linux/drivers/md/bcache/writeback.c
<<
>>
Prefs
   1/*
   2 * background writeback - scan btree for dirty data and write it to the backing
   3 * device
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "writeback.h"
  13
  14#include <trace/events/bcache.h>
  15
  16static struct workqueue_struct *dirty_wq;
  17
  18static void read_dirty(struct closure *);
  19
  20struct dirty_io {
  21        struct closure          cl;
  22        struct cached_dev       *dc;
  23        struct bio              bio;
  24};
  25
  26/* Rate limiting */
  27
  28static void __update_writeback_rate(struct cached_dev *dc)
  29{
  30        struct cache_set *c = dc->disk.c;
  31        uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
  32        uint64_t cache_dirty_target =
  33                div_u64(cache_sectors * dc->writeback_percent, 100);
  34
  35        int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
  36                                   c->cached_dev_sectors);
  37
  38        /* PD controller */
  39
  40        int change = 0;
  41        int64_t error;
  42        int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
  43        int64_t derivative = dirty - dc->disk.sectors_dirty_last;
  44
  45        dc->disk.sectors_dirty_last = dirty;
  46
  47        derivative *= dc->writeback_rate_d_term;
  48        derivative = clamp(derivative, -dirty, dirty);
  49
  50        derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
  51                              dc->writeback_rate_d_smooth, 0);
  52
  53        /* Avoid divide by zero */
  54        if (!target)
  55                goto out;
  56
  57        error = div64_s64((dirty + derivative - target) << 8, target);
  58
  59        change = div_s64((dc->writeback_rate.rate * error) >> 8,
  60                         dc->writeback_rate_p_term_inverse);
  61
  62        /* Don't increase writeback rate if the device isn't keeping up */
  63        if (change > 0 &&
  64            time_after64(local_clock(),
  65                         dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
  66                change = 0;
  67
  68        dc->writeback_rate.rate =
  69                clamp_t(int64_t, dc->writeback_rate.rate + change,
  70                        1, NSEC_PER_MSEC);
  71out:
  72        dc->writeback_rate_derivative = derivative;
  73        dc->writeback_rate_change = change;
  74        dc->writeback_rate_target = target;
  75
  76        schedule_delayed_work(&dc->writeback_rate_update,
  77                              dc->writeback_rate_update_seconds * HZ);
  78}
  79
  80static void update_writeback_rate(struct work_struct *work)
  81{
  82        struct cached_dev *dc = container_of(to_delayed_work(work),
  83                                             struct cached_dev,
  84                                             writeback_rate_update);
  85
  86        down_read(&dc->writeback_lock);
  87
  88        if (atomic_read(&dc->has_dirty) &&
  89            dc->writeback_percent)
  90                __update_writeback_rate(dc);
  91
  92        up_read(&dc->writeback_lock);
  93}
  94
  95static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
  96{
  97        uint64_t ret;
  98
  99        if (atomic_read(&dc->disk.detaching) ||
 100            !dc->writeback_percent)
 101                return 0;
 102
 103        ret = bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
 104
 105        return min_t(uint64_t, ret, HZ);
 106}
 107
 108/* Background writeback */
 109
 110static bool dirty_pred(struct keybuf *buf, struct bkey *k)
 111{
 112        return KEY_DIRTY(k);
 113}
 114
 115static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
 116{
 117        uint64_t stripe;
 118        unsigned nr_sectors = KEY_SIZE(k);
 119        struct cached_dev *dc = container_of(buf, struct cached_dev,
 120                                             writeback_keys);
 121        unsigned stripe_size = 1 << dc->disk.stripe_size_bits;
 122
 123        if (!KEY_DIRTY(k))
 124                return false;
 125
 126        stripe = KEY_START(k) >> dc->disk.stripe_size_bits;
 127        while (1) {
 128                if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) !=
 129                    stripe_size)
 130                        return false;
 131
 132                if (nr_sectors <= stripe_size)
 133                        return true;
 134
 135                nr_sectors -= stripe_size;
