linux/drivers/misc/vmw_vmci/vmci_queue_pair.c
<<
>>
Prefs
   1/*
   2 * VMware VMCI Driver
   3 *
   4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  12 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 * for more details.
  14 */
  15
  16#include <linux/vmw_vmci_defs.h>
  17#include <linux/vmw_vmci_api.h>
  18#include <linux/highmem.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/module.h>
  22#include <linux/mutex.h>
  23#include <linux/pagemap.h>
  24#include <linux/pci.h>
  25#include <linux/sched.h>
  26#include <linux/slab.h>
  27#include <linux/uio.h>
  28#include <linux/wait.h>
  29#include <linux/vmalloc.h>
  30
  31#include "vmci_handle_array.h"
  32#include "vmci_queue_pair.h"
  33#include "vmci_datagram.h"
  34#include "vmci_resource.h"
  35#include "vmci_context.h"
  36#include "vmci_driver.h"
  37#include "vmci_event.h"
  38#include "vmci_route.h"
  39
  40/*
  41 * In the following, we will distinguish between two kinds of VMX processes -
  42 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
  43 * VMCI page files in the VMX and supporting VM to VM communication and the
  44 * newer ones that use the guest memory directly. We will in the following
  45 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
  46 * new-style VMX'en.
  47 *
  48 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
  49 * removed for readability) - see below for more details on the transtions:
  50 *
  51 *            --------------  NEW  -------------
  52 *            |                                |
  53 *           \_/                              \_/
  54 *     CREATED_NO_MEM <-----------------> CREATED_MEM
  55 *            |    |                           |
  56 *            |    o-----------------------o   |
  57 *            |                            |   |
  58 *           \_/                          \_/ \_/
  59 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
  60 *            |                            |   |
  61 *            |     o----------------------o   |
  62 *            |     |                          |
  63 *           \_/   \_/                        \_/
  64 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
  65 *            |                                |
  66 *            |                                |
  67 *            -------------> gone <-------------
  68 *
  69 * In more detail. When a VMCI queue pair is first created, it will be in the
  70 * VMCIQPB_NEW state. It will then move into one of the following states:
  71 *
  72 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
  73 *
  74 *     - the created was performed by a host endpoint, in which case there is
  75 *       no backing memory yet.
  76 *
  77 *     - the create was initiated by an old-style VMX, that uses
  78 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
  79 *       a later point in time. This state can be distinguished from the one
  80 *       above by the context ID of the creator. A host side is not allowed to
  81 *       attach until the page store has been set.
  82 *
  83 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
  84 *     is created by a VMX using the queue pair device backend that
  85 *     sets the UVAs of the queue pair immediately and stores the
  86 *     information for later attachers. At this point, it is ready for
  87 *     the host side to attach to it.
  88 *
  89 * Once the queue pair is in one of the created states (with the exception of
  90 * the case mentioned for older VMX'en above), it is possible to attach to the
  91 * queue pair. Again we have two new states possible:
  92 *
  93 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
  94 *   paths:
  95 *
  96 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
  97 *       pair, and attaches to a queue pair previously created by the host side.
  98 *
  99 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
 100 *       already created by a guest.
 101 *
 102 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
 103 *       vmci_qp_broker_set_page_store (see below).
 104 *
 105 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
 106 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
 107 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
 108 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
 109 *     will be entered.
 110 *
 111 * From the attached queue pair, the queue pair can enter the shutdown states
 112 * when either side of the queue pair detaches. If the guest side detaches
 113 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
 114 * the content of the queue pair will no longer be available. If the host
 115 * side detaches first, the queue pair will either enter the
 116 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
 117 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
 118 * (e.g., the host detaches while a guest is stunned).
 119 *
 120 * New-style VMX'en will also unmap guest memory, if the guest is
 121 * quiesced, e.g., during a snapshot operation. In that case, the guest
 122 * memory will no longer be available, and the queue pair will transition from
 123 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
 124 * in which case the queue pair will transition from the *_NO_MEM state at that
 125 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
 126 * since the peer may have either attached or detached in the meantime. The
 127 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
 128 * *_MEM state, and vice versa.
 129 */
 130
 131/*
 132 * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
 133 * types are passed around to enqueue and dequeue routines.  Note that
 134 * often the functions passed are simply wrappers around memcpy
 135 * itself.
 136 *
 137 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
 138 * there's an unused last parameter for the hosted side.  In
 139 * ESX, that parameter holds a buffer type.
 140 */
 141typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
 142                                      u64 queue_offset, const void *src,
 143                                      size_t src_offset, size_t size);
 144typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
 145                                        const struct vmci_queue *queue,
 146                                        u64 queue_offset, size_t size);
 147
 148/* The Kernel specific component of the struct vmci_queue structure. */
 149struct vmci_queue_kern_if {
 150        struct mutex __mutex;   /* Protects the queue. */
 151        struct mutex *mutex;    /* Shared by producer and consumer queues. */
 152        size_t num_pages;       /* Number of pages incl. header. */
 153        bool host;              /* Host or guest? */
 154        union {
 155                struct {
 156                        dma_addr_t *pas;
 157                        void **vas;
 158                } g;            /* Used by the guest. */
 159                struct {
 160                        struct page **page;
 161                        struct page **header_page;
 162                } h;            /* Used by the host. */
 163        } u;
 164};
 165
 166/*
 167 * This structure is opaque to the clients.
 168 */
 169struct vmci_qp {
 170        struct vmci_handle handle;
 171        struct vmci_queue *produce_q;
 172        struct vmci_queue *consume_q;
 173        u64 produce_q_size;
 174        u64 consume_q_size;
 175        u32 peer;
 176        u32 flags;
 177        u32 priv_flags;
 178        bool guest_endpoint;
 179        unsigned int blocked;
 180        unsigned int generation;
 181        wait_queue_head_t event;
 182};
 183
 184enum qp_broker_state {
 185        VMCIQPB_NEW,
 186        VMCIQPB_CREATED_NO_MEM,
 187        VMCIQPB_CREATED_MEM,
 188        VMCIQPB_ATTACHED_NO_MEM,
 189        VMCIQPB_ATTACHED_MEM,
 190        VMCIQPB_SHUTDOWN_NO_MEM,
 191        VMCIQPB_SHUTDOWN_MEM,
 192        VMCIQPB_GONE
 193};
 194
 195#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
 196                                     _qpb->state == VMCIQPB_ATTACHED_MEM || \
 197                                     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
 198
 199/*
 200 * In the queue pair broker, we always use the guest point of view for
 201 * the produce and consume queue values and references, e.g., the
 202 * produce queue size stored is the guests produce queue size. The
 203 * host endpoint will need to swap these around. The only exception is
 204 * the local queue pairs on the host, in which case the host endpoint
 205 * that creates the queue pair will have the right orientation, and
 206 * the attaching host endpoint will need to swap.
 207 */
 208struct qp_entry {
 209        struct list_head list_item;
 210        struct vmci_handle handle;
 211        u32 peer;
 212        u32 flags;
 213        u64 produce_size;
 214        u64 consume_size;
 215        u32 ref_count;
 216};
 217
 218struct qp_broker_entry {
 219        struct vmci_resource resource;
 220        struct qp_entry qp;
 221        u32 create_id;
 222        u32 attach_id;
 223        enum qp_broker_state state;
 224        bool require_trusted_attach;
 225        bool created_by_trusted;
 226        bool vmci_page_files;   /* Created by VMX using VMCI page files */
 227        struct vmci_queue *produce_q;
 228        struct vmci_queue *consume_q;
 229        struct vmci_queue_header saved_produce_q;
 230        struct vmci_queue_header saved_consume_q;
 231        vmci_event_release_cb wakeup_cb;
 232        void *client_data;
 233        void *local_mem;        /* Kernel memory for local queue pair */
 234};
 235
 236struct qp_guest_endpoint {
 237        struct vmci_resource resource;
 238        struct qp_entry qp;
 239        u64 num_ppns;
 240        void *produce_q;
 241        void *consume_q;
 242        struct ppn_set ppn_set;
 243};
 244
 245struct qp_list {
 246        struct list_head head;
 247        struct mutex mutex;     /* Protect queue list. */
 248};
 249
 250static struct qp_list qp_broker_list = {
 251        .head = LIST_HEAD_INIT(qp_broker_list.head),
 252        .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
 253};
 254
 255static struct qp_list qp_guest_endpoints = {
 256        .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
 257        .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
 258};
 259
 260#define INVALID_VMCI_GUEST_MEM_ID  0
 261#define QPE_NUM_PAGES(_QPE) ((u32) \
 262                             (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
 263                              DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
 264
 265
 266/*
 267 * Frees kernel VA space for a given queue and its queue header, and
 268 * frees physical data pages.
 269 */
 270static void qp_free_queue(void *q, u64 size)
 271{
 272        struct vmci_queue *queue = q;
 273
 274        if (queue) {
 275                u64 i;
 276
 277                /* Given size does not include header, so add in a page here. */
 278                for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
 279                        dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
 280                                          queue->kernel_if->u.g.vas[i],
 281                                          queue->kernel_if->u.g.pas[i]);
 282                }
 283
 284                vfree(queue);
 285        }
 286}
 287
 288/*
 289 * Allocates kernel queue pages of specified size with IOMMU mappings,
 290 * plus space for the queue structure/kernel interface and the queue
 291 * header.
 292 */
 293static void *qp_alloc_queue(u64 size, u32 flags)
 294{
 295        u64 i;
 296        struct vmci_queue *queue;
 297        const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 298        const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
 299        const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
 300        const size_t queue_size =
 301                sizeof(*queue) + sizeof(*queue->kernel_if) +
 302                pas_size + vas_size;
 303
 304        queue = vmalloc(queue_size);
 305        if (!queue)
 306                return NULL;
 307
 308        queue->q_header = NULL;
 309        queue->saved_header = NULL;
 310        queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 311        queue->kernel_if->mutex = NULL;
 312        queue->kernel_if->num_pages = num_pages;
 313        queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
 314        queue->kernel_if->u.g.vas =
 315                (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
 316        queue->kernel_if->host = false;
 317
 318        for (i = 0; i < num_pages; i++) {
 319                queue->kernel_if->u.g.vas[i] =
 320                        dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
 321                                           &queue->kernel_if->u.g.pas[i],
 322                                           GFP_KERNEL);
 323                if (!queue->kernel_if->u.g.vas[i]) {
 324                        /* Size excl. the header. */
 325                        qp_free_queue(queue, i * PAGE_SIZE);
 326                        return NULL;
 327                }
 328        }
 329
 330        /* Queue header is the first page. */
 331        queue->q_header = queue->kernel_if->u.g.vas[0];
 332
 333        return queue;
 334}
 335
 336/*
 337 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
 338 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 339 * by traversing the offset -> page translation structure for the queue.
 340 * Assumes that offset + size does not wrap around in the queue.
 341 */
 342static int __qp_memcpy_to_queue(struct vmci_queue *queue,
 343                                u64 queue_offset,
 344                                const void *src,
 345                                size_t size,
 346                                bool is_iovec)
 347{
 348        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 349        size_t bytes_copied = 0;
 350
 351        while (bytes_copied < size) {
 352                const u64 page_index =
 353                        (queue_offset + bytes_copied) / PAGE_SIZE;
 354                const size_t page_offset =
 355                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 356                void *va;
 357                size_t to_copy;
 358
 359                if (kernel_if->host)
 360                        va = kmap(kernel_if->u.h.page[page_index]);
 361                else
 362                        va = kernel_if->u.g.vas[page_index + 1];
 363                        /* Skip header. */
 364
 365                if (size - bytes_copied > PAGE_SIZE - page_offset)
 366                        /* Enough payload to fill up from this page. */
 367                        to_copy = PAGE_SIZE - page_offset;
 368                else
 369                        to_copy = size - bytes_copied;
 370
 371                if (is_iovec) {
 372                        struct iovec *iov = (struct iovec *)src;
 373                        int err;
 374
 375                        /* The iovec will track bytes_copied internally. */
 376                        err = memcpy_fromiovec((u8 *)va + page_offset,
 377                                               iov, to_copy);
 378                        if (err != 0) {
 379                                if (kernel_if->host)
 380                                        kunmap(kernel_if->u.h.page[page_index]);
 381                                return VMCI_ERROR_INVALID_ARGS;
 382                        }
 383                } else {
 384                        memcpy((u8 *)va + page_offset,
 385                               (u8 *)src + bytes_copied, to_copy);
 386                }
 387
 388                bytes_copied += to_copy;
 389                if (kernel_if->host)
 390                        kunmap(kernel_if->u.h.page[page_index]);
 391        }
 392
 393        return VMCI_SUCCESS;
 394}
 395
 396/*
 397 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
 398 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 399 * by traversing the offset -> page translation structure for the queue.
 400 * Assumes that offset + size does not wrap around in the queue.
