linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/suspend.h>
  27#include <linux/fault-inject.h>
  28#include <linux/random.h>
  29#include <linux/slab.h>
  30#include <linux/of.h>
  31
  32#include <linux/mmc/card.h>
  33#include <linux/mmc/host.h>
  34#include <linux/mmc/mmc.h>
  35#include <linux/mmc/sd.h>
  36
  37#include "core.h"
  38#include "bus.h"
  39#include "host.h"
  40#include "sdio_bus.h"
  41
  42#include "mmc_ops.h"
  43#include "sd_ops.h"
  44#include "sdio_ops.h"
  45
  46/* If the device is not responding */
  47#define MMC_CORE_TIMEOUT_MS     (10 * 60 * 1000) /* 10 minute timeout */
  48
  49/*
  50 * Background operations can take a long time, depending on the housekeeping
  51 * operations the card has to perform.
  52 */
  53#define MMC_BKOPS_MAX_TIMEOUT   (4 * 60 * 1000) /* max time to wait in ms */
  54
  55static struct workqueue_struct *workqueue;
  56static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  57
  58/*
  59 * Enabling software CRCs on the data blocks can be a significant (30%)
  60 * performance cost, and for other reasons may not always be desired.
  61 * So we allow it it to be disabled.
  62 */
  63bool use_spi_crc = 1;
  64module_param(use_spi_crc, bool, 0);
  65
  66/*
  67 * We normally treat cards as removed during suspend if they are not
  68 * known to be on a non-removable bus, to avoid the risk of writing
  69 * back data to a different card after resume.  Allow this to be
  70 * overridden if necessary.
  71 */
  72#ifdef CONFIG_MMC_UNSAFE_RESUME
  73bool mmc_assume_removable;
  74#else
  75bool mmc_assume_removable = 1;
  76#endif
  77EXPORT_SYMBOL(mmc_assume_removable);
  78module_param_named(removable, mmc_assume_removable, bool, 0644);
  79MODULE_PARM_DESC(
  80        removable,
  81        "MMC/SD cards are removable and may be removed during suspend");
  82
  83/*
  84 * Internal function. Schedule delayed work in the MMC work queue.
  85 */
  86static int mmc_schedule_delayed_work(struct delayed_work *work,
  87                                     unsigned long delay)
  88{
  89        return queue_delayed_work(workqueue, work, delay);
  90}
  91
  92/*
  93 * Internal function. Flush all scheduled work from the MMC work queue.
  94 */
  95static void mmc_flush_scheduled_work(void)
  96{
  97        flush_workqueue(workqueue);
  98}
  99
 100#ifdef CONFIG_FAIL_MMC_REQUEST
 101
 102/*
 103 * Internal function. Inject random data errors.
 104 * If mmc_data is NULL no errors are injected.
 105 */
 106static void mmc_should_fail_request(struct mmc_host *host,
 107                                    struct mmc_request *mrq)
 108{
 109        struct mmc_command *cmd = mrq->cmd;
 110        struct mmc_data *data = mrq->data;
 111        static const int data_errors[] = {
 112                -ETIMEDOUT,
 113                -EILSEQ,
 114                -EIO,
 115        };
 116
 117        if (!data)
 118                return;
 119
 120        if (cmd->error || data->error ||
 121            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 122                return;
 123
 124        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 125        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 126}
 127
 128#else /* CONFIG_FAIL_MMC_REQUEST */
 129
 130static inline void mmc_should_fail_request(struct mmc_host *host,
 131                                           struct mmc_request *mrq)
 132{
 133}
 134
 135#endif /* CONFIG_FAIL_MMC_REQUEST */
 136
 137/**
 138 *      mmc_request_done - finish processing an MMC request
 139 *      @host: MMC host which completed request
 140 *      @mrq: MMC request which request
 141 *
 142 *      MMC drivers should call this function when they have completed
 143 *      their processing of a request.
 144 */
 145void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 146{
 147        struct mmc_command *cmd = mrq->cmd;
 148        int err = cmd->error;
 149
 150        if (err && cmd->retries && mmc_host_is_spi(host)) {
 151                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 152                        cmd->retries = 0;
 153        }
 154
 155        if (err && cmd->retries && !mmc_card_removed(host->card)) {
 156                /*
 157                 * Request starter must handle retries - see
 158                 * mmc_wait_for_req_done().
 159                 */
 160                if (mrq->done)
 161                        mrq->done(mrq);
 162        } else {
 163                mmc_should_fail_request(host, mrq);
 164
 165                led_trigger_event(host->led, LED_OFF);
 166
 167                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 168                        mmc_hostname(host), cmd->opcode, err,
 169                        cmd->resp[0], cmd->resp[1],
 170                        cmd->resp[2], cmd->resp[3]);
 171
 172                if (mrq->data) {
 173                        pr_debug("%s:     %d bytes transferred: %d\n",
 174                                mmc_hostname(host),
 175                                mrq->data->bytes_xfered, mrq->data->error);
 176                }
 177
 178                if (mrq->stop) {
 179                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 180                                mmc_hostname(host), mrq->stop->opcode,
 181                                mrq->stop->error,
 182                                mrq->stop->resp[0], mrq->stop->resp[1],
 183                                mrq->stop->resp[2], mrq->stop->resp[3]);
 184                }
 185
 186                if (mrq->done)
 187                        mrq->done(mrq);
 188
 189                mmc_host_clk_release(host);
 190        }
 191}
 192
 193EXPORT_SYMBOL(mmc_request_done);
 194
 195static void
 196mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 197{
 198#ifdef CONFIG_MMC_DEBUG
 199        unsigned int i, sz;
 200        struct scatterlist *sg;
 201#endif
 202
 203        if (mrq->sbc) {
 204                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 205                         mmc_hostname(host), mrq->sbc->opcode,
 206                         mrq->sbc->arg, mrq->sbc->flags);
 207        }
 208
 209        pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 210                 mmc_hostname(host), mrq->cmd->opcode,
 211                 mrq->cmd->arg, mrq->cmd->flags);
 212
 213        if (mrq->data) {
 214                pr_debug("%s:     blksz %d blocks %d flags %08x "
 215                        "tsac %d ms nsac %d\n",
 216                        mmc_hostname(host), mrq->data->blksz,
 217                        mrq->data->blocks, mrq->data->flags,
 218                        mrq->data->timeout_ns / 1000000,
 219                        mrq->data->timeout_clks);
 220        }
 221
 222        if (mrq->stop) {
 223                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 224                         mmc_hostname(host), mrq->stop->opcode,
 225                         mrq->stop->arg, mrq->stop->flags);
 226        }
 227
 228        WARN_ON(!host->claimed);
 229
 230        mrq->cmd->error = 0;
 231        mrq->cmd->mrq = mrq;
 232        if (mrq->data) {
 233                BUG_ON(mrq->data->blksz > host->max_blk_size);
 234                BUG_ON(mrq->data->blocks > host->max_blk_count);
 235                BUG_ON(mrq->data->blocks * mrq->data->blksz >
 236                        host->max_req_size);
 237
 238#ifdef CONFIG_MMC_DEBUG
 239                sz = 0;
 240                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 241                        sz += sg->length;
 242                BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 243#endif
 244
 245                mrq->cmd->data = mrq->data;
 246                mrq->data->error = 0;
 247                mrq->data->mrq = mrq;
 248                if (mrq->stop) {
 249                        mrq->data->stop = mrq->stop;
 250                        mrq->stop->error = 0;
 251                        mrq->stop->mrq = mrq;
 252                }
 253        }
 254        mmc_host_clk_hold(host);
 255        led_trigger_event(host->led, LED_FULL);
 256        host->ops->request(host, mrq);
 257}
 258
 259/**
 260 *      mmc_start_bkops - start BKOPS for supported cards
 261 *      @card: MMC card to start BKOPS
 262 *      @form_exception: A flag to indicate if this function was
 263 *                       called due to an exception raised by the card
 264 *
 265 *      Start background operations whenever requested.
 266 *      When the urgent BKOPS bit is set in a R1 command response
 267 *      then background operations should be started immediately.
 268*/
 269void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 270{
 271        int err;
 272        int timeout;
 273        bool use_busy_signal;
 274
 275        BUG_ON(!card);
 276
 277        if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
 278                return;
 279
 280        err = mmc_read_bkops_status(card);
 281        if (err) {
 282                pr_err("%s: Failed to read bkops status: %d\n",
 283                       mmc_hostname(card->host), err);
 284                return;
 285        }
 286
 287        if (!card->ext_csd.raw_bkops_status)
 288                return;
 289
 290        if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 291            from_exception)
 292                return;
 293
 294        mmc_claim_host(card->host);
 295        if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 296                timeout = MMC_BKOPS_MAX_TIMEOUT;
 297                use_busy_signal = true;
 298        } else {
 299                timeout = 0;
 300                use_busy_signal = false;
 301        }
 302
 303        err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 304                        EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
 305        if (err) {
 306                pr_warn("%s: Error %d starting bkops\n",
 307                        mmc_hostname(card->host), err);
 308                goto out;
 309        }
 310
 311        /*
 312         * For urgent bkops status (LEVEL_2 and more)
 313         * bkops executed synchronously, otherwise
 314         * the operation is in progress
 315         */
 316        if (!use_busy_signal)
 317                mmc_card_set_doing_bkops(card);
 318out:
 319        mmc_release_host(card->host);
 320}
 321EXPORT_SYMBOL(mmc_start_bkops);
 322
 323/*
 324 * mmc_wait_data_done() - done callback for data request
 325 * @mrq: done data request
 326 *
 327 * Wakes up mmc context, passed as a callback to host controller driver
 328 */
 329static void mmc_wait_data_done(struct mmc_request *mrq)
 330{
 331        mrq->host->context_info.is_done_rcv = true;
 332        wake_up_interruptible(&mrq->host->context_info.wait);
 333}
 334
 335static void mmc_wait_done(struct mmc_request *mrq)
 336{
 337        complete(&mrq->completion);
 338}
 339
 340/*
 341 *__mmc_start_data_req() - starts data request
 342 * @host: MMC host to start the request
 343 * @mrq: data request to start
 344 *
 345 * Sets the done callback to be called when request is completed by the card.
 346 * Starts data mmc request execution
 347 */
 348static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 349{
 350        mrq->done = mmc_wait_data_done;
 351        mrq->host = host;
 352        if (mmc_card_removed(host->card)) {
 353                mrq->cmd->error = -ENOMEDIUM;
 354                mmc_wait_data_done(mrq);
 355                return -ENOMEDIUM;
 356        }
 357        mmc_start_request(host, mrq);
 358
 359        return 0;
 360}
 361
 362static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 363{
 364        init_completion(&mrq->completion);
 365        mrq->done = mmc_wait_done;
 366        if (mmc_card_removed(host->card)) {
 367                mrq->cmd->error = -ENOMEDIUM;
 368                complete(&mrq->completion);
 369                return -ENOMEDIUM;
 370        }
 371        mmc_start_request(host, mrq);
 372        return 0;
 373}
 374
 375/*
 376 * mmc_wait_for_data_req_done() - wait for request completed
 377 * @host: MMC host to prepare the command.