 136                stripe++;
 137        }
 138}
 139
 140static void dirty_init(struct keybuf_key *w)
 141{
 142        struct dirty_io *io = w->private;
 143        struct bio *bio = &io->bio;
 144
 145        bio_init(bio);
 146        if (!io->dc->writeback_percent)
 147                bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
 148
 149        bio->bi_size            = KEY_SIZE(&w->key) << 9;
 150        bio->bi_max_vecs        = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
 151        bio->bi_private         = w;
 152        bio->bi_io_vec          = bio->bi_inline_vecs;
 153        bch_bio_map(bio, NULL);
 154}
 155
 156static void refill_dirty(struct closure *cl)
 157{
 158        struct cached_dev *dc = container_of(cl, struct cached_dev,
 159                                             writeback.cl);
 160        struct keybuf *buf = &dc->writeback_keys;
 161        bool searched_from_start = false;
 162        struct bkey end = MAX_KEY;
 163        SET_KEY_INODE(&end, dc->disk.id);
 164
 165        if (!atomic_read(&dc->disk.detaching) &&
 166            !dc->writeback_running)
 167                closure_return(cl);
 168
 169        down_write(&dc->writeback_lock);
 170
 171        if (!atomic_read(&dc->has_dirty)) {
 172                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
 173                bch_write_bdev_super(dc, NULL);
 174
 175                up_write(&dc->writeback_lock);
 176                closure_return(cl);
 177        }
 178
 179        if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
 180                buf->last_scanned = KEY(dc->disk.id, 0, 0);
 181                searched_from_start = true;
 182        }
 183
 184        if (dc->partial_stripes_expensive) {
 185                uint64_t i;
 186
 187                for (i = 0; i < dc->disk.nr_stripes; i++)
 188                        if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
 189                            1 << dc->disk.stripe_size_bits)
 190                                goto full_stripes;
 191
 192                goto normal_refill;
 193full_stripes:
 194                bch_refill_keybuf(dc->disk.c, buf, &end,
 195                                  dirty_full_stripe_pred);
 196        } else {
 197normal_refill:
 198                bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
 199        }
 200
 201        if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
 202                /* Searched the entire btree  - delay awhile */
 203
 204                if (RB_EMPTY_ROOT(&buf->keys)) {
 205                        atomic_set(&dc->has_dirty, 0);
 206                        cached_dev_put(dc);
 207                }
 208
 209                if (!atomic_read(&dc->disk.detaching))
 210                        closure_delay(&dc->writeback, dc->writeback_delay * HZ);
 211        }
 212
 213        up_write(&dc->writeback_lock);
 214
 215        bch_ratelimit_reset(&dc->writeback_rate);
 216
 217        /* Punt to workqueue only so we don't recurse and blow the stack */
 218        continue_at(cl, read_dirty, dirty_wq);
 219}
 220
 221void bch_writeback_queue(struct cached_dev *dc)
 222{
 223        if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
 224                if (!atomic_read(&dc->disk.detaching))
 225                        closure_delay(&dc->writeback, dc->writeback_delay * HZ);
 226
 227                continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
 228        }
 229}
 230
 231void bch_writeback_add(struct cached_dev *dc)
 232{
 233        if (!atomic_read(&dc->has_dirty) &&
 234            !atomic_xchg(&dc->has_dirty, 1)) {
 235                atomic_inc(&dc->count);
 236
 237                if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
 238                        SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
 239                        /* XXX: should do this synchronously */
 240                        bch_write_bdev_super(dc, NULL);
 241                }
 242
 243                bch_writeback_queue(dc);
 244
 245                if (dc->writeback_percent)
 246                        schedule_delayed_work(&dc->writeback_rate_update,
 247                                      dc->writeback_rate_update_seconds * HZ);
 248        }
 249}
 250
 251void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
 252                                  uint64_t offset, int nr_sectors)
 253{
 254        struct bcache_device *d = c->devices[inode];
