linux/drivers/mtd/lpddr/lpddr_cmds.c
<<
>>
Prefs
   1/*
   2 * LPDDR flash memory device operations. This module provides read, write,
   3 * erase, lock/unlock support for LPDDR flash memories
   4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
   5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
   6 * Many thanks to Roman Borisov for initial enabling
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version 2
  11 * of the License, or (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21 * 02110-1301, USA.
  22 * TODO:
  23 * Implement VPP management
  24 * Implement XIP support
  25 * Implement OTP support
  26 */
  27#include <linux/mtd/pfow.h>
  28#include <linux/mtd/qinfo.h>
  29#include <linux/slab.h>
  30#include <linux/module.h>
  31
  32static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
  33                                        size_t *retlen, u_char *buf);
  34static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
  35                                size_t len, size_t *retlen, const u_char *buf);
  36static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
  37                                unsigned long count, loff_t to, size_t *retlen);
  38static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
  39static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
  42                        size_t *retlen, void **mtdbuf, resource_size_t *phys);
  43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
  44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
  45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
  46static void put_chip(struct map_info *map, struct flchip *chip);
  47
  48struct mtd_info *lpddr_cmdset(struct map_info *map)
  49{
  50        struct lpddr_private *lpddr = map->fldrv_priv;
  51        struct flchip_shared *shared;
  52        struct flchip *chip;
  53        struct mtd_info *mtd;
  54        int numchips;
  55        int i, j;
  56
  57        mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
  58        if (!mtd) {
  59                printk(KERN_ERR "Failed to allocate memory for MTD device\n");
  60                return NULL;
  61        }
  62        mtd->priv = map;
  63        mtd->type = MTD_NORFLASH;
  64
  65        /* Fill in the default mtd operations */
  66        mtd->_read = lpddr_read;
  67        mtd->type = MTD_NORFLASH;
  68        mtd->flags = MTD_CAP_NORFLASH;
  69        mtd->flags &= ~MTD_BIT_WRITEABLE;
  70        mtd->_erase = lpddr_erase;
  71        mtd->_write = lpddr_write_buffers;
  72        mtd->_writev = lpddr_writev;
  73        mtd->_lock = lpddr_lock;
  74        mtd->_unlock = lpddr_unlock;
  75        if (map_is_linear(map)) {
  76                mtd->_point = lpddr_point;
  77                mtd->_unpoint = lpddr_unpoint;
  78        }
  79        mtd->size = 1 << lpddr->qinfo->DevSizeShift;
  80        mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
  81        mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
  82
  83        shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
  84                                                GFP_KERNEL);
  85        if (!shared) {
  86                kfree(lpddr);
  87                kfree(mtd);
  88                return NULL;
  89        }
  90
  91        chip = &lpddr->chips[0];
  92        numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
  93        for (i = 0; i < numchips; i++) {
  94                shared[i].writing = shared[i].erasing = NULL;
  95                mutex_init(&shared[i].lock);
  96                for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
  97                        *chip = lpddr->chips[i];
  98                        chip->start += j << lpddr->chipshift;
  99                        chip->oldstate = chip->state = FL_READY;
 100                        chip->priv = &shared[i];
 101                        /* those should be reset too since
 102                           they create memory references. */
 103                        init_waitqueue_head(&chip->wq);
 104                        mutex_init(&chip->mutex);
 105                        chip++;
 106                }
 107        }
 108
 109        return mtd;
 110}
 111EXPORT_SYMBOL(lpddr_cmdset);
 112
 113static int wait_for_ready(struct map_info *map, struct flchip *chip,
 114                unsigned int chip_op_time)
 115{
 116        unsigned int timeo, reset_timeo, sleep_time;
 117        unsigned int dsr;
 118        flstate_t chip_state = chip->state;
 119        int ret = 0;
 120
 121        /* set our timeout to 8 times the expected delay */
 122        timeo = chip_op_time * 8;
 123        if (!timeo)
 124                timeo = 500000;
 125        reset_timeo = timeo;
 126        sleep_time = chip_op_time / 2;
 127
 128        for (;;) {
 129                dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
 130                if (dsr & DSR_READY_STATUS)
 131                        break;
 132                if (!timeo) {
 133                        printk(KERN_ERR "%s: Flash timeout error state %d \n",
 134                                                        map->name, chip_state);
 135                        ret = -ETIME;
 136                        break;
 137                }
 138
 139                /* OK Still waiting. Drop the lock, wait a while and retry. */
 140                mutex_unlock(&chip->mutex);
 141                if (sleep_time >= 1000000/HZ) {
 142                        /*
 143                         * Half of the normal delay still remaining
 144                         * can be performed with a sleeping delay instead
 145                         * of busy waiting.