 378 * @mrq: MMC request to wait for
 379 *
 380 * Blocks MMC context till host controller will ack end of data request
 381 * execution or new request notification arrives from the block layer.
 382 * Handles command retries.
 383 *
 384 * Returns enum mmc_blk_status after checking errors.
 385 */
 386static int mmc_wait_for_data_req_done(struct mmc_host *host,
 387                                      struct mmc_request *mrq,
 388                                      struct mmc_async_req *next_req)
 389{
 390        struct mmc_command *cmd;
 391        struct mmc_context_info *context_info = &host->context_info;
 392        int err;
 393        unsigned long flags;
 394
 395        while (1) {
 396                wait_event_interruptible(context_info->wait,
 397                                (context_info->is_done_rcv ||
 398                                 context_info->is_new_req));
 399                spin_lock_irqsave(&context_info->lock, flags);
 400                context_info->is_waiting_last_req = false;
 401                spin_unlock_irqrestore(&context_info->lock, flags);
 402                if (context_info->is_done_rcv) {
 403                        context_info->is_done_rcv = false;
 404                        context_info->is_new_req = false;
 405                        cmd = mrq->cmd;
 406
 407                        if (!cmd->error || !cmd->retries ||
 408                            mmc_card_removed(host->card)) {
 409                                err = host->areq->err_check(host->card,
 410                                                            host->areq);
 411                                break; /* return err */
 412                        } else {
 413                                pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 414                                        mmc_hostname(host),
 415                                        cmd->opcode, cmd->error);
 416                                cmd->retries--;
 417                                cmd->error = 0;
 418                                host->ops->request(host, mrq);
 419                                continue; /* wait for done/new event again */
 420                        }
 421                } else if (context_info->is_new_req) {
 422                        context_info->is_new_req = false;
 423                        if (!next_req) {
 424                                err = MMC_BLK_NEW_REQUEST;
 425                                break; /* return err */
 426                        }
 427                }
 428        }
 429        return err;
 430}
 431
 432static void mmc_wait_for_req_done(struct mmc_host *host,
 433                                  struct mmc_request *mrq)
 434{
 435        struct mmc_command *cmd;
 436
 437        while (1) {
 438                wait_for_completion(&mrq->completion);
 439
 440                cmd = mrq->cmd;
 441
 442                /*
 443                 * If host has timed out waiting for the sanitize
 444                 * to complete, card might be still in programming state
 445                 * so let's try to bring the card out of programming
 446                 * state.
 447                 */
 448                if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 449                        if (!mmc_interrupt_hpi(host->card)) {
 450                                pr_warning("%s: %s: Interrupted sanitize\n",
 451                                           mmc_hostname(host), __func__);
 452                                cmd->error = 0;
 453                                break;
 454                        } else {
 455                                pr_err("%s: %s: Failed to interrupt sanitize\n",
 456                                       mmc_hostname(host), __func__);
 457                        }
 458                }
 459                if (!cmd->error || !cmd->retries ||
 460                    mmc_card_removed(host->card))
 461                        break;
 462
 463                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 464                         mmc_hostname(host), cmd->opcode, cmd->error);
 465                cmd->retries--;
 466                cmd->error = 0;
 467                host->ops->request(host, mrq);
 468        }
 469}
 470
 471/**
 472 *      mmc_pre_req - Prepare for a new request
 473 *      @host: MMC host to prepare command
 474 *      @mrq: MMC request to prepare for
 475 *      @is_first_req: true if there is no previous started request
 476 *                     that may run in parellel to this call, otherwise false
 477 *
 478 *      mmc_pre_req() is called in prior to mmc_start_req() to let
 479 *      host prepare for the new request. Preparation of a request may be
 480 *      performed while another request is running on the host.
 481 */
 482static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 483                 bool is_first_req)
 484{
 485        if (host->ops->pre_req) {
 486                mmc_host_clk_hold(host);
 487                host->ops->pre_req(host, mrq, is_first_req);
 488                mmc_host_clk_release(host);
 489        }
 490}
 491
 492/**
 493 *      mmc_post_req - Post process a completed request
 494 *      @host: MMC host to post process command
 495 *      @mrq: MMC request to post process for
 496 *      @err: Error, if non zero, clean up any resources made in pre_req
 497 *
 498 *      Let the host post process a completed request. Post processing of
 499 *      a request may be performed while another reuqest is running.
 500 */
 501static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 502                         int err)
 503{
 504        if (host->ops->post_req) {
 505                mmc_host_clk_hold(host);
 506                host->ops->post_req(host, mrq, err);
 507                mmc_host_clk_release(host);
 508        }
 509}
 510
 511/**
 512 *      mmc_start_req - start a non-blocking request
 513 *      @host: MMC host to start command
 514 *      @areq: async request to start
 515 *      @error: out parameter returns 0 for success, otherwise non zero
 516 *
 517 *      Start a new MMC custom command request for a host.
 518 *      If there is on ongoing async request wait for completion
 519 *      of that request and start the new one and return.
 520 *      Does not wait for the new request to complete.
 521 *
 522 *      Returns the completed request, NULL in case of none completed.
 523 *      Wait for the an ongoing request (previoulsy started) to complete and
 524 *      return the completed request. If there is no ongoing request, NULL
 525 *      is returned without waiting. NULL is not an error condition.
 526 */
 527struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 528                                    struct mmc_async_req *areq, int *error)
 529{
 530        int err = 0;
 531        int start_err = 0;
 532        struct mmc_async_req *data = host->areq;
 533
 534        /* Prepare a new request */
 535        if (areq)
 536                mmc_pre_req(host, areq->mrq, !host->areq);
 537
 538        if (host->areq) {
 539                err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
 540                if (err == MMC_BLK_NEW_REQUEST) {
 541                        if (error)
 542                                *error = err;
 543                        /*
 544                         * The previous request was not completed,
 545                         * nothing to return
 546                         */
 547                        return NULL;
 548                }
 549                /*
 550                 * Check BKOPS urgency for each R1 response
 551                 */
 552                if (host->card && mmc_card_mmc(host->card) &&
 553                    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 554                     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 555                    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
 556                        mmc_start_bkops(host->card, true);
 557        }
 558
 559        if (!err && areq)
 560                start_err = __mmc_start_data_req(host, areq->mrq);
 561
 562        if (host->areq)
 563                mmc_post_req(host, host->areq->mrq, 0);
 564
 565         /* Cancel a prepared request if it was not started. */
 566        if ((err || start_err) && areq)
 567                mmc_post_req(host, areq->mrq, -EINVAL);
 568
 569        if (err)
 570                host->areq = NULL;
 571        else
 572                host->areq = areq;
 573
 574        if (error)
 575                *error = err;
 576        return data;
 577}
 578EXPORT_SYMBOL(mmc_start_req);
 579
 580/**
 581 *      mmc_wait_for_req - start a request and wait for completion
 582 *      @host: MMC host to start command
 583 *      @mrq: MMC request to start
 584 *
 585 *      Start a new MMC custom command request for a host, and wait
 586 *      for the command to complete. Does not attempt to parse the
 587 *      response.
 588 */
 589void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 590{
 591        __mmc_start_req(host, mrq);
 592        mmc_wait_for_req_done(host, mrq);
 593}
 594EXPORT_SYMBOL(mmc_wait_for_req);
 595
 596/**
 597 *      mmc_interrupt_hpi - Issue for High priority Interrupt
 598 *      @card: the MMC card associated with the HPI transfer
 599 *
 600 *      Issued High Priority Interrupt, and check for card status
 601 *      until out-of prg-state.
 602 */
 603int mmc_interrupt_hpi(struct mmc_card *card)
 604{
 605        int err;
 606        u32 status;
 607        unsigned long prg_wait;
 608
 609        BUG_ON(!card);
 610
 611        if (!card->ext_csd.hpi_en) {
 612                pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 613                return 1;
 614        }
 615
 616        mmc_claim_host(card->host);
 617        err = mmc_send_status(card, &status);
 618        if (err) {
 619                pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 620                goto out;
 621        }
 622
 623        switch (R1_CURRENT_STATE(status)) {
 624        case R1_STATE_IDLE:
 625        case R1_STATE_READY:
 626        case R1_STATE_STBY:
 627        case R1_STATE_TRAN:
 628                /*
 629                 * In idle and transfer states, HPI is not needed and the caller
 630                 * can issue the next intended command immediately
 631                 */
 632                goto out;
 633        case R1_STATE_PRG:
 634                break;
 635        default:
 636                /* In all other states, it's illegal to issue HPI */
 637                pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 638                        mmc_hostname(card->host), R1_CURRENT_STATE(status));
 639                err = -EINVAL;
 640                goto out;
 641        }
 642
 643        err = mmc_send_hpi_cmd(card, &status);
 644        if (err)
 645                goto out;
 646
 647        prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 648        do {
 649                err = mmc_send_status(card, &status);
 650
 651                if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 652                        break;
 653                if (time_after(jiffies, prg_wait))
 654                        err = -ETIMEDOUT;
 655        } while (!err);
 656
 657out:
 658        mmc_release_host(card->host);
 659        return err;
 660}
 661EXPORT_SYMBOL(mmc_interrupt_hpi);
 662
 663/**
 664 *      mmc_wait_for_cmd - start a command and wait for completion
 665 *      @host: MMC host to start command
 666 *      @cmd: MMC command to start
 667 *      @retries: maximum number of retries
 668 *
 669 *      Start a new MMC command for a host, and wait for the command
 670 *      to complete.  Return any error that occurred while the command
 671 *      was executing.  Do not attempt to parse the response.
 672 */
 673int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 674{
 675        struct mmc_request mrq = {NULL};
 676
 677        WARN_ON(!host->claimed);
 678
 679        memset(cmd->resp, 0, sizeof(cmd->resp));
 680        cmd->retries = retries;
 681
 682        mrq.cmd = cmd;
 683        cmd->data = NULL;
 684
 685        mmc_wait_for_req(host, &mrq);
 686
 687        return cmd->error;
 688}
 689
 690EXPORT_SYMBOL(mmc_wait_for_cmd);
 691
 692/**
 693 *      mmc_stop_bkops - stop ongoing BKOPS
 694 *      @card: MMC card to check BKOPS
 695 *
 696 *      Send HPI command to stop ongoing background operations to
 697 *      allow rapid servicing of foreground operations, e.g. read/
 698 *      writes. Wait until the card comes out of the programming state
 699 *      to avoid errors in servicing read/write requests.
