 262#define CONTEXT_ACTIVE  0x0400
 263
 264#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 265#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 266#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 267
 268#define OHCI1394_REGISTER_SIZE          0x800
 269#define OHCI1394_PCI_HCI_Control        0x40
 270#define SELF_ID_BUF_SIZE                0x800
 271#define OHCI_TCODE_PHY_PACKET           0x0e
 272#define OHCI_VERSION_1_1                0x010010
 273
 274static char ohci_driver_name[] = KBUILD_MODNAME;
 275
 276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
 277#define PCI_DEVICE_ID_AGERE_FW643       0x5901
 278#define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
 279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
 280#define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
 281#define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
 282#define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
 283#define PCI_DEVICE_ID_VIA_VT630X        0x3044
 284#define PCI_REV_ID_VIA_VT6306           0x46
 285
 286#define QUIRK_CYCLE_TIMER               0x1
 287#define QUIRK_RESET_PACKET              0x2
 288#define QUIRK_BE_HEADERS                0x4
 289#define QUIRK_NO_1394A                  0x8
 290#define QUIRK_NO_MSI                    0x10
 291#define QUIRK_TI_SLLZ059                0x20
 292#define QUIRK_IR_WAKE                   0x40
 293#define QUIRK_PHY_LCTRL_TIMEOUT         0x80
 294
 295/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 296static const struct {
 297        unsigned short vendor, device, revision, flags;
 298} ohci_quirks[] = {
 299        {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 300                QUIRK_CYCLE_TIMER},
 301
 302        {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 303                QUIRK_BE_HEADERS},
 304
 305        {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 306                QUIRK_PHY_LCTRL_TIMEOUT | QUIRK_NO_MSI},
 307
 308        {PCI_VENDOR_ID_ATT, PCI_ANY_ID, PCI_ANY_ID,
 309                QUIRK_PHY_LCTRL_TIMEOUT},
 310
 311        {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 312                QUIRK_RESET_PACKET},
 313
 314        {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 315                QUIRK_NO_MSI},
 316
 317        {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 318                QUIRK_CYCLE_TIMER},
 319
 320        {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 321                QUIRK_NO_MSI},
 322
 323        {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 324                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 325
 326        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 327                QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 328
 329        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 330                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 331
 332        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 333                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 334
 335        {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 336                QUIRK_RESET_PACKET},
 337
 338        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 339                QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 340
 341        {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 342                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 343};
 344
 345/* This overrides anything that was found in ohci_quirks[]. */
 346static int param_quirks;
 347module_param_named(quirks, param_quirks, int, 0644);
 348MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 349        ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
 350        ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
 351        ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
 352        ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
 353        ", disable MSI = "              __stringify(QUIRK_NO_MSI)
 354        ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
 355        ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
 356        ", phy LCtrl timeout = "        __stringify(QUIRK_PHY_LCTRL_TIMEOUT)
 357        ")");
 358
 359#define OHCI_PARAM_DEBUG_AT_AR          1
 360#define OHCI_PARAM_DEBUG_SELFIDS        2
 361#define OHCI_PARAM_DEBUG_IRQS           4
 362#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 363
 364static int param_debug;
 365module_param_named(debug, param_debug, int, 0644);
 366MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 367        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 368        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 369        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 370        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 371        ", or a combination, or all = -1)");
 372
 373static void log_irqs(struct fw_ohci *ohci, u32 evt)
 374{
 375        if (likely(!(param_debug &
 376                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 377                return;
 378
 379        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 380            !(evt & OHCI1394_busReset))
 381                return;
 382
 383        ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 384            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 385            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 386            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 387            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 388            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 389            evt & OHCI1394_isochRx              ? " IR"                 : "",
 390            evt & OHCI1394_isochTx              ? " IT"                 : "",
 391            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 392            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 393            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 394            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 395            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 396            evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
 397            evt & OHCI1394_busReset             ? " busReset"           : "",
 398            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 399                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 400                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 401                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 402                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 403                    OHCI1394_cycleInconsistent |
 404                    OHCI1394_regAccessFail | OHCI1394_busReset)
 405                                                ? " ?"                  : "");
 406}
 407
 408static const char *speed[] = {
 409        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 410};
 411static const char *power[] = {
 412        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 413        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 414};
 415static const char port[] = { '.', '-', 'p', 'c', };
 416
 417static char _p(u32 *s, int shift)
 418{
 419        return port[*s >> shift & 3];
 420}
 421
 422static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 423{
 424        u32 *s;
 425
 426        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 427                return;
 428
 429        ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 430                    self_id_count, generation, ohci->node_id);
 431
 432        for (s = ohci->self_id_buffer; self_id_count--; ++s)
 433                if ((*s & 1 << 23) == 0)
 434                        ohci_notice(ohci,
 435                            "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 436                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 437                            speed[*s >> 14 & 3], *s >> 16 & 63,
 438                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 439                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 440                else
 441                        ohci_notice(ohci,
 442                            "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 443                            *s, *s >> 24 & 63,
 444                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 445                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 446}
 447
 448static const char *evts[] = {
 449        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 450        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 451        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 452        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 453        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 454        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 455        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 456        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 457        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 458        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 459        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 460        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 461        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 462        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 463        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 464        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 465        [0x20] = "pending/cancelled",
 466};
 467static const char *tcodes[] = {
 468        [0x0] = "QW req",               [0x1] = "BW req",
 469        [0x2] = "W resp",               [0x3] = "-reserved-",
 470        [0x4] = "QR req",               [0x5] = "BR req",
 471        [0x6] = "QR resp",              [0x7] = "BR resp",
 472        [0x8] = "cycle start",          [0x9] = "Lk req",
 473        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 474        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 475        [0xe] = "link internal",        [0xf] = "-reserved-",
 476};
 477
 478static void log_ar_at_event(struct fw_ohci *ohci,
 479                            char dir, int speed, u32 *header, int evt)
 480{
 481        int tcode = header[0] >> 4 & 0xf;
 482        char specific[12];
 483
 484        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 485                return;
 486
 487        if (unlikely(evt >= ARRAY_SIZE(evts)))
 488                        evt = 0x1f;
 489
 490        if (evt == OHCI1394_evt_bus_reset) {
 491                ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 492                            dir, (header[2] >> 16) & 0xff);
 493                return;
 494        }
 495
 496        switch (tcode) {
 497        case 0x0: case 0x6: case 0x8:
 498                snprintf(specific, sizeof(specific), " = %08x",
 499                         be32_to_cpu((__force __be32)header[3]));
 500                break;
 501        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 502                snprintf(specific, sizeof(specific), " %x,%x",
 503                         header[3] >> 16, header[3] & 0xffff);
 504                break;
 505        default:
 506                specific[0] = '\0';
 507        }
 508
 509        switch (tcode) {
 510        case 0xa:
 511                ohci_notice(ohci, "A%c %s, %s\n",
 512                            dir, evts[evt], tcodes[tcode]);
 513                break;
 514        case 0xe:
 515                ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 516                            dir, evts[evt], header[1], header[2]);
 517                break;
 518        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 519                ohci_notice(ohci,
 520                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 521                            dir, speed, header[0] >> 10 & 0x3f,
 522                            header[1] >> 16, header[0] >> 16, evts[evt],
 523                            tcodes[tcode], header[1] & 0xffff, header[2], specific);
 524                break;
 525        default:
 526                ohci_notice(ohci,
 527                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 528                            dir, speed, header[0] >> 10 & 0x3f,
 529                            header[1] >> 16, header[0] >> 16, evts[evt],
 530                            tcodes[tcode], specific);
 531        }
 532}
 533
 534static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 535{
 536        writel(data, ohci->registers + offset);
 537}
 538
 539static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 540{
 541        return readl(ohci->registers + offset);
 542}
 543
 544static inline void flush_writes(const struct fw_ohci *ohci)
 545{
 546        /* Do a dummy read to flush writes. */
 547        reg_read(ohci, OHCI1394_Version);
 548}
 549
 550/*
 551 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 552 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 553 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 554 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 555 */
 556static int read_phy_reg(struct fw_ohci *ohci, int addr)
 557{
 558        u32 val;
 559        int i;
 560
 561        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 562        for (i = 0; i < 3 + 100; i++) {
 563                val = reg_read(ohci, OHCI1394_PhyControl);
 564                if (!~val)
 565                        return -ENODEV; /* Card was ejected. */
 566
 567                if (val & OHCI1394_PhyControl_ReadDone)
 568                        return OHCI1394_PhyControl_ReadData(val);
 569
 570                /*
 571                 * Try a few times without waiting.  Sleeping is necessary
 572                 * only when the link/PHY interface is busy.
 573                 */
 574                if (i >= 3)
 575                        msleep(1);
 576        }
 577        ohci_err(ohci, "failed to read phy reg %d\n", addr);
 578        dump_stack();
 579
 580        return -EBUSY;
 581}
 582
 583static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 584{
 585        int i;
 586
 587        reg_write(ohci, OHCI1394_PhyControl,
 588                  OHCI1394_PhyControl_Write(addr, val));
 589        for (i = 0; i < 3 + 100; i++) {
 590                val = reg_read(ohci, OHCI1394_PhyControl);
 591                if (!~val)
 592                        return -ENODEV; /* Card was ejected. */
 593
 594                if (!(val & OHCI1394_PhyControl_WritePending))
 595                        return 0;
 596
 597                if (i >= 3)
 598                        msleep(1);
 599        }
 600        ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 601        dump_stack();
 602
 603        return -EBUSY;
 604}
 605
 606static int update_phy_reg(struct fw_ohci *ohci, int addr,
 607                          int clear_bits, int set_bits)
 608{
 609        int ret = read_phy_reg(ohci, addr);
 610        if (ret < 0)
 611                return ret;
 612
 613        /*
 614         * The interrupt status bits are cleared by writing a one bit.
 615         * Avoid clearing them unless explicitly requested in set_bits.
 616         */
 617        if (addr == 5)
 618                clear_bits |= PHY_INT_STATUS_BITS;
 619
 620        return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 621}
 622
 623static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 624{
 625        int ret;
 626
 627        ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 628        if (ret < 0)
 629                return ret;
 630
 631        return read_phy_reg(ohci, addr);
 632}
 633
 634static int ohci_read_phy_reg(struct fw_card *card, int addr)
 635{
 636        struct fw_ohci *ohci = fw_ohci(card);
 637        int ret;
 638
 639        mutex_lock(&ohci->phy_reg_mutex);
 640        ret = read_phy_reg(ohci, addr);
 641        mutex_unlock(&ohci->phy_reg_mutex);
 642
 643        return ret;
 644}
 645
 646static int ohci_update_phy_reg(struct fw_card *card, int addr,
 647                               int clear_bits, int set_bits)
 648{
 649        struct fw_ohci *ohci = fw_ohci(card);
 650        int ret;
 651
 652        mutex_lock(&ohci->phy_reg_mutex);
 653        ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 654        mutex_unlock(&ohci->phy_reg_mutex);
 655
 656        return ret;
 657}
 658
 659static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 660{
 661        return page_private(ctx->pages[i]);
 662}
 663
 664static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 665{
 666        struct descriptor *d;
 667
 668        d = &ctx->descriptors[index];
 669        d->branch_address  &= cpu_to_le32(~0xf);
 670        d->res_count       =  cpu_to_le16(PAGE_SIZE);
 671        d->transfer_status =  0;
 672
 673        wmb(); /* finish init of new descriptors before branch_address update */
 674        d = &ctx->descriptors[ctx->last_buffer_index];
 675        d->branch_address  |= cpu_to_le32(1);
 676
 677        ctx->last_buffer_index = index;
 678
 679        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 680}
 681
 682static void ar_context_release(struct ar_context *ctx)
 683{
 684        unsigned int i;
 685
 686        if (ctx->buffer)
 687                vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 688
 689        for (i = 0; i < AR_BUFFERS; i++)
 690                if (ctx->pages[i]) {
 691                        dma_unmap_page(ctx->ohci->card.device,
 692                                       ar_buffer_bus(ctx, i),
 693                                       PAGE_SIZE, DMA_FROM_DEVICE);
 694                        __free_page(ctx->pages[i]);
 695                }
 696}
 697
 698static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 699{
 700        struct fw_ohci *ohci = ctx->ohci;
 701
 702        if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 703                reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 704                flush_writes(ohci);
 705
 706                ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 707        }
 708        /* FIXME: restart? */
 709}
 710
 711static inline unsigned int ar_next_buffer_index(unsigned int index)
 712{
 713        return (index + 1) % AR_BUFFERS;
 714}
 715
 716static inline unsigned int ar_prev_buffer_index(unsigned int index)
 717{
 718        return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 719}
 720
 721static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 722{
 723        return ar_next_buffer_index(ctx->last_buffer_index);
 724}
 725
 726/*
 727 * We search for the buffer that contains the last AR packet DMA data written
 728 * by the controller.
 729 */
 730static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 731                                                 unsigned int *buffer_offset)
 732{
 733        unsigned int i, next_i, last = ctx->last_buffer_index;
 734        __le16 res_count, next_res_count;
 735
 736        i = ar_first_buffer_index(ctx);
 737        res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 738
 739        /* A buffer that is not yet completely filled must be the last one. */
 740        while (i != last && res_count == 0) {
 741
 742                /* Peek at the next descriptor. */
 743                next_i = ar_next_buffer_index(i);
 744                rmb(); /* read descriptors in order */
 745                next_res_count = ACCESS_ONCE(
 746                                ctx->descriptors[next_i].res_count);
 747                /*
 748                 * If the next descriptor is still empty, we must stop at this
 749                 * descriptor.
 750                 */
 751                if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 752                        /*
 753                         * The exception is when the DMA data for one packet is
 754                         * split over three buffers; in this case, the middle
 755                         * buffer's descriptor might be never updated by the
 756                         * controller and look still empty, and we have to peek
 757                         * at the third one.