 401 */
 402static int __qp_memcpy_from_queue(void *dest,
 403                                  const struct vmci_queue *queue,
 404                                  u64 queue_offset,
 405                                  size_t size,
 406                                  bool is_iovec)
 407{
 408        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 409        size_t bytes_copied = 0;
 410
 411        while (bytes_copied < size) {
 412                const u64 page_index =
 413                        (queue_offset + bytes_copied) / PAGE_SIZE;
 414                const size_t page_offset =
 415                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 416                void *va;
 417                size_t to_copy;
 418
 419                if (kernel_if->host)
 420                        va = kmap(kernel_if->u.h.page[page_index]);
 421                else
 422                        va = kernel_if->u.g.vas[page_index + 1];
 423                        /* Skip header. */
 424
 425                if (size - bytes_copied > PAGE_SIZE - page_offset)
 426                        /* Enough payload to fill up this page. */
 427                        to_copy = PAGE_SIZE - page_offset;
 428                else
 429                        to_copy = size - bytes_copied;
 430
 431                if (is_iovec) {
 432                        struct iovec *iov = (struct iovec *)dest;
 433                        int err;
 434
 435                        /* The iovec will track bytes_copied internally. */
 436                        err = memcpy_toiovec(iov, (u8 *)va + page_offset,
 437                                             to_copy);
 438                        if (err != 0) {
 439                                if (kernel_if->host)
 440                                        kunmap(kernel_if->u.h.page[page_index]);
 441                                return VMCI_ERROR_INVALID_ARGS;
 442                        }
 443                } else {
 444                        memcpy((u8 *)dest + bytes_copied,
 445                               (u8 *)va + page_offset, to_copy);
 446                }
 447
 448                bytes_copied += to_copy;
 449                if (kernel_if->host)
 450                        kunmap(kernel_if->u.h.page[page_index]);
 451        }
 452
 453        return VMCI_SUCCESS;
 454}
 455
 456/*
 457 * Allocates two list of PPNs --- one for the pages in the produce queue,
 458 * and the other for the pages in the consume queue. Intializes the list
 459 * of PPNs with the page frame numbers of the KVA for the two queues (and
 460 * the queue headers).
 461 */
 462static int qp_alloc_ppn_set(void *prod_q,
 463                            u64 num_produce_pages,
 464                            void *cons_q,
 465                            u64 num_consume_pages, struct ppn_set *ppn_set)
 466{
 467        u32 *produce_ppns;
 468        u32 *consume_ppns;
 469        struct vmci_queue *produce_q = prod_q;
 470        struct vmci_queue *consume_q = cons_q;
 471        u64 i;
 472
 473        if (!produce_q || !num_produce_pages || !consume_q ||
 474            !num_consume_pages || !ppn_set)
 475                return VMCI_ERROR_INVALID_ARGS;
 476
 477        if (ppn_set->initialized)
 478                return VMCI_ERROR_ALREADY_EXISTS;
 479
 480        produce_ppns =
 481            kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
 482        if (!produce_ppns)
 483                return VMCI_ERROR_NO_MEM;
 484
 485        consume_ppns =
 486            kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
 487        if (!consume_ppns) {
 488                kfree(produce_ppns);
 489                return VMCI_ERROR_NO_MEM;
 490        }
 491
 492        for (i = 0; i < num_produce_pages; i++) {
 493                unsigned long pfn;
 494
 495                produce_ppns[i] =
 496                        produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 497                pfn = produce_ppns[i];
 498
 499                /* Fail allocation if PFN isn't supported by hypervisor. */
 500                if (sizeof(pfn) > sizeof(*produce_ppns)
 501                    && pfn != produce_ppns[i])
 502                        goto ppn_error;
 503        }
 504
 505        for (i = 0; i < num_consume_pages; i++) {
 506                unsigned long pfn;
 507
 508                consume_ppns[i] =
 509                        consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 510                pfn = consume_ppns[i];
 511
 512                /* Fail allocation if PFN isn't supported by hypervisor. */
 513                if (sizeof(pfn) > sizeof(*consume_ppns)
 514                    && pfn != consume_ppns[i])
 515                        goto ppn_error;
 516        }
 517
 518        ppn_set->num_produce_pages = num_produce_pages;
 519        ppn_set->num_consume_pages = num_consume_pages;
 520        ppn_set->produce_ppns = produce_ppns;
 521        ppn_set->consume_ppns = consume_ppns;
 522        ppn_set->initialized = true;
 523        return VMCI_SUCCESS;
 524
 525 ppn_error:
 526        kfree(produce_ppns);
 527        kfree(consume_ppns);
 528        return VMCI_ERROR_INVALID_ARGS;
 529}
 530
 531/*
 532 * Frees the two list of PPNs for a queue pair.
 533 */
 534static void qp_free_ppn_set(struct ppn_set *ppn_set)
 535{
 536        if (ppn_set->initialized) {
 537                /* Do not call these functions on NULL inputs. */
 538                kfree(ppn_set->produce_ppns);
 539                kfree(ppn_set->consume_ppns);
 540        }
 541        memset(ppn_set, 0, sizeof(*ppn_set));
 542}
 543
 544/*
 545 * Populates the list of PPNs in the hypercall structure with the PPNS
 546 * of the produce queue and the consume queue.
 547 */
 548static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
 549{
 550        memcpy(call_buf, ppn_set->produce_ppns,
 551               ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
 552        memcpy(call_buf +
 553               ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
 554               ppn_set->consume_ppns,
 555               ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
 556
 557        return VMCI_SUCCESS;
 558}
 559
 560static int qp_memcpy_to_queue(struct vmci_queue *queue,
 561                              u64 queue_offset,
 562                              const void *src, size_t src_offset, size_t size)
 563{
 564        return __qp_memcpy_to_queue(queue, queue_offset,
 565                                    (u8 *)src + src_offset, size, false);
 566}
 567
 568static int qp_memcpy_from_queue(void *dest,
 569                                size_t dest_offset,
 570                                const struct vmci_queue *queue,
 571                                u64 queue_offset, size_t size)
 572{
 573        return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
 574                                      queue, queue_offset, size, false);
 575}
 576
 577/*
 578 * Copies from a given iovec from a VMCI Queue.
 579 */
 580static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
 581                                  u64 queue_offset,
 582                                  const void *src,
 583                                  size_t src_offset, size_t size)
 584{
 585
 586        /*
 587         * We ignore src_offset because src is really a struct iovec * and will
 588         * maintain offset internally.
 589         */
 590        return __qp_memcpy_to_queue(queue, queue_offset, src, size, true);
 591}
 592
 593/*
 594 * Copies to a given iovec from a VMCI Queue.
 595 */
 596static int qp_memcpy_from_queue_iov(void *dest,
 597                                    size_t dest_offset,
 598                                    const struct vmci_queue *queue,
 599                                    u64 queue_offset, size_t size)
 600{
 601        /*
 602         * We ignore dest_offset because dest is really a struct iovec * and
 603         * will maintain offset internally.
 604         */
 605        return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
 606}
 607
 608/*
 609 * Allocates kernel VA space of specified size plus space for the queue
 610 * and kernel interface.  This is different from the guest queue allocator,
 611 * because we do not allocate our own queue header/data pages here but
 612 * share those of the guest.
 613 */
 614static struct vmci_queue *qp_host_alloc_queue(u64 size)
 615{
 616        struct vmci_queue *queue;
 617        const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 618        const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
 619        const size_t queue_page_size =
 620            num_pages * sizeof(*queue->kernel_if->u.h.page);
 621
 622        queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
 623        if (queue) {
 624                queue->q_header = NULL;
 625                queue->saved_header = NULL;
 626                queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 627                queue->kernel_if->host = true;
 628                queue->kernel_if->mutex = NULL;
 629                queue->kernel_if->num_pages = num_pages;
 630                queue->kernel_if->u.h.header_page =
 631                    (struct page **)((u8 *)queue + queue_size);
 632                queue->kernel_if->u.h.page =
 633                        &queue->kernel_if->u.h.header_page[1];
 634        }
 635
 636        return queue;
 637}
 638
 639/*
 640 * Frees kernel memory for a given queue (header plus translation
 641 * structure).
 642 */
 643static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
 644{
 645        kfree(queue);
 646}
 647
 648/*
 649 * Initialize the mutex for the pair of queues.  This mutex is used to
 650 * protect the q_header and the buffer from changing out from under any
 651 * users of either queue.  Of course, it's only any good if the mutexes
 652 * are actually acquired.  Queue structure must lie on non-paged memory
 653 * or we cannot guarantee access to the mutex.
 654 */
 655static void qp_init_queue_mutex(struct vmci_queue *produce_q,
 656                                struct vmci_queue *consume_q)
 657{
 658        /*
 659         * Only the host queue has shared state - the guest queues do not
 660         * need to synchronize access using a queue mutex.
 661         */
 662
 663        if (produce_q->kernel_if->host) {
 664                produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 665                consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 666                mutex_init(produce_q->kernel_if->mutex);
 667        }
 668}
 669
 670/*
 671 * Cleans up the mutex for the pair of queues.
 672 */
 673static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
 674                                   struct vmci_queue *consume_q)
 675{
 676        if (produce_q->kernel_if->host) {
 677                produce_q->kernel_if->mutex = NULL;
 678                consume_q->kernel_if->mutex = NULL;
 679        }
 680}
 681
 682/*
 683 * Acquire the mutex for the queue.  Note that the produce_q and
 684 * the consume_q share a mutex.  So, only one of the two need to
 685 * be passed in to this routine.  Either will work just fine.
 686 */
 687static void qp_acquire_queue_mutex(struct vmci_queue *queue)
 688{
 689        if (queue->kernel_if->host)
 690                mutex_lock(queue->kernel_if->mutex);
 691}
 692
 693/*
 694 * Release the mutex for the queue.  Note that the produce_q and
 695 * the consume_q share a mutex.  So, only one of the two need to
 696 * be passed in to this routine.  Either will work just fine.
 697 */
 698static void qp_release_queue_mutex(struct vmci_queue *queue)
 699{
 700        if (queue->kernel_if->host)
 701                mutex_unlock(queue->kernel_if->mutex);
 702}
 703
 704/*
 705 * Helper function to release pages in the PageStoreAttachInfo
 706 * previously obtained using get_user_pages.
 707 */
 708static void qp_release_pages(struct page **pages,
 709                             u64 num_pages, bool dirty)
 710{
 711        int i;
 712
 713        for (i = 0; i < num_pages; i++) {
 714                if (dirty)
 715                        set_page_dirty(pages[i]);
 716
 717                page_cache_release(pages[i]);
 718                pages[i] = NULL;
 719        }
 720}
 721
 722/*
 723 * Lock the user pages referenced by the {produce,consume}Buffer
 724 * struct into memory and populate the {produce,consume}Pages
 725 * arrays in the attach structure with them.
 726 */
 727static int qp_host_get_user_memory(u64 produce_uva,
 728                                   u64 consume_uva,
 729                                   struct vmci_queue *produce_q,
 730                                   struct vmci_queue *consume_q)
 731{
 732        int retval;
 733        int err = VMCI_SUCCESS;
 734
 735        down_write(&current->mm->mmap_sem);
 736        retval = get_user_pages(current,
 737                                current->mm,
 738                                (uintptr_t) produce_uva,
 739                                produce_q->kernel_if->num_pages,
 740                                1, 0,
 741                                produce_q->kernel_if->u.h.header_page, NULL);
 742        if (retval < produce_q->kernel_if->num_pages) {
 743                pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
 744                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 745                                 retval, false);
 746                err = VMCI_ERROR_NO_MEM;
 747                goto out;
 748        }
 749
 750        retval = get_user_pages(current,
 751                                current->mm,
 752                                (uintptr_t) consume_uva,
 753                                consume_q->kernel_if->num_pages,
 754                                1, 0,
 755                                consume_q->kernel_if->u.h.header_page, NULL);
 756        if (retval < consume_q->kernel_if->num_pages) {
 757                pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
 758                qp_release_pages(consume_q->kernel_if->u.h.header_page,
 759                                 retval, false);
 760                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 761                                 produce_q->kernel_if->num_pages, false);
 762                err = VMCI_ERROR_NO_MEM;
 763        }
 764
 765 out:
 766        up_write(&current->mm->mmap_sem);
 767
 768        return err;
 769}
 770
 771/*
 772 * Registers the specification of the user pages used for backing a queue
 773 * pair. Enough information to map in pages is stored in the OS specific
 774 * part of the struct vmci_queue structure.
 775 */
 776static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
 777                                        struct vmci_queue *produce_q,
 778                                        struct vmci_queue *consume_q)
 779{
 780        u64 produce_uva;
 781        u64 consume_uva;
 782
 783        /*
 784         * The new style and the old style mapping only differs in
 785         * that we either get a single or two UVAs, so we split the
 786         * single UVA range at the appropriate spot.
 787         */
 788        produce_uva = page_store->pages;
 789        consume_uva = page_store->pages +
 790            produce_q->kernel_if->num_pages * PAGE_SIZE;
 791        return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
 792                                       consume_q);
 793}
 794
 795/*
 796 * Releases and removes the references to user pages stored in the attach
 797 * struct.  Pages are released from the page cache and may become
 798 * swappable again.
 799 */
 800static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
 801                                           struct vmci_queue *consume_q)
 802{
 803        qp_release_pages(produce_q->kernel_if->u.h.header_page,
 804                         produce_q->kernel_if->num_pages, true);
 805        memset(produce_q->kernel_if->u.h.header_page, 0,
 806               sizeof(*produce_q->kernel_if->u.h.header_page) *
 807               produce_q->kernel_if->num_pages);
 808        qp_release_pages(consume_q->kernel_if->u.h.header_page,
 809                         consume_q->kernel_if->num_pages, true);
 810        memset(consume_q->kernel_if->u.h.header_page, 0,
 811               sizeof(*consume_q->kernel_if->u.h.header_page) *
 812               consume_q->kernel_if->num_pages);
 813}
 814
 815/*
 816 * Once qp_host_register_user_memory has been performed on a
 817 * queue, the queue pair headers can be mapped into the
 818 * kernel. Once mapped, they must be unmapped with
 819 * qp_host_unmap_queues prior to calling
 820 * qp_host_unregister_user_memory.
 821 * Pages are pinned.