 700 */
 701int mmc_stop_bkops(struct mmc_card *card)
 702{
 703        int err = 0;
 704
 705        BUG_ON(!card);
 706        err = mmc_interrupt_hpi(card);
 707
 708        /*
 709         * If err is EINVAL, we can't issue an HPI.
 710         * It should complete the BKOPS.
 711         */
 712        if (!err || (err == -EINVAL)) {
 713                mmc_card_clr_doing_bkops(card);
 714                err = 0;
 715        }
 716
 717        return err;
 718}
 719EXPORT_SYMBOL(mmc_stop_bkops);
 720
 721int mmc_read_bkops_status(struct mmc_card *card)
 722{
 723        int err;
 724        u8 *ext_csd;
 725
 726        /*
 727         * In future work, we should consider storing the entire ext_csd.
 728         */
 729        ext_csd = kmalloc(512, GFP_KERNEL);
 730        if (!ext_csd) {
 731                pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
 732                       mmc_hostname(card->host));
 733                return -ENOMEM;
 734        }
 735
 736        mmc_claim_host(card->host);
 737        err = mmc_send_ext_csd(card, ext_csd);
 738        mmc_release_host(card->host);
 739        if (err)
 740                goto out;
 741
 742        card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 743        card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 744out:
 745        kfree(ext_csd);
 746        return err;
 747}
 748EXPORT_SYMBOL(mmc_read_bkops_status);
 749
 750/**
 751 *      mmc_set_data_timeout - set the timeout for a data command
 752 *      @data: data phase for command
 753 *      @card: the MMC card associated with the data transfer
 754 *
 755 *      Computes the data timeout parameters according to the
 756 *      correct algorithm given the card type.
 757 */
 758void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 759{
 760        unsigned int mult;
 761
 762        /*
 763         * SDIO cards only define an upper 1 s limit on access.
 764         */
 765        if (mmc_card_sdio(card)) {
 766                data->timeout_ns = 1000000000;
 767                data->timeout_clks = 0;
 768                return;
 769        }
 770
 771        /*
 772         * SD cards use a 100 multiplier rather than 10
 773         */
 774        mult = mmc_card_sd(card) ? 100 : 10;
 775
 776        /*
 777         * Scale up the multiplier (and therefore the timeout) by
 778         * the r2w factor for writes.
 779         */
 780        if (data->flags & MMC_DATA_WRITE)
 781                mult <<= card->csd.r2w_factor;
 782
 783        data->timeout_ns = card->csd.tacc_ns * mult;
 784        data->timeout_clks = card->csd.tacc_clks * mult;
 785
 786        /*
 787         * SD cards also have an upper limit on the timeout.
 788         */
 789        if (mmc_card_sd(card)) {
 790                unsigned int timeout_us, limit_us;
 791
 792                timeout_us = data->timeout_ns / 1000;
 793                if (mmc_host_clk_rate(card->host))
 794                        timeout_us += data->timeout_clks * 1000 /
 795                                (mmc_host_clk_rate(card->host) / 1000);
 796
 797                if (data->flags & MMC_DATA_WRITE)
 798                        /*
 799                         * The MMC spec "It is strongly recommended
 800                         * for hosts to implement more than 500ms
 801                         * timeout value even if the card indicates
 802                         * the 250ms maximum busy length."  Even the
 803                         * previous value of 300ms is known to be
 804                         * insufficient for some cards.
 805                         */
 806                        limit_us = 3000000;
 807                else
 808                        limit_us = 100000;
 809
 810                /*
 811                 * SDHC cards always use these fixed values.
 812                 */
 813                if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 814                        data->timeout_ns = limit_us * 1000;
 815                        data->timeout_clks = 0;
 816                }
 817        }
 818
 819        /*
 820         * Some cards require longer data read timeout than indicated in CSD.
 821         * Address this by setting the read timeout to a "reasonably high"
 822         * value. For the cards tested, 300ms has proven enough. If necessary,
 823         * this value can be increased if other problematic cards require this.
 824         */
 825        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 826                data->timeout_ns = 300000000;
 827                data->timeout_clks = 0;
 828        }
 829
 830        /*
 831         * Some cards need very high timeouts if driven in SPI mode.
 832         * The worst observed timeout was 900ms after writing a
 833         * continuous stream of data until the internal logic
 834         * overflowed.
 835         */
 836        if (mmc_host_is_spi(card->host)) {
 837                if (data->flags & MMC_DATA_WRITE) {
 838                        if (data->timeout_ns < 1000000000)
 839                                data->timeout_ns = 1000000000;  /* 1s */
 840                } else {
 841                        if (data->timeout_ns < 100000000)
 842                                data->timeout_ns =  100000000;  /* 100ms */
 843                }
 844        }
 845}
 846EXPORT_SYMBOL(mmc_set_data_timeout);
 847
 848/**
 849 *      mmc_align_data_size - pads a transfer size to a more optimal value
 850 *      @card: the MMC card associated with the data transfer
 851 *      @sz: original transfer size
 852 *
 853 *      Pads the original data size with a number of extra bytes in
 854 *      order to avoid controller bugs and/or performance hits
 855 *      (e.g. some controllers revert to PIO for certain sizes).
 856 *
 857 *      Returns the improved size, which might be unmodified.
 858 *
 859 *      Note that this function is only relevant when issuing a
 860 *      single scatter gather entry.
 861 */
 862unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 863{
 864        /*
 865         * FIXME: We don't have a system for the controller to tell
 866         * the core about its problems yet, so for now we just 32-bit
 867         * align the size.
 868         */
 869        sz = ((sz + 3) / 4) * 4;
 870
 871        return sz;
 872}
 873EXPORT_SYMBOL(mmc_align_data_size);
 874
 875/**
 876 *      __mmc_claim_host - exclusively claim a host
 877 *      @host: mmc host to claim
 878 *      @abort: whether or not the operation should be aborted
 879 *
 880 *      Claim a host for a set of operations.  If @abort is non null and
 881 *      dereference a non-zero value then this will return prematurely with
 882 *      that non-zero value without acquiring the lock.  Returns zero
 883 *      with the lock held otherwise.
 884 */
 885int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 886{
 887        DECLARE_WAITQUEUE(wait, current);
 888        unsigned long flags;
 889        int stop;
 890
 891        might_sleep();
 892
 893        add_wait_queue(&host->wq, &wait);
 894        spin_lock_irqsave(&host->lock, flags);
 895        while (1) {
 896                set_current_state(TASK_UNINTERRUPTIBLE);
 897                stop = abort ? atomic_read(abort) : 0;
 898                if (stop || !host->claimed || host->claimer == current)
 899                        break;
 900                spin_unlock_irqrestore(&host->lock, flags);
 901                schedule();
 902                spin_lock_irqsave(&host->lock, flags);
 903        }
 904        set_current_state(TASK_RUNNING);
 905        if (!stop) {
 906                host->claimed = 1;
 907                host->claimer = current;
 908                host->claim_cnt += 1;
 909        } else
 910                wake_up(&host->wq);
 911        spin_unlock_irqrestore(&host->lock, flags);
 912        remove_wait_queue(&host->wq, &wait);
 913        if (host->ops->enable && !stop && host->claim_cnt == 1)
 914                host->ops->enable(host);
 915        return stop;
 916}
 917
 918EXPORT_SYMBOL(__mmc_claim_host);
 919
 920/**
 921 *      mmc_try_claim_host - try exclusively to claim a host
 922 *      @host: mmc host to claim
 923 *
 924 *      Returns %1 if the host is claimed, %0 otherwise.
 925 */
 926int mmc_try_claim_host(struct mmc_host *host)
 927{
 928        int claimed_host = 0;
 929        unsigned long flags;
 930
 931        spin_lock_irqsave(&host->lock, flags);
 932        if (!host->claimed || host->claimer == current) {
 933                host->claimed = 1;
 934                host->claimer = current;
 935                host->claim_cnt += 1;
 936                claimed_host = 1;
 937        }
 938        spin_unlock_irqrestore(&host->lock, flags);
 939        if (host->ops->enable && claimed_host && host->claim_cnt == 1)
 940                host->ops->enable(host);
 941        return claimed_host;
 942}
 943EXPORT_SYMBOL(mmc_try_claim_host);
 944
 945/**
 946 *      mmc_release_host - release a host
 947 *      @host: mmc host to release
 948 *
 949 *      Release a MMC host, allowing others to claim the host
 950 *      for their operations.
 951 */
 952void mmc_release_host(struct mmc_host *host)
 953{
 954        unsigned long flags;
 955
 956        WARN_ON(!host->claimed);
 957
 958        if (host->ops->disable && host->claim_cnt == 1)
 959                host->ops->disable(host);
 960
 961        spin_lock_irqsave(&host->lock, flags);
 962        if (--host->claim_cnt) {
 963                /* Release for nested claim */
 964                spin_unlock_irqrestore(&host->lock, flags);
 965        } else {
 966                host->claimed = 0;
 967                host->claimer = NULL;
 968                spin_unlock_irqrestore(&host->lock, flags);
 969                wake_up(&host->wq);
 970        }
 971}
 972EXPORT_SYMBOL(mmc_release_host);
 973
 974/*
 975 * This is a helper function, which fetches a runtime pm reference for the
 976 * card device and also claims the host.
 977 */
 978void mmc_get_card(struct mmc_card *card)
 979{
 980        pm_runtime_get_sync(&card->dev);
 981        mmc_claim_host(card->host);
 982}
 983EXPORT_SYMBOL(mmc_get_card);
 984
 985/*
 986 * This is a helper function, which releases the host and drops the runtime
 987 * pm reference for the card device.
 988 */
 989void mmc_put_card(struct mmc_card *card)
 990{
 991        mmc_release_host(card->host);
 992        pm_runtime_mark_last_busy(&card->dev);
 993        pm_runtime_put_autosuspend(&card->dev);
 994}
 995EXPORT_SYMBOL(mmc_put_card);
 996
 997/*
 998 * Internal function that does the actual ios call to the host driver,
 999 * optionally printing some debug output.
1000 */
1001static inline void mmc_set_ios(struct mmc_host *host)
1002{
1003        struct mmc_ios *ios = &host->ios;
1004
1005        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1006                "width %u timing %u\n",
1007                 mmc_hostname(host), ios->clock, ios->bus_mode,
1008                 ios->power_mode, ios->chip_select, ios->vdd,
1009                 ios->bus_width, ios->timing);
1010
1011        if (ios->clock > 0)
1012                mmc_set_ungated(host);
1013        host->ops->set_ios(host, ios);
1014}
1015
1016/*
1017 * Control chip select pin on a host.