 758                         */
 759                        if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 760                                next_i = ar_next_buffer_index(next_i);
 761                                rmb();
 762                                next_res_count = ACCESS_ONCE(
 763                                        ctx->descriptors[next_i].res_count);
 764                                if (next_res_count != cpu_to_le16(PAGE_SIZE))
 765                                        goto next_buffer_is_active;
 766                        }
 767
 768                        break;
 769                }
 770
 771next_buffer_is_active:
 772                i = next_i;
 773                res_count = next_res_count;
 774        }
 775
 776        rmb(); /* read res_count before the DMA data */
 777
 778        *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 779        if (*buffer_offset > PAGE_SIZE) {
 780                *buffer_offset = 0;
 781                ar_context_abort(ctx, "corrupted descriptor");
 782        }
 783
 784        return i;
 785}
 786
 787static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 788                                    unsigned int end_buffer_index,
 789                                    unsigned int end_buffer_offset)
 790{
 791        unsigned int i;
 792
 793        i = ar_first_buffer_index(ctx);
 794        while (i != end_buffer_index) {
 795                dma_sync_single_for_cpu(ctx->ohci->card.device,
 796                                        ar_buffer_bus(ctx, i),
 797                                        PAGE_SIZE, DMA_FROM_DEVICE);
 798                i = ar_next_buffer_index(i);
 799        }
 800        if (end_buffer_offset > 0)
 801                dma_sync_single_for_cpu(ctx->ohci->card.device,
 802                                        ar_buffer_bus(ctx, i),
 803                                        end_buffer_offset, DMA_FROM_DEVICE);
 804}
 805
 806#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 807#define cond_le32_to_cpu(v) \
 808        (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 809#else
 810#define cond_le32_to_cpu(v) le32_to_cpu(v)
 811#endif
 812
 813static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 814{
 815        struct fw_ohci *ohci = ctx->ohci;
 816        struct fw_packet p;
 817        u32 status, length, tcode;
 818        int evt;
 819
 820        p.header[0] = cond_le32_to_cpu(buffer[0]);
 821        p.header[1] = cond_le32_to_cpu(buffer[1]);
 822        p.header[2] = cond_le32_to_cpu(buffer[2]);
 823
 824        tcode = (p.header[0] >> 4) & 0x0f;
 825        switch (tcode) {
 826        case TCODE_WRITE_QUADLET_REQUEST:
 827        case TCODE_READ_QUADLET_RESPONSE:
 828                p.header[3] = (__force __u32) buffer[3];
 829                p.header_length = 16;
 830                p.payload_length = 0;
 831                break;
 832
 833        case TCODE_READ_BLOCK_REQUEST :
 834                p.header[3] = cond_le32_to_cpu(buffer[3]);
 835                p.header_length = 16;
 836                p.payload_length = 0;
 837                break;
 838
 839        case TCODE_WRITE_BLOCK_REQUEST:
 840        case TCODE_READ_BLOCK_RESPONSE:
 841        case TCODE_LOCK_REQUEST:
 842        case TCODE_LOCK_RESPONSE:
 843                p.header[3] = cond_le32_to_cpu(buffer[3]);
 844                p.header_length = 16;
 845                p.payload_length = p.header[3] >> 16;
 846                if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 847                        ar_context_abort(ctx, "invalid packet length");
 848                        return NULL;
 849                }
 850                break;
 851
 852        case TCODE_WRITE_RESPONSE:
 853        case TCODE_READ_QUADLET_REQUEST:
 854        case OHCI_TCODE_PHY_PACKET:
 855                p.header_length = 12;
 856                p.payload_length = 0;
 857                break;
 858
 859        default:
 860                ar_context_abort(ctx, "invalid tcode");
 861                return NULL;
 862        }
 863
 864        p.payload = (void *) buffer + p.header_length;
 865
 866        /* FIXME: What to do about evt_* errors? */
 867        length = (p.header_length + p.payload_length + 3) / 4;
 868        status = cond_le32_to_cpu(buffer[length]);
 869        evt    = (status >> 16) & 0x1f;
 870
 871        p.ack        = evt - 16;
 872        p.speed      = (status >> 21) & 0x7;
 873        p.timestamp  = status & 0xffff;
 874        p.generation = ohci->request_generation;
 875
 876        log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 877
 878        /*
 879         * Several controllers, notably from NEC and VIA, forget to
 880         * write ack_complete status at PHY packet reception.
 881         */
 882        if (evt == OHCI1394_evt_no_status &&
 883            (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 884                p.ack = ACK_COMPLETE;
 885
 886        /*
 887         * The OHCI bus reset handler synthesizes a PHY packet with
 888         * the new generation number when a bus reset happens (see
 889         * section 8.4.2.3).  This helps us determine when a request
 890         * was received and make sure we send the response in the same
 891         * generation.  We only need this for requests; for responses
 892         * we use the unique tlabel for finding the matching
 893         * request.
 894         *
 895         * Alas some chips sometimes emit bus reset packets with a
 896         * wrong generation.  We set the correct generation for these
 897         * at a slightly incorrect time (in bus_reset_work).
 898         */
 899        if (evt == OHCI1394_evt_bus_reset) {
 900                if (!(ohci->quirks & QUIRK_RESET_PACKET))
 901                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 902        } else if (ctx == &ohci->ar_request_ctx) {
 903                fw_core_handle_request(&ohci->card, &p);
 904        } else {
 905                fw_core_handle_response(&ohci->card, &p);
 906        }
 907
 908        return buffer + length + 1;
 909}
 910
 911static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 912{
 913        void *next;
 914
 915        while (p < end) {
 916                next = handle_ar_packet(ctx, p);
 917                if (!next)
 918                        return p;
 919                p = next;
 920        }
 921
 922        return p;
 923}
 924
 925static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 926{
 927        unsigned int i;
 928
 929        i = ar_first_buffer_index(ctx);
 930        while (i != end_buffer) {
 931                dma_sync_single_for_device(ctx->ohci->card.device,
 932                                           ar_buffer_bus(ctx, i),
 933                                           PAGE_SIZE, DMA_FROM_DEVICE);
 934                ar_context_link_page(ctx, i);
 935                i = ar_next_buffer_index(i);
 936        }
 937}
 938
 939static void ar_context_tasklet(unsigned long data)
 940{
 941        struct ar_context *ctx = (struct ar_context *)data;
 942        unsigned int end_buffer_index, end_buffer_offset;
 943        void *p, *end;
 944
 945        p = ctx->pointer;
 946        if (!p)
 947                return;
 948
 949        end_buffer_index = ar_search_last_active_buffer(ctx,
 950                                                        &end_buffer_offset);
 951        ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 952        end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 953
 954        if (end_buffer_index < ar_first_buffer_index(ctx)) {
 955                /*
 956                 * The filled part of the overall buffer wraps around; handle
 957                 * all packets up to the buffer end here.  If the last packet
 958                 * wraps around, its tail will be visible after the buffer end
 959                 * because the buffer start pages are mapped there again.
 960                 */
 961                void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 962                p = handle_ar_packets(ctx, p, buffer_end);
 963                if (p < buffer_end)
 964                        goto error;
 965                /* adjust p to point back into the actual buffer */
 966                p -= AR_BUFFERS * PAGE_SIZE;
 967        }
 968
 969        p = handle_ar_packets(ctx, p, end);
 970        if (p != end) {
 971                if (p > end)
 972                        ar_context_abort(ctx, "inconsistent descriptor");
 973                goto error;
 974        }
 975
 976        ctx->pointer = p;
 977        ar_recycle_buffers(ctx, end_buffer_index);
 978
 979        return;
 980
 981error:
 982        ctx->pointer = NULL;
 983}
 984
 985static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 986                           unsigned int descriptors_offset, u32 regs)
 987{
 988        unsigned int i;
 989        dma_addr_t dma_addr;
 990        struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 991        struct descriptor *d;
 992
 993        ctx->regs        = regs;
 994        ctx->ohci        = ohci;
 995        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 996
 997        for (i = 0; i < AR_BUFFERS; i++) {
 998                ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 999                if (!ctx->pages[i])
1000                        goto out_of_memory;
1001                dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1002                                        0, PAGE_SIZE, DMA_FROM_DEVICE);
1003                if (dma_mapping_error(ohci->card.device, dma_addr)) {
1004                        __free_page(ctx->pages[i]);
1005                        ctx->pages[i] = NULL;
1006                        goto out_of_memory;
1007                }
1008                set_page_private(ctx->pages[i], dma_addr);
1009        }
1010
1011        for (i = 0; i < AR_BUFFERS; i++)
1012                pages[i]              = ctx->pages[i];
1013        for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1014                pages[AR_BUFFERS + i] = ctx->pages[i];
1015        ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1016                                 -1, PAGE_KERNEL);
1017        if (!ctx->buffer)
1018                goto out_of_memory;
1019
1020        ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1021        ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1022
1023        for (i = 0; i < AR_BUFFERS; i++) {
1024                d = &ctx->descriptors[i];
1025                d->req_count      = cpu_to_le16(PAGE_SIZE);
1026                d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1027                                                DESCRIPTOR_STATUS |
1028                                                DESCRIPTOR_BRANCH_ALWAYS);
1029                d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1030                d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1031                        ar_next_buffer_index(i) * sizeof(struct descriptor));
1032        }
1033
1034        return 0;
1035
1036out_of_memory:
1037        ar_context_release(ctx);
1038
1039        return -ENOMEM;
1040}
1041
1042static void ar_context_run(struct ar_context *ctx)
1043{
1044        unsigned int i;
1045
1046        for (i = 0; i < AR_BUFFERS; i++)
1047                ar_context_link_page(ctx, i);
1048
1049        ctx->pointer = ctx->buffer;
1050
1051        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1052        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1053}
1054
1055static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1056{
1057        __le16 branch;
1058
1059        branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1060
1061        /* figure out which descriptor the branch address goes in */
1062        if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1063                return d;
1064        else
1065                return d + z - 1;
1066}
1067
1068static void context_tasklet(unsigned long data)
1069{
1070        struct context *ctx = (struct context *) data;
1071        struct descriptor *d, *last;
1072        u32 address;
1073        int z;
1074        struct descriptor_buffer *desc;
1075
1076        desc = list_entry(ctx->buffer_list.next,
1077                        struct descriptor_buffer, list);
1078        last = ctx->last;
1079        while (last->branch_address != 0) {
1080                struct descriptor_buffer *old_desc = desc;
1081                address = le32_to_cpu(last->branch_address);
1082                z = address & 0xf;
1083                address &= ~0xf;
1084                ctx->current_bus = address;
1085
1086                /* If the branch address points to a buffer outside of the
1087                 * current buffer, advance to the next buffer. */
1088                if (address < desc->buffer_bus ||
1089                                address >= desc->buffer_bus + desc->used)
1090                        desc = list_entry(desc->list.next,
1091                                        struct descriptor_buffer, list);
1092                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1093                last = find_branch_descriptor(d, z);
1094
1095                if (!ctx->callback(ctx, d, last))
1096                        break;
1097
1098                if (old_desc != desc) {
1099                        /* If we've advanced to the next buffer, move the
1100                         * previous buffer to the free list. */
1101                        unsigned long flags;
1102                        old_desc->used = 0;
1103                        spin_lock_irqsave(&ctx->ohci->lock, flags);
1104                        list_move_tail(&old_desc->list, &ctx->buffer_list);
1105                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1106                }
1107                ctx->last = last;
1108        }
1109}
1110
1111/*
1112 * Allocate a new buffer and add it to the list of free buffers for this
1113 * context.  Must be called with ohci->lock held.
1114 */
1115static int context_add_buffer(struct context *ctx)
1116{
1117        struct descriptor_buffer *desc;
1118        dma_addr_t uninitialized_var(bus_addr);
1119        int offset;
1120
1121        /*
1122         * 16MB of descriptors should be far more than enough for any DMA
1123         * program.  This will catch run-away userspace or DoS attacks.
1124         */
1125        if (ctx->total_allocation >= 16*1024*1024)
1126                return -ENOMEM;
1127
1128        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1129                        &bus_addr, GFP_ATOMIC);
1130        if (!desc)
1131                return -ENOMEM;
1132
1133        offset = (void *)&desc->buffer - (void *)desc;
1134        desc->buffer_size = PAGE_SIZE - offset;
1135        desc->buffer_bus = bus_addr + offset;
1136        desc->used = 0;
1137
1138        list_add_tail(&desc->list, &ctx->buffer_list);
1139        ctx->total_allocation += PAGE_SIZE;
1140
1141        return 0;
1142}
1143
1144static int context_init(struct context *ctx, struct fw_ohci *ohci,
1145                        u32 regs, descriptor_callback_t callback)
1146{
1147        ctx->ohci = ohci;
1148        ctx->regs = regs;
1149        ctx->total_allocation = 0;
1150
1151        INIT_LIST_HEAD(&ctx->buffer_list);
1152        if (context_add_buffer(ctx) < 0)
1153                return -ENOMEM;
1154
1155        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1156                        struct descriptor_buffer, list);
1157
1158        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1159        ctx->callback = callback;
1160
1161        /*
1162         * We put a dummy descriptor in the buffer that has a NULL
1163         * branch address and looks like it's been sent.  That way we
1164         * have a descriptor to append DMA programs to.
1165         */
1166        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1167        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1168        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1169        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1170        ctx->last = ctx->buffer_tail->buffer;
1171        ctx->prev = ctx->buffer_tail->buffer;
1172        ctx->prev_z = 1;
1173
1174        return 0;
1175}
1176
1177static void context_release(struct context *ctx)
1178{
1179        struct fw_card *card = &ctx->ohci->card;
1180        struct descriptor_buffer *desc, *tmp;
1181
1182        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1183                dma_free_coherent(card->device, PAGE_SIZE, desc,
1184                        desc->buffer_bus -
1185                        ((void *)&desc->buffer - (void *)desc));
1186}
1187
1188/* Must be called with ohci->lock held */
1189static struct descriptor *context_get_descriptors(struct context *ctx,
1190                                                  int z, dma_addr_t *d_bus)
1191{
1192        struct descriptor *d = NULL;
1193        struct descriptor_buffer *desc = ctx->buffer_tail;
1194
1195        if (z * sizeof(*d) > desc->buffer_size)
1196                return NULL;
1197
1198        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1199                /* No room for the descriptor in this buffer, so advance to the
1200                 * next one. */
1201
1202                if (desc->list.next == &ctx->buffer_list) {
1203                        /* If there is no free buffer next in the list,
1204                         * allocate one. */
1205                        if (context_add_buffer(ctx) < 0)
1206                                return NULL;
1207                }
1208                desc = list_entry(desc->list.next,
1209                                struct descriptor_buffer, list);
1210                ctx->buffer_tail = desc;
1211        }
1212
1213        d = desc->buffer + desc->used / sizeof(*d);
1214        memset(d, 0, z * sizeof(*d));
1215        *d_bus = desc->buffer_bus + desc->used;
1216
1217        return d;
1218}
1219
1220static void context_run(struct context *ctx, u32 extra)
1221{
1222        struct fw_ohci *ohci = ctx->ohci;
1223
1224        reg_write(ohci, COMMAND_PTR(ctx->regs),
1225                  le32_to_cpu(ctx->last->branch_address));
1226        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1227        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1228        ctx->running = true;
1229        flush_writes(ohci);
1230}
1231
1232static void context_append(struct context *ctx,
1233                           struct descriptor *d, int z, int extra)
1234{
1235        dma_addr_t d_bus;
1236        struct descriptor_buffer *desc = ctx->buffer_tail;
1237        struct descriptor *d_branch;
1238
1239        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1240
1241        desc->used += (z + extra) * sizeof(*d);
1242
1243        wmb(); /* finish init of new descriptors before branch_address update */
1244
1245        d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1246        d_branch->branch_address = cpu_to_le32(d_bus | z);
1247
1248        /*
1249         * VT6306 incorrectly checks only the single descriptor at the
1250         * CommandPtr when the wake bit is written, so if it's a
1251         * multi-descriptor block starting with an INPUT_MORE, put a copy of
1252         * the branch address in the first descriptor.
