linux/drivers/mtd/nand/atmel_nand.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2003 Rick Bronson
   3 *
   4 *  Derived from drivers/mtd/nand/autcpu12.c
   5 *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
   6 *
   7 *  Derived from drivers/mtd/spia.c
   8 *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
   9 *
  10 *
  11 *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  12 *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
  13 *
  14 *     Derived from Das U-Boot source code
  15 *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  16 *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  17 *
  18 *  Add Programmable Multibit ECC support for various AT91 SoC
  19 *     © Copyright 2012 ATMEL, Hong Xu
  20 *
  21 *  Add Nand Flash Controller support for SAMA5 SoC
  22 *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License version 2 as
  26 * published by the Free Software Foundation.
  27 *
  28 */
  29
  30#include <linux/dma-mapping.h>
  31#include <linux/slab.h>
  32#include <linux/module.h>
  33#include <linux/moduleparam.h>
  34#include <linux/platform_device.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37#include <linux/of_gpio.h>
  38#include <linux/of_mtd.h>
  39#include <linux/mtd/mtd.h>
  40#include <linux/mtd/nand.h>
  41#include <linux/mtd/partitions.h>
  42
  43#include <linux/delay.h>
  44#include <linux/dmaengine.h>
  45#include <linux/gpio.h>
  46#include <linux/interrupt.h>
  47#include <linux/io.h>
  48#include <linux/platform_data/atmel.h>
  49
  50static int use_dma = 1;
  51module_param(use_dma, int, 0);
  52
  53static int on_flash_bbt = 0;
  54module_param(on_flash_bbt, int, 0);
  55
  56/* Register access macros */
  57#define ecc_readl(add, reg)                             \
  58        __raw_readl(add + ATMEL_ECC_##reg)
  59#define ecc_writel(add, reg, value)                     \
  60        __raw_writel((value), add + ATMEL_ECC_##reg)
  61
  62#include "atmel_nand_ecc.h"     /* Hardware ECC registers */
  63#include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
  64
  65/* oob layout for large page size
  66 * bad block info is on bytes 0 and 1
  67 * the bytes have to be consecutives to avoid
  68 * several NAND_CMD_RNDOUT during read
  69 */
  70static struct nand_ecclayout atmel_oobinfo_large = {
  71        .eccbytes = 4,
  72        .eccpos = {60, 61, 62, 63},
  73        .oobfree = {
  74                {2, 58}
  75        },
  76};
  77
  78/* oob layout for small page size
  79 * bad block info is on bytes 4 and 5
  80 * the bytes have to be consecutives to avoid
  81 * several NAND_CMD_RNDOUT during read
  82 */
  83static struct nand_ecclayout atmel_oobinfo_small = {
  84        .eccbytes = 4,
  85        .eccpos = {0, 1, 2, 3},
  86        .oobfree = {
  87                {6, 10}
  88        },
  89};
  90
  91struct atmel_nfc {
  92        void __iomem            *base_cmd_regs;
  93        void __iomem            *hsmc_regs;
  94        void __iomem            *sram_bank0;
  95        dma_addr_t              sram_bank0_phys;
  96        bool                    use_nfc_sram;
  97        bool                    write_by_sram;
  98
  99        bool                    is_initialized;
 100        struct completion       comp_nfc;
 101
 102        /* Point to the sram bank which include readed data via NFC */
 103        void __iomem            *data_in_sram;
 104        bool                    will_write_sram;
 105};
 106static struct atmel_nfc nand_nfc;
 107
 108struct atmel_nand_host {
 109        struct nand_chip        nand_chip;
 110        struct mtd_info         mtd;
 111        void __iomem            *io_base;
 112        dma_addr_t              io_phys;
 113        struct atmel_nand_data  board;
 114        struct device           *dev;
 115        void __iomem            *ecc;
 116
 117        struct completion       comp;
 118        struct dma_chan         *dma_chan;
 119
 120        struct atmel_nfc        *nfc;
 121
 122        bool                    has_pmecc;
 123        u8                      pmecc_corr_cap;
 124        u16                     pmecc_sector_size;
 125        u32                     pmecc_lookup_table_offset;
 126        u32                     pmecc_lookup_table_offset_512;
 127        u32                     pmecc_lookup_table_offset_1024;
 128
 129        int                     pmecc_bytes_per_sector;
 130        int                     pmecc_sector_number;
 131        int                     pmecc_degree;   /* Degree of remainders */
 132        int                     pmecc_cw_len;   /* Length of codeword */
 133
 134        void __iomem            *pmerrloc_base;
 135        void __iomem            *pmecc_rom_base;
 136
 137        /* lookup table for alpha_to and index_of */
 138        void __iomem            *pmecc_alpha_to;
 139        void __iomem            *pmecc_index_of;
 140
 141        /* data for pmecc computation */
 142        int16_t                 *pmecc_partial_syn;
 143        int16_t                 *pmecc_si;
 144        int16_t                 *pmecc_smu;     /* Sigma table */
 145        int16_t                 *pmecc_lmu;     /* polynomal order */
 146        int                     *pmecc_mu;
 147        int                     *pmecc_dmu;
 148        int                     *pmecc_delta;
 149};
 150
 151static struct nand_ecclayout atmel_pmecc_oobinfo;
 152
 153/*
 154 * Enable NAND.
 155 */
 156static void atmel_nand_enable(struct atmel_nand_host *host)
 157{
 158        if (gpio_is_valid(host->board.enable_pin))
 159                gpio_set_value(host->board.enable_pin, 0);
 160}
 161
 162/*
 163 * Disable NAND.
 164 */
 165static void atmel_nand_disable(struct atmel_nand_host *host)
 166{
 167        if (gpio_is_valid(host->board.enable_pin))
 168                gpio_set_value(host->board.enable_pin, 1);
 169}
 170
 171/*
 172 * Hardware specific access to control-lines
 173 */
 174static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 175{
 176        struct nand_chip *nand_chip = mtd->priv;
 177        struct atmel_nand_host *host = nand_chip->priv;
 178
 179        if (ctrl & NAND_CTRL_CHANGE) {
 180                if (ctrl & NAND_NCE)
 181                        atmel_nand_enable(host);
 182                else
 183                        atmel_nand_disable(host);
 184        }
 185        if (cmd == NAND_CMD_NONE)
 186                return;
 187
 188        if (ctrl & NAND_CLE)
 189                writeb(cmd, host->io_base + (1 << host->board.cle));
 190        else
 191                writeb(cmd, host->io_base + (1 << host->board.ale));
 192}
 193
 194/*
 195 * Read the Device Ready pin.