 822 */
 823static int qp_host_map_queues(struct vmci_queue *produce_q,
 824                              struct vmci_queue *consume_q)
 825{
 826        int result;
 827
 828        if (!produce_q->q_header || !consume_q->q_header) {
 829                struct page *headers[2];
 830
 831                if (produce_q->q_header != consume_q->q_header)
 832                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
 833
 834                if (produce_q->kernel_if->u.h.header_page == NULL ||
 835                    *produce_q->kernel_if->u.h.header_page == NULL)
 836                        return VMCI_ERROR_UNAVAILABLE;
 837
 838                headers[0] = *produce_q->kernel_if->u.h.header_page;
 839                headers[1] = *consume_q->kernel_if->u.h.header_page;
 840
 841                produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
 842                if (produce_q->q_header != NULL) {
 843                        consume_q->q_header =
 844                            (struct vmci_queue_header *)((u8 *)
 845                                                         produce_q->q_header +
 846                                                         PAGE_SIZE);
 847                        result = VMCI_SUCCESS;
 848                } else {
 849                        pr_warn("vmap failed\n");
 850                        result = VMCI_ERROR_NO_MEM;
 851                }
 852        } else {
 853                result = VMCI_SUCCESS;
 854        }
 855
 856        return result;
 857}
 858
 859/*
 860 * Unmaps previously mapped queue pair headers from the kernel.
 861 * Pages are unpinned.
 862 */
 863static int qp_host_unmap_queues(u32 gid,
 864                                struct vmci_queue *produce_q,
 865                                struct vmci_queue *consume_q)
 866{
 867        if (produce_q->q_header) {
 868                if (produce_q->q_header < consume_q->q_header)
 869                        vunmap(produce_q->q_header);
 870                else
 871                        vunmap(consume_q->q_header);
 872
 873                produce_q->q_header = NULL;
 874                consume_q->q_header = NULL;
 875        }
 876
 877        return VMCI_SUCCESS;
 878}
 879
 880/*
 881 * Finds the entry in the list corresponding to a given handle. Assumes
 882 * that the list is locked.
 883 */
 884static struct qp_entry *qp_list_find(struct qp_list *qp_list,
 885                                     struct vmci_handle handle)
 886{
 887        struct qp_entry *entry;
 888
 889        if (vmci_handle_is_invalid(handle))
 890                return NULL;
 891
 892        list_for_each_entry(entry, &qp_list->head, list_item) {
 893                if (vmci_handle_is_equal(entry->handle, handle))
 894                        return entry;
 895        }
 896
 897        return NULL;
 898}
 899
 900/*
 901 * Finds the entry in the list corresponding to a given handle.
 902 */
 903static struct qp_guest_endpoint *
 904qp_guest_handle_to_entry(struct vmci_handle handle)
 905{
 906        struct qp_guest_endpoint *entry;
 907        struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
 908
 909        entry = qp ? container_of(
 910                qp, struct qp_guest_endpoint, qp) : NULL;
 911        return entry;
 912}
 913
 914/*
 915 * Finds the entry in the list corresponding to a given handle.
 916 */
 917static struct qp_broker_entry *
 918qp_broker_handle_to_entry(struct vmci_handle handle)
 919{
 920        struct qp_broker_entry *entry;
 921        struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
 922
 923        entry = qp ? container_of(
 924                qp, struct qp_broker_entry, qp) : NULL;
 925        return entry;
 926}
 927
 928/*
 929 * Dispatches a queue pair event message directly into the local event
 930 * queue.
 931 */
 932static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
 933{
 934        u32 context_id = vmci_get_context_id();
 935        struct vmci_event_qp ev;
 936
 937        ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
 938        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 939                                          VMCI_CONTEXT_RESOURCE_ID);
 940        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
 941        ev.msg.event_data.event =
 942            attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
 943        ev.payload.peer_id = context_id;
 944        ev.payload.handle = handle;
 945
 946        return vmci_event_dispatch(&ev.msg.hdr);
 947}
 948
 949/*
 950 * Allocates and initializes a qp_guest_endpoint structure.
 951 * Allocates a queue_pair rid (and handle) iff the given entry has
 952 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
 953 * are reserved handles.  Assumes that the QP list mutex is held
 954 * by the caller.
 955 */
 956static struct qp_guest_endpoint *
 957qp_guest_endpoint_create(struct vmci_handle handle,
 958                         u32 peer,
 959                         u32 flags,
 960                         u64 produce_size,
 961                         u64 consume_size,
 962                         void *produce_q,
 963                         void *consume_q)
 964{
 965        int result;
 966        struct qp_guest_endpoint *entry;
 967        /* One page each for the queue headers. */
 968        const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
 969            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
 970
 971        if (vmci_handle_is_invalid(handle)) {
 972                u32 context_id = vmci_get_context_id();
 973
 974                handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
 975        }
 976
 977        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 978        if (entry) {
 979                entry->qp.peer = peer;
 980                entry->qp.flags = flags;
 981                entry->qp.produce_size = produce_size;
 982                entry->qp.consume_size = consume_size;
 983                entry->qp.ref_count = 0;
 984                entry->num_ppns = num_ppns;
 985                entry->produce_q = produce_q;
 986                entry->consume_q = consume_q;
 987                INIT_LIST_HEAD(&entry->qp.list_item);
 988
 989                /* Add resource obj */
 990                result = vmci_resource_add(&entry->resource,
 991                                           VMCI_RESOURCE_TYPE_QPAIR_GUEST,
 992                                           handle);
 993                entry->qp.handle = vmci_resource_handle(&entry->resource);
 994                if ((result != VMCI_SUCCESS) ||
 995                    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
 996                        pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
 997                                handle.context, handle.resource, result);
 998                        kfree(entry);
 999                        entry = NULL;
1000                }
1001        }
1002        return entry;
1003}
1004
1005/*
1006 * Frees a qp_guest_endpoint structure.
1007 */
1008static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1009{
1010        qp_free_ppn_set(&entry->ppn_set);
1011        qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1012        qp_free_queue(entry->produce_q, entry->qp.produce_size);
1013        qp_free_queue(entry->consume_q, entry->qp.consume_size);
1014        /* Unlink from resource hash table and free callback */
1015        vmci_resource_remove(&entry->resource);
1016
1017        kfree(entry);
1018}
1019
1020/*
1021 * Helper to make a queue_pairAlloc hypercall when the driver is
1022 * supporting a guest device.
1023 */
1024static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1025{
1026        struct vmci_qp_alloc_msg *alloc_msg;
1027        size_t msg_size;
1028        int result;
1029
1030        if (!entry || entry->num_ppns <= 2)
1031                return VMCI_ERROR_INVALID_ARGS;
1032
1033        msg_size = sizeof(*alloc_msg) +
1034            (size_t) entry->num_ppns * sizeof(u32);
1035        alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1036        if (!alloc_msg)
1037                return VMCI_ERROR_NO_MEM;
1038
1039        alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1040                                              VMCI_QUEUEPAIR_ALLOC);
1041        alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1042        alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1043        alloc_msg->handle = entry->qp.handle;
1044        alloc_msg->peer = entry->qp.peer;
1045        alloc_msg->flags = entry->qp.flags;
1046        alloc_msg->produce_size = entry->qp.produce_size;
1047        alloc_msg->consume_size = entry->qp.consume_size;
1048        alloc_msg->num_ppns = entry->num_ppns;
1049
1050        result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1051                                     &entry->ppn_set);
1052        if (result == VMCI_SUCCESS)
1053                result = vmci_send_datagram(&alloc_msg->hdr);
1054
1055        kfree(alloc_msg);
1056
1057        return result;
1058}
1059
1060/*
1061 * Helper to make a queue_pairDetach hypercall when the driver is
1062 * supporting a guest device.
1063 */
1064static int qp_detatch_hypercall(struct vmci_handle handle)
1065{
1066        struct vmci_qp_detach_msg detach_msg;
1067
1068        detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1069                                              VMCI_QUEUEPAIR_DETACH);
1070        detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1071        detach_msg.hdr.payload_size = sizeof(handle);
1072        detach_msg.handle = handle;
1073
1074        return vmci_send_datagram(&detach_msg.hdr);
1075}
1076
1077/*
1078 * Adds the given entry to the list. Assumes that the list is locked.
1079 */
1080static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1081{
1082        if (entry)
1083                list_add(&entry->list_item, &qp_list->head);
1084}
1085
1086/*
1087 * Removes the given entry from the list. Assumes that the list is locked.
1088 */
1089static void qp_list_remove_entry(struct qp_list *qp_list,
1090                                 struct qp_entry *entry)
1091{
1092        if (entry)
1093                list_del(&entry->list_item);
1094}
1095
1096/*
1097 * Helper for VMCI queue_pair detach interface. Frees the physical
1098 * pages for the queue pair.
1099 */
1100static int qp_detatch_guest_work(struct vmci_handle handle)
1101{
1102        int result;
1103        struct qp_guest_endpoint *entry;
1104        u32 ref_count = ~0;     /* To avoid compiler warning below */
1105
1106        mutex_lock(&qp_guest_endpoints.mutex);
1107
1108        entry = qp_guest_handle_to_entry(handle);
1109        if (!entry) {
1110                mutex_unlock(&qp_guest_endpoints.mutex);
1111                return VMCI_ERROR_NOT_FOUND;
1112        }
1113
1114        if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1115                result = VMCI_SUCCESS;
1116
1117                if (entry->qp.ref_count > 1) {
1118                        result = qp_notify_peer_local(false, handle);
1119                        /*
1120                         * We can fail to notify a local queuepair
1121                         * because we can't allocate.  We still want
1122                         * to release the entry if that happens, so
1123                         * don't bail out yet.
1124                         */
1125                }
1126        } else {
1127                result = qp_detatch_hypercall(handle);
1128                if (result < VMCI_SUCCESS) {
1129                        /*
1130                         * We failed to notify a non-local queuepair.
1131                         * That other queuepair might still be
1132                         * accessing the shared memory, so don't
1133                         * release the entry yet.  It will get cleaned
1134                         * up by VMCIqueue_pair_Exit() if necessary
1135                         * (assuming we are going away, otherwise why
1136                         * did this fail?).
1137                         */
1138
1139                        mutex_unlock(&qp_guest_endpoints.mutex);
1140                        return result;
1141                }
1142        }
1143
1144        /*
1145         * If we get here then we either failed to notify a local queuepair, or
1146         * we succeeded in all cases.  Release the entry if required.
1147         */
1148
1149        entry->qp.ref_count--;
1150        if (entry->qp.ref_count == 0)
1151                qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1152
1153        /* If we didn't remove the entry, this could change once we unlock. */
1154        if (entry)
1155                ref_count = entry->qp.ref_count;
1156
1157        mutex_unlock(&qp_guest_endpoints.mutex);
1158
1159        if (ref_count == 0)
1160                qp_guest_endpoint_destroy(entry);
1161
1162        return result;
1163}
1164
1165/*
1166 * This functions handles the actual allocation of a VMCI queue
1167 * pair guest endpoint. Allocates physical pages for the queue
1168 * pair. It makes OS dependent calls through generic wrappers.
1169 */
1170static int qp_alloc_guest_work(struct vmci_handle *handle,
1171                               struct vmci_queue **produce_q,
1172                               u64 produce_size,
1173                               struct vmci_queue **consume_q,
1174                               u64 consume_size,
1175                               u32 peer,
1176                               u32 flags,
1177                               u32 priv_flags)
1178{
1179        const u64 num_produce_pages =
1180            DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1181        const u64 num_consume_pages =
1182            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1183        void *my_produce_q = NULL;
1184        void *my_consume_q = NULL;
1185        int result;
1186        struct qp_guest_endpoint *queue_pair_entry = NULL;
1187
1188        if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1189                return VMCI_ERROR_NO_ACCESS;
1190
1191        mutex_lock(&qp_guest_endpoints.mutex);
1192
1193        queue_pair_entry = qp_guest_handle_to_entry(*handle);
1194        if (queue_pair_entry) {
1195                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1196                        /* Local attach case. */
1197                        if (queue_pair_entry->qp.ref_count > 1) {
1198                                pr_devel("Error attempting to attach more than once\n");
1199                                result = VMCI_ERROR_UNAVAILABLE;
1200                                goto error_keep_entry;
1201                        }
1202
1203                        if (queue_pair_entry->qp.produce_size != consume_size ||
1204                            queue_pair_entry->qp.consume_size !=
1205                            produce_size ||
1206                            queue_pair_entry->qp.flags !=
1207                            (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1208                                pr_devel("Error mismatched queue pair in local attach\n");
1209                                result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1210                                goto error_keep_entry;
1211                        }
1212
1213                        /*
1214                         * Do a local attach.  We swap the consume and
1215                         * produce queues for the attacher and deliver
1216                         * an attach event.
1217                         */
1218                        result = qp_notify_peer_local(true, *handle);
1219                        if (result < VMCI_SUCCESS)
1220                                goto error_keep_entry;
1221
1222                        my_produce_q = queue_pair_entry->consume_q;
1223                        my_consume_q = queue_pair_entry->produce_q;
1224                        goto out;
1225                }
1226
1227                result = VMCI_ERROR_ALREADY_EXISTS;
1228                goto error_keep_entry;
1229        }
1230
1231        my_produce_q = qp_alloc_queue(produce_size, flags);
1232        if (!my_produce_q) {
1233                pr_warn("Error allocating pages for produce queue\n");
1234                result = VMCI_ERROR_NO_MEM;
1235                goto error;
1236        }
1237
1238        my_consume_q = qp_alloc_queue(consume_size, flags);
1239        if (!my_consume_q) {
1240                pr_warn("Error allocating pages for consume queue\n");
1241                result = VMCI_ERROR_NO_MEM;
1242                goto error;
1243        }
1244
1245        queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1246                                                    produce_size, consume_size,
1247                                                    my_produce_q, my_consume_q);
1248        if (!queue_pair_entry) {
1249                pr_warn("Error allocating memory in %s\n", __func__);
1250                result = VMCI_ERROR_NO_MEM;
1251                goto error;
1252        }
1253
1254        result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1255                                  num_consume_pages,
1256                                  &queue_pair_entry->ppn_set);
1257        if (result < VMCI_SUCCESS) {
1258                pr_warn("qp_alloc_ppn_set failed\n");
1259                goto error;
1260        }
1261
1262        /*
1263         * It's only necessary to notify the host if this queue pair will be
1264         * attached to from another context.