1253         *
1254         * Not doing this for transmit contexts since not sure how it interacts
1255         * with skip addresses.
1256         */
1257        if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1258            d_branch != ctx->prev &&
1259            (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1260             cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1261                ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1262        }
1263
1264        ctx->prev = d;
1265        ctx->prev_z = z;
1266}
1267
1268static void context_stop(struct context *ctx)
1269{
1270        struct fw_ohci *ohci = ctx->ohci;
1271        u32 reg;
1272        int i;
1273
1274        reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1275        ctx->running = false;
1276
1277        for (i = 0; i < 1000; i++) {
1278                reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1279                if ((reg & CONTEXT_ACTIVE) == 0)
1280                        return;
1281
1282                if (i)
1283                        udelay(10);
1284        }
1285        ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1286}
1287
1288struct driver_data {
1289        u8 inline_data[8];
1290        struct fw_packet *packet;
1291};
1292
1293/*
1294 * This function apppends a packet to the DMA queue for transmission.
1295 * Must always be called with the ochi->lock held to ensure proper
1296 * generation handling and locking around packet queue manipulation.
1297 */
1298static int at_context_queue_packet(struct context *ctx,
1299                                   struct fw_packet *packet)
1300{
1301        struct fw_ohci *ohci = ctx->ohci;
1302        dma_addr_t d_bus, uninitialized_var(payload_bus);
1303        struct driver_data *driver_data;
1304        struct descriptor *d, *last;
1305        __le32 *header;
1306        int z, tcode;
1307
1308        d = context_get_descriptors(ctx, 4, &d_bus);
1309        if (d == NULL) {
1310                packet->ack = RCODE_SEND_ERROR;
1311                return -1;
1312        }
1313
1314        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1315        d[0].res_count = cpu_to_le16(packet->timestamp);
1316
1317        /*
1318         * The DMA format for asynchronous link packets is different
1319         * from the IEEE1394 layout, so shift the fields around
1320         * accordingly.
1321         */
1322
1323        tcode = (packet->header[0] >> 4) & 0x0f;
1324        header = (__le32 *) &d[1];
1325        switch (tcode) {
1326        case TCODE_WRITE_QUADLET_REQUEST:
1327        case TCODE_WRITE_BLOCK_REQUEST:
1328        case TCODE_WRITE_RESPONSE:
1329        case TCODE_READ_QUADLET_REQUEST:
1330        case TCODE_READ_BLOCK_REQUEST:
1331        case TCODE_READ_QUADLET_RESPONSE:
1332        case TCODE_READ_BLOCK_RESPONSE:
1333        case TCODE_LOCK_REQUEST:
1334        case TCODE_LOCK_RESPONSE:
1335                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1336                                        (packet->speed << 16));
1337                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1338                                        (packet->header[0] & 0xffff0000));
1339                header[2] = cpu_to_le32(packet->header[2]);
1340
1341                if (TCODE_IS_BLOCK_PACKET(tcode))
1342                        header[3] = cpu_to_le32(packet->header[3]);
1343                else
1344                        header[3] = (__force __le32) packet->header[3];
1345
1346                d[0].req_count = cpu_to_le16(packet->header_length);
1347                break;
1348
1349        case TCODE_LINK_INTERNAL:
1350                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1351                                        (packet->speed << 16));
1352                header[1] = cpu_to_le32(packet->header[1]);
1353                header[2] = cpu_to_le32(packet->header[2]);
1354                d[0].req_count = cpu_to_le16(12);
1355
1356                if (is_ping_packet(&packet->header[1]))
1357                        d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1358                break;
1359
1360        case TCODE_STREAM_DATA:
1361                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1362                                        (packet->speed << 16));
1363                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1364                d[0].req_count = cpu_to_le16(8);
1365                break;
1366
1367        default:
1368                /* BUG(); */
1369                packet->ack = RCODE_SEND_ERROR;
1370                return -1;
1371        }
1372
1373        BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1374        driver_data = (struct driver_data *) &d[3];
1375        driver_data->packet = packet;
1376        packet->driver_data = driver_data;
1377
1378        if (packet->payload_length > 0) {
1379                if (packet->payload_length > sizeof(driver_data->inline_data)) {
1380                        payload_bus = dma_map_single(ohci->card.device,
1381                                                     packet->payload,
1382                                                     packet->payload_length,
1383                                                     DMA_TO_DEVICE);
1384                        if (dma_mapping_error(ohci->card.device, payload_bus)) {
1385                                packet->ack = RCODE_SEND_ERROR;
1386                                return -1;
1387                        }
1388                        packet->payload_bus     = payload_bus;
1389                        packet->payload_mapped  = true;
1390                } else {
1391                        memcpy(driver_data->inline_data, packet->payload,
1392                               packet->payload_length);
1393                        payload_bus = d_bus + 3 * sizeof(*d);
1394                }
1395
1396                d[2].req_count    = cpu_to_le16(packet->payload_length);
1397                d[2].data_address = cpu_to_le32(payload_bus);
1398                last = &d[2];
1399                z = 3;
1400        } else {
1401                last = &d[0];
1402                z = 2;
1403        }
1404
1405        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1406                                     DESCRIPTOR_IRQ_ALWAYS |
1407                                     DESCRIPTOR_BRANCH_ALWAYS);
1408
1409        /* FIXME: Document how the locking works. */
1410        if (ohci->generation != packet->generation) {
1411                if (packet->payload_mapped)
1412                        dma_unmap_single(ohci->card.device, payload_bus,
1413                                         packet->payload_length, DMA_TO_DEVICE);
1414                packet->ack = RCODE_GENERATION;
1415                return -1;
1416        }
1417
1418        context_append(ctx, d, z, 4 - z);
1419
1420        if (ctx->running)
1421                reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1422        else
1423                context_run(ctx, 0);
1424
1425        return 0;
1426}
1427
1428static void at_context_flush(struct context *ctx)
1429{
1430        tasklet_disable(&ctx->tasklet);
1431
1432        ctx->flushing = true;
1433        context_tasklet((unsigned long)ctx);
1434        ctx->flushing = false;
1435
1436        tasklet_enable(&ctx->tasklet);
1437}
1438
1439static int handle_at_packet(struct context *context,
1440                            struct descriptor *d,
1441                            struct descriptor *last)
1442{
1443        struct driver_data *driver_data;
1444        struct fw_packet *packet;
1445        struct fw_ohci *ohci = context->ohci;
1446        int evt;
1447
1448        if (last->transfer_status == 0 && !context->flushing)
1449                /* This descriptor isn't done yet, stop iteration. */
1450                return 0;
1451
1452        driver_data = (struct driver_data *) &d[3];
1453        packet = driver_data->packet;
1454        if (packet == NULL)
1455                /* This packet was cancelled, just continue. */
1456                return 1;
1457
1458        if (packet->payload_mapped)
1459                dma_unmap_single(ohci->card.device, packet->payload_bus,
1460                                 packet->payload_length, DMA_TO_DEVICE);
1461
1462        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1463        packet->timestamp = le16_to_cpu(last->res_count);
1464
1465        log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1466
1467        switch (evt) {
1468        case OHCI1394_evt_timeout:
1469                /* Async response transmit timed out. */
1470                packet->ack = RCODE_CANCELLED;
1471                break;
1472
1473        case OHCI1394_evt_flushed:
1474                /*
1475                 * The packet was flushed should give same error as
1476                 * when we try to use a stale generation count.
1477                 */
1478                packet->ack = RCODE_GENERATION;
1479                break;
1480
1481        case OHCI1394_evt_missing_ack:
1482                if (context->flushing)
1483                        packet->ack = RCODE_GENERATION;
1484                else {
1485                        /*
1486                         * Using a valid (current) generation count, but the
1487                         * node is not on the bus or not sending acks.
1488                         */
1489                        packet->ack = RCODE_NO_ACK;
1490                }
1491                break;
1492
1493        case ACK_COMPLETE + 0x10:
1494        case ACK_PENDING + 0x10:
1495        case ACK_BUSY_X + 0x10:
1496        case ACK_BUSY_A + 0x10:
1497        case ACK_BUSY_B + 0x10:
1498        case ACK_DATA_ERROR + 0x10:
1499        case ACK_TYPE_ERROR + 0x10:
1500                packet->ack = evt - 0x10;
1501                break;
1502
1503        case OHCI1394_evt_no_status:
1504                if (context->flushing) {
1505                        packet->ack = RCODE_GENERATION;
1506                        break;
1507                }
1508                /* fall through */
1509
1510        default:
1511                packet->ack = RCODE_SEND_ERROR;
1512                break;
1513        }
1514
1515        packet->callback(packet, &ohci->card, packet->ack);
1516
1517        return 1;
1518}
1519
1520#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1521#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1522#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1523#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1524#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1525
1526static void handle_local_rom(struct fw_ohci *ohci,
1527                             struct fw_packet *packet, u32 csr)
1528{
1529        struct fw_packet response;
1530        int tcode, length, i;
1531
1532        tcode = HEADER_GET_TCODE(packet->header[0]);
1533        if (TCODE_IS_BLOCK_PACKET(tcode))
1534                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1535        else
1536                length = 4;
1537
1538        i = csr - CSR_CONFIG_ROM;
1539        if (i + length > CONFIG_ROM_SIZE) {
1540                fw_fill_response(&response, packet->header,
1541                                 RCODE_ADDRESS_ERROR, NULL, 0);
1542        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1543                fw_fill_response(&response, packet->header,
1544                                 RCODE_TYPE_ERROR, NULL, 0);
1545        } else {
1546                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1547                                 (void *) ohci->config_rom + i, length);
1548        }
1549
1550        fw_core_handle_response(&ohci->card, &response);
1551}
1552
1553static void handle_local_lock(struct fw_ohci *ohci,
1554                              struct fw_packet *packet, u32 csr)
1555{
1556        struct fw_packet response;
1557        int tcode, length, ext_tcode, sel, try;
1558        __be32 *payload, lock_old;
1559        u32 lock_arg, lock_data;
1560
1561        tcode = HEADER_GET_TCODE(packet->header[0]);
1562        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1563        payload = packet->payload;
1564        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1565
1566        if (tcode == TCODE_LOCK_REQUEST &&
1567            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1568                lock_arg = be32_to_cpu(payload[0]);
1569                lock_data = be32_to_cpu(payload[1]);
1570        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1571                lock_arg = 0;
1572                lock_data = 0;
1573        } else {
1574                fw_fill_response(&response, packet->header,
1575                                 RCODE_TYPE_ERROR, NULL, 0);
1576                goto out;
1577        }
1578
1579        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1580        reg_write(ohci, OHCI1394_CSRData, lock_data);
1581        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1582        reg_write(ohci, OHCI1394_CSRControl, sel);
1583
1584        for (try = 0; try < 20; try++)
1585                if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1586                        lock_old = cpu_to_be32(reg_read(ohci,
1587                                                        OHCI1394_CSRData));
1588                        fw_fill_response(&response, packet->header,
1589                                         RCODE_COMPLETE,
1590                                         &lock_old, sizeof(lock_old));
1591                        goto out;
1592                }
1593
1594        ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1595        fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1596
1597 out:
1598        fw_core_handle_response(&ohci->card, &response);
1599}
1600
1601static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1602{
1603        u64 offset, csr;
1604
1605        if (ctx == &ctx->ohci->at_request_ctx) {
1606                packet->ack = ACK_PENDING;
1607                packet->callback(packet, &ctx->ohci->card, packet->ack);
1608        }
1609
1610        offset =
1611                ((unsigned long long)
1612                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1613                packet->header[2];
1614        csr = offset - CSR_REGISTER_BASE;
1615
1616        /* Handle config rom reads. */
1617        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1618                handle_local_rom(ctx->ohci, packet, csr);
1619        else switch (csr) {
1620        case CSR_BUS_MANAGER_ID:
1621        case CSR_BANDWIDTH_AVAILABLE:
1622        case CSR_CHANNELS_AVAILABLE_HI:
1623        case CSR_CHANNELS_AVAILABLE_LO:
1624                handle_local_lock(ctx->ohci, packet, csr);
1625                break;
1626        default:
1627                if (ctx == &ctx->ohci->at_request_ctx)
1628                        fw_core_handle_request(&ctx->ohci->card, packet);
1629                else
1630                        fw_core_handle_response(&ctx->ohci->card, packet);
1631                break;
1632        }
1633
1634        if (ctx == &ctx->ohci->at_response_ctx) {
1635                packet->ack = ACK_COMPLETE;
1636                packet->callback(packet, &ctx->ohci->card, packet->ack);
1637        }
1638}
1639
1640static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1641{
1642        unsigned long flags;
1643        int ret;
1644
1645        spin_lock_irqsave(&ctx->ohci->lock, flags);
1646
1647        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1648            ctx->ohci->generation == packet->generation) {
1649                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1650                handle_local_request(ctx, packet);
1651                return;
1652        }
1653
1654        ret = at_context_queue_packet(ctx, packet);
1655        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1656
1657        if (ret < 0)
1658                packet->callback(packet, &ctx->ohci->card, packet->ack);
1659
1660}
1661
1662static void detect_dead_context(struct fw_ohci *ohci,
1663                                const char *name, unsigned int regs)
1664{
1665        u32 ctl;
1666
1667        ctl = reg_read(ohci, CONTROL_SET(regs));
1668        if (ctl & CONTEXT_DEAD)
1669                ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1670                        name, evts[ctl & 0x1f]);
1671}
1672
1673static void handle_dead_contexts(struct fw_ohci *ohci)
1674{
1675        unsigned int i;
1676        char name[8];
1677
1678        detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1679        detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1680        detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1681        detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1682        for (i = 0; i < 32; ++i) {
1683                if (!(ohci->it_context_support & (1 << i)))
1684                        continue;
1685                sprintf(name, "IT%u", i);
1686                detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1687        }
1688        for (i = 0; i < 32; ++i) {
1689                if (!(ohci->ir_context_support & (1 << i)))
1690                        continue;
1691                sprintf(name, "IR%u", i);
1692                detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1693        }
1694        /* TODO: maybe try to flush and restart the dead contexts */
1695}
1696
1697static u32 cycle_timer_ticks(u32 cycle_timer)
1698{
1699        u32 ticks;
1700
1701        ticks = cycle_timer & 0xfff;
1702        ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1703        ticks += (3072 * 8000) * (cycle_timer >> 25);
1704
1705        return ticks;
1706}
1707
1708/*
1709 * Some controllers exhibit one or more of the following bugs when updating the
1710 * iso cycle timer register:
1711 *  - When the lowest six bits are wrapping around to zero, a read that happens
1712 *    at the same time will return garbage in the lowest ten bits.