 196 */
 197static int atmel_nand_device_ready(struct mtd_info *mtd)
 198{
 199        struct nand_chip *nand_chip = mtd->priv;
 200        struct atmel_nand_host *host = nand_chip->priv;
 201
 202        return gpio_get_value(host->board.rdy_pin) ^
 203                !!host->board.rdy_pin_active_low;
 204}
 205
 206/* Set up for hardware ready pin and enable pin. */
 207static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
 208{
 209        struct nand_chip *chip = mtd->priv;
 210        struct atmel_nand_host *host = chip->priv;
 211        int res = 0;
 212
 213        if (gpio_is_valid(host->board.rdy_pin)) {
 214                res = devm_gpio_request(host->dev,
 215                                host->board.rdy_pin, "nand_rdy");
 216                if (res < 0) {
 217                        dev_err(host->dev,
 218                                "can't request rdy gpio %d\n",
 219                                host->board.rdy_pin);
 220                        return res;
 221                }
 222
 223                res = gpio_direction_input(host->board.rdy_pin);
 224                if (res < 0) {
 225                        dev_err(host->dev,
 226                                "can't request input direction rdy gpio %d\n",
 227                                host->board.rdy_pin);
 228                        return res;
 229                }
 230
 231                chip->dev_ready = atmel_nand_device_ready;
 232        }
 233
 234        if (gpio_is_valid(host->board.enable_pin)) {
 235                res = devm_gpio_request(host->dev,
 236                                host->board.enable_pin, "nand_enable");
 237                if (res < 0) {
 238                        dev_err(host->dev,
 239                                "can't request enable gpio %d\n",
 240                                host->board.enable_pin);
 241                        return res;
 242                }
 243
 244                res = gpio_direction_output(host->board.enable_pin, 1);
 245                if (res < 0) {
 246                        dev_err(host->dev,
 247                                "can't request output direction enable gpio %d\n",
 248                                host->board.enable_pin);
 249                        return res;
 250                }
 251        }
 252
 253        return res;
 254}
 255
 256static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 257{
 258        int i;
 259        u32 *t = trg;
 260        const __iomem u32 *s = src;
 261
 262        for (i = 0; i < (size >> 2); i++)
 263                *t++ = readl_relaxed(s++);
 264}
 265
 266static void memcpy32_toio(void __iomem *trg, const void *src, int size)
 267{
 268        int i;
 269        u32 __iomem *t = trg;
 270        const u32 *s = src;
 271
 272        for (i = 0; i < (size >> 2); i++)
 273                writel_relaxed(*s++, t++);
 274}
 275
 276/*
 277 * Minimal-overhead PIO for data access.
 278 */
 279static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
 280{
 281        struct nand_chip        *nand_chip = mtd->priv;
 282        struct atmel_nand_host *host = nand_chip->priv;
 283
 284        if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
 285                memcpy32_fromio(buf, host->nfc->data_in_sram, len);
 286                host->nfc->data_in_sram += len;
 287        } else {
 288                __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
 289        }
 290}
 291
 292static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
 293{
 294        struct nand_chip        *nand_chip = mtd->priv;
 295        struct atmel_nand_host *host = nand_chip->priv;
 296
 297        if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
 298                memcpy32_fromio(buf, host->nfc->data_in_sram, len);
 299                host->nfc->data_in_sram += len;
 300        } else {
 301                __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
 302        }
 303}
 304
 305static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
 306{
 307        struct nand_chip        *nand_chip = mtd->priv;
 308
 309        __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
 310}
 311
 312static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
 313{
 314        struct nand_chip        *nand_chip = mtd->priv;
 315
 316        __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
 317}
 318
 319static void dma_complete_func(void *completion)
 320{
 321        complete(completion);
 322}
 323
 324static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
 325{
 326        /* NFC only has two banks. Must be 0 or 1 */
 327        if (bank > 1)
 328                return -EINVAL;
 329
 330        if (bank) {
 331                /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
 332                if (host->mtd.writesize > 2048)
 333                        return -EINVAL;
 334                nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
 335        } else {
 336                nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
 337        }
 338
 339        return 0;
 340}
 341
 342static uint nfc_get_sram_off(struct atmel_nand_host *host)
 343{
 344        if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
 345                return NFC_SRAM_BANK1_OFFSET;
 346        else
 347                return 0;
 348}
 349
 350static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
 351{
 352        if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
 353                return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
 354        else
 355                return host->nfc->sram_bank0_phys;
 356}
 357
 358static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
 359                               int is_read)
 360{
 361        struct dma_device *dma_dev;
 362        enum dma_ctrl_flags flags;
 363        dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
 364        struct dma_async_tx_descriptor *tx = NULL;
 365        dma_cookie_t cookie;
 366        struct nand_chip *chip = mtd->priv;
 367        struct atmel_nand_host *host = chip->priv;
 368        void *p = buf;
 369        int err = -EIO;
 370        enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
 371        struct atmel_nfc *nfc = host->nfc;
 372
 373        if (buf >= high_memory)
 374                goto err_buf;
 375
 376        dma_dev = host->dma_chan->device;
 377
 378        flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
 379                DMA_COMPL_SKIP_DEST_UNMAP;
 380
 381        phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
 382        if (dma_mapping_error(dma_dev->dev, phys_addr)) {
 383                dev_err(host->dev, "Failed to dma_map_single\n");
 384                goto err_buf;
 385        }
 386
 387        if (is_read) {
 388                if (nfc && nfc->data_in_sram)
 389                        dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
 390                                - (nfc->sram_bank0 + nfc_get_sram_off(host)));
 391                else
 392                        dma_src_addr = host->io_phys;
 393
 394                dma_dst_addr = phys_addr;
 395        } else {
 396                dma_src_addr = phys_addr;
 397
 398                if (nfc && nfc->write_by_sram)
 399                        dma_dst_addr = nfc_sram_phys(host);
 400                else
 401                        dma_dst_addr = host->io_phys;
 402        }
 403
 404        tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