1018 */
1019void mmc_set_chip_select(struct mmc_host *host, int mode)
1020{
1021        mmc_host_clk_hold(host);
1022        host->ios.chip_select = mode;
1023        mmc_set_ios(host);
1024        mmc_host_clk_release(host);
1025}
1026
1027/*
1028 * Sets the host clock to the highest possible frequency that
1029 * is below "hz".
1030 */
1031static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1032{
1033        WARN_ON(hz < host->f_min);
1034
1035        if (hz > host->f_max)
1036                hz = host->f_max;
1037
1038        host->ios.clock = hz;
1039        mmc_set_ios(host);
1040}
1041
1042void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1043{
1044        mmc_host_clk_hold(host);
1045        __mmc_set_clock(host, hz);
1046        mmc_host_clk_release(host);
1047}
1048
1049#ifdef CONFIG_MMC_CLKGATE
1050/*
1051 * This gates the clock by setting it to 0 Hz.
1052 */
1053void mmc_gate_clock(struct mmc_host *host)
1054{
1055        unsigned long flags;
1056
1057        spin_lock_irqsave(&host->clk_lock, flags);
1058        host->clk_old = host->ios.clock;
1059        host->ios.clock = 0;
1060        host->clk_gated = true;
1061        spin_unlock_irqrestore(&host->clk_lock, flags);
1062        mmc_set_ios(host);
1063}
1064
1065/*
1066 * This restores the clock from gating by using the cached
1067 * clock value.
1068 */
1069void mmc_ungate_clock(struct mmc_host *host)
1070{
1071        /*
1072         * We should previously have gated the clock, so the clock shall
1073         * be 0 here! The clock may however be 0 during initialization,
1074         * when some request operations are performed before setting
1075         * the frequency. When ungate is requested in that situation
1076         * we just ignore the call.
1077         */
1078        if (host->clk_old) {
1079                BUG_ON(host->ios.clock);
1080                /* This call will also set host->clk_gated to false */
1081                __mmc_set_clock(host, host->clk_old);
1082        }
1083}
1084
1085void mmc_set_ungated(struct mmc_host *host)
1086{
1087        unsigned long flags;
1088
1089        /*
1090         * We've been given a new frequency while the clock is gated,
1091         * so make sure we regard this as ungating it.
1092         */
1093        spin_lock_irqsave(&host->clk_lock, flags);
1094        host->clk_gated = false;
1095        spin_unlock_irqrestore(&host->clk_lock, flags);
1096}
1097
1098#else
1099void mmc_set_ungated(struct mmc_host *host)
1100{
1101}
1102#endif
1103
1104/*
1105 * Change the bus mode (open drain/push-pull) of a host.
1106 */
1107void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1108{
1109        mmc_host_clk_hold(host);
1110        host->ios.bus_mode = mode;
1111        mmc_set_ios(host);
1112        mmc_host_clk_release(host);
1113}
1114
1115/*
1116 * Change data bus width of a host.
1117 */
1118void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1119{
1120        mmc_host_clk_hold(host);
1121        host->ios.bus_width = width;
1122        mmc_set_ios(host);
1123        mmc_host_clk_release(host);
1124}
1125
1126/**
1127 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1128 * @vdd:        voltage (mV)
1129 * @low_bits:   prefer low bits in boundary cases
1130 *
1131 * This function returns the OCR bit number according to the provided @vdd
1132 * value. If conversion is not possible a negative errno value returned.
1133 *
1134 * Depending on the @low_bits flag the function prefers low or high OCR bits
1135 * on boundary voltages. For example,
1136 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1137 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1138 *
1139 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1140 */
1141static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1142{
1143        const int max_bit = ilog2(MMC_VDD_35_36);
1144        int bit;
1145
1146        if (vdd < 1650 || vdd > 3600)
1147                return -EINVAL;
1148
1149        if (vdd >= 1650 && vdd <= 1950)
1150                return ilog2(MMC_VDD_165_195);
1151
1152        if (low_bits)
1153                vdd -= 1;
1154
1155        /* Base 2000 mV, step 100 mV, bit's base 8. */
1156        bit = (vdd - 2000) / 100 + 8;
1157        if (bit > max_bit)
1158                return max_bit;
1159        return bit;
1160}
1161
1162/**
1163 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1164 * @vdd_min:    minimum voltage value (mV)
1165 * @vdd_max:    maximum voltage value (mV)
1166 *
1167 * This function returns the OCR mask bits according to the provided @vdd_min
1168 * and @vdd_max values. If conversion is not possible the function returns 0.
1169 *
1170 * Notes wrt boundary cases:
1171 * This function sets the OCR bits for all boundary voltages, for example
1172 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1173 * MMC_VDD_34_35 mask.
1174 */
1175u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1176{
1177        u32 mask = 0;
1178
1179        if (vdd_max < vdd_min)
1180                return 0;
1181
1182        /* Prefer high bits for the boundary vdd_max values. */
1183        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1184        if (vdd_max < 0)
1185                return 0;
1186
1187        /* Prefer low bits for the boundary vdd_min values. */
1188        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1189        if (vdd_min < 0)
1190                return 0;
1191
1192        /* Fill the mask, from max bit to min bit. */
1193        while (vdd_max >= vdd_min)
1194                mask |= 1 << vdd_max--;
1195
1196        return mask;
1197}
1198EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1199
1200#ifdef CONFIG_OF
1201
1202/**
1203 * mmc_of_parse_voltage - return mask of supported voltages
1204 * @np: The device node need to be parsed.
1205 * @mask: mask of voltages available for MMC/SD/SDIO
1206 *
1207 * 1. Return zero on success.
1208 * 2. Return negative errno: voltage-range is invalid.
1209 */
1210int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1211{
1212        const u32 *voltage_ranges;
1213        int num_ranges, i;
1214
1215        voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1216        num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1217        if (!voltage_ranges || !num_ranges) {
1218                pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1219                return -EINVAL;
1220        }
1221
1222        for (i = 0; i < num_ranges; i++) {
1223                const int j = i * 2;
1224                u32 ocr_mask;
1225
1226                ocr_mask = mmc_vddrange_to_ocrmask(
1227                                be32_to_cpu(voltage_ranges[j]),
1228                                be32_to_cpu(voltage_ranges[j + 1]));
1229                if (!ocr_mask) {
1230                        pr_err("%s: voltage-range #%d is invalid\n",
1231                                np->full_name, i);
1232                        return -EINVAL;
1233                }
1234                *mask |= ocr_mask;
1235        }
1236
1237        return 0;
1238}
1239EXPORT_SYMBOL(mmc_of_parse_voltage);
1240
1241#endif /* CONFIG_OF */
1242
1243#ifdef CONFIG_REGULATOR
1244
1245/**
1246 * mmc_regulator_get_ocrmask - return mask of supported voltages
1247 * @supply: regulator to use
1248 *
1249 * This returns either a negative errno, or a mask of voltages that
1250 * can be provided to MMC/SD/SDIO devices using the specified voltage
1251 * regulator.  This would normally be called before registering the
1252 * MMC host adapter.
1253 */
1254int mmc_regulator_get_ocrmask(struct regulator *supply)
1255{
1256        int                     result = 0;
1257        int                     count;
1258        int                     i;
1259
1260        count = regulator_count_voltages(supply);
1261        if (count < 0)
1262                return count;
1263
1264        for (i = 0; i < count; i++) {
1265                int             vdd_uV;
1266                int             vdd_mV;
1267
1268                vdd_uV = regulator_list_voltage(supply, i);
1269                if (vdd_uV <= 0)
1270                        continue;
1271
1272                vdd_mV = vdd_uV / 1000;
1273                result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1274        }
1275
1276        return result;
1277}
1278EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1279
1280/**
1281 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1282 * @mmc: the host to regulate
1283 * @supply: regulator to use
1284 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1285 *
1286 * Returns zero on success, else negative errno.
1287 *
1288 * MMC host drivers may use this to enable or disable a regulator using
1289 * a particular supply voltage.  This would normally be called from the
1290 * set_ios() method.
1291 */
1292int mmc_regulator_set_ocr(struct mmc_host *mmc,
1293                        struct regulator *supply,
1294                        unsigned short vdd_bit)
1295{
1296        int                     result = 0;
1297        int                     min_uV, max_uV;
1298
1299        if (vdd_bit) {
1300                int             tmp;
1301                int             voltage;
1302
1303                /*
1304                 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1305                 * bits this regulator doesn't quite support ... don't
1306                 * be too picky, most cards and regulators are OK with
1307                 * a 0.1V range goof (it's a small error percentage).
1308                 */
1309                tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1310                if (tmp == 0) {
1311                        min_uV = 1650 * 1000;
1312                        max_uV = 1950 * 1000;
1313                } else {
1314                        min_uV = 1900 * 1000 + tmp * 100 * 1000;
1315                        max_uV = min_uV + 100 * 1000;
1316                }
1317
1318                /*
1319                 * If we're using a fixed/static regulator, don't call
1320                 * regulator_set_voltage; it would fail.
1321                 */
1322                voltage = regulator_get_voltage(supply);
1323
1324                if (!regulator_can_change_voltage(supply))
1325                        min_uV = max_uV = voltage;
1326
1327                if (voltage < 0)
1328                        result = voltage;
1329                else if (voltage < min_uV || voltage > max_uV)
1330                        result = regulator_set_voltage(supply, min_uV, max_uV);
1331                else
1332                        result = 0;
1333
1334                if (result == 0 && !mmc->regulator_enabled) {
1335                        result = regulator_enable(supply);
1336                        if (!result)
1337                                mmc->regulator_enabled = true;
1338                }
1339        } else if (mmc->regulator_enabled) {
1340                result = regulator_disable(supply);
1341                if (result == 0)
1342                        mmc->regulator_enabled = false;
1343        }
1344
1345        if (result)
1346                dev_err(mmc_dev(mmc),
1347                        "could not set regulator OCR (%d)\n", result);
1348        return result;
1349}
1350EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1351
1352int mmc_regulator_get_supply(struct mmc_host *mmc)
1353{
1354        struct device *dev = mmc_dev(mmc);
1355        struct regulator *supply;
1356        int ret;
1357
1358        supply = devm_regulator_get(dev, "vmmc");
1359        mmc->supply.vmmc = supply;
1360        mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1361
1362        if (IS_ERR(supply))
1363                return PTR_ERR(supply);
1364
1365        ret = mmc_regulator_get_ocrmask(supply);
1366        if (ret > 0)
1367                mmc->ocr_avail = ret;
1368        else
1369                dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1370
1371        return 0;
1372}
1373EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1374
1375#endif /* CONFIG_REGULATOR */
1376
1377/*
1378 * Mask off any voltages we don't support and select
1379 * the lowest voltage
1380 */
1381u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1382{
1383        int bit;
1384
1385        ocr &= host->ocr_avail;
1386
1387        bit = ffs(ocr);
1388        if (bit) {
1389                bit -= 1;
1390
1391                ocr &= 3 << bit;
1392
1393                mmc_host_clk_hold(host);
1394                host->ios.vdd = bit;
1395                mmc_set_ios(host);
1396                mmc_host_clk_release(host);
1397        } else {
1398                pr_warning("%s: host doesn't support card's voltages\n",
1399                                mmc_hostname(host));
1400                ocr = 0;
1401        }
1402
1403        return ocr;
1404}
1405
1406int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1407{
1408        int err = 0;
1409        int old_signal_voltage = host->ios.signal_voltage;
1410
1411        host->ios.signal_voltage = signal_voltage;
1412        if (host->ops->start_signal_voltage_switch) {
1413                mmc_host_clk_hold(host);
1414                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1415                mmc_host_clk_release(host);
1416        }
1417
1418        if (err)
1419                host->ios.signal_voltage = old_signal_voltage;
1420
1421        return err;
1422
1423}
1424
1425int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1426{
1427        struct mmc_command cmd = {0};
1428        int err = 0;
1429        u32 clock;
1430
1431        BUG_ON(!host);
1432
1433        /*
1434         * Send CMD11 only if the request is to switch the card to
1435         * 1.8V signalling.