1265         */
1266        if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1267                /* Local create case. */
1268                u32 context_id = vmci_get_context_id();
1269
1270                /*
1271                 * Enforce similar checks on local queue pairs as we
1272                 * do for regular ones.  The handle's context must
1273                 * match the creator or attacher context id (here they
1274                 * are both the current context id) and the
1275                 * attach-only flag cannot exist during create.  We
1276                 * also ensure specified peer is this context or an
1277                 * invalid one.
1278                 */
1279                if (queue_pair_entry->qp.handle.context != context_id ||
1280                    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1281                     queue_pair_entry->qp.peer != context_id)) {
1282                        result = VMCI_ERROR_NO_ACCESS;
1283                        goto error;
1284                }
1285
1286                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1287                        result = VMCI_ERROR_NOT_FOUND;
1288                        goto error;
1289                }
1290        } else {
1291                result = qp_alloc_hypercall(queue_pair_entry);
1292                if (result < VMCI_SUCCESS) {
1293                        pr_warn("qp_alloc_hypercall result = %d\n", result);
1294                        goto error;
1295                }
1296        }
1297
1298        qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1299                            (struct vmci_queue *)my_consume_q);
1300
1301        qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1302
1303 out:
1304        queue_pair_entry->qp.ref_count++;
1305        *handle = queue_pair_entry->qp.handle;
1306        *produce_q = (struct vmci_queue *)my_produce_q;
1307        *consume_q = (struct vmci_queue *)my_consume_q;
1308
1309        /*
1310         * We should initialize the queue pair header pages on a local
1311         * queue pair create.  For non-local queue pairs, the
1312         * hypervisor initializes the header pages in the create step.
1313         */
1314        if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1315            queue_pair_entry->qp.ref_count == 1) {
1316                vmci_q_header_init((*produce_q)->q_header, *handle);
1317                vmci_q_header_init((*consume_q)->q_header, *handle);
1318        }
1319
1320        mutex_unlock(&qp_guest_endpoints.mutex);
1321
1322        return VMCI_SUCCESS;
1323
1324 error:
1325        mutex_unlock(&qp_guest_endpoints.mutex);
1326        if (queue_pair_entry) {
1327                /* The queues will be freed inside the destroy routine. */
1328                qp_guest_endpoint_destroy(queue_pair_entry);
1329        } else {
1330                qp_free_queue(my_produce_q, produce_size);
1331                qp_free_queue(my_consume_q, consume_size);
1332        }
1333        return result;
1334
1335 error_keep_entry:
1336        /* This path should only be used when an existing entry was found. */
1337        mutex_unlock(&qp_guest_endpoints.mutex);
1338        return result;
1339}
1340
1341/*
1342 * The first endpoint issuing a queue pair allocation will create the state
1343 * of the queue pair in the queue pair broker.
1344 *
1345 * If the creator is a guest, it will associate a VMX virtual address range
1346 * with the queue pair as specified by the page_store. For compatibility with
1347 * older VMX'en, that would use a separate step to set the VMX virtual
1348 * address range, the virtual address range can be registered later using
1349 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1350 * used.
1351 *
1352 * If the creator is the host, a page_store of NULL should be used as well,
1353 * since the host is not able to supply a page store for the queue pair.
1354 *
1355 * For older VMX and host callers, the queue pair will be created in the
1356 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1357 * created in VMCOQPB_CREATED_MEM state.
1358 */
1359static int qp_broker_create(struct vmci_handle handle,
1360                            u32 peer,
1361                            u32 flags,
1362                            u32 priv_flags,
1363                            u64 produce_size,
1364                            u64 consume_size,
1365                            struct vmci_qp_page_store *page_store,
1366                            struct vmci_ctx *context,
1367                            vmci_event_release_cb wakeup_cb,
1368                            void *client_data, struct qp_broker_entry **ent)
1369{
1370        struct qp_broker_entry *entry = NULL;
1371        const u32 context_id = vmci_ctx_get_id(context);
1372        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1373        int result;
1374        u64 guest_produce_size;
1375        u64 guest_consume_size;
1376
1377        /* Do not create if the caller asked not to. */
1378        if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1379                return VMCI_ERROR_NOT_FOUND;
1380
1381        /*
1382         * Creator's context ID should match handle's context ID or the creator
1383         * must allow the context in handle's context ID as the "peer".
1384         */
1385        if (handle.context != context_id && handle.context != peer)
1386                return VMCI_ERROR_NO_ACCESS;
1387
1388        if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1389                return VMCI_ERROR_DST_UNREACHABLE;
1390
1391        /*
1392         * Creator's context ID for local queue pairs should match the
1393         * peer, if a peer is specified.
1394         */
1395        if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1396                return VMCI_ERROR_NO_ACCESS;
1397
1398        entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1399        if (!entry)
1400                return VMCI_ERROR_NO_MEM;
1401
1402        if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1403                /*
1404                 * The queue pair broker entry stores values from the guest
1405                 * point of view, so a creating host side endpoint should swap
1406                 * produce and consume values -- unless it is a local queue
1407                 * pair, in which case no swapping is necessary, since the local
1408                 * attacher will swap queues.
1409                 */
1410
1411                guest_produce_size = consume_size;
1412                guest_consume_size = produce_size;
1413        } else {
1414                guest_produce_size = produce_size;
1415                guest_consume_size = consume_size;
1416        }
1417
1418        entry->qp.handle = handle;
1419        entry->qp.peer = peer;
1420        entry->qp.flags = flags;
1421        entry->qp.produce_size = guest_produce_size;
1422        entry->qp.consume_size = guest_consume_size;
1423        entry->qp.ref_count = 1;
1424        entry->create_id = context_id;
1425        entry->attach_id = VMCI_INVALID_ID;
1426        entry->state = VMCIQPB_NEW;
1427        entry->require_trusted_attach =
1428            !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1429        entry->created_by_trusted =
1430            !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1431        entry->vmci_page_files = false;
1432        entry->wakeup_cb = wakeup_cb;
1433        entry->client_data = client_data;
1434        entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1435        if (entry->produce_q == NULL) {
1436                result = VMCI_ERROR_NO_MEM;
1437                goto error;
1438        }
1439        entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1440        if (entry->consume_q == NULL) {
1441                result = VMCI_ERROR_NO_MEM;
1442                goto error;
1443        }
1444
1445        qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1446
1447        INIT_LIST_HEAD(&entry->qp.list_item);
1448
1449        if (is_local) {
1450                u8 *tmp;
1451
1452                entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1453                                           PAGE_SIZE, GFP_KERNEL);
1454                if (entry->local_mem == NULL) {
1455                        result = VMCI_ERROR_NO_MEM;
1456                        goto error;
1457                }
1458                entry->state = VMCIQPB_CREATED_MEM;
1459                entry->produce_q->q_header = entry->local_mem;
1460                tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1461                    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1462                entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1463        } else if (page_store) {
1464                /*
1465                 * The VMX already initialized the queue pair headers, so no
1466                 * need for the kernel side to do that.
1467                 */
1468                result = qp_host_register_user_memory(page_store,
1469                                                      entry->produce_q,
1470                                                      entry->consume_q);
1471                if (result < VMCI_SUCCESS)
1472                        goto error;
1473
1474                entry->state = VMCIQPB_CREATED_MEM;
1475        } else {
1476                /*
1477                 * A create without a page_store may be either a host
1478                 * side create (in which case we are waiting for the
1479                 * guest side to supply the memory) or an old style
1480                 * queue pair create (in which case we will expect a
1481                 * set page store call as the next step).
1482                 */
1483                entry->state = VMCIQPB_CREATED_NO_MEM;
1484        }
1485
1486        qp_list_add_entry(&qp_broker_list, &entry->qp);
1487        if (ent != NULL)
1488                *ent = entry;
1489
1490        /* Add to resource obj */
1491        result = vmci_resource_add(&entry->resource,
1492                                   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1493                                   handle);
1494        if (result != VMCI_SUCCESS) {
1495                pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1496                        handle.context, handle.resource, result);
1497                goto error;
1498        }
1499
1500        entry->qp.handle = vmci_resource_handle(&entry->resource);
1501        if (is_local) {
1502                vmci_q_header_init(entry->produce_q->q_header,
1503                                   entry->qp.handle);
1504                vmci_q_header_init(entry->consume_q->q_header,
1505                                   entry->qp.handle);
1506        }
1507
1508        vmci_ctx_qp_create(context, entry->qp.handle);
1509
1510        return VMCI_SUCCESS;
1511
1512 error:
1513        if (entry != NULL) {
1514                qp_host_free_queue(entry->produce_q, guest_produce_size);
1515                qp_host_free_queue(entry->consume_q, guest_consume_size);
1516                kfree(entry);
1517        }
1518
1519        return result;
1520}
1521
1522/*
1523 * Enqueues an event datagram to notify the peer VM attached to
1524 * the given queue pair handle about attach/detach event by the
1525 * given VM.  Returns Payload size of datagram enqueued on
1526 * success, error code otherwise.
1527 */
1528static int qp_notify_peer(bool attach,
1529                          struct vmci_handle handle,
1530                          u32 my_id,
1531                          u32 peer_id)
1532{
1533        int rv;
1534        struct vmci_event_qp ev;
1535
1536        if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1537            peer_id == VMCI_INVALID_ID)
1538                return VMCI_ERROR_INVALID_ARGS;
1539
1540        /*
1541         * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1542         * number of pending events from the hypervisor to a given VM
1543         * otherwise a rogue VM could do an arbitrary number of attach
1544         * and detach operations causing memory pressure in the host
1545         * kernel.
1546         */
1547
1548        ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1549        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1550                                          VMCI_CONTEXT_RESOURCE_ID);
1551        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1552        ev.msg.event_data.event = attach ?
1553            VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1554        ev.payload.handle = handle;
1555        ev.payload.peer_id = my_id;
1556
1557        rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1558                                    &ev.msg.hdr, false);
1559        if (rv < VMCI_SUCCESS)
1560                pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1561                        attach ? "ATTACH" : "DETACH", peer_id);
1562
1563        return rv;
1564}
1565
1566/*
1567 * The second endpoint issuing a queue pair allocation will attach to
1568 * the queue pair registered with the queue pair broker.
1569 *
1570 * If the attacher is a guest, it will associate a VMX virtual address
1571 * range with the queue pair as specified by the page_store. At this
1572 * point, the already attach host endpoint may start using the queue
1573 * pair, and an attach event is sent to it. For compatibility with
1574 * older VMX'en, that used a separate step to set the VMX virtual
1575 * address range, the virtual address range can be registered later
1576 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1577 * NULL should be used, and the attach event will be generated once
1578 * the actual page store has been set.
1579 *
1580 * If the attacher is the host, a page_store of NULL should be used as
1581 * well, since the page store information is already set by the guest.
1582 *
1583 * For new VMX and host callers, the queue pair will be moved to the
1584 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1585 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1586 */
1587static int qp_broker_attach(struct qp_broker_entry *entry,
1588                            u32 peer,
1589                            u32 flags,
1590                            u32 priv_flags,
1591                            u64 produce_size,
1592                            u64 consume_size,
1593                            struct vmci_qp_page_store *page_store,
1594                            struct vmci_ctx *context,
1595                            vmci_event_release_cb wakeup_cb,
1596                            void *client_data,
1597                            struct qp_broker_entry **ent)
1598{
1599        const u32 context_id = vmci_ctx_get_id(context);
1600        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1601        int result;
1602
1603        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1604            entry->state != VMCIQPB_CREATED_MEM)
1605                return VMCI_ERROR_UNAVAILABLE;
1606
1607        if (is_local) {
1608                if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1609                    context_id != entry->create_id) {
1610                        return VMCI_ERROR_INVALID_ARGS;
1611                }
1612        } else if (context_id == entry->create_id ||
1613                   context_id == entry->attach_id) {
1614                return VMCI_ERROR_ALREADY_EXISTS;
1615        }
1616
1617        if (VMCI_CONTEXT_IS_VM(context_id) &&
1618            VMCI_CONTEXT_IS_VM(entry->create_id))
1619                return VMCI_ERROR_DST_UNREACHABLE;
1620
1621        /*
1622         * If we are attaching from a restricted context then the queuepair
1623         * must have been created by a trusted endpoint.
1624         */
1625        if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1626            !entry->created_by_trusted)
1627                return VMCI_ERROR_NO_ACCESS;
1628
1629        /*
1630         * If we are attaching to a queuepair that was created by a restricted
1631         * context then we must be trusted.
1632         */
1633        if (entry->require_trusted_attach &&
1634            (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1635                return VMCI_ERROR_NO_ACCESS;
1636
1637        /*
1638         * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1639         * control check is not performed.
1640         */
1641        if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1642                return VMCI_ERROR_NO_ACCESS;
1643
1644        if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1645                /*
1646                 * Do not attach if the caller doesn't support Host Queue Pairs
1647                 * and a host created this queue pair.