 146                         */
 147                        msleep(sleep_time/1000);
 148                        timeo -= sleep_time;
 149                        sleep_time = 1000000/HZ;
 150                } else {
 151                        udelay(1);
 152                        cond_resched();
 153                        timeo--;
 154                }
 155                mutex_lock(&chip->mutex);
 156
 157                while (chip->state != chip_state) {
 158                        /* Someone's suspended the operation: sleep */
 159                        DECLARE_WAITQUEUE(wait, current);
 160                        set_current_state(TASK_UNINTERRUPTIBLE);
 161                        add_wait_queue(&chip->wq, &wait);
 162                        mutex_unlock(&chip->mutex);
 163                        schedule();
 164                        remove_wait_queue(&chip->wq, &wait);
 165                        mutex_lock(&chip->mutex);
 166                }
 167                if (chip->erase_suspended || chip->write_suspended)  {
 168                        /* Suspend has occurred while sleep: reset timeout */
 169                        timeo = reset_timeo;
 170                        chip->erase_suspended = chip->write_suspended = 0;
 171                }
 172        }
 173        /* check status for errors */
 174        if (dsr & DSR_ERR) {
 175                /* Clear DSR*/
 176                map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
 177                printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
 178                                map->name, dsr);
 179                print_drs_error(dsr);
 180                ret = -EIO;
 181        }
 182        chip->state = FL_READY;
 183        return ret;
 184}
 185
 186static int get_chip(struct map_info *map, struct flchip *chip, int mode)
 187{
 188        int ret;
 189        DECLARE_WAITQUEUE(wait, current);
 190
 191 retry:
 192        if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
 193                && chip->state != FL_SYNCING) {
 194                /*
 195                 * OK. We have possibility for contension on the write/erase
 196                 * operations which are global to the real chip and not per
 197                 * partition.  So let's fight it over in the partition which
 198                 * currently has authority on the operation.
 199                 *
 200                 * The rules are as follows:
 201                 *
 202                 * - any write operation must own shared->writing.
 203                 *
 204                 * - any erase operation must own _both_ shared->writing and
 205                 *   shared->erasing.
 206                 *
 207                 * - contension arbitration is handled in the owner's context.
 208                 *
 209                 * The 'shared' struct can be read and/or written only when
 210                 * its lock is taken.
 211                 */
 212                struct flchip_shared *shared = chip->priv;
 213                struct flchip *contender;
 214                mutex_lock(&shared->lock);
 215                contender = shared->writing;
 216                if (contender && contender != chip) {
 217                        /*
 218                         * The engine to perform desired operation on this
 219                         * partition is already in use by someone else.
 220                         * Let's fight over it in the context of the chip
 221                         * currently using it.  If it is possible to suspend,
 222                         * that other partition will do just that, otherwise
 223                         * it'll happily send us to sleep.  In any case, when
 224                         * get_chip returns success we're clear to go ahead.
 225                         */
 226                        ret = mutex_trylock(&contender->mutex);
 227                        mutex_unlock(&shared->lock);
 228                        if (!ret)
 229                                goto retry;
 230                        mutex_unlock(&chip->mutex);
 231                        ret = chip_ready(map, contender, mode);
 232                        mutex_lock(&chip->mutex);
 233
 234                        if (ret == -EAGAIN) {
 235                                mutex_unlock(&contender->mutex);
 236                                goto retry;
 237                        }
 238                        if (ret) {
 239                                mutex_unlock(&contender->mutex);
 240                                return ret;
 241                        }
 242                        mutex_lock(&shared->lock);
 243
 244                        /* We should not own chip if it is already in FL_SYNCING
 245                         * state. Put contender and retry. */
 246                        if (chip->state == FL_SYNCING) {
 247                                put_chip(map, contender);
 248                                mutex_unlock(&contender->mutex);
 249                                goto retry;
 250                        }
 251                        mutex_unlock(&contender->mutex);
 252                }
 253
 254                /* Check if we have suspended erase on this chip.