 405                                             dma_src_addr, len, flags);
 406        if (!tx) {
 407                dev_err(host->dev, "Failed to prepare DMA memcpy\n");
 408                goto err_dma;
 409        }
 410
 411        init_completion(&host->comp);
 412        tx->callback = dma_complete_func;
 413        tx->callback_param = &host->comp;
 414
 415        cookie = tx->tx_submit(tx);
 416        if (dma_submit_error(cookie)) {
 417                dev_err(host->dev, "Failed to do DMA tx_submit\n");
 418                goto err_dma;
 419        }
 420
 421        dma_async_issue_pending(host->dma_chan);
 422        wait_for_completion(&host->comp);
 423
 424        if (is_read && nfc && nfc->data_in_sram)
 425                /* After read data from SRAM, need to increase the position */
 426                nfc->data_in_sram += len;
 427
 428        err = 0;
 429
 430err_dma:
 431        dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
 432err_buf:
 433        if (err != 0)
 434                dev_warn(host->dev, "Fall back to CPU I/O\n");
 435        return err;
 436}
 437
 438static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 439{
 440        struct nand_chip *chip = mtd->priv;
 441        struct atmel_nand_host *host = chip->priv;
 442
 443        if (use_dma && len > mtd->oobsize)
 444                /* only use DMA for bigger than oob size: better performances */
 445                if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
 446                        return;
 447
 448        if (host->board.bus_width_16)
 449                atmel_read_buf16(mtd, buf, len);
 450        else
 451                atmel_read_buf8(mtd, buf, len);
 452}
 453
 454static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 455{
 456        struct nand_chip *chip = mtd->priv;
 457        struct atmel_nand_host *host = chip->priv;
 458
 459        if (use_dma && len > mtd->oobsize)
 460                /* only use DMA for bigger than oob size: better performances */
 461                if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
 462                        return;
 463
 464        if (host->board.bus_width_16)
 465                atmel_write_buf16(mtd, buf, len);
 466        else
 467                atmel_write_buf8(mtd, buf, len);
 468}
 469
 470/*
 471 * Return number of ecc bytes per sector according to sector size and
 472 * correction capability
 473 *
 474 * Following table shows what at91 PMECC supported:
 475 * Correction Capability        Sector_512_bytes        Sector_1024_bytes
 476 * =====================        ================        =================
 477 *                2-bits                 4-bytes                  4-bytes
 478 *                4-bits                 7-bytes                  7-bytes
 479 *                8-bits                13-bytes                 14-bytes
 480 *               12-bits                20-bytes                 21-bytes
 481 *               24-bits                39-bytes                 42-bytes
 482 */
 483static int pmecc_get_ecc_bytes(int cap, int sector_size)
 484{
 485        int m = 12 + sector_size / 512;
 486        return (m * cap + 7) / 8;
 487}
 488
 489static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
 490                                    int oobsize, int ecc_len)
 491{
 492        int i;
 493
 494        layout->eccbytes = ecc_len;
 495
 496        /* ECC will occupy the last ecc_len bytes continuously */
 497        for (i = 0; i < ecc_len; i++)
 498                layout->eccpos[i] = oobsize - ecc_len + i;
 499
 500        layout->oobfree[0].offset = 2;
 501        layout->oobfree[0].length =
 502                oobsize - ecc_len - layout->oobfree[0].offset;
 503}
 504
 505static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
 506{
 507        int table_size;
 508
 509        table_size = host->pmecc_sector_size == 512 ?
 510                PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
 511
 512        return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
 513                        table_size * sizeof(int16_t);
 514}
 515
 516static int pmecc_data_alloc(struct atmel_nand_host *host)
 517{
 518        const int cap = host->pmecc_corr_cap;
 519        int size;
 520
 521        size = (2 * cap + 1) * sizeof(int16_t);
 522        host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
 523        host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
 524        host->pmecc_lmu = devm_kzalloc(host->dev,
 525                        (cap + 1) * sizeof(int16_t), GFP_KERNEL);
 526        host->pmecc_smu = devm_kzalloc(host->dev,
 527                        (cap + 2) * size, GFP_KERNEL);
 528
 529        size = (cap + 1) * sizeof(int);
 530        host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
 531        host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
 532        host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
 533
 534        if (!host->pmecc_partial_syn ||
 535                !host->pmecc_si ||
 536                !host->pmecc_lmu ||
 537                !host->pmecc_smu ||
 538                !host->pmecc_mu ||
 539                !host->pmecc_dmu ||
 540                !host->pmecc_delta)
 541                return -ENOMEM;
 542
 543        return 0;
 544}
 545
 546static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
 547{
 548        struct nand_chip *nand_chip = mtd->priv;
 549        struct atmel_nand_host *host = nand_chip->priv;
 550        int i;
 551        uint32_t value;
 552
 553        /* Fill odd syndromes */
 554        for (i = 0; i < host->pmecc_corr_cap; i++) {
 555                value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
 556                if (i & 1)
 557                        value >>= 16;
 558                value &= 0xffff;
 559                host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
 560        }
 561}
 562
 563static void pmecc_substitute(struct mtd_info *mtd)
 564{
 565        struct nand_chip *nand_chip = mtd->priv;
 566        struct atmel_nand_host *host = nand_chip->priv;
 567        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 568        int16_t __iomem *index_of = host->pmecc_index_of;
 569        int16_t *partial_syn = host->pmecc_partial_syn;
 570        const int cap = host->pmecc_corr_cap;
 571        int16_t *si;
 572        int i, j;
 573
 574        /* si[] is a table that holds the current syndrome value,
 575         * an element of that table belongs to the field
 576         */
 577        si = host->pmecc_si;
 578
 579        memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
 580
 581        /* Computation 2t syndromes based on S(x) */
 582        /* Odd syndromes */
 583        for (i = 1; i < 2 * cap; i += 2) {
 584                for (j = 0; j < host->pmecc_degree; j++) {
 585                        if (partial_syn[i] & ((unsigned short)0x1 << j))
 586                                si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
 587                }
 588        }
 589        /* Even syndrome = (Odd syndrome) ** 2 */
 590        for (i = 2, j = 1; j <= cap; i = ++j << 1) {
 591                if (si[j] == 0) {
 592                        si[i] = 0;
 593                } else {
 594                        int16_t tmp;
 595
 596                        tmp = readw_relaxed(index_of + si[j]);
 597                        tmp = (tmp * 2) % host->pmecc_cw_len;
 598                        si[i] = readw_relaxed(alpha_to + tmp);