1648                 */
1649
1650                if (!vmci_ctx_supports_host_qp(context))
1651                        return VMCI_ERROR_INVALID_RESOURCE;
1652
1653        } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1654                struct vmci_ctx *create_context;
1655                bool supports_host_qp;
1656
1657                /*
1658                 * Do not attach a host to a user created queue pair if that
1659                 * user doesn't support host queue pair end points.
1660                 */
1661
1662                create_context = vmci_ctx_get(entry->create_id);
1663                supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1664                vmci_ctx_put(create_context);
1665
1666                if (!supports_host_qp)
1667                        return VMCI_ERROR_INVALID_RESOURCE;
1668        }
1669
1670        if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1671                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1672
1673        if (context_id != VMCI_HOST_CONTEXT_ID) {
1674                /*
1675                 * The queue pair broker entry stores values from the guest
1676                 * point of view, so an attaching guest should match the values
1677                 * stored in the entry.
1678                 */
1679
1680                if (entry->qp.produce_size != produce_size ||
1681                    entry->qp.consume_size != consume_size) {
1682                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1683                }
1684        } else if (entry->qp.produce_size != consume_size ||
1685                   entry->qp.consume_size != produce_size) {
1686                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1687        }
1688
1689        if (context_id != VMCI_HOST_CONTEXT_ID) {
1690                /*
1691                 * If a guest attached to a queue pair, it will supply
1692                 * the backing memory.  If this is a pre NOVMVM vmx,
1693                 * the backing memory will be supplied by calling
1694                 * vmci_qp_broker_set_page_store() following the
1695                 * return of the vmci_qp_broker_alloc() call. If it is
1696                 * a vmx of version NOVMVM or later, the page store
1697                 * must be supplied as part of the
1698                 * vmci_qp_broker_alloc call.  Under all circumstances
1699                 * must the initially created queue pair not have any
1700                 * memory associated with it already.
1701                 */
1702
1703                if (entry->state != VMCIQPB_CREATED_NO_MEM)
1704                        return VMCI_ERROR_INVALID_ARGS;
1705
1706                if (page_store != NULL) {
1707                        /*
1708                         * Patch up host state to point to guest
1709                         * supplied memory. The VMX already
1710                         * initialized the queue pair headers, so no
1711                         * need for the kernel side to do that.
1712                         */
1713
1714                        result = qp_host_register_user_memory(page_store,
1715                                                              entry->produce_q,
1716                                                              entry->consume_q);
1717                        if (result < VMCI_SUCCESS)
1718                                return result;
1719
1720                        entry->state = VMCIQPB_ATTACHED_MEM;
1721                } else {
1722                        entry->state = VMCIQPB_ATTACHED_NO_MEM;
1723                }
1724        } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1725                /*
1726                 * The host side is attempting to attach to a queue
1727                 * pair that doesn't have any memory associated with
1728                 * it. This must be a pre NOVMVM vmx that hasn't set
1729                 * the page store information yet, or a quiesced VM.
1730                 */
1731
1732                return VMCI_ERROR_UNAVAILABLE;
1733        } else {
1734                /* The host side has successfully attached to a queue pair. */
1735                entry->state = VMCIQPB_ATTACHED_MEM;
1736        }
1737
1738        if (entry->state == VMCIQPB_ATTACHED_MEM) {
1739                result =
1740                    qp_notify_peer(true, entry->qp.handle, context_id,
1741                                   entry->create_id);
1742                if (result < VMCI_SUCCESS)
1743                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1744                                entry->create_id, entry->qp.handle.context,
1745                                entry->qp.handle.resource);
1746        }
1747
1748        entry->attach_id = context_id;
1749        entry->qp.ref_count++;
1750        if (wakeup_cb) {
1751                entry->wakeup_cb = wakeup_cb;
1752                entry->client_data = client_data;
1753        }
1754
1755        /*
1756         * When attaching to local queue pairs, the context already has
1757         * an entry tracking the queue pair, so don't add another one.
1758         */
1759        if (!is_local)
1760                vmci_ctx_qp_create(context, entry->qp.handle);
1761
1762        if (ent != NULL)
1763                *ent = entry;
1764
1765        return VMCI_SUCCESS;
1766}
1767
1768/*
1769 * queue_pair_Alloc for use when setting up queue pair endpoints
1770 * on the host.
1771 */
1772static int qp_broker_alloc(struct vmci_handle handle,
1773                           u32 peer,
1774                           u32 flags,
1775                           u32 priv_flags,
1776                           u64 produce_size,
1777                           u64 consume_size,
1778                           struct vmci_qp_page_store *page_store,
1779                           struct vmci_ctx *context,
1780                           vmci_event_release_cb wakeup_cb,
1781                           void *client_data,
1782                           struct qp_broker_entry **ent,
1783                           bool *swap)
1784{
1785        const u32 context_id = vmci_ctx_get_id(context);
1786        bool create;
1787        struct qp_broker_entry *entry = NULL;
1788        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1789        int result;
1790
1791        if (vmci_handle_is_invalid(handle) ||
1792            (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1793            !(produce_size || consume_size) ||
1794            !context || context_id == VMCI_INVALID_ID ||
1795            handle.context == VMCI_INVALID_ID) {
1796                return VMCI_ERROR_INVALID_ARGS;
1797        }
1798
1799        if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1800                return VMCI_ERROR_INVALID_ARGS;
1801
1802        /*
1803         * In the initial argument check, we ensure that non-vmkernel hosts
1804         * are not allowed to create local queue pairs.
1805         */
1806
1807        mutex_lock(&qp_broker_list.mutex);
1808
1809        if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1810                pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1811                         context_id, handle.context, handle.resource);
1812                mutex_unlock(&qp_broker_list.mutex);
1813                return VMCI_ERROR_ALREADY_EXISTS;
1814        }
1815
1816        if (handle.resource != VMCI_INVALID_ID)
1817                entry = qp_broker_handle_to_entry(handle);
1818
1819        if (!entry) {
1820                create = true;
1821                result =
1822                    qp_broker_create(handle, peer, flags, priv_flags,
1823                                     produce_size, consume_size, page_store,
1824                                     context, wakeup_cb, client_data, ent);
1825        } else {
1826                create = false;
1827                result =
1828                    qp_broker_attach(entry, peer, flags, priv_flags,
1829                                     produce_size, consume_size, page_store,
1830                                     context, wakeup_cb, client_data, ent);
1831        }
1832
1833        mutex_unlock(&qp_broker_list.mutex);
1834
1835        if (swap)
1836                *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1837                    !(create && is_local);
1838
1839        return result;
1840}
1841
1842/*
1843 * This function implements the kernel API for allocating a queue
1844 * pair.
1845 */
1846static int qp_alloc_host_work(struct vmci_handle *handle,
1847                              struct vmci_queue **produce_q,
1848                              u64 produce_size,
1849                              struct vmci_queue **consume_q,
1850                              u64 consume_size,
1851                              u32 peer,
1852                              u32 flags,
1853                              u32 priv_flags,
1854                              vmci_event_release_cb wakeup_cb,
1855                              void *client_data)
1856{
1857        struct vmci_handle new_handle;
1858        struct vmci_ctx *context;
1859        struct qp_broker_entry *entry;
1860        int result;
1861        bool swap;
1862
1863        if (vmci_handle_is_invalid(*handle)) {
1864                new_handle = vmci_make_handle(
1865                        VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1866        } else
1867                new_handle = *handle;
1868
1869        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1870        entry = NULL;
1871        result =
1872            qp_broker_alloc(new_handle, peer, flags, priv_flags,
1873                            produce_size, consume_size, NULL, context,
1874                            wakeup_cb, client_data, &entry, &swap);
1875        if (result == VMCI_SUCCESS) {
1876                if (swap) {
1877                        /*
1878                         * If this is a local queue pair, the attacher
1879                         * will swap around produce and consume
1880                         * queues.
1881                         */
1882
1883                        *produce_q = entry->consume_q;
1884                        *consume_q = entry->produce_q;
1885                } else {
1886                        *produce_q = entry->produce_q;
1887                        *consume_q = entry->consume_q;
1888                }
1889
1890                *handle = vmci_resource_handle(&entry->resource);
1891        } else {
1892                *handle = VMCI_INVALID_HANDLE;
1893                pr_devel("queue pair broker failed to alloc (result=%d)\n",
1894                         result);
1895        }
1896        vmci_ctx_put(context);
1897        return result;
1898}
1899
1900/*
1901 * Allocates a VMCI queue_pair. Only checks validity of input
1902 * arguments. The real work is done in the host or guest
1903 * specific function.
1904 */
1905int vmci_qp_alloc(struct vmci_handle *handle,
1906                  struct vmci_queue **produce_q,
1907                  u64 produce_size,
1908                  struct vmci_queue **consume_q,
1909                  u64 consume_size,
1910                  u32 peer,
1911                  u32 flags,
1912                  u32 priv_flags,
1913                  bool guest_endpoint,
1914                  vmci_event_release_cb wakeup_cb,
1915                  void *client_data)
1916{
1917        if (!handle || !produce_q || !consume_q ||
1918            (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1919                return VMCI_ERROR_INVALID_ARGS;
1920
1921        if (guest_endpoint) {
1922                return qp_alloc_guest_work(handle, produce_q,
1923                                           produce_size, consume_q,
1924                                           consume_size, peer,
1925                                           flags, priv_flags);
1926        } else {
1927                return qp_alloc_host_work(handle, produce_q,
1928                                          produce_size, consume_q,
1929                                          consume_size, peer, flags,
1930                                          priv_flags, wakeup_cb, client_data);
1931        }
1932}
1933
1934/*
1935 * This function implements the host kernel API for detaching from
1936 * a queue pair.
1937 */
1938static int qp_detatch_host_work(struct vmci_handle handle)
1939{
1940        int result;
1941        struct vmci_ctx *context;
1942
1943        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1944
1945        result = vmci_qp_broker_detach(handle, context);
1946
1947        vmci_ctx_put(context);
1948        return result;
1949}
1950
1951/*
1952 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1953 * Real work is done in the host or guest specific function.
1954 */
1955static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1956{
1957        if (vmci_handle_is_invalid(handle))
1958                return VMCI_ERROR_INVALID_ARGS;
1959
1960        if (guest_endpoint)
1961                return qp_detatch_guest_work(handle);
1962        else
1963                return qp_detatch_host_work(handle);
1964}
1965
1966/*
1967 * Returns the entry from the head of the list. Assumes that the list is
1968 * locked.
1969 */
1970static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1971{
1972        if (!list_empty(&qp_list->head)) {
1973                struct qp_entry *entry =
1974                    list_first_entry(&qp_list->head, struct qp_entry,
1975                                     list_item);
1976                return entry;
1977        }
1978
1979        return NULL;
1980}
1981
1982void vmci_qp_broker_exit(void)
1983{
1984        struct qp_entry *entry;
1985        struct qp_broker_entry *be;
1986
1987        mutex_lock(&qp_broker_list.mutex);
1988
1989        while ((entry = qp_list_get_head(&qp_broker_list))) {
1990                be = (struct qp_broker_entry *)entry;
1991
1992                qp_list_remove_entry(&qp_broker_list, entry);
1993                kfree(be);
1994        }
1995
1996        mutex_unlock(&qp_broker_list.mutex);
1997}
1998
1999/*
2000 * Requests that a queue pair be allocated with the VMCI queue
2001 * pair broker. Allocates a queue pair entry if one does not
2002 * exist. Attaches to one if it exists, and retrieves the page
2003 * files backing that queue_pair.  Assumes that the queue pair
2004 * broker lock is held.
2005 */
2006int vmci_qp_broker_alloc(struct vmci_handle handle,
2007                         u32 peer,
2008                         u32 flags,
2009                         u32 priv_flags,
2010                         u64 produce_size,
2011                         u64 consume_size,
2012                         struct vmci_qp_page_store *page_store,
2013                         struct vmci_ctx *context)
2014{
2015        return qp_broker_alloc(handle, peer, flags, priv_flags,
2016                               produce_size, consume_size,
2017                               page_store, context, NULL, NULL, NULL, NULL);
2018}
2019
2020/*
2021 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2022 * step to add the UVAs of the VMX mapping of the queue pair. This function
2023 * provides backwards compatibility with such VMX'en, and takes care of
2024 * registering the page store for a queue pair previously allocated by the
2025 * VMX during create or attach. This function will move the queue pair state
2026 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2027 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2028 * attached state with memory, the queue pair is ready to be used by the
2029 * host peer, and an attached event will be generated.
2030 *
2031 * Assumes that the queue pair broker lock is held.
2032 *
2033 * This function is only used by the hosted platform, since there is no
2034 * issue with backwards compatibility for vmkernel.
2035 */
2036int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2037                                  u64 produce_uva,
2038                                  u64 consume_uva,
2039                                  struct vmci_ctx *context)
2040{
2041        struct qp_broker_entry *entry;
2042        int result;
2043        const u32 context_id = vmci_ctx_get_id(context);
2044
2045        if (vmci_handle_is_invalid(handle) || !context ||
2046            context_id == VMCI_INVALID_ID)
2047                return VMCI_ERROR_INVALID_ARGS;
2048
2049        /*
2050         * We only support guest to host queue pairs, so the VMX must
2051         * supply UVAs for the mapped page files.
2052         */
2053
2054        if (produce_uva == 0 || consume_uva == 0)
2055                return VMCI_ERROR_INVALID_ARGS;
2056
2057        mutex_lock(&qp_broker_list.mutex);
2058
2059        if (!vmci_ctx_qp_exists(context, handle)) {
2060                pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2061                        context_id, handle.context, handle.resource);
2062                result = VMCI_ERROR_NOT_FOUND;
2063                goto out;
2064        }
2065
2066        entry = qp_broker_handle_to_entry(handle);
2067        if (!entry) {
2068                result = VMCI_ERROR_NOT_FOUND;
2069                goto out;
2070        }
2071
2072        /*
2073         * If I'm the owner then I can set the page store.