 255        unsigned stripe_size, stripe_offset;
 256        uint64_t stripe;
 257
 258        if (!d)
 259                return;
 260
 261        stripe_size = 1 << d->stripe_size_bits;
 262        stripe = offset >> d->stripe_size_bits;
 263        stripe_offset = offset & (stripe_size - 1);
 264
 265        while (nr_sectors) {
 266                int s = min_t(unsigned, abs(nr_sectors),
 267                              stripe_size - stripe_offset);
 268
 269                if (nr_sectors < 0)
 270                        s = -s;
 271
 272                atomic_add(s, d->stripe_sectors_dirty + stripe);
 273                nr_sectors -= s;
 274                stripe_offset = 0;
 275                stripe++;
 276        }
 277}
 278
 279/* Background writeback - IO loop */
 280
 281static void dirty_io_destructor(struct closure *cl)
 282{
 283        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 284        kfree(io);
 285}
 286
 287static void write_dirty_finish(struct closure *cl)
 288{
 289        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 290        struct keybuf_key *w = io->bio.bi_private;
 291        struct cached_dev *dc = io->dc;
 292        struct bio_vec *bv;
 293        int i;
 294
 295        bio_for_each_segment_all(bv, &io->bio, i)
 296                __free_page(bv->bv_page);
 297
 298        /* This is kind of a dumb way of signalling errors. */
 299        if (KEY_DIRTY(&w->key)) {
 300                unsigned i;
 301                struct btree_op op;
 302                bch_btree_op_init_stack(&op);
 303
 304                op.type = BTREE_REPLACE;
 305                bkey_copy(&op.replace, &w->key);
 306
 307                SET_KEY_DIRTY(&w->key, false);
 308                bch_keylist_add(&op.keys, &w->key);
 309
 310                for (i = 0; i < KEY_PTRS(&w->key); i++)
 311                        atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
 312
 313                bch_btree_insert(&op, dc->disk.c);
 314                closure_sync(&op.cl);
 315
 316                if (op.insert_collision)
 317                        trace_bcache_writeback_collision(&w->key);
 318
 319                atomic_long_inc(op.insert_collision
 320                                ? &dc->disk.c->writeback_keys_failed
 321                                : &dc->disk.c->writeback_keys_done);
 322        }
 323
 324        bch_keybuf_del(&dc->writeback_keys, w);
 325        up(&dc->in_flight);
 326
 327        closure_return_with_destructor(cl, dirty_io_destructor);
 328}
 329
 330static void dirty_endio(struct bio *bio, int error)
 331{
 332        struct keybuf_key *w = bio->bi_private;
 333        struct dirty_io *io = w->private;
 334
 335        if (error)
 336                SET_KEY_DIRTY(&w->key, false);
 337
 338        closure_put(&io->cl);
 339}
 340
 341static void write_dirty(struct closure *cl)
 342{
 343        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 344        struct keybuf_key *w = io->bio.bi_private;
 345
 346        dirty_init(w);
 347        io->bio.bi_rw           = WRITE;
 348        io->bio.bi_sector       = KEY_START(&w->key);
 349        io->bio.bi_bdev         = io->dc->bdev;
 350        io->bio.bi_end_io       = dirty_endio;
 351
 352        closure_bio_submit(&io->bio, cl, &io->dc->disk);
 353
 354        continue_at(cl, write_dirty_finish, system_wq);
 355}
 356
 357static void read_dirty_endio(struct bio *bio, int error)
 358{
 359        struct keybuf_key *w = bio->bi_private;
 360        struct dirty_io *io = w->private;
 361
 362        bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
 363                            error, "reading dirty data from cache");
 364
 365        dirty_endio(bio, error);
 366}
 367
 368static void read_dirty_submit(struct closure *cl)
 369{
 370        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 371
 372        closure_bio_submit(&io->bio, cl, &io->dc->disk);
 373
 374        continue_at(cl, write_dirty, system_wq);
 375}
 376
 377static void read_dirty(struct closure *cl)
 378{
 379        struct cached_dev *dc = container_of(cl, struct cached_dev,
 380                                             writeback.cl);
 381        unsigned delay = writeback_delay(dc, 0);
 382        struct keybuf_key *w;
 383        struct dirty_io *io;
 384
 385        /*
 386         * XXX: if we error, background writeback just spins. Should use some
 387         * mempools.