 599                }
 600        }
 601
 602        return;
 603}
 604
 605static void pmecc_get_sigma(struct mtd_info *mtd)
 606{
 607        struct nand_chip *nand_chip = mtd->priv;
 608        struct atmel_nand_host *host = nand_chip->priv;
 609
 610        int16_t *lmu = host->pmecc_lmu;
 611        int16_t *si = host->pmecc_si;
 612        int *mu = host->pmecc_mu;
 613        int *dmu = host->pmecc_dmu;     /* Discrepancy */
 614        int *delta = host->pmecc_delta; /* Delta order */
 615        int cw_len = host->pmecc_cw_len;
 616        const int16_t cap = host->pmecc_corr_cap;
 617        const int num = 2 * cap + 1;
 618        int16_t __iomem *index_of = host->pmecc_index_of;
 619        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 620        int i, j, k;
 621        uint32_t dmu_0_count, tmp;
 622        int16_t *smu = host->pmecc_smu;
 623
 624        /* index of largest delta */
 625        int ro;
 626        int largest;
 627        int diff;
 628
 629        dmu_0_count = 0;
 630
 631        /* First Row */
 632
 633        /* Mu */
 634        mu[0] = -1;
 635
 636        memset(smu, 0, sizeof(int16_t) * num);
 637        smu[0] = 1;
 638
 639        /* discrepancy set to 1 */
 640        dmu[0] = 1;
 641        /* polynom order set to 0 */
 642        lmu[0] = 0;
 643        delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
 644
 645        /* Second Row */
 646
 647        /* Mu */
 648        mu[1] = 0;
 649        /* Sigma(x) set to 1 */
 650        memset(&smu[num], 0, sizeof(int16_t) * num);
 651        smu[num] = 1;
 652
 653        /* discrepancy set to S1 */
 654        dmu[1] = si[1];
 655
 656        /* polynom order set to 0 */
 657        lmu[1] = 0;
 658
 659        delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
 660
 661        /* Init the Sigma(x) last row */
 662        memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
 663
 664        for (i = 1; i <= cap; i++) {
 665                mu[i + 1] = i << 1;
 666                /* Begin Computing Sigma (Mu+1) and L(mu) */
 667                /* check if discrepancy is set to 0 */
 668                if (dmu[i] == 0) {
 669                        dmu_0_count++;
 670
 671                        tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
 672                        if ((cap - (lmu[i] >> 1) - 1) & 0x1)
 673                                tmp += 2;
 674                        else
 675                                tmp += 1;
 676
 677                        if (dmu_0_count == tmp) {
 678                                for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
 679                                        smu[(cap + 1) * num + j] =
 680                                                        smu[i * num + j];
 681
 682                                lmu[cap + 1] = lmu[i];
 683                                return;
 684                        }
 685
 686                        /* copy polynom */
 687                        for (j = 0; j <= lmu[i] >> 1; j++)
 688                                smu[(i + 1) * num + j] = smu[i * num + j];
 689
 690                        /* copy previous polynom order to the next */
 691                        lmu[i + 1] = lmu[i];
 692                } else {
 693                        ro = 0;
 694                        largest = -1;
 695                        /* find largest delta with dmu != 0 */
 696                        for (j = 0; j < i; j++) {
 697                                if ((dmu[j]) && (delta[j] > largest)) {
 698                                        largest = delta[j];
 699                                        ro = j;
 700                                }
 701                        }
 702
 703                        /* compute difference */
 704                        diff = (mu[i] - mu[ro]);
 705
 706                        /* Compute degree of the new smu polynomial */
 707                        if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
 708                                lmu[i + 1] = lmu[i];
 709                        else
 710                                lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
 711
 712                        /* Init smu[i+1] with 0 */
 713                        for (k = 0; k < num; k++)
 714                                smu[(i + 1) * num + k] = 0;
 715
 716                        /* Compute smu[i+1] */
 717                        for (k = 0; k <= lmu[ro] >> 1; k++) {
 718                                int16_t a, b, c;
 719
 720                                if (!(smu[ro * num + k] && dmu[i]))
 721                                        continue;
 722                                a = readw_relaxed(index_of + dmu[i]);
 723                                b = readw_relaxed(index_of + dmu[ro]);
 724                                c = readw_relaxed(index_of + smu[ro * num + k]);
 725                                tmp = a + (cw_len - b) + c;
 726                                a = readw_relaxed(alpha_to + tmp % cw_len);
 727                                smu[(i + 1) * num + (k + diff)] = a;
 728                        }
 729
 730                        for (k = 0; k <= lmu[i] >> 1; k++)
 731                                smu[(i + 1) * num + k] ^= smu[i * num + k];
 732                }
 733
 734                /* End Computing Sigma (Mu+1) and L(mu) */
 735                /* In either case compute delta */
 736                delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
 737
 738                /* Do not compute discrepancy for the last iteration */
 739                if (i >= cap)
 740                        continue;
 741
 742                for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
 743                        tmp = 2 * (i - 1);
 744                        if (k == 0) {
 745                                dmu[i + 1] = si[tmp + 3];
 746                        } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
 747                                int16_t a, b, c;
 748                                a = readw_relaxed(index_of +
 749                                                smu[(i + 1) * num + k]);
 750                                b = si[2 * (i - 1) + 3 - k];
 751                                c = readw_relaxed(index_of + b);
 752                                tmp = a + c;
 753                                tmp %= cw_len;
 754                                dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
 755                                        dmu[i + 1];
 756                        }
 757                }
 758        }
 759
 760        return;
 761}
 762
 763static int pmecc_err_location(struct mtd_info *mtd)
 764{
 765        struct nand_chip *nand_chip = mtd->priv;
 766        struct atmel_nand_host *host = nand_chip->priv;
 767        unsigned long end_time;
 768        const int cap = host->pmecc_corr_cap;
 769        const int num = 2 * cap + 1;
 770        int sector_size = host->pmecc_sector_size;
 771        int err_nbr = 0;        /* number of error */
 772        int roots_nbr;          /* number of roots */
 773        int i;
 774        uint32_t val;
 775        int16_t *smu = host->pmecc_smu;
 776
 777        pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
 778
 779        for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
 780                pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
 781                                      smu[(cap + 1) * num + i]);