 255                   Must sleep in such a case. */
 256                if (mode == FL_ERASING && shared->erasing
 257                    && shared->erasing->oldstate == FL_ERASING) {
 258                        mutex_unlock(&shared->lock);
 259                        set_current_state(TASK_UNINTERRUPTIBLE);
 260                        add_wait_queue(&chip->wq, &wait);
 261                        mutex_unlock(&chip->mutex);
 262                        schedule();
 263                        remove_wait_queue(&chip->wq, &wait);
 264                        mutex_lock(&chip->mutex);
 265                        goto retry;
 266                }
 267
 268                /* We now own it */
 269                shared->writing = chip;
 270                if (mode == FL_ERASING)
 271                        shared->erasing = chip;
 272                mutex_unlock(&shared->lock);
 273        }
 274
 275        ret = chip_ready(map, chip, mode);
 276        if (ret == -EAGAIN)
 277                goto retry;
 278
 279        return ret;
 280}
 281
 282static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
 283{
 284        struct lpddr_private *lpddr = map->fldrv_priv;
 285        int ret = 0;
 286        DECLARE_WAITQUEUE(wait, current);
 287
 288        /* Prevent setting state FL_SYNCING for chip in suspended state. */
 289        if (FL_SYNCING == mode && FL_READY != chip->oldstate)
 290                goto sleep;
 291
 292        switch (chip->state) {
 293        case FL_READY:
 294        case FL_JEDEC_QUERY:
 295                return 0;
 296
 297        case FL_ERASING:
 298                if (!lpddr->qinfo->SuspEraseSupp ||
 299                        !(mode == FL_READY || mode == FL_POINT))
 300                        goto sleep;
 301
 302                map_write(map, CMD(LPDDR_SUSPEND),
 303                        map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
 304                chip->oldstate = FL_ERASING;
 305                chip->state = FL_ERASE_SUSPENDING;
 306                ret = wait_for_ready(map, chip, 0);
 307                if (ret) {
 308                        /* Oops. something got wrong. */
 309                        /* Resume and pretend we weren't here.  */
 310                        put_chip(map, chip);
 311                        printk(KERN_ERR "%s: suspend operation failed."
 312                                        "State may be wrong \n", map->name);
 313                        return -EIO;
 314                }
 315                chip->erase_suspended = 1;
 316                chip->state = FL_READY;
 317                return 0;
 318                /* Erase suspend */
 319        case FL_POINT:
 320                /* Only if there's no operation suspended... */
 321                if (mode == FL_READY && chip->oldstate == FL_READY)
 322                        return 0;
 323
 324        default:
 325sleep:
 326                set_current_state(TASK_UNINTERRUPTIBLE);
 327                add_wait_queue(&chip->wq, &wait);
 328                mutex_unlock(&chip->mutex);
 329                schedule();
 330                remove_wait_queue(&chip->wq, &wait);
 331                mutex_lock(&chip->mutex);
 332                return -EAGAIN;
 333        }
 334}
 335
 336static void put_chip(struct map_info *map, struct flchip *chip)
 337{
 338        if (chip->priv) {
 339                struct flchip_shared *shared = chip->priv;
 340                mutex_lock(&shared->lock);
 341                if (shared->writing == chip && chip->oldstate == FL_READY) {
 342                        /* We own the ability to write, but we're done */
 343                        shared->writing = shared->erasing;
 344                        if (shared->writing && shared->writing != chip) {
 345                                /* give back the ownership */
 346                                struct flchip *loaner = shared->writing;
 347                                mutex_lock(&loaner->mutex);
 348                                mutex_unlock(&shared->lock);
 349                                mutex_unlock(&chip->mutex);
 350                                put_chip(map, loaner);
 351                                mutex_lock(&chip->mutex);
 352                                mutex_unlock(&loaner->mutex);
 353                                wake_up(&chip->wq);
 354                                return;
 355                        }
 356                        shared->erasing = NULL;
 357                        shared->writing = NULL;
 358                } else if (shared->erasing == chip && shared->writing != chip) {
 359                        /*
 360                         * We own the ability to erase without the ability
 361                         * to write, which means the erase was suspended
 362                         * and some other partition is currently writing.
 363                         * Don't let the switch below mess things up since
 364                         * we don't have ownership to resume anything.