1713 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1714 *    not incremented for about 60 ns.
1715 *  - Occasionally, the entire register reads zero.
1716 *
1717 * To catch these, we read the register three times and ensure that the
1718 * difference between each two consecutive reads is approximately the same, i.e.
1719 * less than twice the other.  Furthermore, any negative difference indicates an
1720 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1721 * execute, so we have enough precision to compute the ratio of the differences.)
1722 */
1723static u32 get_cycle_time(struct fw_ohci *ohci)
1724{
1725        u32 c0, c1, c2;
1726        u32 t0, t1, t2;
1727        s32 diff01, diff12;
1728        int i;
1729
1730        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1731
1732        if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1733                i = 0;
1734                c1 = c2;
1735                c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1736                do {
1737                        c0 = c1;
1738                        c1 = c2;
1739                        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1740                        t0 = cycle_timer_ticks(c0);
1741                        t1 = cycle_timer_ticks(c1);
1742                        t2 = cycle_timer_ticks(c2);
1743                        diff01 = t1 - t0;
1744                        diff12 = t2 - t1;
1745                } while ((diff01 <= 0 || diff12 <= 0 ||
1746                          diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1747                         && i++ < 20);
1748        }
1749
1750        return c2;
1751}
1752
1753/*
1754 * This function has to be called at least every 64 seconds.  The bus_time
1755 * field stores not only the upper 25 bits of the BUS_TIME register but also
1756 * the most significant bit of the cycle timer in bit 6 so that we can detect
1757 * changes in this bit.
1758 */
1759static u32 update_bus_time(struct fw_ohci *ohci)
1760{
1761        u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1762
1763        if (unlikely(!ohci->bus_time_running)) {
1764                reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1765                ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1766                                 (cycle_time_seconds & 0x40);
1767                ohci->bus_time_running = true;
1768        }
1769
1770        if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1771                ohci->bus_time += 0x40;
1772
1773        return ohci->bus_time | cycle_time_seconds;
1774}
1775
1776static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1777{
1778        int reg;
1779
1780        mutex_lock(&ohci->phy_reg_mutex);
1781        reg = write_phy_reg(ohci, 7, port_index);
1782        if (reg >= 0)
1783                reg = read_phy_reg(ohci, 8);
1784        mutex_unlock(&ohci->phy_reg_mutex);
1785        if (reg < 0)
1786                return reg;
1787
1788        switch (reg & 0x0f) {
1789        case 0x06:
1790                return 2;       /* is child node (connected to parent node) */
1791        case 0x0e:
1792                return 3;       /* is parent node (connected to child node) */
1793        }
1794        return 1;               /* not connected */
1795}
1796
1797static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1798        int self_id_count)
1799{
1800        int i;
1801        u32 entry;
1802
1803        for (i = 0; i < self_id_count; i++) {
1804                entry = ohci->self_id_buffer[i];
1805                if ((self_id & 0xff000000) == (entry & 0xff000000))
1806                        return -1;
1807                if ((self_id & 0xff000000) < (entry & 0xff000000))
1808                        return i;
1809        }
1810        return i;
1811}
1812
1813static int initiated_reset(struct fw_ohci *ohci)
1814{
1815        int reg;
1816        int ret = 0;
1817
1818        mutex_lock(&ohci->phy_reg_mutex);
1819        reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1820        if (reg >= 0) {
1821                reg = read_phy_reg(ohci, 8);
1822                reg |= 0x40;
1823                reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1824                if (reg >= 0) {
1825                        reg = read_phy_reg(ohci, 12); /* read register 12 */
1826                        if (reg >= 0) {
1827                                if ((reg & 0x08) == 0x08) {
1828                                        /* bit 3 indicates "initiated reset" */
1829                                        ret = 0x2;
1830                                }
1831                        }
1832                }
1833        }
1834        mutex_unlock(&ohci->phy_reg_mutex);
1835        return ret;
1836}
1837
1838/*
1839 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1840 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1841 * Construct the selfID from phy register contents.
1842 */
1843static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1844{
1845        int reg, i, pos, status;
1846        /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1847        u32 self_id = 0x8040c800;
1848
1849        reg = reg_read(ohci, OHCI1394_NodeID);
1850        if (!(reg & OHCI1394_NodeID_idValid)) {
1851                ohci_notice(ohci,
1852                            "node ID not valid, new bus reset in progress\n");
1853                return -EBUSY;
1854        }
1855        self_id |= ((reg & 0x3f) << 24); /* phy ID */
1856
1857        reg = ohci_read_phy_reg(&ohci->card, 4);
1858        if (reg < 0)
1859                return reg;
1860        self_id |= ((reg & 0x07) << 8); /* power class */
1861
1862        reg = ohci_read_phy_reg(&ohci->card, 1);
1863        if (reg < 0)
1864                return reg;
1865        self_id |= ((reg & 0x3f) << 16); /* gap count */
1866
1867        for (i = 0; i < 3; i++) {
1868                status = get_status_for_port(ohci, i);
1869                if (status < 0)
1870                        return status;
1871                self_id |= ((status & 0x3) << (6 - (i * 2)));
1872        }
1873
1874        self_id |= initiated_reset(ohci);
1875
1876        pos = get_self_id_pos(ohci, self_id, self_id_count);
1877        if (pos >= 0) {
1878                memmove(&(ohci->self_id_buffer[pos+1]),
1879                        &(ohci->self_id_buffer[pos]),
1880                        (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1881                ohci->self_id_buffer[pos] = self_id;
1882                self_id_count++;
1883        }
1884        return self_id_count;
1885}
1886
1887static void bus_reset_work(struct work_struct *work)
1888{
1889        struct fw_ohci *ohci =
1890                container_of(work, struct fw_ohci, bus_reset_work);
1891        int self_id_count, generation, new_generation, i, j;
1892        u32 reg;
1893        void *free_rom = NULL;
1894        dma_addr_t free_rom_bus = 0;
1895        bool is_new_root;
1896
1897        reg = reg_read(ohci, OHCI1394_NodeID);
1898        if (!(reg & OHCI1394_NodeID_idValid)) {
1899                ohci_notice(ohci,
1900                            "node ID not valid, new bus reset in progress\n");
1901                return;
1902        }
1903        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1904                ohci_notice(ohci, "malconfigured bus\n");
1905                return;
1906        }
1907        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1908                               OHCI1394_NodeID_nodeNumber);
1909
1910        is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1911        if (!(ohci->is_root && is_new_root))
1912                reg_write(ohci, OHCI1394_LinkControlSet,
1913                          OHCI1394_LinkControl_cycleMaster);
1914        ohci->is_root = is_new_root;
1915
1916        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1917        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1918                ohci_notice(ohci, "self ID receive error\n");
1919                return;
1920        }
1921        /*
1922         * The count in the SelfIDCount register is the number of
1923         * bytes in the self ID receive buffer.  Since we also receive
1924         * the inverted quadlets and a header quadlet, we shift one
1925         * bit extra to get the actual number of self IDs.
1926         */
1927        self_id_count = (reg >> 3) & 0xff;
1928
1929        if (self_id_count > 252) {
1930                ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1931                return;
1932        }
1933
1934        generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1935        rmb();
1936
1937        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1938                u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1939                u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1940
1941                if (id != ~id2) {
1942                        /*
1943                         * If the invalid data looks like a cycle start packet,
1944                         * it's likely to be the result of the cycle master
1945                         * having a wrong gap count.  In this case, the self IDs
1946                         * so far are valid and should be processed so that the
1947                         * bus manager can then correct the gap count.
1948                         */
1949                        if (id == 0xffff008f) {
1950                                ohci_notice(ohci, "ignoring spurious self IDs\n");
1951                                self_id_count = j;
1952                                break;
1953                        }
1954
1955                        ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1956                                    j, self_id_count, id, id2);
1957                        return;
1958                }
1959                ohci->self_id_buffer[j] = id;
1960        }
1961
1962        if (ohci->quirks & QUIRK_TI_SLLZ059) {
1963                self_id_count = find_and_insert_self_id(ohci, self_id_count);
1964                if (self_id_count < 0) {
1965                        ohci_notice(ohci,
1966                                    "could not construct local self ID\n");
1967                        return;
1968                }
1969        }
1970
1971        if (self_id_count == 0) {
1972                ohci_notice(ohci, "no self IDs\n");
1973                return;
1974        }
1975        rmb();
1976
1977        /*
1978         * Check the consistency of the self IDs we just read.  The
1979         * problem we face is that a new bus reset can start while we
1980         * read out the self IDs from the DMA buffer. If this happens,
1981         * the DMA buffer will be overwritten with new self IDs and we
1982         * will read out inconsistent data.  The OHCI specification
1983         * (section 11.2) recommends a technique similar to
1984         * linux/seqlock.h, where we remember the generation of the
1985         * self IDs in the buffer before reading them out and compare
1986         * it to the current generation after reading them out.  If
1987         * the two generations match we know we have a consistent set
1988         * of self IDs.
1989         */
1990
1991        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1992        if (new_generation != generation) {
1993                ohci_notice(ohci, "new bus reset, discarding self ids\n");
1994                return;
1995        }
1996
1997        /* FIXME: Document how the locking works. */
1998        spin_lock_irq(&ohci->lock);
1999
2000        ohci->generation = -1; /* prevent AT packet queueing */
2001        context_stop(&ohci->at_request_ctx);
2002        context_stop(&ohci->at_response_ctx);
2003
2004        spin_unlock_irq(&ohci->lock);
2005
2006        /*
2007         * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2008         * packets in the AT queues and software needs to drain them.
2009         * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2010         */
2011        at_context_flush(&ohci->at_request_ctx);
2012        at_context_flush(&ohci->at_response_ctx);
2013
2014        spin_lock_irq(&ohci->lock);
2015
2016        ohci->generation = generation;
2017        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2018
2019        if (ohci->quirks & QUIRK_RESET_PACKET)
2020                ohci->request_generation = generation;
2021
2022        /*
2023         * This next bit is unrelated to the AT context stuff but we
2024         * have to do it under the spinlock also.  If a new config rom
2025         * was set up before this reset, the old one is now no longer
2026         * in use and we can free it. Update the config rom pointers
2027         * to point to the current config rom and clear the
2028         * next_config_rom pointer so a new update can take place.
2029         */
2030
2031        if (ohci->next_config_rom != NULL) {
2032                if (ohci->next_config_rom != ohci->config_rom) {
2033                        free_rom      = ohci->config_rom;
2034                        free_rom_bus  = ohci->config_rom_bus;
2035                }
2036                ohci->config_rom      = ohci->next_config_rom;
2037                ohci->config_rom_bus  = ohci->next_config_rom_bus;
2038                ohci->next_config_rom = NULL;
2039
2040                /*
2041                 * Restore config_rom image and manually update
2042                 * config_rom registers.  Writing the header quadlet
2043                 * will indicate that the config rom is ready, so we
2044                 * do that last.
2045                 */
2046                reg_write(ohci, OHCI1394_BusOptions,
2047                          be32_to_cpu(ohci->config_rom[2]));
2048                ohci->config_rom[0] = ohci->next_header;
2049                reg_write(ohci, OHCI1394_ConfigROMhdr,
2050                          be32_to_cpu(ohci->next_header));
2051        }
2052
2053#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2054        reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2055        reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2056#endif
2057
2058        spin_unlock_irq(&ohci->lock);
2059
2060        if (free_rom)
2061                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2062                                  free_rom, free_rom_bus);
2063
2064        log_selfids(ohci, generation, self_id_count);
2065
2066        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2067                                 self_id_count, ohci->self_id_buffer,
2068                                 ohci->csr_state_setclear_abdicate);
2069        ohci->csr_state_setclear_abdicate = false;
2070}
2071
2072static irqreturn_t irq_handler(int irq, void *data)
2073{
2074        struct fw_ohci *ohci = data;
2075        u32 event, iso_event;
2076        int i;
2077
2078        event = reg_read(ohci, OHCI1394_IntEventClear);
2079
2080        if (!event || !~event)
2081                return IRQ_NONE;
2082
2083        /*
2084         * busReset and postedWriteErr must not be cleared yet
2085         * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2086         */
2087        reg_write(ohci, OHCI1394_IntEventClear,
2088                  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2089        log_irqs(ohci, event);
2090
2091        if (event & OHCI1394_selfIDComplete)
2092                queue_work(selfid_workqueue, &ohci->bus_reset_work);
2093
2094        if (event & OHCI1394_RQPkt)
2095                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2096
2097        if (event & OHCI1394_RSPkt)
2098                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2099
2100        if (event & OHCI1394_reqTxComplete)
2101                tasklet_schedule(&ohci->at_request_ctx.tasklet);
2102
2103        if (event & OHCI1394_respTxComplete)
2104                tasklet_schedule(&ohci->at_response_ctx.tasklet);
2105
2106        if (event & OHCI1394_isochRx) {
2107                iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2108                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2109
2110                while (iso_event) {
2111                        i = ffs(iso_event) - 1;
2112                        tasklet_schedule(
2113                                &ohci->ir_context_list[i].context.tasklet);
2114                        iso_event &= ~(1 << i);
2115                }
2116        }
2117
2118        if (event & OHCI1394_isochTx) {
2119                iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2120                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2121
2122                while (iso_event) {
2123                        i = ffs(iso_event) - 1;
2124                        tasklet_schedule(
2125                                &ohci->it_context_list[i].context.tasklet);
2126                        iso_event &= ~(1 << i);
2127                }
2128        }
2129
2130        if (unlikely(event & OHCI1394_regAccessFail))
2131                ohci_err(ohci, "register access failure\n");
2132
2133        if (unlikely(event & OHCI1394_postedWriteErr)) {
2134                reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2135                reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2136                reg_write(ohci, OHCI1394_IntEventClear,
2137                          OHCI1394_postedWriteErr);
2138                if (printk_ratelimit())
2139                        ohci_err(ohci, "PCI posted write error\n");
2140        }
2141
2142        if (unlikely(event & OHCI1394_cycleTooLong)) {
2143                if (printk_ratelimit())
2144                        ohci_notice(ohci, "isochronous cycle too long\n");
2145                reg_write(ohci, OHCI1394_LinkControlSet,
2146                          OHCI1394_LinkControl_cycleMaster);
2147        }
2148
2149        if (unlikely(event & OHCI1394_cycleInconsistent)) {
2150                /*
2151                 * We need to clear this event bit in order to make
2152                 * cycleMatch isochronous I/O work.  In theory we should
2153                 * stop active cycleMatch iso contexts now and restart
2154                 * them at least two cycles later.  (FIXME?)