 782                err_nbr++;
 783        }
 784
 785        val = (err_nbr - 1) << 16;
 786        if (sector_size == 1024)
 787                val |= 1;
 788
 789        pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
 790        pmerrloc_writel(host->pmerrloc_base, ELEN,
 791                        sector_size * 8 + host->pmecc_degree * cap);
 792
 793        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 794        while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
 795                 & PMERRLOC_CALC_DONE)) {
 796                if (unlikely(time_after(jiffies, end_time))) {
 797                        dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
 798                        return -1;
 799                }
 800                cpu_relax();
 801        }
 802
 803        roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
 804                & PMERRLOC_ERR_NUM_MASK) >> 8;
 805        /* Number of roots == degree of smu hence <= cap */
 806        if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
 807                return err_nbr - 1;
 808
 809        /* Number of roots does not match the degree of smu
 810         * unable to correct error */
 811        return -1;
 812}
 813
 814static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
 815                int sector_num, int extra_bytes, int err_nbr)
 816{
 817        struct nand_chip *nand_chip = mtd->priv;
 818        struct atmel_nand_host *host = nand_chip->priv;
 819        int i = 0;
 820        int byte_pos, bit_pos, sector_size, pos;
 821        uint32_t tmp;
 822        uint8_t err_byte;
 823
 824        sector_size = host->pmecc_sector_size;
 825
 826        while (err_nbr) {
 827                tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
 828                byte_pos = tmp / 8;
 829                bit_pos  = tmp % 8;
 830
 831                if (byte_pos >= (sector_size + extra_bytes))
 832                        BUG();  /* should never happen */
 833
 834                if (byte_pos < sector_size) {
 835                        err_byte = *(buf + byte_pos);
 836                        *(buf + byte_pos) ^= (1 << bit_pos);
 837
 838                        pos = sector_num * host->pmecc_sector_size + byte_pos;
 839                        dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 840                                pos, bit_pos, err_byte, *(buf + byte_pos));
 841                } else {
 842                        /* Bit flip in OOB area */
 843                        tmp = sector_num * host->pmecc_bytes_per_sector
 844                                        + (byte_pos - sector_size);
 845                        err_byte = ecc[tmp];
 846                        ecc[tmp] ^= (1 << bit_pos);
 847
 848                        pos = tmp + nand_chip->ecc.layout->eccpos[0];
 849                        dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 850                                pos, bit_pos, err_byte, ecc[tmp]);
 851                }
 852
 853                i++;
 854                err_nbr--;
 855        }
 856
 857        return;
 858}
 859
 860static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
 861        u8 *ecc)
 862{
 863        struct nand_chip *nand_chip = mtd->priv;
 864        struct atmel_nand_host *host = nand_chip->priv;
 865        int i, err_nbr, eccbytes;
 866        uint8_t *buf_pos;
 867        int total_err = 0;
 868
 869        eccbytes = nand_chip->ecc.bytes;
 870        for (i = 0; i < eccbytes; i++)
 871                if (ecc[i] != 0xff)
 872                        goto normal_check;
 873        /* Erased page, return OK */
 874        return 0;
 875
 876normal_check:
 877        for (i = 0; i < host->pmecc_sector_number; i++) {
 878                err_nbr = 0;
 879                if (pmecc_stat & 0x1) {
 880                        buf_pos = buf + i * host->pmecc_sector_size;
 881
 882                        pmecc_gen_syndrome(mtd, i);
 883                        pmecc_substitute(mtd);
 884                        pmecc_get_sigma(mtd);
 885
 886                        err_nbr = pmecc_err_location(mtd);
 887                        if (err_nbr == -1) {
 888                                dev_err(host->dev, "PMECC: Too many errors\n");
 889                                mtd->ecc_stats.failed++;
 890                                return -EIO;
 891                        } else {
 892                                pmecc_correct_data(mtd, buf_pos, ecc, i,
 893                                        host->pmecc_bytes_per_sector, err_nbr);
 894                                mtd->ecc_stats.corrected += err_nbr;
 895                                total_err += err_nbr;
 896                        }
 897                }
 898                pmecc_stat >>= 1;
 899        }
 900
 901        return total_err;
 902}
 903
 904static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
 905{
 906        u32 val;
 907
 908        if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
 909                dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
 910                return;
 911        }
 912
 913        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
 914        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
 915        val = pmecc_readl_relaxed(host->ecc, CFG);
 916
 917        if (ecc_op == NAND_ECC_READ)
 918                pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
 919                        | PMECC_CFG_AUTO_ENABLE);
 920        else
 921                pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
 922                        & ~PMECC_CFG_AUTO_ENABLE);
 923
 924        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
 925        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
 926}
 927
 928static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
 929        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 930{
 931        struct atmel_nand_host *host = chip->priv;
 932        int eccsize = chip->ecc.size;
 933        uint8_t *oob = chip->oob_poi;
 934        uint32_t *eccpos = chip->ecc.layout->eccpos;
 935        uint32_t stat;
 936        unsigned long end_time;
 937        int bitflips = 0;
 938
 939        if (!host->nfc || !host->nfc->use_nfc_sram)
 940                pmecc_enable(host, NAND_ECC_READ);
 941
 942        chip->read_buf(mtd, buf, eccsize);
 943        chip->read_buf(mtd, oob, mtd->oobsize);
 944
 945        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 946        while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
 947                if (unlikely(time_after(jiffies, end_time))) {
 948                        dev_err(host->dev, "PMECC: Timeout to get error status.\n");
 949                        return -EIO;
 950                }
 951                cpu_relax();
 952        }
 953
 954        stat = pmecc_readl_relaxed(host->ecc, ISR);
 955        if (stat != 0) {
 956                bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
 957                if (bitflips < 0)
 958                        /* uncorrectable errors */
 959                        return 0;
 960        }
 961
 962        return bitflips;
 963}
 964
 965static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
 966                struct nand_chip *chip, const uint8_t *buf, int oob_required)
 967{
 968        struct atmel_nand_host *host = chip->priv;
 969        uint32_t *eccpos = chip->ecc.layout->eccpos;
 970        int i, j;
 971        unsigned long end_time;