 388         */
 389
 390        while (1) {
 391                w = bch_keybuf_next(&dc->writeback_keys);
 392                if (!w)
 393                        break;
 394
 395                BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
 396
 397                if (delay > 0 &&
 398                    (KEY_START(&w->key) != dc->last_read ||
 399                     jiffies_to_msecs(delay) > 50))
 400                        delay = schedule_timeout_uninterruptible(delay);
 401
 402                dc->last_read   = KEY_OFFSET(&w->key);
 403
 404                io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
 405                             * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
 406                             GFP_KERNEL);
 407                if (!io)
 408                        goto err;
 409
 410                w->private      = io;
 411                io->dc          = dc;
 412
 413                dirty_init(w);
 414                io->bio.bi_sector       = PTR_OFFSET(&w->key, 0);
 415                io->bio.bi_bdev         = PTR_CACHE(dc->disk.c,
 416                                                    &w->key, 0)->bdev;
 417                io->bio.bi_rw           = READ;
 418                io->bio.bi_end_io       = read_dirty_endio;
 419
 420                if (bio_alloc_pages(&io->bio, GFP_KERNEL))
 421                        goto err_free;
 422
 423                trace_bcache_writeback(&w->key);
 424
 425                down(&dc->in_flight);
 426                closure_call(&io->cl, read_dirty_submit, NULL, cl);
 427
 428                delay = writeback_delay(dc, KEY_SIZE(&w->key));
 429        }
 430
 431        if (0) {
 432err_free:
 433                kfree(w->private);
 434err:
 435                bch_keybuf_del(&dc->writeback_keys, w);
 436        }
 437
 438        /*
 439         * Wait for outstanding writeback IOs to finish (and keybuf slots to be
 440         * freed) before refilling again
 441         */
 442        continue_at(cl, refill_dirty, dirty_wq);
 443}
 444
 445/* Init */
 446
 447static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
 448                                        struct cached_dev *dc)
 449{
 450        struct bkey *k;
 451        struct btree_iter iter;
 452
 453        bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
 454        while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
 455                if (!b->level) {
 456                        if (KEY_INODE(k) > dc->disk.id)
 457                                break;
 458
 459                        if (KEY_DIRTY(k))
 460                                bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
 461                                                             KEY_START(k),
 462                                                             KEY_SIZE(k));
 463                } else {
 464                        btree(sectors_dirty_init, k, b, op, dc);
 465                        if (KEY_INODE(k) > dc->disk.id)
 466                                break;
 467
 468                        cond_resched();
 469                }
 470
 471        return 0;
 472}
 473
 474void bch_sectors_dirty_init(struct cached_dev *dc)
 475{
 476        struct btree_op op;
 477
 478        bch_btree_op_init_stack(&op);
 479        btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
 480}
 481
 482void bch_cached_dev_writeback_init(struct cached_dev *dc)
 483{
 484        sema_init(&dc->in_flight, 64);
 485        closure_init_unlocked(&dc->writeback);
 486        init_rwsem(&dc->writeback_lock);
 487
 488        bch_keybuf_init(&dc->writeback_keys);
 489
 490        dc->writeback_metadata          = true;
 491        dc->writeback_running           = true;
 492        dc->writeback_percent           = 10;
 493        dc->writeback_delay             = 30;
 494        dc->writeback_rate.rate         = 1024;
 495
 496        dc->writeback_rate_update_seconds = 30;
 497        dc->writeback_rate_d_term       = 16;
 498        dc->writeback_rate_p_term_inverse = 64;
 499        dc->writeback_rate_d_smooth     = 8;
 500
 501        INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
 502        schedule_delayed_work(&dc->writeback_rate_update,
 503                              dc->writeback_rate_update_seconds * HZ);
 504}
 505
 506void bch_writeback_exit(void)
 507{
 508        if (dirty_wq)
 509                destroy_workqueue(dirty_wq);
 510}
 511
 512int __init bch_writeback_init(void)
 513{
 514        dirty_wq = create_workqueue("bcache_writeback");
 515        if (!dirty_wq)
 516                return -ENOMEM;
 517
 518        return 0;
 519}
 520