1436         */
1437        if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1438                return __mmc_set_signal_voltage(host, signal_voltage);
1439
1440        /*
1441         * If we cannot switch voltages, return failure so the caller
1442         * can continue without UHS mode
1443         */
1444        if (!host->ops->start_signal_voltage_switch)
1445                return -EPERM;
1446        if (!host->ops->card_busy)
1447                pr_warning("%s: cannot verify signal voltage switch\n",
1448                                mmc_hostname(host));
1449
1450        cmd.opcode = SD_SWITCH_VOLTAGE;
1451        cmd.arg = 0;
1452        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1453
1454        err = mmc_wait_for_cmd(host, &cmd, 0);
1455        if (err)
1456                return err;
1457
1458        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1459                return -EIO;
1460
1461        mmc_host_clk_hold(host);
1462        /*
1463         * The card should drive cmd and dat[0:3] low immediately
1464         * after the response of cmd11, but wait 1 ms to be sure
1465         */
1466        mmc_delay(1);
1467        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1468                err = -EAGAIN;
1469                goto power_cycle;
1470        }
1471        /*
1472         * During a signal voltage level switch, the clock must be gated
1473         * for 5 ms according to the SD spec
1474         */
1475        clock = host->ios.clock;
1476        host->ios.clock = 0;
1477        mmc_set_ios(host);
1478
1479        if (__mmc_set_signal_voltage(host, signal_voltage)) {
1480                /*
1481                 * Voltages may not have been switched, but we've already
1482                 * sent CMD11, so a power cycle is required anyway
1483                 */
1484                err = -EAGAIN;
1485                goto power_cycle;
1486        }
1487
1488        /* Keep clock gated for at least 5 ms */
1489        mmc_delay(5);
1490        host->ios.clock = clock;
1491        mmc_set_ios(host);
1492
1493        /* Wait for at least 1 ms according to spec */
1494        mmc_delay(1);
1495
1496        /*
1497         * Failure to switch is indicated by the card holding
1498         * dat[0:3] low
1499         */
1500        if (host->ops->card_busy && host->ops->card_busy(host))
1501                err = -EAGAIN;
1502
1503power_cycle:
1504        if (err) {
1505                pr_debug("%s: Signal voltage switch failed, "
1506                        "power cycling card\n", mmc_hostname(host));
1507                mmc_power_cycle(host);
1508        }
1509
1510        mmc_host_clk_release(host);
1511
1512        return err;
1513}
1514
1515/*
1516 * Select timing parameters for host.
1517 */
1518void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1519{
1520        mmc_host_clk_hold(host);
1521        host->ios.timing = timing;
1522        mmc_set_ios(host);
1523        mmc_host_clk_release(host);
1524}
1525
1526/*
1527 * Select appropriate driver type for host.
1528 */
1529void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1530{
1531        mmc_host_clk_hold(host);
1532        host->ios.drv_type = drv_type;
1533        mmc_set_ios(host);
1534        mmc_host_clk_release(host);
1535}
1536
1537/*
1538 * Apply power to the MMC stack.  This is a two-stage process.
1539 * First, we enable power to the card without the clock running.
1540 * We then wait a bit for the power to stabilise.  Finally,
1541 * enable the bus drivers and clock to the card.
1542 *
1543 * We must _NOT_ enable the clock prior to power stablising.
1544 *
1545 * If a host does all the power sequencing itself, ignore the
1546 * initial MMC_POWER_UP stage.
1547 */
1548void mmc_power_up(struct mmc_host *host)
1549{
1550        int bit;
1551
1552        if (host->ios.power_mode == MMC_POWER_ON)
1553                return;
1554
1555        mmc_host_clk_hold(host);
1556
1557        /* If ocr is set, we use it */
1558        if (host->ocr)
1559                bit = ffs(host->ocr) - 1;
1560        else
1561                bit = fls(host->ocr_avail) - 1;
1562
1563        host->ios.vdd = bit;
1564        if (mmc_host_is_spi(host))
1565                host->ios.chip_select = MMC_CS_HIGH;
1566        else
1567                host->ios.chip_select = MMC_CS_DONTCARE;
1568        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1569        host->ios.power_mode = MMC_POWER_UP;
1570        host->ios.bus_width = MMC_BUS_WIDTH_1;
1571        host->ios.timing = MMC_TIMING_LEGACY;
1572        mmc_set_ios(host);
1573
1574        /* Set signal voltage to 3.3V */
1575        __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1576
1577        /*
1578         * This delay should be sufficient to allow the power supply
1579         * to reach the minimum voltage.
1580         */
1581        mmc_delay(10);
1582
1583        host->ios.clock = host->f_init;
1584
1585        host->ios.power_mode = MMC_POWER_ON;
1586        mmc_set_ios(host);
1587
1588        /*
1589         * This delay must be at least 74 clock sizes, or 1 ms, or the
1590         * time required to reach a stable voltage.
1591         */
1592        mmc_delay(10);
1593
1594        mmc_host_clk_release(host);
1595}
1596
1597void mmc_power_off(struct mmc_host *host)
1598{
1599        if (host->ios.power_mode == MMC_POWER_OFF)
1600                return;
1601
1602        mmc_host_clk_hold(host);
1603
1604        host->ios.clock = 0;
1605        host->ios.vdd = 0;
1606
1607
1608        /*
1609         * Reset ocr mask to be the highest possible voltage supported for
1610         * this mmc host. This value will be used at next power up.
1611         */
1612        host->ocr = 1 << (fls(host->ocr_avail) - 1);
1613
1614        if (!mmc_host_is_spi(host)) {
1615                host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1616                host->ios.chip_select = MMC_CS_DONTCARE;
1617        }
1618        host->ios.power_mode = MMC_POWER_OFF;
1619        host->ios.bus_width = MMC_BUS_WIDTH_1;
1620        host->ios.timing = MMC_TIMING_LEGACY;
1621        mmc_set_ios(host);
1622
1623        /*
1624         * Some configurations, such as the 802.11 SDIO card in the OLPC
1625         * XO-1.5, require a short delay after poweroff before the card
1626         * can be successfully turned on again.
1627         */
1628        mmc_delay(1);
1629
1630        mmc_host_clk_release(host);
1631}
1632
1633void mmc_power_cycle(struct mmc_host *host)
1634{
1635        mmc_power_off(host);
1636        /* Wait at least 1 ms according to SD spec */
1637        mmc_delay(1);
1638        mmc_power_up(host);
1639}
1640
1641/*
1642 * Cleanup when the last reference to the bus operator is dropped.
1643 */
1644static void __mmc_release_bus(struct mmc_host *host)
1645{
1646        BUG_ON(!host);
1647        BUG_ON(host->bus_refs);
1648        BUG_ON(!host->bus_dead);
1649
1650        host->bus_ops = NULL;
1651}
1652
1653/*
1654 * Increase reference count of bus operator
1655 */
1656static inline void mmc_bus_get(struct mmc_host *host)
1657{
1658        unsigned long flags;
1659
1660        spin_lock_irqsave(&host->lock, flags);
1661        host->bus_refs++;
1662        spin_unlock_irqrestore(&host->lock, flags);
1663}
1664
1665/*
1666 * Decrease reference count of bus operator and free it if
1667 * it is the last reference.
1668 */
1669static inline void mmc_bus_put(struct mmc_host *host)
1670{
1671        unsigned long flags;
1672
1673        spin_lock_irqsave(&host->lock, flags);
1674        host->bus_refs--;
1675        if ((host->bus_refs == 0) && host->bus_ops)
1676                __mmc_release_bus(host);
1677        spin_unlock_irqrestore(&host->lock, flags);
1678}
1679
1680/*
1681 * Assign a mmc bus handler to a host. Only one bus handler may control a
1682 * host at any given time.
1683 */
1684void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1685{
1686        unsigned long flags;
1687
1688        BUG_ON(!host);
1689        BUG_ON(!ops);
1690
1691        WARN_ON(!host->claimed);
1692
1693        spin_lock_irqsave(&host->lock, flags);
1694
1695        BUG_ON(host->bus_ops);
1696        BUG_ON(host->bus_refs);
1697
1698        host->bus_ops = ops;
1699        host->bus_refs = 1;
1700        host->bus_dead = 0;
1701
1702        spin_unlock_irqrestore(&host->lock, flags);
1703}
1704
1705/*
1706 * Remove the current bus handler from a host.
1707 */
1708void mmc_detach_bus(struct mmc_host *host)
1709{
1710        unsigned long flags;
1711
1712        BUG_ON(!host);
1713
1714        WARN_ON(!host->claimed);
1715        WARN_ON(!host->bus_ops);
1716
1717        spin_lock_irqsave(&host->lock, flags);
1718
1719        host->bus_dead = 1;
1720
1721        spin_unlock_irqrestore(&host->lock, flags);
1722
1723        mmc_bus_put(host);
1724}
1725
1726/**
1727 *      mmc_detect_change - process change of state on a MMC socket
1728 *      @host: host which changed state.
1729 *      @delay: optional delay to wait before detection (jiffies)
1730 *
1731 *      MMC drivers should call this when they detect a card has been
1732 *      inserted or removed. The MMC layer will confirm that any
1733 *      present card is still functional, and initialize any newly
1734 *      inserted.