2155                 */
2156                if (printk_ratelimit())
2157                        ohci_notice(ohci, "isochronous cycle inconsistent\n");
2158        }
2159
2160        if (unlikely(event & OHCI1394_unrecoverableError))
2161                handle_dead_contexts(ohci);
2162
2163        if (event & OHCI1394_cycle64Seconds) {
2164                spin_lock(&ohci->lock);
2165                update_bus_time(ohci);
2166                spin_unlock(&ohci->lock);
2167        } else
2168                flush_writes(ohci);
2169
2170        return IRQ_HANDLED;
2171}
2172
2173static int software_reset(struct fw_ohci *ohci)
2174{
2175        u32 val;
2176        int i;
2177
2178        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2179        for (i = 0; i < 500; i++) {
2180                val = reg_read(ohci, OHCI1394_HCControlSet);
2181                if (!~val)
2182                        return -ENODEV; /* Card was ejected. */
2183
2184                if (!(val & OHCI1394_HCControl_softReset))
2185                        return 0;
2186
2187                msleep(1);
2188        }
2189
2190        return -EBUSY;
2191}
2192
2193static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2194{
2195        size_t size = length * 4;
2196
2197        memcpy(dest, src, size);
2198        if (size < CONFIG_ROM_SIZE)
2199                memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2200}
2201
2202static int configure_1394a_enhancements(struct fw_ohci *ohci)
2203{
2204        bool enable_1394a;
2205        int ret, clear, set, offset;
2206
2207        /* Check if the driver should configure link and PHY. */
2208        if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2209              OHCI1394_HCControl_programPhyEnable))
2210                return 0;
2211
2212        /* Paranoia: check whether the PHY supports 1394a, too. */
2213        enable_1394a = false;
2214        ret = read_phy_reg(ohci, 2);
2215        if (ret < 0)
2216                return ret;
2217        if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2218                ret = read_paged_phy_reg(ohci, 1, 8);
2219                if (ret < 0)
2220                        return ret;
2221                if (ret >= 1)
2222                        enable_1394a = true;
2223        }
2224
2225        if (ohci->quirks & QUIRK_NO_1394A)
2226                enable_1394a = false;
2227
2228        /* Configure PHY and link consistently. */
2229        if (enable_1394a) {
2230                clear = 0;
2231                set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2232        } else {
2233                clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2234                set = 0;
2235        }
2236        ret = update_phy_reg(ohci, 5, clear, set);
2237        if (ret < 0)
2238                return ret;
2239
2240        if (enable_1394a)
2241                offset = OHCI1394_HCControlSet;
2242        else
2243                offset = OHCI1394_HCControlClear;
2244        reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2245
2246        /* Clean up: configuration has been taken care of. */
2247        reg_write(ohci, OHCI1394_HCControlClear,
2248                  OHCI1394_HCControl_programPhyEnable);
2249
2250        return 0;
2251}
2252
2253static int probe_tsb41ba3d(struct fw_ohci *ohci)
2254{
2255        /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2256        static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2257        int reg, i;
2258
2259        reg = read_phy_reg(ohci, 2);
2260        if (reg < 0)
2261                return reg;
2262        if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2263                return 0;
2264
2265        for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2266                reg = read_paged_phy_reg(ohci, 1, i + 10);
2267                if (reg < 0)
2268                        return reg;
2269                if (reg != id[i])
2270                        return 0;
2271        }
2272        return 1;
2273}
2274
2275static int ohci_enable(struct fw_card *card,
2276                       const __be32 *config_rom, size_t length)
2277{
2278        struct fw_ohci *ohci = fw_ohci(card);
2279        u32 lps, version, irqs;
2280        int i, ret;
2281
2282        if (software_reset(ohci)) {
2283                ohci_err(ohci, "failed to reset ohci card\n");
2284                return -EBUSY;
2285        }
2286
2287        /*
2288         * Now enable LPS, which we need in order to start accessing
2289         * most of the registers.  In fact, on some cards (ALI M5251),
2290         * accessing registers in the SClk domain without LPS enabled
2291         * will lock up the machine.  Wait 50msec to make sure we have
2292         * full link enabled.  However, with some cards (well, at least
2293         * a JMicron PCIe card), we have to try again sometimes.
2294         *
2295         * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2296         * cannot actually use the phy at that time.  These need tens of
2297         * millisecods pause between LPS write and first phy access too.
2298         *
2299         * But do not wait for 50msec on Agere/LSI cards.  Their phy
2300         * arbitration state machine may time out during such a long wait.
2301         */
2302
2303        reg_write(ohci, OHCI1394_HCControlSet,
2304                  OHCI1394_HCControl_LPS |
2305                  OHCI1394_HCControl_postedWriteEnable);
2306        flush_writes(ohci);
2307
2308        if (!(ohci->quirks & QUIRK_PHY_LCTRL_TIMEOUT))
2309                msleep(50);
2310
2311        for (lps = 0, i = 0; !lps && i < 150; i++) {
2312                msleep(1);
2313                lps = reg_read(ohci, OHCI1394_HCControlSet) &
2314                      OHCI1394_HCControl_LPS;
2315        }
2316
2317        if (!lps) {
2318                ohci_err(ohci, "failed to set Link Power Status\n");
2319                return -EIO;
2320        }
2321
2322        if (ohci->quirks & QUIRK_TI_SLLZ059) {
2323                ret = probe_tsb41ba3d(ohci);
2324                if (ret < 0)
2325                        return ret;
2326                if (ret)
2327                        ohci_notice(ohci, "local TSB41BA3D phy\n");
2328                else
2329                        ohci->quirks &= ~QUIRK_TI_SLLZ059;
2330        }
2331
2332        reg_write(ohci, OHCI1394_HCControlClear,
2333                  OHCI1394_HCControl_noByteSwapData);
2334
2335        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2336        reg_write(ohci, OHCI1394_LinkControlSet,
2337                  OHCI1394_LinkControl_cycleTimerEnable |
2338                  OHCI1394_LinkControl_cycleMaster);
2339
2340        reg_write(ohci, OHCI1394_ATRetries,
2341                  OHCI1394_MAX_AT_REQ_RETRIES |
2342                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2343                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2344                  (200 << 16));
2345
2346        ohci->bus_time_running = false;
2347
2348        for (i = 0; i < 32; i++)
2349                if (ohci->ir_context_support & (1 << i))
2350                        reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2351                                  IR_CONTEXT_MULTI_CHANNEL_MODE);
2352
2353        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2354        if (version >= OHCI_VERSION_1_1) {
2355                reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2356                          0xfffffffe);
2357                card->broadcast_channel_auto_allocated = true;
2358        }
2359
2360        /* Get implemented bits of the priority arbitration request counter. */
2361        reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2362        ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2363        reg_write(ohci, OHCI1394_FairnessControl, 0);
2364        card->priority_budget_implemented = ohci->pri_req_max != 0;
2365
2366        reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2367        reg_write(ohci, OHCI1394_IntEventClear, ~0);
2368        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2369
2370        ret = configure_1394a_enhancements(ohci);
2371        if (ret < 0)
2372                return ret;
2373
2374        /* Activate link_on bit and contender bit in our self ID packets.*/
2375        ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2376        if (ret < 0)
2377                return ret;
2378
2379        /*
2380         * When the link is not yet enabled, the atomic config rom
2381         * update mechanism described below in ohci_set_config_rom()
2382         * is not active.  We have to update ConfigRomHeader and
2383         * BusOptions manually, and the write to ConfigROMmap takes
2384         * effect immediately.  We tie this to the enabling of the
2385         * link, so we have a valid config rom before enabling - the
2386         * OHCI requires that ConfigROMhdr and BusOptions have valid
2387         * values before enabling.
2388         *
2389         * However, when the ConfigROMmap is written, some controllers
2390         * always read back quadlets 0 and 2 from the config rom to
2391         * the ConfigRomHeader and BusOptions registers on bus reset.
2392         * They shouldn't do that in this initial case where the link
2393         * isn't enabled.  This means we have to use the same
2394         * workaround here, setting the bus header to 0 and then write
2395         * the right values in the bus reset tasklet.
2396         */
2397
2398        if (config_rom) {
2399                ohci->next_config_rom =
2400                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2401                                           &ohci->next_config_rom_bus,
2402                                           GFP_KERNEL);
2403                if (ohci->next_config_rom == NULL)
2404                        return -ENOMEM;
2405
2406                copy_config_rom(ohci->next_config_rom, config_rom, length);
2407        } else {
2408                /*
2409                 * In the suspend case, config_rom is NULL, which
2410                 * means that we just reuse the old config rom.
2411                 */
2412                ohci->next_config_rom = ohci->config_rom;
2413                ohci->next_config_rom_bus = ohci->config_rom_bus;
2414        }
2415
2416        ohci->next_header = ohci->next_config_rom[0];
2417        ohci->next_config_rom[0] = 0;
2418        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2419        reg_write(ohci, OHCI1394_BusOptions,
2420                  be32_to_cpu(ohci->next_config_rom[2]));
2421        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2422
2423        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2424
2425        irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2426                OHCI1394_RQPkt | OHCI1394_RSPkt |
2427                OHCI1394_isochTx | OHCI1394_isochRx |
2428                OHCI1394_postedWriteErr |
2429                OHCI1394_selfIDComplete |
2430                OHCI1394_regAccessFail |
2431                OHCI1394_cycleInconsistent |
2432                OHCI1394_unrecoverableError |
2433                OHCI1394_cycleTooLong |
2434                OHCI1394_masterIntEnable;
2435        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2436                irqs |= OHCI1394_busReset;
2437        reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2438
2439        reg_write(ohci, OHCI1394_HCControlSet,
2440                  OHCI1394_HCControl_linkEnable |
2441                  OHCI1394_HCControl_BIBimageValid);
2442
2443        reg_write(ohci, OHCI1394_LinkControlSet,
2444                  OHCI1394_LinkControl_rcvSelfID |
2445                  OHCI1394_LinkControl_rcvPhyPkt);
2446
2447        ar_context_run(&ohci->ar_request_ctx);
2448        ar_context_run(&ohci->ar_response_ctx);
2449
2450        flush_writes(ohci);
2451
2452        /* We are ready to go, reset bus to finish initialization. */
2453        fw_schedule_bus_reset(&ohci->card, false, true);
2454
2455        return 0;
2456}
2457
2458static int ohci_set_config_rom(struct fw_card *card,
2459                               const __be32 *config_rom, size_t length)
2460{
2461        struct fw_ohci *ohci;
2462        __be32 *next_config_rom;
2463        dma_addr_t uninitialized_var(next_config_rom_bus);
2464
2465        ohci = fw_ohci(card);
2466
2467        /*
2468         * When the OHCI controller is enabled, the config rom update
2469         * mechanism is a bit tricky, but easy enough to use.  See
2470         * section 5.5.6 in the OHCI specification.
2471         *
2472         * The OHCI controller caches the new config rom address in a
2473         * shadow register (ConfigROMmapNext) and needs a bus reset
2474         * for the changes to take place.  When the bus reset is
2475         * detected, the controller loads the new values for the
2476         * ConfigRomHeader and BusOptions registers from the specified
2477         * config rom and loads ConfigROMmap from the ConfigROMmapNext
2478         * shadow register. All automatically and atomically.
2479         *
2480         * Now, there's a twist to this story.  The automatic load of
2481         * ConfigRomHeader and BusOptions doesn't honor the
2482         * noByteSwapData bit, so with a be32 config rom, the
2483         * controller will load be32 values in to these registers
2484         * during the atomic update, even on litte endian
2485         * architectures.  The workaround we use is to put a 0 in the
2486         * header quadlet; 0 is endian agnostic and means that the
2487         * config rom isn't ready yet.  In the bus reset tasklet we
2488         * then set up the real values for the two registers.
2489         *
2490         * We use ohci->lock to avoid racing with the code that sets
2491         * ohci->next_config_rom to NULL (see bus_reset_work).
2492         */
2493
2494        next_config_rom =
2495                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2496                                   &next_config_rom_bus, GFP_KERNEL);
2497        if (next_config_rom == NULL)
2498                return -ENOMEM;
2499
2500        spin_lock_irq(&ohci->lock);
2501
2502        /*
2503         * If there is not an already pending config_rom update,
2504         * push our new allocation into the ohci->next_config_rom
2505         * and then mark the local variable as null so that we
2506         * won't deallocate the new buffer.
2507         *
2508         * OTOH, if there is a pending config_rom update, just
2509         * use that buffer with the new config_rom data, and
2510         * let this routine free the unused DMA allocation.