 365                         */
 366                        mutex_unlock(&shared->lock);
 367                        wake_up(&chip->wq);
 368                        return;
 369                }
 370                mutex_unlock(&shared->lock);
 371        }
 372
 373        switch (chip->oldstate) {
 374        case FL_ERASING:
 375                map_write(map, CMD(LPDDR_RESUME),
 376                                map->pfow_base + PFOW_COMMAND_CODE);
 377                map_write(map, CMD(LPDDR_START_EXECUTION),
 378                                map->pfow_base + PFOW_COMMAND_EXECUTE);
 379                chip->oldstate = FL_READY;
 380                chip->state = FL_ERASING;
 381                break;
 382        case FL_READY:
 383                break;
 384        default:
 385                printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
 386                                map->name, chip->oldstate);
 387        }
 388        wake_up(&chip->wq);
 389}
 390
 391int do_write_buffer(struct map_info *map, struct flchip *chip,
 392                        unsigned long adr, const struct kvec **pvec,
 393                        unsigned long *pvec_seek, int len)
 394{
 395        struct lpddr_private *lpddr = map->fldrv_priv;
 396        map_word datum;
 397        int ret, wbufsize, word_gap, words;
 398        const struct kvec *vec;
 399        unsigned long vec_seek;
 400        unsigned long prog_buf_ofs;
 401
 402        wbufsize = 1 << lpddr->qinfo->BufSizeShift;
 403
 404        mutex_lock(&chip->mutex);
 405        ret = get_chip(map, chip, FL_WRITING);
 406        if (ret) {
 407                mutex_unlock(&chip->mutex);
 408                return ret;
 409        }
 410        /* Figure out the number of words to write */
 411        word_gap = (-adr & (map_bankwidth(map)-1));
 412        words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
 413        if (!word_gap) {
 414                words--;
 415        } else {
 416                word_gap = map_bankwidth(map) - word_gap;
 417                adr -= word_gap;
 418                datum = map_word_ff(map);
 419        }
 420        /* Write data */
 421        /* Get the program buffer offset from PFOW register data first*/
 422        prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
 423                                map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
 424        vec = *pvec;
 425        vec_seek = *pvec_seek;
 426        do {
 427                int n = map_bankwidth(map) - word_gap;
 428
 429                if (n > vec->iov_len - vec_seek)
 430                        n = vec->iov_len - vec_seek;
 431                if (n > len)
 432                        n = len;
 433
 434                if (!word_gap && (len < map_bankwidth(map)))
 435                        datum = map_word_ff(map);
 436
 437                datum = map_word_load_partial(map, datum,
 438                                vec->iov_base + vec_seek, word_gap, n);
 439
 440                len -= n;
 441                word_gap += n;
 442                if (!len || word_gap == map_bankwidth(map)) {
 443                        map_write(map, datum, prog_buf_ofs);
 444                        prog_buf_ofs += map_bankwidth(map);
 445                        word_gap = 0;
 446                }
 447
 448                vec_seek += n;
 449                if (vec_seek == vec->iov_len) {
 450                        vec++;
 451                        vec_seek = 0;
 452                }
 453        } while (len);
 454        *pvec = vec;
 455        *pvec_seek = vec_seek;
 456
 457        /* GO GO GO */
 458        send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
 459        chip->state = FL_WRITING;
 460        ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
 461        if (ret)        {
 462                printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
 463                        map->name, ret, adr);
 464                goto out;
 465        }
 466
 467 out:   put_chip(map, chip);
 468        mutex_unlock(&chip->mutex);
 469        return ret;
 470}
 471
 472int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
 473{
 474        struct map_info *map = mtd->priv;
 475        struct lpddr_private *lpddr = map->fldrv_priv;
 476        int chipnum = adr >> lpddr->chipshift;
 477        struct flchip *chip = &lpddr->chips[chipnum];
 478        int ret;
 479
 480        mutex_lock(&chip->mutex);
 481        ret = get_chip(map, chip, FL_ERASING);
 482        if (ret) {
 483                mutex_unlock(&chip->mutex);
 484                return ret;
 485        }
 486        send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
 487        chip->state = FL_ERASING;
 488        ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
 489        if (ret) {
 490                printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