2074         *
2075         * Or, if a host created the queue_pair and I'm the attached peer
2076         * then I can set the page store.
2077         */
2078        if (entry->create_id != context_id &&
2079            (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2080             entry->attach_id != context_id)) {
2081                result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2082                goto out;
2083        }
2084
2085        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2086            entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2087                result = VMCI_ERROR_UNAVAILABLE;
2088                goto out;
2089        }
2090
2091        result = qp_host_get_user_memory(produce_uva, consume_uva,
2092                                         entry->produce_q, entry->consume_q);
2093        if (result < VMCI_SUCCESS)
2094                goto out;
2095
2096        result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2097        if (result < VMCI_SUCCESS) {
2098                qp_host_unregister_user_memory(entry->produce_q,
2099                                               entry->consume_q);
2100                goto out;
2101        }
2102
2103        if (entry->state == VMCIQPB_CREATED_NO_MEM)
2104                entry->state = VMCIQPB_CREATED_MEM;
2105        else
2106                entry->state = VMCIQPB_ATTACHED_MEM;
2107
2108        entry->vmci_page_files = true;
2109
2110        if (entry->state == VMCIQPB_ATTACHED_MEM) {
2111                result =
2112                    qp_notify_peer(true, handle, context_id, entry->create_id);
2113                if (result < VMCI_SUCCESS) {
2114                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2115                                entry->create_id, entry->qp.handle.context,
2116                                entry->qp.handle.resource);
2117                }
2118        }
2119
2120        result = VMCI_SUCCESS;
2121 out:
2122        mutex_unlock(&qp_broker_list.mutex);
2123        return result;
2124}
2125
2126/*
2127 * Resets saved queue headers for the given QP broker
2128 * entry. Should be used when guest memory becomes available
2129 * again, or the guest detaches.
2130 */
2131static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2132{
2133        entry->produce_q->saved_header = NULL;
2134        entry->consume_q->saved_header = NULL;
2135}
2136
2137/*
2138 * The main entry point for detaching from a queue pair registered with the
2139 * queue pair broker. If more than one endpoint is attached to the queue
2140 * pair, the first endpoint will mainly decrement a reference count and
2141 * generate a notification to its peer. The last endpoint will clean up
2142 * the queue pair state registered with the broker.
2143 *
2144 * When a guest endpoint detaches, it will unmap and unregister the guest
2145 * memory backing the queue pair. If the host is still attached, it will
2146 * no longer be able to access the queue pair content.
2147 *
2148 * If the queue pair is already in a state where there is no memory
2149 * registered for the queue pair (any *_NO_MEM state), it will transition to
2150 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2151 * endpoint is the first of two endpoints to detach. If the host endpoint is
2152 * the first out of two to detach, the queue pair will move to the
2153 * VMCIQPB_SHUTDOWN_MEM state.
2154 */
2155int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2156{
2157        struct qp_broker_entry *entry;
2158        const u32 context_id = vmci_ctx_get_id(context);
2159        u32 peer_id;
2160        bool is_local = false;
2161        int result;
2162
2163        if (vmci_handle_is_invalid(handle) || !context ||
2164            context_id == VMCI_INVALID_ID) {
2165                return VMCI_ERROR_INVALID_ARGS;
2166        }
2167
2168        mutex_lock(&qp_broker_list.mutex);
2169
2170        if (!vmci_ctx_qp_exists(context, handle)) {
2171                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2172                         context_id, handle.context, handle.resource);
2173                result = VMCI_ERROR_NOT_FOUND;
2174                goto out;
2175        }
2176
2177        entry = qp_broker_handle_to_entry(handle);
2178        if (!entry) {
2179                pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2180                         context_id, handle.context, handle.resource);
2181                result = VMCI_ERROR_NOT_FOUND;
2182                goto out;
2183        }
2184
2185        if (context_id != entry->create_id && context_id != entry->attach_id) {
2186                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2187                goto out;
2188        }
2189
2190        if (context_id == entry->create_id) {
2191                peer_id = entry->attach_id;
2192                entry->create_id = VMCI_INVALID_ID;
2193        } else {
2194                peer_id = entry->create_id;
2195                entry->attach_id = VMCI_INVALID_ID;
2196        }
2197        entry->qp.ref_count--;
2198
2199        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2200
2201        if (context_id != VMCI_HOST_CONTEXT_ID) {
2202                bool headers_mapped;
2203
2204                /*
2205                 * Pre NOVMVM vmx'en may detach from a queue pair
2206                 * before setting the page store, and in that case
2207                 * there is no user memory to detach from. Also, more
2208                 * recent VMX'en may detach from a queue pair in the
2209                 * quiesced state.
2210                 */
2211
2212                qp_acquire_queue_mutex(entry->produce_q);
2213                headers_mapped = entry->produce_q->q_header ||
2214                    entry->consume_q->q_header;
2215                if (QPBROKERSTATE_HAS_MEM(entry)) {
2216                        result =
2217                            qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2218                                                 entry->produce_q,
2219                                                 entry->consume_q);
2220                        if (result < VMCI_SUCCESS)
2221                                pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2222                                        handle.context, handle.resource,
2223                                        result);
2224
2225                        if (entry->vmci_page_files)
2226                                qp_host_unregister_user_memory(entry->produce_q,
2227                                                               entry->
2228                                                               consume_q);
2229                        else
2230                                qp_host_unregister_user_memory(entry->produce_q,
2231                                                               entry->
2232                                                               consume_q);
2233
2234                }
2235
2236                if (!headers_mapped)
2237                        qp_reset_saved_headers(entry);
2238
2239                qp_release_queue_mutex(entry->produce_q);
2240
2241                if (!headers_mapped && entry->wakeup_cb)
2242                        entry->wakeup_cb(entry->client_data);
2243
2244        } else {
2245                if (entry->wakeup_cb) {
2246                        entry->wakeup_cb = NULL;
2247                        entry->client_data = NULL;
2248                }
2249        }
2250
2251        if (entry->qp.ref_count == 0) {
2252                qp_list_remove_entry(&qp_broker_list, &entry->qp);
2253
2254                if (is_local)
2255                        kfree(entry->local_mem);
2256
2257                qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2258                qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2259                qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2260                /* Unlink from resource hash table and free callback */
2261                vmci_resource_remove(&entry->resource);
2262
2263                kfree(entry);
2264
2265                vmci_ctx_qp_destroy(context, handle);
2266        } else {
2267                qp_notify_peer(false, handle, context_id, peer_id);
2268                if (context_id == VMCI_HOST_CONTEXT_ID &&
2269                    QPBROKERSTATE_HAS_MEM(entry)) {
2270                        entry->state = VMCIQPB_SHUTDOWN_MEM;
2271                } else {
2272                        entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2273                }
2274
2275                if (!is_local)
2276                        vmci_ctx_qp_destroy(context, handle);
2277
2278        }
2279        result = VMCI_SUCCESS;
2280 out:
2281        mutex_unlock(&qp_broker_list.mutex);
2282        return result;
2283}
2284
2285/*
2286 * Establishes the necessary mappings for a queue pair given a
2287 * reference to the queue pair guest memory. This is usually
2288 * called when a guest is unquiesced and the VMX is allowed to
2289 * map guest memory once again.
2290 */
2291int vmci_qp_broker_map(struct vmci_handle handle,
2292                       struct vmci_ctx *context,
2293                       u64 guest_mem)
2294{
2295        struct qp_broker_entry *entry;
2296        const u32 context_id = vmci_ctx_get_id(context);
2297        bool is_local = false;
2298        int result;
2299
2300        if (vmci_handle_is_invalid(handle) || !context ||
2301            context_id == VMCI_INVALID_ID)
2302                return VMCI_ERROR_INVALID_ARGS;
2303
2304        mutex_lock(&qp_broker_list.mutex);
2305
2306        if (!vmci_ctx_qp_exists(context, handle)) {
2307                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2308                         context_id, handle.context, handle.resource);
2309                result = VMCI_ERROR_NOT_FOUND;
2310                goto out;
2311        }
2312
2313        entry = qp_broker_handle_to_entry(handle);
2314        if (!entry) {
2315                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2316                         context_id, handle.context, handle.resource);
2317                result = VMCI_ERROR_NOT_FOUND;
2318                goto out;
2319        }
2320
2321        if (context_id != entry->create_id && context_id != entry->attach_id) {
2322                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2323                goto out;
2324        }
2325
2326        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2327        result = VMCI_SUCCESS;
2328
2329        if (context_id != VMCI_HOST_CONTEXT_ID) {
2330                struct vmci_qp_page_store page_store;
2331
2332                page_store.pages = guest_mem;
2333                page_store.len = QPE_NUM_PAGES(entry->qp);
2334
2335                qp_acquire_queue_mutex(entry->produce_q);
2336                qp_reset_saved_headers(entry);
2337                result =
2338                    qp_host_register_user_memory(&page_store,
2339                                                 entry->produce_q,
2340                                                 entry->consume_q);
2341                qp_release_queue_mutex(entry->produce_q);
2342                if (result == VMCI_SUCCESS) {
2343                        /* Move state from *_NO_MEM to *_MEM */
2344
2345                        entry->state++;
2346
2347                        if (entry->wakeup_cb)
2348                                entry->wakeup_cb(entry->client_data);
2349                }
2350        }
2351
2352 out:
2353        mutex_unlock(&qp_broker_list.mutex);
2354        return result;
2355}
2356
2357/*
2358 * Saves a snapshot of the queue headers for the given QP broker
2359 * entry. Should be used when guest memory is unmapped.
2360 * Results:
2361 * VMCI_SUCCESS on success, appropriate error code if guest memory
2362 * can't be accessed..
2363 */
2364static int qp_save_headers(struct qp_broker_entry *entry)
2365{
2366        int result;
2367
2368        if (entry->produce_q->saved_header != NULL &&
2369            entry->consume_q->saved_header != NULL) {
2370                /*
2371                 *  If the headers have already been saved, we don't need to do
2372                 *  it again, and we don't want to map in the headers
2373                 *  unnecessarily.
2374                 */
2375
2376                return VMCI_SUCCESS;
2377        }
2378
2379        if (NULL == entry->produce_q->q_header ||
2380            NULL == entry->consume_q->q_header) {
2381                result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2382                if (result < VMCI_SUCCESS)
2383                        return result;
2384        }
2385
2386        memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2387               sizeof(entry->saved_produce_q));
2388        entry->produce_q->saved_header = &entry->saved_produce_q;
2389        memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2390               sizeof(entry->saved_consume_q));
2391        entry->consume_q->saved_header = &entry->saved_consume_q;
2392
2393        return VMCI_SUCCESS;
2394}
2395
2396/*
2397 * Removes all references to the guest memory of a given queue pair, and
2398 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2399 * called when a VM is being quiesced where access to guest memory should
2400 * avoided.
2401 */
2402int vmci_qp_broker_unmap(struct vmci_handle handle,
2403                         struct vmci_ctx *context,
2404                         u32 gid)
2405{
2406        struct qp_broker_entry *entry;
2407        const u32 context_id = vmci_ctx_get_id(context);
2408        bool is_local = false;
2409        int result;
2410
2411        if (vmci_handle_is_invalid(handle) || !context ||
2412            context_id == VMCI_INVALID_ID)
2413                return VMCI_ERROR_INVALID_ARGS;
2414
2415        mutex_lock(&qp_broker_list.mutex);
2416
2417        if (!vmci_ctx_qp_exists(context, handle)) {
2418                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2419                         context_id, handle.context, handle.resource);
2420                result = VMCI_ERROR_NOT_FOUND;
2421                goto out;
2422        }
2423
2424        entry = qp_broker_handle_to_entry(handle);
2425        if (!entry) {
2426                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2427                         context_id, handle.context, handle.resource);
2428                result = VMCI_ERROR_NOT_FOUND;
2429                goto out;
2430        }
2431
2432        if (context_id != entry->create_id && context_id != entry->attach_id) {
2433                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2434                goto out;
2435        }
2436
2437        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2438
2439        if (context_id != VMCI_HOST_CONTEXT_ID) {
2440                qp_acquire_queue_mutex(entry->produce_q);
2441                result = qp_save_headers(entry);
2442                if (result < VMCI_SUCCESS)
2443                        pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2444                                handle.context, handle.resource, result);
2445
2446                qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2447
2448                /*
2449                 * On hosted, when we unmap queue pairs, the VMX will also
2450                 * unmap the guest memory, so we invalidate the previously
2451                 * registered memory. If the queue pair is mapped again at a
2452                 * later point in time, we will need to reregister the user
2453                 * memory with a possibly new user VA.
2454                 */
2455                qp_host_unregister_user_memory(entry->produce_q,
2456                                               entry->consume_q);
2457
2458                /*
2459                 * Move state from *_MEM to *_NO_MEM.
2460                 */
2461                entry->state--;
2462
2463                qp_release_queue_mutex(entry->produce_q);
2464        }
2465
2466        result = VMCI_SUCCESS;
2467
2468 out:
2469        mutex_unlock(&qp_broker_list.mutex);
2470        return result;
2471}
2472
2473/*
2474 * Destroys all guest queue pair endpoints. If active guest queue
2475 * pairs still exist, hypercalls to attempt detach from these
2476 * queue pairs will be made. Any failure to detach is silently
2477 * ignored.