2511         */
2512
2513        if (ohci->next_config_rom == NULL) {
2514                ohci->next_config_rom = next_config_rom;
2515                ohci->next_config_rom_bus = next_config_rom_bus;
2516                next_config_rom = NULL;
2517        }
2518
2519        copy_config_rom(ohci->next_config_rom, config_rom, length);
2520
2521        ohci->next_header = config_rom[0];
2522        ohci->next_config_rom[0] = 0;
2523
2524        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2525
2526        spin_unlock_irq(&ohci->lock);
2527
2528        /* If we didn't use the DMA allocation, delete it. */
2529        if (next_config_rom != NULL)
2530                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2531                                  next_config_rom, next_config_rom_bus);
2532
2533        /*
2534         * Now initiate a bus reset to have the changes take
2535         * effect. We clean up the old config rom memory and DMA
2536         * mappings in the bus reset tasklet, since the OHCI
2537         * controller could need to access it before the bus reset
2538         * takes effect.
2539         */
2540
2541        fw_schedule_bus_reset(&ohci->card, true, true);
2542
2543        return 0;
2544}
2545
2546static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2547{
2548        struct fw_ohci *ohci = fw_ohci(card);
2549
2550        at_context_transmit(&ohci->at_request_ctx, packet);
2551}
2552
2553static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2554{
2555        struct fw_ohci *ohci = fw_ohci(card);
2556
2557        at_context_transmit(&ohci->at_response_ctx, packet);
2558}
2559
2560static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2561{
2562        struct fw_ohci *ohci = fw_ohci(card);
2563        struct context *ctx = &ohci->at_request_ctx;
2564        struct driver_data *driver_data = packet->driver_data;
2565        int ret = -ENOENT;
2566
2567        tasklet_disable(&ctx->tasklet);
2568
2569        if (packet->ack != 0)
2570                goto out;
2571
2572        if (packet->payload_mapped)
2573                dma_unmap_single(ohci->card.device, packet->payload_bus,
2574                                 packet->payload_length, DMA_TO_DEVICE);
2575
2576        log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2577        driver_data->packet = NULL;
2578        packet->ack = RCODE_CANCELLED;
2579        packet->callback(packet, &ohci->card, packet->ack);
2580        ret = 0;
2581 out:
2582        tasklet_enable(&ctx->tasklet);
2583
2584        return ret;
2585}
2586
2587static int ohci_enable_phys_dma(struct fw_card *card,
2588                                int node_id, int generation)
2589{
2590#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2591        return 0;
2592#else
2593        struct fw_ohci *ohci = fw_ohci(card);
2594        unsigned long flags;
2595        int n, ret = 0;
2596
2597        /*
2598         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2599         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2600         */
2601
2602        spin_lock_irqsave(&ohci->lock, flags);
2603
2604        if (ohci->generation != generation) {
2605                ret = -ESTALE;
2606                goto out;
2607        }
2608
2609        /*
2610         * Note, if the node ID contains a non-local bus ID, physical DMA is
2611         * enabled for _all_ nodes on remote buses.
2612         */
2613
2614        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2615        if (n < 32)
2616                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2617        else
2618                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2619
2620        flush_writes(ohci);
2621 out:
2622        spin_unlock_irqrestore(&ohci->lock, flags);
2623
2624        return ret;
2625#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2626}
2627
2628static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2629{
2630        struct fw_ohci *ohci = fw_ohci(card);
2631        unsigned long flags;
2632        u32 value;
2633
2634        switch (csr_offset) {
2635        case CSR_STATE_CLEAR:
2636        case CSR_STATE_SET:
2637                if (ohci->is_root &&
2638                    (reg_read(ohci, OHCI1394_LinkControlSet) &
2639                     OHCI1394_LinkControl_cycleMaster))
2640                        value = CSR_STATE_BIT_CMSTR;
2641                else
2642                        value = 0;
2643                if (ohci->csr_state_setclear_abdicate)
2644                        value |= CSR_STATE_BIT_ABDICATE;
2645
2646                return value;
2647
2648        case CSR_NODE_IDS:
2649                return reg_read(ohci, OHCI1394_NodeID) << 16;
2650
2651        case CSR_CYCLE_TIME:
2652                return get_cycle_time(ohci);
2653
2654        case CSR_BUS_TIME:
2655                /*
2656                 * We might be called just after the cycle timer has wrapped
2657                 * around but just before the cycle64Seconds handler, so we
2658                 * better check here, too, if the bus time needs to be updated.
2659                 */
2660                spin_lock_irqsave(&ohci->lock, flags);
2661                value = update_bus_time(ohci);
2662                spin_unlock_irqrestore(&ohci->lock, flags);
2663                return value;
2664
2665        case CSR_BUSY_TIMEOUT:
2666                value = reg_read(ohci, OHCI1394_ATRetries);
2667                return (value >> 4) & 0x0ffff00f;
2668
2669        case CSR_PRIORITY_BUDGET:
2670                return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2671                        (ohci->pri_req_max << 8);
2672
2673        default:
2674                WARN_ON(1);
2675                return 0;
2676        }
2677}
2678
2679static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2680{
2681        struct fw_ohci *ohci = fw_ohci(card);
2682        unsigned long flags;
2683
2684        switch (csr_offset) {
2685        case CSR_STATE_CLEAR:
2686                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2687                        reg_write(ohci, OHCI1394_LinkControlClear,
2688                                  OHCI1394_LinkControl_cycleMaster);
2689                        flush_writes(ohci);
2690                }
2691                if (value & CSR_STATE_BIT_ABDICATE)
2692                        ohci->csr_state_setclear_abdicate = false;
2693                break;
2694
2695        case CSR_STATE_SET:
2696                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2697                        reg_write(ohci, OHCI1394_LinkControlSet,
2698                                  OHCI1394_LinkControl_cycleMaster);
2699                        flush_writes(ohci);
2700                }
2701                if (value & CSR_STATE_BIT_ABDICATE)
2702                        ohci->csr_state_setclear_abdicate = true;
2703                break;
2704
2705        case CSR_NODE_IDS:
2706                reg_write(ohci, OHCI1394_NodeID, value >> 16);
2707                flush_writes(ohci);
2708                break;
2709
2710        case CSR_CYCLE_TIME:
2711                reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2712                reg_write(ohci, OHCI1394_IntEventSet,
2713                          OHCI1394_cycleInconsistent);
2714                flush_writes(ohci);
2715                break;
2716
2717        case CSR_BUS_TIME:
2718                spin_lock_irqsave(&ohci->lock, flags);
2719                ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2720                                 (value & ~0x7f);
2721                spin_unlock_irqrestore(&ohci->lock, flags);
2722                break;
2723
2724        case CSR_BUSY_TIMEOUT:
2725                value = (value & 0xf) | ((value & 0xf) << 4) |
2726                        ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2727                reg_write(ohci, OHCI1394_ATRetries, value);
2728                flush_writes(ohci);
2729                break;
2730
2731        case CSR_PRIORITY_BUDGET:
2732                reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2733                flush_writes(ohci);
2734                break;
2735
2736        default:
2737                WARN_ON(1);
2738                break;
2739        }
2740}
2741
2742static void flush_iso_completions(struct iso_context *ctx)
2743{
2744        ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2745                              ctx->header_length, ctx->header,
2746                              ctx->base.callback_data);
2747        ctx->header_length = 0;
2748}
2749
2750static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2751{
2752        u32 *ctx_hdr;
2753
2754        if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2755                if (ctx->base.drop_overflow_headers)
2756                        return;
2757                flush_iso_completions(ctx);
2758        }
2759
2760        ctx_hdr = ctx->header + ctx->header_length;
2761        ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2762
2763        /*
2764         * The two iso header quadlets are byteswapped to little
2765         * endian by the controller, but we want to present them
2766         * as big endian for consistency with the bus endianness.
2767         */
2768        if (ctx->base.header_size > 0)
2769                ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2770        if (ctx->base.header_size > 4)
2771                ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2772        if (ctx->base.header_size > 8)
2773                memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2774        ctx->header_length += ctx->base.header_size;
2775}
2776
2777static int handle_ir_packet_per_buffer(struct context *context,
2778                                       struct descriptor *d,
2779                                       struct descriptor *last)
2780{
2781        struct iso_context *ctx =
2782                container_of(context, struct iso_context, context);
2783        struct descriptor *pd;
2784        u32 buffer_dma;
2785
2786        for (pd = d; pd <= last; pd++)
2787                if (pd->transfer_status)
2788                        break;
2789        if (pd > last)
2790                /* Descriptor(s) not done yet, stop iteration */
2791                return 0;
2792
2793        while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2794                d++;
2795                buffer_dma = le32_to_cpu(d->data_address);
2796                dma_sync_single_range_for_cpu(context->ohci->card.device,
2797                                              buffer_dma & PAGE_MASK,
2798                                              buffer_dma & ~PAGE_MASK,
2799                                              le16_to_cpu(d->req_count),
2800                                              DMA_FROM_DEVICE);
2801        }
2802
2803        copy_iso_headers(ctx, (u32 *) (last + 1));
2804
2805        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2806                flush_iso_completions(ctx);
2807
2808        return 1;
2809}
2810
2811/* d == last because each descriptor block is only a single descriptor. */
2812static int handle_ir_buffer_fill(struct context *context,
2813                                 struct descriptor *d,
2814                                 struct descriptor *last)
2815{
2816        struct iso_context *ctx =
2817                container_of(context, struct iso_context, context);
2818        unsigned int req_count, res_count, completed;
2819        u32 buffer_dma;
2820
2821        req_count = le16_to_cpu(last->req_count);
2822        res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2823        completed = req_count - res_count;
2824        buffer_dma = le32_to_cpu(last->data_address);
2825
2826        if (completed > 0) {
2827                ctx->mc_buffer_bus = buffer_dma;
2828                ctx->mc_completed = completed;
2829        }
2830
2831        if (res_count != 0)
2832                /* Descriptor(s) not done yet, stop iteration */
2833                return 0;
2834
2835        dma_sync_single_range_for_cpu(context->ohci->card.device,
2836                                      buffer_dma & PAGE_MASK,
2837                                      buffer_dma & ~PAGE_MASK,
2838                                      completed, DMA_FROM_DEVICE);
2839
2840        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2841                ctx->base.callback.mc(&ctx->base,
2842                                      buffer_dma + completed,
2843                                      ctx->base.callback_data);
2844                ctx->mc_completed = 0;
2845        }
2846
2847        return 1;
2848}
2849
2850static void flush_ir_buffer_fill(struct iso_context *ctx)
2851{
2852        dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2853                                      ctx->mc_buffer_bus & PAGE_MASK,
2854                                      ctx->mc_buffer_bus & ~PAGE_MASK,
2855                                      ctx->mc_completed, DMA_FROM_DEVICE);
2856
2857        ctx->base.callback.mc(&ctx->base,
2858                              ctx->mc_buffer_bus + ctx->mc_completed,
2859                              ctx->base.callback_data);
2860        ctx->mc_completed = 0;
2861}
2862
2863static inline void sync_it_packet_for_cpu(struct context *context,
2864                                          struct descriptor *pd)
2865{
2866        __le16 control;
2867        u32 buffer_dma;
2868
2869        /* only packets beginning with OUTPUT_MORE* have data buffers */
2870        if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2871                return;
2872
2873        /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2874        pd += 2;
2875
2876        /*
2877         * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2878         * data buffer is in the context program's coherent page and must not
2879         * be synced.