 491                        map->name, ret, adr);
 492                goto out;
 493        }
 494 out:   put_chip(map, chip);
 495        mutex_unlock(&chip->mutex);
 496        return ret;
 497}
 498
 499static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 500                        size_t *retlen, u_char *buf)
 501{
 502        struct map_info *map = mtd->priv;
 503        struct lpddr_private *lpddr = map->fldrv_priv;
 504        int chipnum = adr >> lpddr->chipshift;
 505        struct flchip *chip = &lpddr->chips[chipnum];
 506        int ret = 0;
 507
 508        mutex_lock(&chip->mutex);
 509        ret = get_chip(map, chip, FL_READY);
 510        if (ret) {
 511                mutex_unlock(&chip->mutex);
 512                return ret;
 513        }
 514
 515        map_copy_from(map, buf, adr, len);
 516        *retlen = len;
 517
 518        put_chip(map, chip);
 519        mutex_unlock(&chip->mutex);
 520        return ret;
 521}
 522
 523static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 524                        size_t *retlen, void **mtdbuf, resource_size_t *phys)
 525{
 526        struct map_info *map = mtd->priv;
 527        struct lpddr_private *lpddr = map->fldrv_priv;
 528        int chipnum = adr >> lpddr->chipshift;
 529        unsigned long ofs, last_end = 0;
 530        struct flchip *chip = &lpddr->chips[chipnum];
 531        int ret = 0;
 532
 533        if (!map->virt)
 534                return -EINVAL;
 535
 536        /* ofs: offset within the first chip that the first read should start */
 537        ofs = adr - (chipnum << lpddr->chipshift);
 538        *mtdbuf = (void *)map->virt + chip->start + ofs;
 539
 540        while (len) {
 541                unsigned long thislen;
 542
 543                if (chipnum >= lpddr->numchips)
 544                        break;
 545
 546                /* We cannot point across chips that are virtually disjoint */
 547                if (!last_end)
 548                        last_end = chip->start;
 549                else if (chip->start != last_end)
 550                        break;
 551
 552                if ((len + ofs - 1) >> lpddr->chipshift)
 553                        thislen = (1<<lpddr->chipshift) - ofs;
 554                else
 555                        thislen = len;
 556                /* get the chip */
 557                mutex_lock(&chip->mutex);
 558                ret = get_chip(map, chip, FL_POINT);
 559                mutex_unlock(&chip->mutex);
 560                if (ret)
 561                        break;
 562
 563                chip->state = FL_POINT;
 564                chip->ref_point_counter++;
 565                *retlen += thislen;
 566                len -= thislen;
 567
 568                ofs = 0;
 569                last_end += 1 << lpddr->chipshift;
 570                chipnum++;
 571                chip = &lpddr->chips[chipnum];
 572        }
 573        return 0;
 574}
 575
 576static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
 577{
 578        struct map_info *map = mtd->priv;
 579        struct lpddr_private *lpddr = map->fldrv_priv;
 580        int chipnum = adr >> lpddr->chipshift, err = 0;
 581        unsigned long ofs;
 582
 583        /* ofs: offset within the first chip that the first read should start */
 584        ofs = adr - (chipnum << lpddr->chipshift);
 585
 586        while (len) {
 587                unsigned long thislen;
 588                struct flchip *chip;
 589
 590                chip = &lpddr->chips[chipnum];
 591                if (chipnum >= lpddr->numchips)
 592                        break;
 593
 594                if ((len + ofs - 1) >> lpddr->chipshift)
 595                        thislen = (1<<lpddr->chipshift) - ofs;
 596                else
 597                        thislen = len;
 598
 599                mutex_lock(&chip->mutex);
 600                if (chip->state == FL_POINT) {
 601                        chip->ref_point_counter--;
 602                        if (chip->ref_point_counter == 0)
 603                                chip->state = FL_READY;
 604                } else {
 605                        printk(KERN_WARNING "%s: Warning: unpoint called on non"
 606                                        "pointed region\n", map->name);
 607                        err = -EINVAL;
 608                }
 609
 610                put_chip(map, chip);
 611                mutex_unlock(&chip->mutex);
 612
 613                len -= thislen;
 614                ofs = 0;
 615                chipnum++;
 616        }
 617
 618        return err;
 619}
 620
 621static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
 622                                size_t *retlen, const u_char *buf)
 623{
 624        struct kvec vec;
 625
 626        vec.iov_base = (void *) buf;
 627        vec.iov_len = len;
 628
 629        return lpddr_writev(mtd, &vec, 1, to, retlen);
 630}
 631
 632