2478 */
2479void vmci_qp_guest_endpoints_exit(void)
2480{
2481        struct qp_entry *entry;
2482        struct qp_guest_endpoint *ep;
2483
2484        mutex_lock(&qp_guest_endpoints.mutex);
2485
2486        while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2487                ep = (struct qp_guest_endpoint *)entry;
2488
2489                /* Don't make a hypercall for local queue_pairs. */
2490                if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2491                        qp_detatch_hypercall(entry->handle);
2492
2493                /* We cannot fail the exit, so let's reset ref_count. */
2494                entry->ref_count = 0;
2495                qp_list_remove_entry(&qp_guest_endpoints, entry);
2496
2497                qp_guest_endpoint_destroy(ep);
2498        }
2499
2500        mutex_unlock(&qp_guest_endpoints.mutex);
2501}
2502
2503/*
2504 * Helper routine that will lock the queue pair before subsequent
2505 * operations.
2506 * Note: Non-blocking on the host side is currently only implemented in ESX.
2507 * Since non-blocking isn't yet implemented on the host personality we
2508 * have no reason to acquire a spin lock.  So to avoid the use of an
2509 * unnecessary lock only acquire the mutex if we can block.
2510 */
2511static void qp_lock(const struct vmci_qp *qpair)
2512{
2513        qp_acquire_queue_mutex(qpair->produce_q);
2514}
2515
2516/*
2517 * Helper routine that unlocks the queue pair after calling
2518 * qp_lock.
2519 */
2520static void qp_unlock(const struct vmci_qp *qpair)
2521{
2522        qp_release_queue_mutex(qpair->produce_q);
2523}
2524
2525/*
2526 * The queue headers may not be mapped at all times. If a queue is
2527 * currently not mapped, it will be attempted to do so.
2528 */
2529static int qp_map_queue_headers(struct vmci_queue *produce_q,
2530                                struct vmci_queue *consume_q)
2531{
2532        int result;
2533
2534        if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2535                result = qp_host_map_queues(produce_q, consume_q);
2536                if (result < VMCI_SUCCESS)
2537                        return (produce_q->saved_header &&
2538                                consume_q->saved_header) ?
2539                            VMCI_ERROR_QUEUEPAIR_NOT_READY :
2540                            VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2541        }
2542
2543        return VMCI_SUCCESS;
2544}
2545
2546/*
2547 * Helper routine that will retrieve the produce and consume
2548 * headers of a given queue pair. If the guest memory of the
2549 * queue pair is currently not available, the saved queue headers
2550 * will be returned, if these are available.
2551 */
2552static int qp_get_queue_headers(const struct vmci_qp *qpair,
2553                                struct vmci_queue_header **produce_q_header,
2554                                struct vmci_queue_header **consume_q_header)
2555{
2556        int result;
2557
2558        result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2559        if (result == VMCI_SUCCESS) {
2560                *produce_q_header = qpair->produce_q->q_header;
2561                *consume_q_header = qpair->consume_q->q_header;
2562        } else if (qpair->produce_q->saved_header &&
2563                   qpair->consume_q->saved_header) {
2564                *produce_q_header = qpair->produce_q->saved_header;
2565                *consume_q_header = qpair->consume_q->saved_header;
2566                result = VMCI_SUCCESS;
2567        }
2568
2569        return result;
2570}
2571
2572/*
2573 * Callback from VMCI queue pair broker indicating that a queue
2574 * pair that was previously not ready, now either is ready or
2575 * gone forever.
2576 */
2577static int qp_wakeup_cb(void *client_data)
2578{
2579        struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2580
2581        qp_lock(qpair);
2582        while (qpair->blocked > 0) {
2583                qpair->blocked--;
2584                qpair->generation++;
2585                wake_up(&qpair->event);
2586        }
2587        qp_unlock(qpair);
2588
2589        return VMCI_SUCCESS;
2590}
2591
2592/*
2593 * Makes the calling thread wait for the queue pair to become
2594 * ready for host side access.  Returns true when thread is
2595 * woken up after queue pair state change, false otherwise.
2596 */
2597static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2598{
2599        unsigned int generation;
2600
2601        qpair->blocked++;
2602        generation = qpair->generation;
2603        qp_unlock(qpair);
2604        wait_event(qpair->event, generation != qpair->generation);
2605        qp_lock(qpair);
2606
2607        return true;
2608}
2609
2610/*
2611 * Enqueues a given buffer to the produce queue using the provided
2612 * function. As many bytes as possible (space available in the queue)
2613 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2614 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2615 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2616 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2617 * an error occured when accessing the buffer,
2618 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2619 * available.  Otherwise, the number of bytes written to the queue is
2620 * returned.  Updates the tail pointer of the produce queue.
2621 */
2622static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2623                                 struct vmci_queue *consume_q,
2624                                 const u64 produce_q_size,
2625                                 const void *buf,
2626                                 size_t buf_size,
2627                                 vmci_memcpy_to_queue_func memcpy_to_queue)
2628{
2629        s64 free_space;
2630        u64 tail;
2631        size_t written;
2632        ssize_t result;
2633
2634        result = qp_map_queue_headers(produce_q, consume_q);
2635        if (unlikely(result != VMCI_SUCCESS))
2636                return result;
2637
2638        free_space = vmci_q_header_free_space(produce_q->q_header,
2639                                              consume_q->q_header,
2640                                              produce_q_size);
2641        if (free_space == 0)
2642                return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2643
2644        if (free_space < VMCI_SUCCESS)
2645                return (ssize_t) free_space;
2646
2647        written = (size_t) (free_space > buf_size ? buf_size : free_space);
2648        tail = vmci_q_header_producer_tail(produce_q->q_header);
2649        if (likely(tail + written < produce_q_size)) {
2650                result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2651        } else {
2652                /* Tail pointer wraps around. */
2653
2654                const size_t tmp = (size_t) (produce_q_size - tail);
2655
2656                result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2657                if (result >= VMCI_SUCCESS)
2658                        result = memcpy_to_queue(produce_q, 0, buf, tmp,
2659                                                 written - tmp);
2660        }
2661
2662        if (result < VMCI_SUCCESS)
2663                return result;
2664
2665        vmci_q_header_add_producer_tail(produce_q->q_header, written,
2666                                        produce_q_size);
2667        return written;
2668}
2669
2670/*
2671 * Dequeues data (if available) from the given consume queue. Writes data
2672 * to the user provided buffer using the provided function.
2673 * Assumes the queue->mutex has been acquired.
2674 * Results:
2675 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2676 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2677 * (as defined by the queue size).
2678 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2679 * Otherwise the number of bytes dequeued is returned.
2680 * Side effects:
2681 * Updates the head pointer of the consume queue.
2682 */
2683static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2684                                 struct vmci_queue *consume_q,
2685                                 const u64 consume_q_size,
2686                                 void *buf,
2687                                 size_t buf_size,
2688                                 vmci_memcpy_from_queue_func memcpy_from_queue,
2689                                 bool update_consumer)
2690{
2691        s64 buf_ready;
2692        u64 head;
2693        size_t read;
2694        ssize_t result;
2695
2696        result = qp_map_queue_headers(produce_q, consume_q);
2697        if (unlikely(result != VMCI_SUCCESS))
2698                return result;
2699
2700        buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2701                                            produce_q->q_header,
2702                                            consume_q_size);
2703        if (buf_ready == 0)
2704                return VMCI_ERROR_QUEUEPAIR_NODATA;
2705
2706        if (buf_ready < VMCI_SUCCESS)
2707                return (ssize_t) buf_ready;
2708
2709        read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2710        head = vmci_q_header_consumer_head(produce_q->q_header);
2711        if (likely(head + read < consume_q_size)) {
2712                result = memcpy_from_queue(buf, 0, consume_q, head, read);
2713        } else {
2714                /* Head pointer wraps around. */
2715
2716                const size_t tmp = (size_t) (consume_q_size - head);
2717
2718                result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2719                if (result >= VMCI_SUCCESS)
2720                        result = memcpy_from_queue(buf, tmp, consume_q, 0,
2721                                                   read - tmp);
2722
2723        }
2724
2725        if (result < VMCI_SUCCESS)
2726                return result;
2727
2728        if (update_consumer)
2729                vmci_q_header_add_consumer_head(produce_q->q_header,
2730                                                read, consume_q_size);
2731
2732        return read;
2733}
2734
2735/*
2736 * vmci_qpair_alloc() - Allocates a queue pair.
2737 * @qpair:      Pointer for the new vmci_qp struct.
2738 * @handle:     Handle to track the resource.
2739 * @produce_qsize:      Desired size of the producer queue.
2740 * @consume_qsize:      Desired size of the consumer queue.
2741 * @peer:       ContextID of the peer.
2742 * @flags:      VMCI flags.
2743 * @priv_flags: VMCI priviledge flags.
2744 *
2745 * This is the client interface for allocating the memory for a
2746 * vmci_qp structure and then attaching to the underlying
2747 * queue.  If an error occurs allocating the memory for the
2748 * vmci_qp structure no attempt is made to attach.  If an
2749 * error occurs attaching, then the structure is freed.
2750 */
2751int vmci_qpair_alloc(struct vmci_qp **qpair,
2752                     struct vmci_handle *handle,
2753                     u64 produce_qsize,
2754                     u64 consume_qsize,
2755                     u32 peer,
2756                     u32 flags,
2757                     u32 priv_flags)
2758{
2759        struct vmci_qp *my_qpair;
2760        int retval;
2761        struct vmci_handle src = VMCI_INVALID_HANDLE;
2762        struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2763        enum vmci_route route;
2764        vmci_event_release_cb wakeup_cb;
2765        void *client_data;
2766
2767        /*
2768         * Restrict the size of a queuepair.  The device already
2769         * enforces a limit on the total amount of memory that can be
2770         * allocated to queuepairs for a guest.  However, we try to
2771         * allocate this memory before we make the queuepair
2772         * allocation hypercall.  On Linux, we allocate each page
2773         * separately, which means rather than fail, the guest will
2774         * thrash while it tries to allocate, and will become
2775         * increasingly unresponsive to the point where it appears to
2776         * be hung.  So we place a limit on the size of an individual
2777         * queuepair here, and leave the device to enforce the
2778         * restriction on total queuepair memory.  (Note that this
2779         * doesn't prevent all cases; a user with only this much
2780         * physical memory could still get into trouble.)  The error
2781         * used by the device is NO_RESOURCES, so use that here too.
2782         */
2783
2784        if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2785            produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2786                return VMCI_ERROR_NO_RESOURCES;
2787
2788        retval = vmci_route(&src, &dst, false, &route);
2789        if (retval < VMCI_SUCCESS)
2790                route = vmci_guest_code_active() ?
2791                    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2792
2793        if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2794                pr_devel("NONBLOCK OR PINNED set");
2795                return VMCI_ERROR_INVALID_ARGS;
2796        }
2797
2798        my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2799        if (!my_qpair)
2800                return VMCI_ERROR_NO_MEM;
2801
2802        my_qpair->produce_q_size = produce_qsize;
2803        my_qpair->consume_q_size = consume_qsize;
2804        my_qpair->peer = peer;
2805        my_qpair->flags = flags;
2806        my_qpair->priv_flags = priv_flags;
2807
2808        wakeup_cb = NULL;
2809        client_data = NULL;
2810
2811        if (VMCI_ROUTE_AS_HOST == route) {
2812                my_qpair->guest_endpoint = false;
2813                if (!(flags & VMCI_QPFLAG_LOCAL)) {
2814                        my_qpair->blocked = 0;
2815                        my_qpair->generation = 0;
2816                        init_waitqueue_head(&my_qpair->event);
2817                        wakeup_cb = qp_wakeup_cb;
2818                        client_data = (void *)my_qpair;
2819                }
2820        } else {
2821                my_qpair->guest_endpoint = true;
2822        }
2823
2824        retval = vmci_qp_alloc(handle,
2825                               &my_qpair->produce_q,
2826                               my_qpair->produce_q_size,
2827                               &my_qpair->consume_q,
2828                               my_qpair->consume_q_size,
2829                               my_qpair->peer,
2830                               my_qpair->flags,
2831                               my_qpair->priv_flags,
2832                               my_qpair->guest_endpoint,
2833                               wakeup_cb, client_data);
2834
2835        if (retval < VMCI_SUCCESS) {
2836                kfree(my_qpair);
2837                return retval;
2838        }
2839
2840        *qpair = my_qpair;
2841        my_qpair->handle = *handle;
2842
2843        return retval;
2844}
2845EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2846
2847/*
2848 * vmci_qpair_detach() - Detatches the client from a queue pair.
2849 * @qpair:      Reference of a pointer to the qpair struct.
2850 *
2851 * This is the client interface for detaching from a VMCIQPair.
2852 * Note that this routine will free the memory allocated for the
2853 * vmci_qp structure too.
2854 */
2855int vmci_qpair_detach(struct vmci_qp **qpair)
2856{
2857        int result;
2858        struct vmci_qp *old_qpair;
2859
2860        if (!qpair || !(*qpair))
2861                return VMCI_ERROR_INVALID_ARGS;
2862
2863        old_qpair = *qpair;
2864        result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2865
2866        /*
2867         * The guest can fail to detach for a number of reasons, and
2868         * if it does so, it will cleanup the entry (if there is one).
2869         * The host can fail too, but it won't cleanup the entry
2870         * immediately, it will do that later when the context is
2871         * freed.  Either way, we need to release the qpair struct
2872         * here; there isn't much the caller can do, and we don't want
2873         * to leak.
2874         */
2875
2876        memset(old_qpair, 0, sizeof(*old_qpair));
2877        old_qpair->handle = VMCI_INVALID_HANDLE;
2878        old_qpair->peer = VMCI_INVALID_ID;
2879        kfree(old_qpair);
2880        *qpair = NULL;
2881
2882        return result;
2883}
2884EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2885
2886/*
2887 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2888 * @qpair:      Pointer to the queue pair struct.