2880         */
2881        if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2882            (context->current_bus          & PAGE_MASK)) {
2883                if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2884                        return;
2885                pd++;
2886        }
2887
2888        do {
2889                buffer_dma = le32_to_cpu(pd->data_address);
2890                dma_sync_single_range_for_cpu(context->ohci->card.device,
2891                                              buffer_dma & PAGE_MASK,
2892                                              buffer_dma & ~PAGE_MASK,
2893                                              le16_to_cpu(pd->req_count),
2894                                              DMA_TO_DEVICE);
2895                control = pd->control;
2896                pd++;
2897        } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2898}
2899
2900static int handle_it_packet(struct context *context,
2901                            struct descriptor *d,
2902                            struct descriptor *last)
2903{
2904        struct iso_context *ctx =
2905                container_of(context, struct iso_context, context);
2906        struct descriptor *pd;
2907        __be32 *ctx_hdr;
2908
2909        for (pd = d; pd <= last; pd++)
2910                if (pd->transfer_status)
2911                        break;
2912        if (pd > last)
2913                /* Descriptor(s) not done yet, stop iteration */
2914                return 0;
2915
2916        sync_it_packet_for_cpu(context, d);
2917
2918        if (ctx->header_length + 4 > PAGE_SIZE) {
2919                if (ctx->base.drop_overflow_headers)
2920                        return 1;
2921                flush_iso_completions(ctx);
2922        }
2923
2924        ctx_hdr = ctx->header + ctx->header_length;
2925        ctx->last_timestamp = le16_to_cpu(last->res_count);
2926        /* Present this value as big-endian to match the receive code */
2927        *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2928                               le16_to_cpu(pd->res_count));
2929        ctx->header_length += 4;
2930
2931        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2932                flush_iso_completions(ctx);
2933
2934        return 1;
2935}
2936
2937static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2938{
2939        u32 hi = channels >> 32, lo = channels;
2940
2941        reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2942        reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2943        reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2944        reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2945        mmiowb();
2946        ohci->mc_channels = channels;
2947}
2948
2949static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2950                                int type, int channel, size_t header_size)
2951{
2952        struct fw_ohci *ohci = fw_ohci(card);
2953        struct iso_context *uninitialized_var(ctx);
2954        descriptor_callback_t uninitialized_var(callback);
2955        u64 *uninitialized_var(channels);
2956        u32 *uninitialized_var(mask), uninitialized_var(regs);
2957        int index, ret = -EBUSY;
2958
2959        spin_lock_irq(&ohci->lock);
2960
2961        switch (type) {
2962        case FW_ISO_CONTEXT_TRANSMIT:
2963                mask     = &ohci->it_context_mask;
2964                callback = handle_it_packet;
2965                index    = ffs(*mask) - 1;
2966                if (index >= 0) {
2967                        *mask &= ~(1 << index);
2968                        regs = OHCI1394_IsoXmitContextBase(index);
2969                        ctx  = &ohci->it_context_list[index];
2970                }
2971                break;
2972
2973        case FW_ISO_CONTEXT_RECEIVE:
2974                channels = &ohci->ir_context_channels;
2975                mask     = &ohci->ir_context_mask;
2976                callback = handle_ir_packet_per_buffer;
2977                index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2978                if (index >= 0) {
2979                        *channels &= ~(1ULL << channel);
2980                        *mask     &= ~(1 << index);
2981                        regs = OHCI1394_IsoRcvContextBase(index);
2982                        ctx  = &ohci->ir_context_list[index];
2983                }
2984                break;
2985
2986        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2987                mask     = &ohci->ir_context_mask;
2988                callback = handle_ir_buffer_fill;
2989                index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2990                if (index >= 0) {
2991                        ohci->mc_allocated = true;
2992                        *mask &= ~(1 << index);
2993                        regs = OHCI1394_IsoRcvContextBase(index);
2994                        ctx  = &ohci->ir_context_list[index];
2995                }
2996                break;
2997
2998        default:
2999                index = -1;
3000                ret = -ENOSYS;
3001        }
3002
3003        spin_unlock_irq(&ohci->lock);
3004
3005        if (index < 0)
3006                return ERR_PTR(ret);
3007
3008        memset(ctx, 0, sizeof(*ctx));
3009        ctx->header_length = 0;
3010        ctx->header = (void *) __get_free_page(GFP_KERNEL);
3011        if (ctx->header == NULL) {
3012                ret = -ENOMEM;
3013                goto out;
3014        }
3015        ret = context_init(&ctx->context, ohci, regs, callback);
3016        if (ret < 0)
3017                goto out_with_header;
3018
3019        if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3020                set_multichannel_mask(ohci, 0);
3021                ctx->mc_completed = 0;
3022        }
3023
3024        return &ctx->base;
3025
3026 out_with_header:
3027        free_page((unsigned long)ctx->header);
3028 out:
3029        spin_lock_irq(&ohci->lock);
3030
3031        switch (type) {
3032        case FW_ISO_CONTEXT_RECEIVE:
3033                *channels |= 1ULL << channel;
3034                break;
3035
3036        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3037                ohci->mc_allocated = false;
3038                break;
3039        }
3040        *mask |= 1 << index;
3041
3042        spin_unlock_irq(&ohci->lock);
3043
3044        return ERR_PTR(ret);
3045}
3046
3047static int ohci_start_iso(struct fw_iso_context *base,
3048                          s32 cycle, u32 sync, u32 tags)
3049{
3050        struct iso_context *ctx = container_of(base, struct iso_context, base);
3051        struct fw_ohci *ohci = ctx->context.ohci;
3052        u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3053        int index;
3054
3055        /* the controller cannot start without any queued packets */
3056        if (ctx->context.last->branch_address == 0)
3057                return -ENODATA;
3058
3059        switch (ctx->base.type) {
3060        case FW_ISO_CONTEXT_TRANSMIT:
3061                index = ctx - ohci->it_context_list;
3062                match = 0;
3063                if (cycle >= 0)
3064                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3065                                (cycle & 0x7fff) << 16;
3066
3067                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3068                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3069                context_run(&ctx->context, match);
3070                break;
3071
3072        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3073                control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3074                /* fall through */
3075        case FW_ISO_CONTEXT_RECEIVE:
3076                index = ctx - ohci->ir_context_list;
3077                match = (tags << 28) | (sync << 8) | ctx->base.channel;
3078                if (cycle >= 0) {
3079                        match |= (cycle & 0x07fff) << 12;
3080                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3081                }
3082
3083                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3084                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3085                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3086                context_run(&ctx->context, control);
3087
3088                ctx->sync = sync;
3089                ctx->tags = tags;
3090
3091                break;
3092        }
3093
3094        return 0;
3095}
3096
3097static int ohci_stop_iso(struct fw_iso_context *base)
3098{
3099        struct fw_ohci *ohci = fw_ohci(base->card);
3100        struct iso_context *ctx = container_of(base, struct iso_context, base);
3101        int index;
3102
3103        switch (ctx->base.type) {
3104        case FW_ISO_CONTEXT_TRANSMIT:
3105                index = ctx - ohci->it_context_list;
3106                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3107                break;
3108
3109        case FW_ISO_CONTEXT_RECEIVE:
3110        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3111                index = ctx - ohci->ir_context_list;
3112                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3113                break;
3114        }
3115        flush_writes(ohci);
3116        context_stop(&ctx->context);
3117        tasklet_kill(&ctx->context.tasklet);
3118
3119        return 0;
3120}
3121
3122static void ohci_free_iso_context(struct fw_iso_context *base)
3123{
3124        struct fw_ohci *ohci = fw_ohci(base->card);
3125        struct iso_context *ctx = container_of(base, struct iso_context, base);
3126        unsigned long flags;
3127        int index;
3128
3129        ohci_stop_iso(base);
3130        context_release(&ctx->context);
3131        free_page((unsigned long)ctx->header);
3132
3133        spin_lock_irqsave(&ohci->lock, flags);
3134
3135        switch (base->type) {
3136        case FW_ISO_CONTEXT_TRANSMIT:
3137                index = ctx - ohci->it_context_list;
3138                ohci->it_context_mask |= 1 << index;
3139                break;
3140
3141        case FW_ISO_CONTEXT_RECEIVE:
3142                index = ctx - ohci->ir_context_list;
3143                ohci->ir_context_mask |= 1 << index;
3144                ohci->ir_context_channels |= 1ULL << base->channel;
3145                break;
3146
3147        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3148                index = ctx - ohci->ir_context_list;
3149                ohci->ir_context_mask |= 1 << index;
3150                ohci->ir_context_channels |= ohci->mc_channels;
3151                ohci->mc_channels = 0;
3152                ohci->mc_allocated = false;
3153                break;
3154        }
3155
3156        spin_unlock_irqrestore(&ohci->lock, flags);
3157}
3158
3159static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3160{
3161        struct fw_ohci *ohci = fw_ohci(base->card);
3162        unsigned long flags;
3163        int ret;
3164
3165        switch (base->type) {
3166        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3167
3168                spin_lock_irqsave(&ohci->lock, flags);
3169
3170                /* Don't allow multichannel to grab other contexts' channels. */
3171                if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3172                        *channels = ohci->ir_context_channels;
3173                        ret = -EBUSY;
3174                } else {
3175                        set_multichannel_mask(ohci, *channels);
3176                        ret = 0;
3177                }
3178
3179                spin_unlock_irqrestore(&ohci->lock, flags);
3180
3181                break;
3182        default:
3183                ret = -EINVAL;
3184        }
3185
3186        return ret;
3187}
3188
3189#ifdef CONFIG_PM
3190static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3191{
3192        int i;
3193        struct iso_context *ctx;
3194
3195        for (i = 0 ; i < ohci->n_ir ; i++) {
3196                ctx = &ohci->ir_context_list[i];
3197                if (ctx->context.running)
3198                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3199        }
3200
3201        for (i = 0 ; i < ohci->n_it ; i++) {
3202                ctx = &ohci->it_context_list[i];
3203                if (ctx->context.running)
3204                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3205        }
3206}
3207#endif
3208
3209static int queue_iso_transmit(struct iso_context *ctx,
3210                              struct fw_iso_packet *packet,
3211                              struct fw_iso_buffer *buffer,
3212                              unsigned long payload)
3213{
3214        struct descriptor *d, *last, *pd;
3215        struct fw_iso_packet *p;
3216        __le32 *header;
3217        dma_addr_t d_bus, page_bus;
3218        u32 z, header_z, payload_z, irq;
3219        u32 payload_index, payload_end_index, next_page_index;
3220        int page, end_page, i, length, offset;
3221
3222        p = packet;
3223        payload_index = payload;
3224
3225        if (p->skip)
3226                z = 1;
3227        else
3228                z = 2;
3229        if (p->header_length > 0)
3230                z++;
3231
3232        /* Determine the first page the payload isn't contained in. */
3233        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3234        if (p->payload_length > 0)
3235                payload_z = end_page - (payload_index >> PAGE_SHIFT);
3236        else
3237                payload_z = 0;
3238
3239        z += payload_z;
3240
3241        /* Get header size in number of descriptors. */
3242        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3243
3244        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3245        if (d == NULL)
3246                return -ENOMEM;
3247
3248        if (!p->skip) {
3249                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3250                d[0].req_count = cpu_to_le16(8);
3251                /*
3252                 * Link the skip address to this descriptor itself.  This causes
3253                 * a context to skip a cycle whenever lost cycles or FIFO
3254                 * overruns occur, without dropping the data.  The application
3255                 * should then decide whether this is an error condition or not.
3256                 * FIXME:  Make the context's cycle-lost behaviour configurable?
3257                 */
3258                d[0].branch_address = cpu_to_le32(d_bus | z);
3259
3260                header = (__le32 *) &d[1];
3261                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3262                                        IT_HEADER_TAG(p->tag) |
3263                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3264                                        IT_HEADER_CHANNEL(ctx->base.channel) |
3265                                        IT_HEADER_SPEED(ctx->base.speed));
3266                header[1] =
3267                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3268                                                          p->payload_length));
3269        }
3270
3271        if (p->header_length > 0) {
3272                d[2].req_count    = cpu_to_le16(p->header_length);
3273                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3274                memcpy(&d[z], p->header, p->header_length);
3275        }
3276
3277        pd = d + z - payload_z;
3278        payload_end_index = payload_index + p->payload_length;
3279        for (i = 0; i < payload_z; i++) {
3280                page               = payload_index >> PAGE_SHIFT;
3281                offset             = payload_index & ~PAGE_MASK;
3282                next_page_index    = (page + 1) << PAGE_SHIFT;
3283                length             =
3284                        min(next_page_index, payload_end_index) - payload_index;
3285                pd[i].req_count    = cpu_to_le16(length);
3286
3287                page_bus = page_private(buffer->pages[page]);
3288                pd[i].data_address = cpu_to_le32(page_bus + offset);
3289
3290                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3291                                                 page_bus, offset, length,
3292                                                 DMA_TO_DEVICE);
3293
3294                payload_index += length;
3295        }
3296
3297        if (p->interrupt)
3298                irq = DESCRIPTOR_IRQ_ALWAYS;
3299        else
3300                irq = DESCRIPTOR_NO_IRQ;
3301
3302        last = z == 2 ? d : d + z - 1;
3303        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3304                                     DESCRIPTOR_STATUS |
3305                                     DESCRIPTOR_BRANCH_ALWAYS |
3306                                     irq);
3307
3308        context_append(&ctx->context, d, z, header_z);
3309
3310        return 0;
3311}
3312
3313static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3314                                       struct fw_iso_packet *packet,
3315                                       struct fw_iso_buffer *buffer,
3316                                       unsigned long payload)
3317{
3318        struct device *device = ctx->context.ohci->card.device;
3319        struct descriptor *d, *pd;
3320        dma_addr_t d_bus, page_bus;
3321        u32 z, header_z, rest;
3322        int i, j, length;
3323        int page, offset, packet_count, header_size, payload_per_buffer;
3324
3325        /*
3326         * The OHCI controller puts the isochronous header and trailer in the
3327         * buffer, so we need at least 8 bytes.