 972
 973        if (!host->nfc || !host->nfc->write_by_sram) {
 974                pmecc_enable(host, NAND_ECC_WRITE);
 975                chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
 976        }
 977
 978        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 979        while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
 980                if (unlikely(time_after(jiffies, end_time))) {
 981                        dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
 982                        return -EIO;
 983                }
 984                cpu_relax();
 985        }
 986
 987        for (i = 0; i < host->pmecc_sector_number; i++) {
 988                for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
 989                        int pos;
 990
 991                        pos = i * host->pmecc_bytes_per_sector + j;
 992                        chip->oob_poi[eccpos[pos]] =
 993                                pmecc_readb_ecc_relaxed(host->ecc, i, j);
 994                }
 995        }
 996        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 997
 998        return 0;
 999}
1000
1001static void atmel_pmecc_core_init(struct mtd_info *mtd)
1002{
1003        struct nand_chip *nand_chip = mtd->priv;
1004        struct atmel_nand_host *host = nand_chip->priv;
1005        uint32_t val = 0;
1006        struct nand_ecclayout *ecc_layout;
1007
1008        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1009        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1010
1011        switch (host->pmecc_corr_cap) {
1012        case 2:
1013                val = PMECC_CFG_BCH_ERR2;
1014                break;
1015        case 4:
1016                val = PMECC_CFG_BCH_ERR4;
1017                break;
1018        case 8:
1019                val = PMECC_CFG_BCH_ERR8;
1020                break;
1021        case 12:
1022                val = PMECC_CFG_BCH_ERR12;
1023                break;
1024        case 24:
1025                val = PMECC_CFG_BCH_ERR24;
1026                break;
1027        }
1028
1029        if (host->pmecc_sector_size == 512)
1030                val |= PMECC_CFG_SECTOR512;
1031        else if (host->pmecc_sector_size == 1024)
1032                val |= PMECC_CFG_SECTOR1024;
1033
1034        switch (host->pmecc_sector_number) {
1035        case 1:
1036                val |= PMECC_CFG_PAGE_1SECTOR;
1037                break;
1038        case 2:
1039                val |= PMECC_CFG_PAGE_2SECTORS;
1040                break;
1041        case 4:
1042                val |= PMECC_CFG_PAGE_4SECTORS;
1043                break;
1044        case 8:
1045                val |= PMECC_CFG_PAGE_8SECTORS;
1046                break;
1047        }
1048
1049        val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1050                | PMECC_CFG_AUTO_DISABLE);
1051        pmecc_writel(host->ecc, CFG, val);
1052
1053        ecc_layout = nand_chip->ecc.layout;
1054        pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1055        pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1056        pmecc_writel(host->ecc, EADDR,
1057                        ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1058        /* See datasheet about PMECC Clock Control Register */
1059        pmecc_writel(host->ecc, CLK, 2);
1060        pmecc_writel(host->ecc, IDR, 0xff);
1061        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1062}
1063
1064/*
1065 * Get ECC requirement in ONFI parameters, returns -1 if ONFI
1066 * parameters is not supported.
1067 * return 0 if success to get the ECC requirement.
1068 */
1069static int get_onfi_ecc_param(struct nand_chip *chip,
1070                int *ecc_bits, int *sector_size)
1071{
1072        *ecc_bits = *sector_size = 0;
1073
1074        if (chip->onfi_params.ecc_bits == 0xff)
1075                /* TODO: the sector_size and ecc_bits need to be find in
1076                 * extended ecc parameter, currently we don't support it.
1077                 */
1078                return -1;
1079
1080        *ecc_bits = chip->onfi_params.ecc_bits;
1081
1082        /* The default sector size (ecc codeword size) is 512 */
1083        *sector_size = 512;
1084
1085        return 0;
1086}
1087
1088/*
1089 * Get ecc requirement from ONFI parameters ecc requirement.
1090 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1091 * will set them according to ONFI ecc requirement. Otherwise, use the
1092 * value in DTS file.
1093 * return 0 if success. otherwise return error code.
1094 */
1095static int pmecc_choose_ecc(struct atmel_nand_host *host,
1096                int *cap, int *sector_size)
1097{
1098        /* Get ECC requirement from ONFI parameters */
1099        *cap = *sector_size = 0;
1100        if (host->nand_chip.onfi_version) {
1101                if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size))
1102                        dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
1103                                *cap, *sector_size);
1104                else
1105                        dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
1106        } else {
1107                dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
1108        }
1109        if (*cap == 0 && *sector_size == 0) {
1110                *cap = 2;
1111                *sector_size = 512;
1112        }
1113
1114        /* If dts file doesn't specify then use the one in ONFI parameters */
1115        if (host->pmecc_corr_cap == 0) {
1116                /* use the most fitable ecc bits (the near bigger one ) */
1117                if (*cap <= 2)
1118                        host->pmecc_corr_cap = 2;
1119                else if (*cap <= 4)
1120                        host->pmecc_corr_cap = 4;
1121                else if (*cap <= 8)
1122                        host->pmecc_corr_cap = 8;
1123                else if (*cap <= 12)
1124                        host->pmecc_corr_cap = 12;
1125                else if (*cap <= 24)
1126                        host->pmecc_corr_cap = 24;
1127                else
1128                        return -EINVAL;
1129        }
1130        if (host->pmecc_sector_size == 0) {
1131                /* use the most fitable sector size (the near smaller one ) */
1132                if (*sector_size >= 1024)
1133                        host->pmecc_sector_size = 1024;
1134                else if (*sector_size >= 512)
1135                        host->pmecc_sector_size = 512;
1136                else
1137                        return -EINVAL;
1138        }
1139        return 0;
1140}
1141
1142static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
1143                                         struct atmel_nand_host *host)
1144{
1145        struct mtd_info *mtd = &host->mtd;
1146        struct nand_chip *nand_chip = &host->nand_chip;
1147        struct resource *regs, *regs_pmerr, *regs_rom;
1148        int cap, sector_size, err_no;
1149
1150        err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1151        if (err_no) {
1152                dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1153                return err_no;
1154        }
1155
1156        if (cap > host->pmecc_corr_cap ||
1157                        sector_size != host->pmecc_sector_size)
1158                dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1159
1160        cap = host->pmecc_corr_cap;
1161        sector_size = host->pmecc_sector_size;
1162        host->pmecc_lookup_table_offset = (sector_size == 512) ?