2889 * @producer_tail:      Reference used for storing producer tail index.
2890 * @consumer_head:      Reference used for storing the consumer head index.
2891 *
2892 * This is the client interface for getting the current indexes of the
2893 * QPair from the point of the view of the caller as the producer.
2894 */
2895int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2896                                   u64 *producer_tail,
2897                                   u64 *consumer_head)
2898{
2899        struct vmci_queue_header *produce_q_header;
2900        struct vmci_queue_header *consume_q_header;
2901        int result;
2902
2903        if (!qpair)
2904                return VMCI_ERROR_INVALID_ARGS;
2905
2906        qp_lock(qpair);
2907        result =
2908            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2909        if (result == VMCI_SUCCESS)
2910                vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2911                                           producer_tail, consumer_head);
2912        qp_unlock(qpair);
2913
2914        if (result == VMCI_SUCCESS &&
2915            ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2916             (consumer_head && *consumer_head >= qpair->produce_q_size)))
2917                return VMCI_ERROR_INVALID_SIZE;
2918
2919        return result;
2920}
2921EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2922
2923/*
2924 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2925 * @qpair:      Pointer to the queue pair struct.
2926 * @consumer_tail:      Reference used for storing consumer tail index.
2927 * @producer_head:      Reference used for storing the producer head index.
2928 *
2929 * This is the client interface for getting the current indexes of the
2930 * QPair from the point of the view of the caller as the consumer.
2931 */
2932int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2933                                   u64 *consumer_tail,
2934                                   u64 *producer_head)
2935{
2936        struct vmci_queue_header *produce_q_header;
2937        struct vmci_queue_header *consume_q_header;
2938        int result;
2939
2940        if (!qpair)
2941                return VMCI_ERROR_INVALID_ARGS;
2942
2943        qp_lock(qpair);
2944        result =
2945            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2946        if (result == VMCI_SUCCESS)
2947                vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2948                                           consumer_tail, producer_head);
2949        qp_unlock(qpair);
2950
2951        if (result == VMCI_SUCCESS &&
2952            ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2953             (producer_head && *producer_head >= qpair->consume_q_size)))
2954                return VMCI_ERROR_INVALID_SIZE;
2955
2956        return result;
2957}
2958EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2959
2960/*
2961 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2962 * @qpair:      Pointer to the queue pair struct.
2963 *
2964 * This is the client interface for getting the amount of free
2965 * space in the QPair from the point of the view of the caller as
2966 * the producer which is the common case.  Returns < 0 if err, else
2967 * available bytes into which data can be enqueued if > 0.
2968 */
2969s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2970{
2971        struct vmci_queue_header *produce_q_header;
2972        struct vmci_queue_header *consume_q_header;
2973        s64 result;
2974
2975        if (!qpair)
2976                return VMCI_ERROR_INVALID_ARGS;
2977
2978        qp_lock(qpair);
2979        result =
2980            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2981        if (result == VMCI_SUCCESS)
2982                result = vmci_q_header_free_space(produce_q_header,
2983                                                  consume_q_header,
2984                                                  qpair->produce_q_size);
2985        else
2986                result = 0;
2987
2988        qp_unlock(qpair);
2989
2990        return result;
2991}
2992EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2993
2994/*
2995 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2996 * @qpair:      Pointer to the queue pair struct.
2997 *
2998 * This is the client interface for getting the amount of free
2999 * space in the QPair from the point of the view of the caller as
3000 * the consumer which is not the common case.  Returns < 0 if err, else
3001 * available bytes into which data can be enqueued if > 0.
3002 */
3003s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3004{
3005        struct vmci_queue_header *produce_q_header;
3006        struct vmci_queue_header *consume_q_header;
3007        s64 result;
3008
3009        if (!qpair)
3010                return VMCI_ERROR_INVALID_ARGS;
3011
3012        qp_lock(qpair);
3013        result =
3014            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3015        if (result == VMCI_SUCCESS)
3016                result = vmci_q_header_free_space(consume_q_header,
3017                                                  produce_q_header,
3018                                                  qpair->consume_q_size);
3019        else
3020                result = 0;
3021
3022        qp_unlock(qpair);
3023
3024        return result;
3025}
3026EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3027
3028/*
3029 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3030 * producer queue.
3031 * @qpair:      Pointer to the queue pair struct.
3032 *
3033 * This is the client interface for getting the amount of
3034 * enqueued data in the QPair from the point of the view of the
3035 * caller as the producer which is not the common case.  Returns < 0 if err,
3036 * else available bytes that may be read.
3037 */
3038s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3039{
3040        struct vmci_queue_header *produce_q_header;
3041        struct vmci_queue_header *consume_q_header;
3042        s64 result;
3043
3044        if (!qpair)
3045                return VMCI_ERROR_INVALID_ARGS;
3046
3047        qp_lock(qpair);
3048        result =
3049            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3050        if (result == VMCI_SUCCESS)
3051                result = vmci_q_header_buf_ready(produce_q_header,
3052                                                 consume_q_header,
3053                                                 qpair->produce_q_size);
3054        else
3055                result = 0;
3056
3057        qp_unlock(qpair);
3058
3059        return result;
3060}
3061EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3062
3063/*
3064 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3065 * consumer queue.
3066 * @qpair:      Pointer to the queue pair struct.
3067 *
3068 * This is the client interface for getting the amount of
3069 * enqueued data in the QPair from the point of the view of the
3070 * caller as the consumer which is the normal case.  Returns < 0 if err,
3071 * else available bytes that may be read.
3072 */
3073s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3074{
3075        struct vmci_queue_header *produce_q_header;
3076        struct vmci_queue_header *consume_q_header;
3077        s64 result;
3078
3079        if (!qpair)
3080                return VMCI_ERROR_INVALID_ARGS;
3081
3082        qp_lock(qpair);
3083        result =
3084            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3085        if (result == VMCI_SUCCESS)
3086                result = vmci_q_header_buf_ready(consume_q_header,
3087                                                 produce_q_header,
3088                                                 qpair->consume_q_size);
3089        else
3090                result = 0;
3091
3092        qp_unlock(qpair);
3093
3094        return result;
3095}
3096EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3097
3098/*
3099 * vmci_qpair_enqueue() - Throw data on the queue.
3100 * @qpair:      Pointer to the queue pair struct.
3101 * @buf:        Pointer to buffer containing data
3102 * @buf_size:   Length of buffer.
3103 * @buf_type:   Buffer type (Unused).
3104 *
3105 * This is the client interface for enqueueing data into the queue.
3106 * Returns number of bytes enqueued or < 0 on error.
3107 */
3108ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3109                           const void *buf,
3110                           size_t buf_size,
3111                           int buf_type)
3112{
3113        ssize_t result;
3114
3115        if (!qpair || !buf)
3116                return VMCI_ERROR_INVALID_ARGS;
3117
3118        qp_lock(qpair);
3119
3120        do {
3121                result = qp_enqueue_locked(qpair->produce_q,
3122                                           qpair->consume_q,
3123                                           qpair->produce_q_size,
3124                                           buf, buf_size,
3125                                           qp_memcpy_to_queue);
3126
3127                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3128                    !qp_wait_for_ready_queue(qpair))
3129                        result = VMCI_ERROR_WOULD_BLOCK;
3130
3131        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3132
3133        qp_unlock(qpair);
3134
3135        return result;
3136}
3137EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3138
3139/*
3140 * vmci_qpair_dequeue() - Get data from the queue.
3141 * @qpair:      Pointer to the queue pair struct.
3142 * @buf:        Pointer to buffer for the data
3143 * @buf_size:   Length of buffer.
3144 * @buf_type:   Buffer type (Unused).
3145 *
3146 * This is the client interface for dequeueing data from the queue.
3147 * Returns number of bytes dequeued or < 0 on error.
3148 */
3149ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3150                           void *buf,
3151                           size_t buf_size,
3152                           int buf_type)
3153{
3154        ssize_t result;
3155
3156        if (!qpair || !buf)
3157                return VMCI_ERROR_INVALID_ARGS;
3158
3159        qp_lock(qpair);
3160
3161        do {
3162                result = qp_dequeue_locked(qpair->produce_q,
3163                                           qpair->consume_q,
3164                                           qpair->consume_q_size,
3165                                           buf, buf_size,
3166                                           qp_memcpy_from_queue, true);
3167
3168                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3169                    !qp_wait_for_ready_queue(qpair))
3170                        result = VMCI_ERROR_WOULD_BLOCK;
3171
3172        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3173
3174        qp_unlock(qpair);
3175
3176        return result;
3177}
3178EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3179
3180/*
3181 * vmci_qpair_peek() - Peek at the data in the queue.
3182 * @qpair:      Pointer to the queue pair struct.
3183 * @buf:        Pointer to buffer for the data
3184 * @buf_size:   Length of buffer.
3185 * @buf_type:   Buffer type (Unused on Linux).
3186 *
3187 * This is the client interface for peeking into a queue.  (I.e.,
3188 * copy data from the queue without updating the head pointer.)
3189 * Returns number of bytes dequeued or < 0 on error.
3190 */
3191ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3192                        void *buf,
3193                        size_t buf_size,
3194                        int buf_type)
3195{
3196        ssize_t result;
3197
3198        if (!qpair || !buf)
3199                return VMCI_ERROR_INVALID_ARGS;
3200
3201        qp_lock(qpair);
3202
3203        do {
3204                result = qp_dequeue_locked(qpair->produce_q,
3205                                           qpair->consume_q,
3206                                           qpair->consume_q_size,
3207                                           buf, buf_size,
3208                                           qp_memcpy_from_queue, false);
3209
3210                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3211                    !qp_wait_for_ready_queue(qpair))
3212                        result = VMCI_ERROR_WOULD_BLOCK;
3213
3214        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3215
3216        qp_unlock(qpair);
3217
3218        return result;
3219}
3220EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3221
3222/*
3223 * vmci_qpair_enquev() - Throw data on the queue using iov.
3224 * @qpair:      Pointer to the queue pair struct.
3225 * @iov:        Pointer to buffer containing data
3226 * @iov_size:   Length of buffer.
3227 * @buf_type:   Buffer type (Unused).
3228 *
3229 * This is the client interface for enqueueing data into the queue.
3230 * This function uses IO vectors to handle the work. Returns number
3231 * of bytes enqueued or < 0 on error.
3232 */
3233ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3234                          void *iov,
3235                          size_t iov_size,
3236                          int buf_type)
3237{
3238        ssize_t result;
3239
3240        if (!qpair || !iov)
3241                return VMCI_ERROR_INVALID_ARGS;
3242
3243        qp_lock(qpair);
3244
3245        do {
3246                result = qp_enqueue_locked(qpair->produce_q,
3247                                           qpair->consume_q,
3248                                           qpair->produce_q_size,
3249                                           iov, iov_size,
3250                                           qp_memcpy_to_queue_iov);
3251
3252                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3253                    !qp_wait_for_ready_queue(qpair))
3254                        result = VMCI_ERROR_WOULD_BLOCK;
3255
3256        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3257
3258        qp_unlock(qpair);
3259
3260        return result;
3261}
3262EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3263
3264/*
3265 * vmci_qpair_dequev() - Get data from the queue using iov.
3266 * @qpair:      Pointer to the queue pair struct.
3267 * @iov:        Pointer to buffer for the data
3268 * @iov_size:   Length of buffer.
3269 * @buf_type:   Buffer type (Unused).
3270 *
3271 * This is the client interface for dequeueing data from the queue.
3272 * This function uses IO vectors to handle the work. Returns number
3273 * of bytes dequeued or < 0 on error.
3274 */
3275ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3276                          void *iov,
3277                          size_t iov_size,
3278                          int buf_type)
3279{
3280        ssize_t result;
3281
3282        if (!qpair || !iov)
3283                return VMCI_ERROR_INVALID_ARGS;
3284
3285        qp_lock(qpair);
3286
3287        do {
3288                result = qp_dequeue_locked(qpair->produce_q,
3289                                           qpair->consume_q,
3290                                           qpair->consume_q_size,
3291                                           iov, iov_size,
3292                                           qp_memcpy_from_queue_iov,
3293                                           true);
3294
3295                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3296                    !qp_wait_for_ready_queue(qpair))
3297                        result = VMCI_ERROR_WOULD_BLOCK;
3298
3299        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3300
3301        qp_unlock(qpair);
3302
3303        return result;
3304}
3305EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3306
3307/*
3308 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3309 * @qpair:      Pointer to the queue pair struct.
3310 * @iov:        Pointer to buffer for the data
3311 * @iov_size:   Length of buffer.
3312 * @buf_type:   Buffer type (Unused on Linux).
3313 *
3314 * This is the client interface for peeking into a queue.  (I.e.,
3315 * copy data from the queue without updating the head pointer.)
3316 * This function uses IO vectors to handle the work. Returns number
3317 * of bytes peeked or < 0 on error.
3318 */
3319ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3320                         void *iov,
3321                         size_t iov_size,
3322                         int buf_type)
3323{
3324        ssize_t result;
3325
3326        if (!qpair || !iov)
3327                return VMCI_ERROR_INVALID_ARGS;
3328
3329        qp_lock(qpair);
3330
3331        do {
3332                result = qp_dequeue_locked(qpair->produce_q,
3333                                           qpair->consume_q,
3334                                           qpair->consume_q_size,
3335                                           iov, iov_size,
3336                                           qp_memcpy_from_queue_iov,
3337                                           false);
3338
3339                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3340                    !qp_wait_for_ready_queue(qpair))
3341                        result = VMCI_ERROR_WOULD_BLOCK;
3342
3343        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3344
3345        qp_unlock(qpair);
3346        return result;
3347}
3348EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3349