1735 */
1736void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1737{
1738#ifdef CONFIG_MMC_DEBUG
1739        unsigned long flags;
1740        spin_lock_irqsave(&host->lock, flags);
1741        WARN_ON(host->removed);
1742        spin_unlock_irqrestore(&host->lock, flags);
1743#endif
1744        host->detect_change = 1;
1745        mmc_schedule_delayed_work(&host->detect, delay);
1746}
1747
1748EXPORT_SYMBOL(mmc_detect_change);
1749
1750void mmc_init_erase(struct mmc_card *card)
1751{
1752        unsigned int sz;
1753
1754        if (is_power_of_2(card->erase_size))
1755                card->erase_shift = ffs(card->erase_size) - 1;
1756        else
1757                card->erase_shift = 0;
1758
1759        /*
1760         * It is possible to erase an arbitrarily large area of an SD or MMC
1761         * card.  That is not desirable because it can take a long time
1762         * (minutes) potentially delaying more important I/O, and also the
1763         * timeout calculations become increasingly hugely over-estimated.
1764         * Consequently, 'pref_erase' is defined as a guide to limit erases
1765         * to that size and alignment.
1766         *
1767         * For SD cards that define Allocation Unit size, limit erases to one
1768         * Allocation Unit at a time.  For MMC cards that define High Capacity
1769         * Erase Size, whether it is switched on or not, limit to that size.
1770         * Otherwise just have a stab at a good value.  For modern cards it
1771         * will end up being 4MiB.  Note that if the value is too small, it
1772         * can end up taking longer to erase.
1773         */
1774        if (mmc_card_sd(card) && card->ssr.au) {
1775                card->pref_erase = card->ssr.au;
1776                card->erase_shift = ffs(card->ssr.au) - 1;
1777        } else if (card->ext_csd.hc_erase_size) {
1778                card->pref_erase = card->ext_csd.hc_erase_size;
1779        } else {
1780                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1781                if (sz < 128)
1782                        card->pref_erase = 512 * 1024 / 512;
1783                else if (sz < 512)
1784                        card->pref_erase = 1024 * 1024 / 512;
1785                else if (sz < 1024)
1786                        card->pref_erase = 2 * 1024 * 1024 / 512;
1787                else
1788                        card->pref_erase = 4 * 1024 * 1024 / 512;
1789                if (card->pref_erase < card->erase_size)
1790                        card->pref_erase = card->erase_size;
1791                else {
1792                        sz = card->pref_erase % card->erase_size;
1793                        if (sz)
1794                                card->pref_erase += card->erase_size - sz;
1795                }
1796        }
1797}
1798
1799static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1800                                          unsigned int arg, unsigned int qty)
1801{
1802        unsigned int erase_timeout;
1803
1804        if (arg == MMC_DISCARD_ARG ||
1805            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1806                erase_timeout = card->ext_csd.trim_timeout;
1807        } else if (card->ext_csd.erase_group_def & 1) {
1808                /* High Capacity Erase Group Size uses HC timeouts */
1809                if (arg == MMC_TRIM_ARG)
1810                        erase_timeout = card->ext_csd.trim_timeout;
1811                else
1812                        erase_timeout = card->ext_csd.hc_erase_timeout;
1813        } else {
1814                /* CSD Erase Group Size uses write timeout */
1815                unsigned int mult = (10 << card->csd.r2w_factor);
1816                unsigned int timeout_clks = card->csd.tacc_clks * mult;
1817                unsigned int timeout_us;
1818
1819                /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1820                if (card->csd.tacc_ns < 1000000)
1821                        timeout_us = (card->csd.tacc_ns * mult) / 1000;
1822                else
1823                        timeout_us = (card->csd.tacc_ns / 1000) * mult;
1824
1825                /*
1826                 * ios.clock is only a target.  The real clock rate might be
1827                 * less but not that much less, so fudge it by multiplying by 2.
1828                 */
1829                timeout_clks <<= 1;
1830                timeout_us += (timeout_clks * 1000) /
1831                              (mmc_host_clk_rate(card->host) / 1000);
1832
1833                erase_timeout = timeout_us / 1000;
1834
1835                /*
1836                 * Theoretically, the calculation could underflow so round up
1837                 * to 1ms in that case.
1838                 */
1839                if (!erase_timeout)
1840                        erase_timeout = 1;
1841        }
1842
1843        /* Multiplier for secure operations */
1844        if (arg & MMC_SECURE_ARGS) {
1845                if (arg == MMC_SECURE_ERASE_ARG)
1846                        erase_timeout *= card->ext_csd.sec_erase_mult;
1847                else
1848                        erase_timeout *= card->ext_csd.sec_trim_mult;
1849        }
1850
1851        erase_timeout *= qty;
1852
1853        /*
1854         * Ensure at least a 1 second timeout for SPI as per
1855         * 'mmc_set_data_timeout()'
1856         */
1857        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1858                erase_timeout = 1000;
1859
1860        return erase_timeout;
1861}
1862
1863static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1864                                         unsigned int arg,
1865                                         unsigned int qty)
1866{
1867        unsigned int erase_timeout;
1868
1869        if (card->ssr.erase_timeout) {
1870                /* Erase timeout specified in SD Status Register (SSR) */
1871                erase_timeout = card->ssr.erase_timeout * qty +
1872                                card->ssr.erase_offset;
1873        } else {
1874                /*
1875                 * Erase timeout not specified in SD Status Register (SSR) so
1876                 * use 250ms per write block.
1877                 */
1878                erase_timeout = 250 * qty;
1879        }
1880
1881        /* Must not be less than 1 second */
1882        if (erase_timeout < 1000)
1883                erase_timeout = 1000;
1884
1885        return erase_timeout;
1886}
1887
1888static unsigned int mmc_erase_timeout(struct mmc_card *card,
1889                                      unsigned int arg,
1890                                      unsigned int qty)
1891{
1892        if (mmc_card_sd(card))
1893                return mmc_sd_erase_timeout(card, arg, qty);
1894        else
1895                return mmc_mmc_erase_timeout(card, arg, qty);
1896}
1897
1898static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1899                        unsigned int to, unsigned int arg)
1900{
1901        struct mmc_command cmd = {0};
1902        unsigned int qty = 0;
1903        unsigned long timeout;
1904        int err;
1905
1906        /*
1907         * qty is used to calculate the erase timeout which depends on how many
1908         * erase groups (or allocation units in SD terminology) are affected.
1909         * We count erasing part of an erase group as one erase group.
1910         * For SD, the allocation units are always a power of 2.  For MMC, the
1911         * erase group size is almost certainly also power of 2, but it does not
1912         * seem to insist on that in the JEDEC standard, so we fall back to
1913         * division in that case.  SD may not specify an allocation unit size,
1914         * in which case the timeout is based on the number of write blocks.
1915         *
1916         * Note that the timeout for secure trim 2 will only be correct if the
1917         * number of erase groups specified is the same as the total of all
1918         * preceding secure trim 1 commands.  Since the power may have been
1919         * lost since the secure trim 1 commands occurred, it is generally
1920         * impossible to calculate the secure trim 2 timeout correctly.
1921         */
1922        if (card->erase_shift)
1923                qty += ((to >> card->erase_shift) -
1924                        (from >> card->erase_shift)) + 1;
1925        else if (mmc_card_sd(card))
1926                qty += to - from + 1;
1927        else
1928                qty += ((to / card->erase_size) -
1929                        (from / card->erase_size)) + 1;
1930
1931        if (!mmc_card_blockaddr(card)) {
1932                from <<= 9;
1933                to <<= 9;
1934        }
1935
1936        if (mmc_card_sd(card))
1937                cmd.opcode = SD_ERASE_WR_BLK_START;
1938        else
1939                cmd.opcode = MMC_ERASE_GROUP_START;
1940        cmd.arg = from;
1941        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1942        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1943        if (err) {
1944                pr_err("mmc_erase: group start error %d, "
1945                       "status %#x\n", err, cmd.resp[0]);
1946                err = -EIO;
1947                goto out;
1948        }
1949
1950        memset(&cmd, 0, sizeof(struct mmc_command));
1951        if (mmc_card_sd(card))
1952                cmd.opcode = SD_ERASE_WR_BLK_END;
1953        else
1954                cmd.opcode = MMC_ERASE_GROUP_END;
1955        cmd.arg = to;
1956        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1957        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958        if (err) {
1959                pr_err("mmc_erase: group end error %d, status %#x\n",
1960                       err, cmd.resp[0]);
1961                err = -EIO;
1962                goto out;
1963        }
1964
1965        memset(&cmd, 0, sizeof(struct mmc_command));
1966        cmd.opcode = MMC_ERASE;
1967        cmd.arg = arg;
1968        cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1969        cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1970        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1971        if (err) {
1972                pr_err("mmc_erase: erase error %d, status %#x\n",
1973                       err, cmd.resp[0]);
1974                err = -EIO;
1975                goto out;
1976        }
1977
1978        if (mmc_host_is_spi(card->host))
1979                goto out;
1980
1981        timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1982        do {
1983                memset(&cmd, 0, sizeof(struct mmc_command));
1984                cmd.opcode = MMC_SEND_STATUS;
1985                cmd.arg = card->rca << 16;
1986                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1987                /* Do not retry else we can't see errors */
1988                err = mmc_wait_for_cmd(card->host, &cmd, 0);
1989                if (err || (cmd.resp[0] & 0xFDF92000)) {
1990                        pr_err("error %d requesting status %#x\n",
1991                                err, cmd.resp[0]);
1992                        err = -EIO;
1993                        goto out;
1994                }
1995
1996                /* Timeout if the device never becomes ready for data and
1997                 * never leaves the program state.
1998                 */
1999                if (time_after(jiffies, timeout)) {
2000                        pr_err("%s: Card stuck in programming state! %s\n",
2001                                mmc_hostname(card->host), __func__);
2002                        err =  -EIO;
2003                        goto out;
2004                }
2005
2006        } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2007                 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2008out:
2009        return err;
2010}
2011
2012/**
2013 * mmc_erase - erase sectors.
2014 * @card: card to erase
2015 * @from: first sector to erase
2016 * @nr: number of sectors to erase
2017 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2018 *
2019 * Caller must claim host before calling this function.