1163                        host->pmecc_lookup_table_offset_512 :
1164                        host->pmecc_lookup_table_offset_1024;
1165
1166        dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1167                 cap, sector_size);
1168
1169        regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1170        if (!regs) {
1171                dev_warn(host->dev,
1172                        "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1173                nand_chip->ecc.mode = NAND_ECC_SOFT;
1174                return 0;
1175        }
1176
1177        host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1178        if (IS_ERR(host->ecc)) {
1179                dev_err(host->dev, "ioremap failed\n");
1180                err_no = PTR_ERR(host->ecc);
1181                goto err;
1182        }
1183
1184        regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1185        host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1186        if (IS_ERR(host->pmerrloc_base)) {
1187                dev_err(host->dev,
1188                        "Can not get I/O resource for PMECC ERRLOC controller!\n");
1189                err_no = PTR_ERR(host->pmerrloc_base);
1190                goto err;
1191        }
1192
1193        regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1194        host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1195        if (IS_ERR(host->pmecc_rom_base)) {
1196                dev_err(host->dev, "Can not get I/O resource for ROM!\n");
1197                err_no = PTR_ERR(host->pmecc_rom_base);
1198                goto err;
1199        }
1200
1201        /* ECC is calculated for the whole page (1 step) */
1202        nand_chip->ecc.size = mtd->writesize;
1203
1204        /* set ECC page size and oob layout */
1205        switch (mtd->writesize) {
1206        case 2048:
1207                host->pmecc_degree = (sector_size == 512) ?
1208                        PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1209                host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1210                host->pmecc_sector_number = mtd->writesize / sector_size;
1211                host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1212                        cap, sector_size);
1213                host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1214                host->pmecc_index_of = host->pmecc_rom_base +
1215                        host->pmecc_lookup_table_offset;
1216
1217                nand_chip->ecc.steps = 1;
1218                nand_chip->ecc.strength = cap;
1219                nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
1220                                       host->pmecc_sector_number;
1221                if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
1222                        dev_err(host->dev, "No room for ECC bytes\n");
1223                        err_no = -EINVAL;
1224                        goto err;
1225                }
1226                pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1227                                        mtd->oobsize,
1228                                        nand_chip->ecc.bytes);
1229                nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1230                break;
1231        case 512:
1232        case 1024:
1233        case 4096:
1234                /* TODO */
1235                dev_warn(host->dev,
1236                        "Unsupported page size for PMECC, use Software ECC\n");
1237        default:
1238                /* page size not handled by HW ECC */
1239                /* switching back to soft ECC */
1240                nand_chip->ecc.mode = NAND_ECC_SOFT;
1241                return 0;
1242        }
1243
1244        /* Allocate data for PMECC computation */
1245        err_no = pmecc_data_alloc(host);
1246        if (err_no) {
1247                dev_err(host->dev,
1248                                "Cannot allocate memory for PMECC computation!\n");
1249                goto err;
1250        }
1251
1252        nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1253        nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1254
1255        atmel_pmecc_core_init(mtd);
1256
1257        return 0;
1258
1259err:
1260        return err_no;
1261}
1262
1263/*
1264 * Calculate HW ECC
1265 *
1266 * function called after a write
1267 *
1268 * mtd:        MTD block structure
1269 * dat:        raw data (unused)
1270 * ecc_code:   buffer for ECC
1271 */
1272static int atmel_nand_calculate(struct mtd_info *mtd,
1273                const u_char *dat, unsigned char *ecc_code)
1274{
1275        struct nand_chip *nand_chip = mtd->priv;
1276        struct atmel_nand_host *host = nand_chip->priv;
1277        unsigned int ecc_value;
1278
1279        /* get the first 2 ECC bytes */
1280        ecc_value = ecc_readl(host->ecc, PR);
1281
1282        ecc_code[0] = ecc_value & 0xFF;
1283        ecc_code[1] = (ecc_value >> 8) & 0xFF;
1284
1285        /* get the last 2 ECC bytes */
1286        ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1287
1288        ecc_code[2] = ecc_value & 0xFF;
1289        ecc_code[3] = (ecc_value >> 8) & 0xFF;
1290
1291        return 0;
1292}
1293
1294/*
1295 * HW ECC read page function
1296 *
1297 * mtd:        mtd info structure
1298 * chip:       nand chip info structure
1299 * buf:        buffer to store read data
1300 * oob_required:    caller expects OOB data read to chip->oob_poi
1301 */
1302static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1303                                uint8_t *buf, int oob_required, int page)
1304{
1305        int eccsize = chip->ecc.size;
1306        int eccbytes = chip->ecc.bytes;
1307        uint32_t *eccpos = chip->ecc.layout->eccpos;
1308        uint8_t *p = buf;
1309        uint8_t *oob = chip->oob_poi;
1310        uint8_t *ecc_pos;
1311        int stat;
1312        unsigned int max_bitflips = 0;
1313
1314        /*
1315         * Errata: ALE is incorrectly wired up to the ECC controller
1316         * on the AP7000, so it will include the address cycles in the
1317         * ECC calculation.
1318         *
1319         * Workaround: Reset the parity registers before reading the
1320         * actual data.
1321         */
1322        struct atmel_nand_host *host = chip->priv;
1323        if (host->board.need_reset_workaround)
1324                ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1325
1326        /* read the page */
1327        chip->read_buf(mtd, p, eccsize);
1328
1329        /* move to ECC position if needed */
1330        if (eccpos[0] != 0) {
1331                /* This only works on large pages
1332                 * because the ECC controller waits for
1333                 * NAND_CMD_RNDOUTSTART after the
1334                 * NAND_CMD_RNDOUT.