3328         */
3329        packet_count = packet->header_length / ctx->base.header_size;
3330        header_size  = max(ctx->base.header_size, (size_t)8);
3331
3332        /* Get header size in number of descriptors. */
3333        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3334        page     = payload >> PAGE_SHIFT;
3335        offset   = payload & ~PAGE_MASK;
3336        payload_per_buffer = packet->payload_length / packet_count;
3337
3338        for (i = 0; i < packet_count; i++) {
3339                /* d points to the header descriptor */
3340                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3341                d = context_get_descriptors(&ctx->context,
3342                                z + header_z, &d_bus);
3343                if (d == NULL)
3344                        return -ENOMEM;
3345
3346                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3347                                              DESCRIPTOR_INPUT_MORE);
3348                if (packet->skip && i == 0)
3349                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3350                d->req_count    = cpu_to_le16(header_size);
3351                d->res_count    = d->req_count;
3352                d->transfer_status = 0;
3353                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3354
3355                rest = payload_per_buffer;
3356                pd = d;
3357                for (j = 1; j < z; j++) {
3358                        pd++;
3359                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3360                                                  DESCRIPTOR_INPUT_MORE);
3361
3362                        if (offset + rest < PAGE_SIZE)
3363                                length = rest;
3364                        else
3365                                length = PAGE_SIZE - offset;
3366                        pd->req_count = cpu_to_le16(length);
3367                        pd->res_count = pd->req_count;
3368                        pd->transfer_status = 0;
3369
3370                        page_bus = page_private(buffer->pages[page]);
3371                        pd->data_address = cpu_to_le32(page_bus + offset);
3372
3373                        dma_sync_single_range_for_device(device, page_bus,
3374                                                         offset, length,
3375                                                         DMA_FROM_DEVICE);
3376
3377                        offset = (offset + length) & ~PAGE_MASK;
3378                        rest -= length;
3379                        if (offset == 0)
3380                                page++;
3381                }
3382                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3383                                          DESCRIPTOR_INPUT_LAST |
3384                                          DESCRIPTOR_BRANCH_ALWAYS);
3385                if (packet->interrupt && i == packet_count - 1)
3386                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3387
3388                context_append(&ctx->context, d, z, header_z);
3389        }
3390
3391        return 0;
3392}
3393
3394static int queue_iso_buffer_fill(struct iso_context *ctx,
3395                                 struct fw_iso_packet *packet,
3396                                 struct fw_iso_buffer *buffer,
3397                                 unsigned long payload)
3398{
3399        struct descriptor *d;
3400        dma_addr_t d_bus, page_bus;
3401        int page, offset, rest, z, i, length;
3402
3403        page   = payload >> PAGE_SHIFT;
3404        offset = payload & ~PAGE_MASK;
3405        rest   = packet->payload_length;
3406
3407        /* We need one descriptor for each page in the buffer. */
3408        z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3409
3410        if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3411                return -EFAULT;
3412
3413        for (i = 0; i < z; i++) {
3414                d = context_get_descriptors(&ctx->context, 1, &d_bus);
3415                if (d == NULL)
3416                        return -ENOMEM;
3417
3418                d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3419                                         DESCRIPTOR_BRANCH_ALWAYS);
3420                if (packet->skip && i == 0)
3421                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3422                if (packet->interrupt && i == z - 1)
3423                        d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3424
3425                if (offset + rest < PAGE_SIZE)
3426                        length = rest;
3427                else
3428                        length = PAGE_SIZE - offset;
3429                d->req_count = cpu_to_le16(length);
3430                d->res_count = d->req_count;
3431                d->transfer_status = 0;
3432
3433                page_bus = page_private(buffer->pages[page]);
3434                d->data_address = cpu_to_le32(page_bus + offset);
3435
3436                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3437                                                 page_bus, offset, length,
3438                                                 DMA_FROM_DEVICE);
3439
3440                rest -= length;
3441                offset = 0;
3442                page++;
3443
3444                context_append(&ctx->context, d, 1, 0);
3445        }
3446
3447        return 0;
3448}
3449
3450static int ohci_queue_iso(struct fw_iso_context *base,
3451                          struct fw_iso_packet *packet,
3452                          struct fw_iso_buffer *buffer,
3453                          unsigned long payload)
3454{
3455        struct iso_context *ctx = container_of(base, struct iso_context, base);
3456        unsigned long flags;
3457        int ret = -ENOSYS;
3458
3459        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3460        switch (base->type) {
3461        case FW_ISO_CONTEXT_TRANSMIT:
3462                ret = queue_iso_transmit(ctx, packet, buffer, payload);
3463                break;
3464        case FW_ISO_CONTEXT_RECEIVE:
3465                ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3466                break;
3467        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3468                ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3469                break;
3470        }
3471        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3472
3473        return ret;
3474}
3475
3476static void ohci_flush_queue_iso(struct fw_iso_context *base)
3477{
3478        struct context *ctx =
3479                        &container_of(base, struct iso_context, base)->context;
3480
3481        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3482}
3483
3484static int ohci_flush_iso_completions(struct fw_iso_context *base)
3485{
3486        struct iso_context *ctx = container_of(base, struct iso_context, base);
3487        int ret = 0;
3488
3489        tasklet_disable(&ctx->context.tasklet);
3490
3491        if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3492                context_tasklet((unsigned long)&ctx->context);
3493
3494                switch (base->type) {
3495                case FW_ISO_CONTEXT_TRANSMIT:
3496                case FW_ISO_CONTEXT_RECEIVE:
3497                        if (ctx->header_length != 0)
3498                                flush_iso_completions(ctx);
3499                        break;
3500                case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3501                        if (ctx->mc_completed != 0)
3502                                flush_ir_buffer_fill(ctx);
3503                        break;
3504                default:
3505                        ret = -ENOSYS;
3506                }
3507
3508                clear_bit_unlock(0, &ctx->flushing_completions);
3509                smp_mb__after_clear_bit();
3510        }
3511
3512        tasklet_enable(&ctx->context.tasklet);
3513
3514        return ret;
3515}
3516
3517static const struct fw_card_driver ohci_driver = {
3518        .enable                 = ohci_enable,
3519        .read_phy_reg           = ohci_read_phy_reg,
3520        .update_phy_reg         = ohci_update_phy_reg,
3521        .set_config_rom         = ohci_set_config_rom,
3522        .send_request           = ohci_send_request,
3523        .send_response          = ohci_send_response,
3524        .cancel_packet          = ohci_cancel_packet,
3525        .enable_phys_dma        = ohci_enable_phys_dma,
3526        .read_csr               = ohci_read_csr,
3527        .write_csr              = ohci_write_csr,
3528
3529        .allocate_iso_context   = ohci_allocate_iso_context,
3530        .free_iso_context       = ohci_free_iso_context,
3531        .set_iso_channels       = ohci_set_iso_channels,
3532        .queue_iso              = ohci_queue_iso,
3533        .flush_queue_iso        = ohci_flush_queue_iso,
3534        .flush_iso_completions  = ohci_flush_iso_completions,
3535        .start_iso              = ohci_start_iso,
3536        .stop_iso               = ohci_stop_iso,
3537};
3538
3539#ifdef CONFIG_PPC_PMAC
3540static void pmac_ohci_on(struct pci_dev *dev)
3541{
3542        if (machine_is(powermac)) {
3543                struct device_node *ofn = pci_device_to_OF_node(dev);
3544
3545                if (ofn) {
3546                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3547                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3548                }
3549        }
3550}
3551
3552static void pmac_ohci_off(struct pci_dev *dev)
3553{
3554        if (machine_is(powermac)) {
3555                struct device_node *ofn = pci_device_to_OF_node(dev);
3556
3557                if (ofn) {
3558                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3559                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3560                }
3561        }
3562}
3563#else
3564static inline void pmac_ohci_on(struct pci_dev *dev) {}
3565static inline void pmac_ohci_off(struct pci_dev *dev) {}
3566#endif /* CONFIG_PPC_PMAC */
3567
3568static int pci_probe(struct pci_dev *dev,
3569                               const struct pci_device_id *ent)
3570{
3571        struct fw_ohci *ohci;
3572        u32 bus_options, max_receive, link_speed, version;
3573        u64 guid;
3574        int i, err;
3575        size_t size;
3576
3577        if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3578                dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3579                return -ENOSYS;
3580        }
3581
3582        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3583        if (ohci == NULL) {
3584                err = -ENOMEM;
3585                goto fail;
3586        }
3587
3588        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3589
3590        pmac_ohci_on(dev);
3591
3592        err = pci_enable_device(dev);
3593        if (err) {
3594                dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3595                goto fail_free;
3596        }
3597
3598        pci_set_master(dev);
3599        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3600        pci_set_drvdata(dev, ohci);
3601
3602        spin_lock_init(&ohci->lock);
3603        mutex_init(&ohci->phy_reg_mutex);
3604
3605        INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3606
3607        if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3608            pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3609                ohci_err(ohci, "invalid MMIO resource\n");
3610                err = -ENXIO;
3611                goto fail_disable;
3612        }
3613
3614        err = pci_request_region(dev, 0, ohci_driver_name);
3615        if (err) {
3616                ohci_err(ohci, "MMIO resource unavailable\n");
3617                goto fail_disable;
3618        }
3619
3620        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3621        if (ohci->registers == NULL) {
3622                ohci_err(ohci, "failed to remap registers\n");
3623                err = -ENXIO;
3624                goto fail_iomem;
3625        }
3626
3627        for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3628                if ((ohci_quirks[i].vendor == dev->vendor) &&
3629                    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3630                     ohci_quirks[i].device == dev->device) &&
3631                    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3632                     ohci_quirks[i].revision >= dev->revision)) {
3633                        ohci->quirks = ohci_quirks[i].flags;
3634                        break;
3635                }
3636        if (param_quirks)
3637                ohci->quirks = param_quirks;
3638
3639        /*
3640         * Because dma_alloc_coherent() allocates at least one page,
3641         * we save space by using a common buffer for the AR request/
3642         * response descriptors and the self IDs buffer.
3643         */
3644        BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3645        BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3646        ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3647                                               PAGE_SIZE,
3648                                               &ohci->misc_buffer_bus,
3649                                               GFP_KERNEL);
3650        if (!ohci->misc_buffer) {
3651                err = -ENOMEM;
3652                goto fail_iounmap;
3653        }
3654
3655        err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3656                              OHCI1394_AsReqRcvContextControlSet);
3657        if (err < 0)
3658                goto fail_misc_buf;
3659
3660        err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3661                              OHCI1394_AsRspRcvContextControlSet);
3662        if (err < 0)
3663                goto fail_arreq_ctx;
3664
3665        err = context_init(&ohci->at_request_ctx, ohci,
3666                           OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3667        if (err < 0)
3668                goto fail_arrsp_ctx;
3669
3670        err = context_init(&ohci->at_response_ctx, ohci,
3671                           OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3672        if (err < 0)
3673                goto fail_atreq_ctx;
3674
3675        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3676        ohci->ir_context_channels = ~0ULL;
3677        ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3678        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3679        ohci->ir_context_mask = ohci->ir_context_support;
3680        ohci->n_ir = hweight32(ohci->ir_context_mask);
3681        size = sizeof(struct iso_context) * ohci->n_ir;
3682        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3683
3684        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3685        ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3686        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3687        ohci->it_context_mask = ohci->it_context_support;
3688        ohci->n_it = hweight32(ohci->it_context_mask);
3689        size = sizeof(struct iso_context) * ohci->n_it;
3690        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3691
3692        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3693                err = -ENOMEM;
3694                goto fail_contexts;
3695        }
3696
3697        ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3698        ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3699
3700        bus_options = reg_read(ohci, OHCI1394_BusOptions);
3701        max_receive = (bus_options >> 12) & 0xf;
3702        link_speed = bus_options & 0x7;
3703        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3704                reg_read(ohci, OHCI1394_GUIDLo);
3705
3706        if (!(ohci->quirks & QUIRK_NO_MSI))
3707                pci_enable_msi(dev);
3708        if (request_irq(dev->irq, irq_handler,
3709                        pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3710                        ohci_driver_name, ohci)) {
3711                ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3712                err = -EIO;
3713                goto fail_msi;
3714        }
3715
3716        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3717        if (err)
3718                goto fail_irq;
3719
3720        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3721        ohci_notice(ohci,
3722                    "added OHCI v%x.%x device as card %d, "
3723                    "%d IR + %d IT contexts, quirks 0x%x\n",
3724                    version >> 16, version & 0xff, ohci->card.index,
3725                    ohci->n_ir, ohci->n_it, ohci->quirks);
3726
3727        return 0;
3728
3729 fail_irq:
3730        free_irq(dev->irq, ohci);
3731 fail_msi:
3732        pci_disable_msi(dev);
3733 fail_contexts:
3734        kfree(ohci->ir_context_list);
3735        kfree(ohci->it_context_list);
3736        context_release(&ohci->at_response_ctx);
3737 fail_atreq_ctx:
3738        context_release(&ohci->at_request_ctx);
3739 fail_arrsp_ctx:
3740        ar_context_release(&ohci->ar_response_ctx);
3741 fail_arreq_ctx:
3742        ar_context_release(&ohci->ar_request_ctx);
3743 fail_misc_buf:
3744        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3745                          ohci->misc_buffer, ohci->misc_buffer_bus);
3746 fail_iounmap:
3747        pci_iounmap(dev, ohci->registers);
3748 fail_iomem:
3749        pci_release_region(dev, 0);
3750 fail_disable:
3751        pci_disable_device(dev);
3752 fail_free:
3753        kfree(ohci);
3754        pmac_ohci_off(dev);
3755 fail:
3756        return err;
3757}
3758
3759static void pci_remove(struct pci_dev *dev)
3760{
3761        struct fw_ohci *ohci = pci_get_drvdata(dev);
3762
3763        /*
3764         * If the removal is happening from the suspend state, LPS won't be
3765         * enabled and host registers (eg., IntMaskClear) won't be accessible.
3766         */
3767        if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3768                reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3769                flush_writes(ohci);
3770        }
3771        cancel_work_sync(&ohci->bus_reset_work);
3772        fw_core_remove_card(&ohci->card);
3773
3774        /*
3775         * FIXME: Fail all pending packets here, now that the upper
3776         * layers can't queue any more.
3777         */
3778
3779        software_reset(ohci);
3780        free_irq(dev->irq, ohci);
3781
3782        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3783                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3784                                  ohci->next_config_rom, ohci->next_config_rom_bus);
3785        if (ohci->config_rom)
3786                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3787                                  ohci->config_rom, ohci->config_rom_bus);
3788        ar_context_release(&ohci->ar_request_ctx);
3789        ar_context_release(&ohci->ar_response_ctx);
3790        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3791                          ohci->misc_buffer, ohci->misc_buffer_bus);
3792        context_release(&ohci->at_request_ctx);
3793        context_release(&ohci->at_response_ctx);
3794        kfree(ohci->it_context_list);
3795        kfree(ohci->ir_context_list);
3796        pci_disable_msi(dev);
3797        pci_iounmap(dev, ohci->registers);
3798        pci_release_region(dev, 0);
3799        pci_disable_device(dev);
3800        kfree(ohci);
3801        pmac_ohci_off(dev);
3802
3803        dev_notice(&dev->dev, "removed fw-ohci device\n");
3804}
3805
3806#ifdef CONFIG_PM
3807static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3808{
3809        struct fw_ohci *ohci = pci_get_drvdata(dev);
3810        int err;
3811
3812        software_reset(ohci);
3813        err = pci_save_state(dev);
3814        if (err) {
3815                ohci_err(ohci, "pci_save_state failed\n");
3816                return err;
3817        }
3818        err = pci_set_power_state(dev, pci_choose_state(dev, state));
3819        if (err)
3820                ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3821        pmac_ohci_off(dev);
3822
3823        return 0;
3824}
3825
3826static int pci_resume(struct pci_dev *dev)
3827{
3828        struct fw_ohci *ohci = pci_get_drvdata(dev);
3829        int err;
3830
3831        pmac_ohci_on(dev);
3832        pci_set_power_state(dev, PCI_D0);
3833        pci_restore_state(dev);
3834        err = pci_enable_device(dev);
3835        if (err) {
3836                ohci_err(ohci, "pci_enable_device failed\n");
3837                return err;
3838        }
3839
3840        /* Some systems don't setup GUID register on resume from ram  */
3841        if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3842                                        !reg_read(ohci, OHCI1394_GUIDHi)) {
3843                reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3844                reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3845        }
3846
3847        err = ohci_enable(&ohci->card, NULL, 0);
3848        if (err)
3849                return err;
3850
3851        ohci_resume_iso_dma(ohci);
3852
3853        return 0;
3854}
3855#endif
3856
3857static const struct pci_device_id pci_table[] = {
3858        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3859        { }
3860};
3861
3862MODULE_DEVICE_TABLE(pci, pci_table);
3863
3864static struct pci_driver fw_ohci_pci_driver = {
3865        .name           = ohci_driver_name,
3866        .id_table       = pci_table,
3867        .probe          = pci_probe,
3868        .remove         = pci_remove,
3869#ifdef CONFIG_PM
3870        .resume         = pci_resume,
3871        .suspend        = pci_suspend,
3872#endif
3873};
3874
3875static int __init fw_ohci_init(void)
3876{
3877        selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3878        if (!selfid_workqueue)
3879                return -ENOMEM;
3880
3881        return pci_register_driver(&fw_ohci_pci_driver);
3882}
3883
3884static void __exit fw_ohci_cleanup(void)
3885{
3886        pci_unregister_driver(&fw_ohci_pci_driver);
3887        destroy_workqueue(selfid_workqueue);
3888}
3889
3890module_init(fw_ohci_init);
3891module_exit(fw_ohci_cleanup);
3892
3893MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3894MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3895MODULE_LICENSE("GPL");
3896
3897/* Provide a module alias so root-on-sbp2 initrds don't break. */
3898MODULE_ALIAS("ohci1394");
3899