2020 */
2021int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2022              unsigned int arg)
2023{
2024        unsigned int rem, to = from + nr;
2025
2026        if (!(card->host->caps & MMC_CAP_ERASE) ||
2027            !(card->csd.cmdclass & CCC_ERASE))
2028                return -EOPNOTSUPP;
2029
2030        if (!card->erase_size)
2031                return -EOPNOTSUPP;
2032
2033        if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2034                return -EOPNOTSUPP;
2035
2036        if ((arg & MMC_SECURE_ARGS) &&
2037            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2038                return -EOPNOTSUPP;
2039
2040        if ((arg & MMC_TRIM_ARGS) &&
2041            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2042                return -EOPNOTSUPP;
2043
2044        if (arg == MMC_SECURE_ERASE_ARG) {
2045                if (from % card->erase_size || nr % card->erase_size)
2046                        return -EINVAL;
2047        }
2048
2049        if (arg == MMC_ERASE_ARG) {
2050                rem = from % card->erase_size;
2051                if (rem) {
2052                        rem = card->erase_size - rem;
2053                        from += rem;
2054                        if (nr > rem)
2055                                nr -= rem;
2056                        else
2057                                return 0;
2058                }
2059                rem = nr % card->erase_size;
2060                if (rem)
2061                        nr -= rem;
2062        }
2063
2064        if (nr == 0)
2065                return 0;
2066
2067        to = from + nr;
2068
2069        if (to <= from)
2070                return -EINVAL;
2071
2072        /* 'from' and 'to' are inclusive */
2073        to -= 1;
2074
2075        return mmc_do_erase(card, from, to, arg);
2076}
2077EXPORT_SYMBOL(mmc_erase);
2078
2079int mmc_can_erase(struct mmc_card *card)
2080{
2081        if ((card->host->caps & MMC_CAP_ERASE) &&
2082            (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2083                return 1;
2084        return 0;
2085}
2086EXPORT_SYMBOL(mmc_can_erase);
2087
2088int mmc_can_trim(struct mmc_card *card)
2089{
2090        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2091                return 1;
2092        return 0;
2093}
2094EXPORT_SYMBOL(mmc_can_trim);
2095
2096int mmc_can_discard(struct mmc_card *card)
2097{
2098        /*
2099         * As there's no way to detect the discard support bit at v4.5
2100         * use the s/w feature support filed.
2101         */
2102        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2103                return 1;
2104        return 0;
2105}
2106EXPORT_SYMBOL(mmc_can_discard);
2107
2108int mmc_can_sanitize(struct mmc_card *card)
2109{
2110        if (!mmc_can_trim(card) && !mmc_can_erase(card))
2111                return 0;
2112        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2113                return 1;
2114        return 0;
2115}
2116EXPORT_SYMBOL(mmc_can_sanitize);
2117
2118int mmc_can_secure_erase_trim(struct mmc_card *card)
2119{
2120        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2121                return 1;
2122        return 0;
2123}
2124EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2125
2126int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2127                            unsigned int nr)
2128{
2129        if (!card->erase_size)
2130                return 0;
2131        if (from % card->erase_size || nr % card->erase_size)
2132                return 0;
2133        return 1;
2134}
2135EXPORT_SYMBOL(mmc_erase_group_aligned);
2136
2137static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2138                                            unsigned int arg)
2139{
2140        struct mmc_host *host = card->host;
2141        unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2142        unsigned int last_timeout = 0;
2143
2144        if (card->erase_shift)
2145                max_qty = UINT_MAX >> card->erase_shift;
2146        else if (mmc_card_sd(card))
2147                max_qty = UINT_MAX;
2148        else
2149                max_qty = UINT_MAX / card->erase_size;
2150
2151        /* Find the largest qty with an OK timeout */
2152        do {
2153                y = 0;
2154                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2155                        timeout = mmc_erase_timeout(card, arg, qty + x);
2156                        if (timeout > host->max_discard_to)
2157                                break;
2158                        if (timeout < last_timeout)
2159                                break;
2160                        last_timeout = timeout;
2161                        y = x;
2162                }
2163                qty += y;
2164        } while (y);
2165
2166        if (!qty)
2167                return 0;
2168
2169        if (qty == 1)
2170                return 1;
2171
2172        /* Convert qty to sectors */
2173        if (card->erase_shift)
2174                max_discard = --qty << card->erase_shift;
2175        else if (mmc_card_sd(card))
2176                max_discard = qty;
2177        else
2178                max_discard = --qty * card->erase_size;
2179
2180        return max_discard;
2181}
2182
2183unsigned int mmc_calc_max_discard(struct mmc_card *card)
2184{
2185        struct mmc_host *host = card->host;
2186        unsigned int max_discard, max_trim;
2187
2188        if (!host->max_discard_to)
2189                return UINT_MAX;
2190
2191        /*
2192         * Without erase_group_def set, MMC erase timeout depends on clock
2193         * frequence which can change.  In that case, the best choice is
2194         * just the preferred erase size.
2195         */
2196        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2197                return card->pref_erase;
2198
2199        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2200        if (mmc_can_trim(card)) {
2201                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2202                if (max_trim < max_discard)
2203                        max_discard = max_trim;
2204        } else if (max_discard < card->erase_size) {
2205                max_discard = 0;
2206        }
2207        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2208                 mmc_hostname(host), max_discard, host->max_discard_to);
2209        return max_discard;
2210}
2211EXPORT_SYMBOL(mmc_calc_max_discard);
2212
2213int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2214{
2215        struct mmc_command cmd = {0};
2216
2217        if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2218                return 0;
2219
2220        cmd.opcode = MMC_SET_BLOCKLEN;
2221        cmd.arg = blocklen;
2222        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2223        return mmc_wait_for_cmd(card->host, &cmd, 5);
2224}
2225EXPORT_SYMBOL(mmc_set_blocklen);
2226
2227int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2228                        bool is_rel_write)
2229{
2230        struct mmc_command cmd = {0};
2231
2232        cmd.opcode = MMC_SET_BLOCK_COUNT;
2233        cmd.arg = blockcount & 0x0000FFFF;
2234        if (is_rel_write)
2235                cmd.arg |= 1 << 31;
2236        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2237        return mmc_wait_for_cmd(card->host, &cmd, 5);
2238}
2239EXPORT_SYMBOL(mmc_set_blockcount);
2240
2241static void mmc_hw_reset_for_init(struct mmc_host *host)
2242{
2243        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2244                return;
2245        mmc_host_clk_hold(host);
2246        host->ops->hw_reset(host);
2247        mmc_host_clk_release(host);
2248}
2249
2250int mmc_can_reset(struct mmc_card *card)
2251{
2252        u8 rst_n_function;
2253
2254        if (!mmc_card_mmc(card))
2255                return 0;
2256        rst_n_function = card->ext_csd.rst_n_function;
2257        if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2258                return 0;
2259        return 1;
2260}
2261EXPORT_SYMBOL(mmc_can_reset);
2262
2263static int mmc_do_hw_reset(struct mmc_host *host, int check)
2264{
2265        struct mmc_card *card = host->card;
2266
2267        if (!host->bus_ops->power_restore)
2268                return -EOPNOTSUPP;
2269
2270        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2271                return -EOPNOTSUPP;
2272
2273        if (!card)
2274                return -EINVAL;
2275
2276        if (!mmc_can_reset(card))
2277                return -EOPNOTSUPP;
2278
2279        mmc_host_clk_hold(host);
2280        mmc_set_clock(host, host->f_init);
2281
2282        host->ops->hw_reset(host);
2283
2284        /* If the reset has happened, then a status command will fail */
2285        if (check) {
2286                struct mmc_command cmd = {0};
2287                int err;
2288
2289                cmd.opcode = MMC_SEND_STATUS;
2290                if (!mmc_host_is_spi(card->host))
2291                        cmd.arg = card->rca << 16;
2292                cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2293                err = mmc_wait_for_cmd(card->host, &cmd, 0);
2294                if (!err) {
2295                        mmc_host_clk_release(host);
2296                        return -ENOSYS;
2297                }
2298        }
2299
2300        host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2301        if (mmc_host_is_spi(host)) {
2302                host->ios.chip_select = MMC_CS_HIGH;
2303                host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2304        } else {
2305                host->ios.chip_select = MMC_CS_DONTCARE;
2306                host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2307        }
2308        host->ios.bus_width = MMC_BUS_WIDTH_1;
2309        host->ios.timing = MMC_TIMING_LEGACY;
2310        mmc_set_ios(host);
2311
2312        mmc_host_clk_release(host);
2313
2314        return host->bus_ops->power_restore(host);
2315}
2316
2317int mmc_hw_reset(struct mmc_host *host)
2318{
2319        return mmc_do_hw_reset(host, 0);
2320}
2321EXPORT_SYMBOL(mmc_hw_reset);
2322
2323int mmc_hw_reset_check(struct mmc_host *host)
2324{
2325        return mmc_do_hw_reset(host, 1);
2326}
2327EXPORT_SYMBOL(mmc_hw_reset_check);
2328
2329static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2330{
2331        host->f_init = freq;
2332
2333#ifdef CONFIG_MMC_DEBUG
2334        pr_info("%s: %s: trying to init card at %u Hz\n",
2335                mmc_hostname(host), __func__, host->f_init);
2336#endif
2337        mmc_power_up(host);
2338
2339        /*
2340         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2341         * do a hardware reset if possible.
2342         */
2343        mmc_hw_reset_for_init(host);
2344
2345        /*
2346         * sdio_reset sends CMD52 to reset card.  Since we do not know
2347         * if the card is being re-initialized, just send it.  CMD52
2348         * should be ignored by SD/eMMC cards.
2349         */
2350        sdio_reset(host);
2351        mmc_go_idle(host);
2352
2353        mmc_send_if_cond(host, host->ocr_avail);
2354
2355        /* Order's important: probe SDIO, then SD, then MMC */
2356        if (!mmc_attach_sdio(host))
2357                return 0;
2358        if (!mmc_attach_sd(host))
2359                return 0;
2360        if (!mmc_attach_mmc(host))
2361                return 0;
2362
2363        mmc_power_off(host);
2364        return -EIO;
2365}
2366
2367int _mmc_detect_card_removed(struct mmc_host *host)
2368{
2369        int ret;
2370
2371        if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2372                return 0;
2373
2374        if (!host->card || mmc_card_removed(host->card))
2375                return 1;
2376
2377        ret = host->bus_ops->alive(host);
2378
2379        /*
2380         * Card detect status and alive check may be out of sync if card is
2381         * removed slowly, when card detect switch changes while card/slot
2382         * pads are still contacted in hardware (refer to "SD Card Mechanical
2383         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2384         * detect work 200ms later for this case.
2385         */
2386        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2387                mmc_detect_change(host, msecs_to_jiffies(200));
2388                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2389        }
2390
2391        if (ret) {
2392                mmc_card_set_removed(host->card);
2393                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2394        }
2395
2396        return ret;
2397}
2398
2399int mmc_detect_card_removed(struct mmc_host *host)
2400{
2401        struct mmc_card *card = host->card;
2402        int ret;
2403
2404        WARN_ON(!host->claimed);
2405
2406        if (!card)
2407                return 1;
2408
2409        ret = mmc_card_removed(card);
2410        /*
2411         * The card will be considered unchanged unless we have been asked to
2412         * detect a change or host requires polling to provide card detection.
2413         */
2414        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2415                return ret;
2416
2417        host->detect_change = 0;
2418        if (!ret) {
2419                ret = _mmc_detect_card_removed(host);
2420                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2421                        /*
2422                         * Schedule a detect work as soon as possible to let a
2423                         * rescan handle the card removal.