 633static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 634                                unsigned long count, loff_t to, size_t *retlen)
 635{
 636        struct map_info *map = mtd->priv;
 637        struct lpddr_private *lpddr = map->fldrv_priv;
 638        int ret = 0;
 639        int chipnum;
 640        unsigned long ofs, vec_seek, i;
 641        int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
 642        size_t len = 0;
 643
 644        for (i = 0; i < count; i++)
 645                len += vecs[i].iov_len;
 646
 647        if (!len)
 648                return 0;
 649
 650        chipnum = to >> lpddr->chipshift;
 651
 652        ofs = to;
 653        vec_seek = 0;
 654
 655        do {
 656                /* We must not cross write block boundaries */
 657                int size = wbufsize - (ofs & (wbufsize-1));
 658
 659                if (size > len)
 660                        size = len;
 661
 662                ret = do_write_buffer(map, &lpddr->chips[chipnum],
 663                                          ofs, &vecs, &vec_seek, size);
 664                if (ret)
 665                        return ret;
 666
 667                ofs += size;
 668                (*retlen) += size;
 669                len -= size;
 670
 671                /* Be nice and reschedule with the chip in a usable
 672                 * state for other processes */
 673                cond_resched();
 674
 675        } while (len);
 676
 677        return 0;
 678}
 679
 680static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
 681{
 682        unsigned long ofs, len;
 683        int ret;
 684        struct map_info *map = mtd->priv;
 685        struct lpddr_private *lpddr = map->fldrv_priv;
 686        int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
 687
 688        ofs = instr->addr;
 689        len = instr->len;
 690
 691        while (len > 0) {
 692                ret = do_erase_oneblock(mtd, ofs);
 693                if (ret)
 694                        return ret;
 695                ofs += size;
 696                len -= size;
 697        }
 698        instr->state = MTD_ERASE_DONE;
 699        mtd_erase_callback(instr);
 700
 701        return 0;
 702}
 703
 704#define DO_XXLOCK_LOCK          1
 705#define DO_XXLOCK_UNLOCK        2
 706int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
 707{
 708        int ret = 0;
 709        struct map_info *map = mtd->priv;
 710        struct lpddr_private *lpddr = map->fldrv_priv;
 711        int chipnum = adr >> lpddr->chipshift;
 712        struct flchip *chip = &lpddr->chips[chipnum];
 713
 714        mutex_lock(&chip->mutex);
 715        ret = get_chip(map, chip, FL_LOCKING);
 716        if (ret) {
 717                mutex_unlock(&chip->mutex);
 718                return ret;
 719        }
 720
 721        if (thunk == DO_XXLOCK_LOCK) {
 722                send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
 723                chip->state = FL_LOCKING;
 724        } else if (thunk == DO_XXLOCK_UNLOCK) {
 725                send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
 726                chip->state = FL_UNLOCKING;
 727        } else
 728                BUG();
 729
 730        ret = wait_for_ready(map, chip, 1);
 731        if (ret)        {
 732                printk(KERN_ERR "%s: block unlock error status %d \n",
 733                                map->name, ret);
 734                goto out;
 735        }
 736out:    put_chip(map, chip);
 737        mutex_unlock(&chip->mutex);
 738        return ret;
 739}
 740
 741static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 742{
 743        return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
 744}
 745
 746static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 747{
 748        return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
 749}
 750
 751int word_program(struct map_info *map, loff_t adr, uint32_t curval)
 752{
 753    int ret;
 754        struct lpddr_private *lpddr = map->fldrv_priv;
 755        int chipnum = adr >> lpddr->chipshift;
 756        struct flchip *chip = &lpddr->chips[chipnum];
 757
 758        mutex_lock(&chip->mutex);
 759        ret = get_chip(map, chip, FL_WRITING);
 760        if (ret) {
 761                mutex_unlock(&chip->mutex);
 762                return ret;
 763        }
 764
 765        send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
 766
 767        ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
 768        if (ret)        {
 769                printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
 770                        map->name, adr, curval);
 771                goto out;
 772        }
 773
 774out:    put_chip(map, chip);
 775        mutex_unlock(&chip->mutex);
 776        return ret;
 777}
 778
 779MODULE_LICENSE("GPL");
 780MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
 781MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
 782