2424                         */
2425                        cancel_delayed_work(&host->detect);
2426                        mmc_detect_change(host, 0);
2427                }
2428        }
2429
2430        return ret;
2431}
2432EXPORT_SYMBOL(mmc_detect_card_removed);
2433
2434void mmc_rescan(struct work_struct *work)
2435{
2436        struct mmc_host *host =
2437                container_of(work, struct mmc_host, detect.work);
2438        int i;
2439
2440        if (host->rescan_disable)
2441                return;
2442
2443        /* If there is a non-removable card registered, only scan once */
2444        if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2445                return;
2446        host->rescan_entered = 1;
2447
2448        mmc_bus_get(host);
2449
2450        /*
2451         * if there is a _removable_ card registered, check whether it is
2452         * still present
2453         */
2454        if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2455            && !(host->caps & MMC_CAP_NONREMOVABLE))
2456                host->bus_ops->detect(host);
2457
2458        host->detect_change = 0;
2459
2460        /*
2461         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2462         * the card is no longer present.
2463         */
2464        mmc_bus_put(host);
2465        mmc_bus_get(host);
2466
2467        /* if there still is a card present, stop here */
2468        if (host->bus_ops != NULL) {
2469                mmc_bus_put(host);
2470                goto out;
2471        }
2472
2473        /*
2474         * Only we can add a new handler, so it's safe to
2475         * release the lock here.
2476         */
2477        mmc_bus_put(host);
2478
2479        if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2480                mmc_claim_host(host);
2481                mmc_power_off(host);
2482                mmc_release_host(host);
2483                goto out;
2484        }
2485
2486        mmc_claim_host(host);
2487        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2488                if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2489                        break;
2490                if (freqs[i] <= host->f_min)
2491                        break;
2492        }
2493        mmc_release_host(host);
2494
2495 out:
2496        if (host->caps & MMC_CAP_NEEDS_POLL)
2497                mmc_schedule_delayed_work(&host->detect, HZ);
2498}
2499
2500void mmc_start_host(struct mmc_host *host)
2501{
2502        host->f_init = max(freqs[0], host->f_min);
2503        host->rescan_disable = 0;
2504        if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2505                mmc_power_off(host);
2506        else
2507                mmc_power_up(host);
2508        mmc_detect_change(host, 0);
2509}
2510
2511void mmc_stop_host(struct mmc_host *host)
2512{
2513#ifdef CONFIG_MMC_DEBUG
2514        unsigned long flags;
2515        spin_lock_irqsave(&host->lock, flags);
2516        host->removed = 1;
2517        spin_unlock_irqrestore(&host->lock, flags);
2518#endif
2519
2520        host->rescan_disable = 1;
2521        cancel_delayed_work_sync(&host->detect);
2522        mmc_flush_scheduled_work();
2523
2524        /* clear pm flags now and let card drivers set them as needed */
2525        host->pm_flags = 0;
2526
2527        mmc_bus_get(host);
2528        if (host->bus_ops && !host->bus_dead) {
2529                /* Calling bus_ops->remove() with a claimed host can deadlock */
2530                host->bus_ops->remove(host);
2531                mmc_claim_host(host);
2532                mmc_detach_bus(host);
2533                mmc_power_off(host);
2534                mmc_release_host(host);
2535                mmc_bus_put(host);
2536                return;
2537        }
2538        mmc_bus_put(host);
2539
2540        BUG_ON(host->card);
2541
2542        mmc_power_off(host);
2543}
2544
2545int mmc_power_save_host(struct mmc_host *host)
2546{
2547        int ret = 0;
2548
2549#ifdef CONFIG_MMC_DEBUG
2550        pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2551#endif
2552
2553        mmc_bus_get(host);
2554
2555        if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2556                mmc_bus_put(host);
2557                return -EINVAL;
2558        }
2559
2560        if (host->bus_ops->power_save)
2561                ret = host->bus_ops->power_save(host);
2562
2563        mmc_bus_put(host);
2564
2565        mmc_power_off(host);
2566
2567        return ret;
2568}
2569EXPORT_SYMBOL(mmc_power_save_host);
2570
2571int mmc_power_restore_host(struct mmc_host *host)
2572{
2573        int ret;
2574
2575#ifdef CONFIG_MMC_DEBUG
2576        pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2577#endif
2578
2579        mmc_bus_get(host);
2580
2581        if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2582                mmc_bus_put(host);
2583                return -EINVAL;
2584        }
2585
2586        mmc_power_up(host);
2587        ret = host->bus_ops->power_restore(host);
2588
2589        mmc_bus_put(host);
2590
2591        return ret;
2592}
2593EXPORT_SYMBOL(mmc_power_restore_host);
2594
2595/*
2596 * Flush the cache to the non-volatile storage.
2597 */
2598int mmc_flush_cache(struct mmc_card *card)
2599{
2600        struct mmc_host *host = card->host;
2601        int err = 0;
2602
2603        if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2604                return err;
2605
2606        if (mmc_card_mmc(card) &&
2607                        (card->ext_csd.cache_size > 0) &&
2608                        (card->ext_csd.cache_ctrl & 1)) {
2609                err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2610                                EXT_CSD_FLUSH_CACHE, 1, 0);
2611                if (err)
2612                        pr_err("%s: cache flush error %d\n",
2613                                        mmc_hostname(card->host), err);
2614        }
2615
2616        return err;
2617}
2618EXPORT_SYMBOL(mmc_flush_cache);
2619
2620/*
2621 * Turn the cache ON/OFF.
2622 * Turning the cache OFF shall trigger flushing of the data
2623 * to the non-volatile storage.
2624 * This function should be called with host claimed
2625 */
2626int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2627{
2628        struct mmc_card *card = host->card;
2629        unsigned int timeout;
2630        int err = 0;
2631
2632        if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2633                        mmc_card_is_removable(host))
2634                return err;
2635
2636        if (card && mmc_card_mmc(card) &&
2637                        (card->ext_csd.cache_size > 0)) {
2638                enable = !!enable;
2639
2640                if (card->ext_csd.cache_ctrl ^ enable) {
2641                        timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2642                        err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2643                                        EXT_CSD_CACHE_CTRL, enable, timeout);
2644                        if (err)
2645                                pr_err("%s: cache %s error %d\n",
2646                                                mmc_hostname(card->host),
2647                                                enable ? "on" : "off",
2648                                                err);
2649                        else
2650                                card->ext_csd.cache_ctrl = enable;
2651                }
2652        }
2653
2654        return err;
2655}
2656EXPORT_SYMBOL(mmc_cache_ctrl);
2657
2658#ifdef CONFIG_PM
2659
2660/**
2661 *      mmc_suspend_host - suspend a host
2662 *      @host: mmc host
2663 */
2664int mmc_suspend_host(struct mmc_host *host)
2665{
2666        /* This function is deprecated */
2667        return 0;
2668}
2669EXPORT_SYMBOL(mmc_suspend_host);
2670
2671/**
2672 *      mmc_resume_host - resume a previously suspended host
2673 *      @host: mmc host
2674 */
2675int mmc_resume_host(struct mmc_host *host)
2676{
2677        /* This function is deprecated */
2678        return 0;
2679}
2680EXPORT_SYMBOL(mmc_resume_host);
2681
2682/* Do the card removal on suspend if card is assumed removeable
2683 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2684   to sync the card.
2685*/
2686int mmc_pm_notify(struct notifier_block *notify_block,
2687                                        unsigned long mode, void *unused)
2688{
2689        struct mmc_host *host = container_of(
2690                notify_block, struct mmc_host, pm_notify);
2691        unsigned long flags;
2692        int err = 0;
2693
2694        switch (mode) {
2695        case PM_HIBERNATION_PREPARE:
2696        case PM_SUSPEND_PREPARE:
2697                spin_lock_irqsave(&host->lock, flags);
2698                host->rescan_disable = 1;
2699                spin_unlock_irqrestore(&host->lock, flags);
2700                cancel_delayed_work_sync(&host->detect);
2701
2702                if (!host->bus_ops)
2703                        break;
2704
2705                /* Validate prerequisites for suspend */
2706                if (host->bus_ops->pre_suspend)
2707                        err = host->bus_ops->pre_suspend(host);
2708                if (!err && host->bus_ops->suspend)
2709                        break;
2710
2711                /* Calling bus_ops->remove() with a claimed host can deadlock */
2712                host->bus_ops->remove(host);
2713                mmc_claim_host(host);
2714                mmc_detach_bus(host);
2715                mmc_power_off(host);
2716                mmc_release_host(host);
2717                host->pm_flags = 0;
2718                break;
2719
2720        case PM_POST_SUSPEND:
2721        case PM_POST_HIBERNATION:
2722        case PM_POST_RESTORE:
2723
2724                spin_lock_irqsave(&host->lock, flags);
2725                host->rescan_disable = 0;
2726                spin_unlock_irqrestore(&host->lock, flags);
2727                mmc_detect_change(host, 0);
2728
2729        }
2730
2731        return 0;
2732}
2733#endif
2734
2735/**
2736 * mmc_init_context_info() - init synchronization context
2737 * @host: mmc host
2738 *
2739 * Init struct context_info needed to implement asynchronous
2740 * request mechanism, used by mmc core, host driver and mmc requests
2741 * supplier.
2742 */
2743void mmc_init_context_info(struct mmc_host *host)
2744{
2745        spin_lock_init(&host->context_info.lock);
2746        host->context_info.is_new_req = false;
2747        host->context_info.is_done_rcv = false;
2748        host->context_info.is_waiting_last_req = false;
2749        init_waitqueue_head(&host->context_info.wait);
2750}
2751
2752static int __init mmc_init(void)
2753{
2754        int ret;
2755
2756        workqueue = alloc_ordered_workqueue("kmmcd", 0);
2757        if (!workqueue)
2758                return -ENOMEM;
2759
2760        ret = mmc_register_bus();
2761        if (ret)
2762                goto destroy_workqueue;
2763
2764        ret = mmc_register_host_class();
2765        if (ret)
2766                goto unregister_bus;
2767
2768        ret = sdio_register_bus();
2769        if (ret)
2770                goto unregister_host_class;
2771
2772        return 0;
2773
2774unregister_host_class:
2775        mmc_unregister_host_class();
2776unregister_bus:
2777        mmc_unregister_bus();
2778destroy_workqueue:
2779        destroy_workqueue(workqueue);
2780
2781        return ret;
2782}
2783
2784static void __exit mmc_exit(void)
2785{
2786        sdio_unregister_bus();
2787        mmc_unregister_host_class();
2788        mmc_unregister_bus();
2789        destroy_workqueue(workqueue);
2790}
2791
2792subsys_initcall(mmc_init);
2793module_exit(mmc_exit);
2794
2795MODULE_LICENSE("GPL");
2796