1335                 * anyway, for small pages, the eccpos[0] == 0
1336                 */
1337                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1338                                mtd->writesize + eccpos[0], -1);
1339        }
1340
1341        /* the ECC controller needs to read the ECC just after the data */
1342        ecc_pos = oob + eccpos[0];
1343        chip->read_buf(mtd, ecc_pos, eccbytes);
1344
1345        /* check if there's an error */
1346        stat = chip->ecc.correct(mtd, p, oob, NULL);
1347
1348        if (stat < 0) {
1349                mtd->ecc_stats.failed++;
1350        } else {
1351                mtd->ecc_stats.corrected += stat;
1352                max_bitflips = max_t(unsigned int, max_bitflips, stat);
1353        }
1354
1355        /* get back to oob start (end of page) */
1356        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1357
1358        /* read the oob */
1359        chip->read_buf(mtd, oob, mtd->oobsize);
1360
1361        return max_bitflips;
1362}
1363
1364/*
1365 * HW ECC Correction
1366 *
1367 * function called after a read
1368 *
1369 * mtd:        MTD block structure
1370 * dat:        raw data read from the chip
1371 * read_ecc:   ECC from the chip (unused)
1372 * isnull:     unused
1373 *
1374 * Detect and correct a 1 bit error for a page
1375 */
1376static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1377                u_char *read_ecc, u_char *isnull)
1378{
1379        struct nand_chip *nand_chip = mtd->priv;
1380        struct atmel_nand_host *host = nand_chip->priv;
1381        unsigned int ecc_status;
1382        unsigned int ecc_word, ecc_bit;
1383
1384        /* get the status from the Status Register */
1385        ecc_status = ecc_readl(host->ecc, SR);
1386
1387        /* if there's no error */
1388        if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1389                return 0;
1390
1391        /* get error bit offset (4 bits) */
1392        ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1393        /* get word address (12 bits) */
1394        ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1395        ecc_word >>= 4;
1396
1397        /* if there are multiple errors */
1398        if (ecc_status & ATMEL_ECC_MULERR) {
1399                /* check if it is a freshly erased block
1400                 * (filled with 0xff) */
1401                if ((ecc_bit == ATMEL_ECC_BITADDR)
1402                                && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1403                        /* the block has just been erased, return OK */
1404                        return 0;
1405                }
1406                /* it doesn't seems to be a freshly
1407                 * erased block.
1408                 * We can't correct so many errors */
1409                dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1410                                " Unable to correct.\n");
1411                return -EIO;
1412        }
1413
1414        /* if there's a single bit error : we can correct it */
1415        if (ecc_status & ATMEL_ECC_ECCERR) {
1416                /* there's nothing much to do here.
1417                 * the bit error is on the ECC itself.
1418                 */
1419                dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1420                                " Nothing to correct\n");
1421                return 0;
1422        }
1423
1424        dev_dbg(host->dev, "atmel_nand : one bit error on data."
1425                        " (word offset in the page :"
1426                        " 0x%x bit offset : 0x%x)\n",
1427                        ecc_word, ecc_bit);
1428        /* correct the error */
1429        if (nand_chip->options & NAND_BUSWIDTH_16) {
1430                /* 16 bits words */
1431                ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1432        } else {
1433                /* 8 bits words */
1434                dat[ecc_word] ^= (1 << ecc_bit);
1435        }
1436        dev_dbg(host->dev, "atmel_nand : error corrected\n");
1437        return 1;
1438}
1439
1440/*
1441 * Enable HW ECC : unused on most chips
1442 */
1443static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1444{
1445        struct nand_chip *nand_chip = mtd->priv;
1446        struct atmel_nand_host *host = nand_chip->priv;
1447
1448        if (host->board.need_reset_workaround)
1449                ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1450}
1451
1452#if defined(CONFIG_OF)
1453static int atmel_of_init_port(struct atmel_nand_host *host,
1454                              struct device_node *np)
1455{
1456        u32 val;
1457        u32 offset[2];
1458        int ecc_mode;
1459        struct atmel_nand_data *board = &host->board;
1460        enum of_gpio_flags flags;
1461
1462        if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1463                if (val >= 32) {
1464                        dev_err(host->dev, "invalid addr-offset %u\n", val);
1465                        return -EINVAL;
1466                }
1467                board->ale = val;
1468        }
1469
1470        if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1471                if (val >= 32) {
1472                        dev_err(host->dev, "invalid cmd-offset %u\n", val);
1473                        return -EINVAL;
1474                }
1475                board->cle = val;
1476        }
1477
1478        ecc_mode = of_get_nand_ecc_mode(np);
1479
1480        board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1481
1482        board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1483
1484        board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1485
1486        if (of_get_nand_bus_width(np) == 16)
1487                board->bus_width_16 = 1;
1488
1489        board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1490        board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1491
1492        board->enable_pin = of_get_gpio(np, 1);
1493        board->det_pin = of_get_gpio(np, 2);
1494
1495        host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1496
1497        /* load the nfc driver if there is */
1498        of_platform_populate(np, NULL, NULL, host->dev);
1499
1500        if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1501                return 0;       /* Not using PMECC */
1502
1503        /* use PMECC, get correction capability, sector size and lookup
1504         * table offset.
1505         * If correction bits and sector size are not specified, then find
1506         * them from NAND ONFI parameters.
1507         */
1508        if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1509                if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1510                                (val != 24)) {
1511                        dev_err(host->dev,
1512                                "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1513                                val);
1514                        return -EINVAL;
1515                }
1516                host->pmecc_corr_cap = (u8)val;
1517        }
1518
1519        if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1520                if ((val != 512) && (val != 1024)) {
1521                        dev_err(host->dev,
1522                                "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1523                                val);
1524                        return -EINVAL;
1525                }
1526                host->pmecc_sector_size = (u16)val;
1527        }
1528
1529        if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1530                        offset, 2) != 0) {
1531                dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1532                return -EINVAL;
1533        }
1534        if (!offset[0] && !offset[1]) {
1535                dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1536                return -EINVAL;
1537        }
1538        host->pmecc_lookup_table_offset_512 = offset[0];
1539        host->pmecc_lookup_table_offset_1024 = offset[1];
1540
1541        return 0;
1542}
1543#else
1544static int atmel_of_init_port(struct atmel_nand_host *host,
1545                              struct device_node *np)
1546{
1547        return -EINVAL;
1548}
1549#endif
1550
1551static int __init atmel_hw_nand_init_params(struct platform_device *pdev,
1552                                         struct atmel_nand_host *host)
1553{
1554        struct mtd_info *mtd = &host->mtd;
1555        struct nand_chip *nand_chip = &host->nand_chip;
1556        struct resource         *regs;
1557
1558        regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1559        if (!regs) {
1560                dev_err(host->dev,
1561                        "Can't get I/O resource regs, use software ECC\n");
1562                nand_chip->ecc.mode = NAND_ECC_SOFT;
1563                return 0;
1564        }
1565
1566        host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1567        if (IS_ERR(host->ecc)) {
1568                dev_err(host->dev, "ioremap failed\n");
1569                return PTR_ERR(host->ecc);
1570        }
1571
1572        /* ECC is calculated for the whole page (1 step) */
1573        nand_chip->ecc.size = mtd->writesize;
1574
1575        /* set ECC page size and oob layout */
1576        switch (mtd->writesize) {
1577        case 512:
1578                nand_chip->ecc.layout = &atmel_oobinfo_small;
1579                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1580                break;
1581        case 1024:
1582                nand_chip->ecc.layout = &atmel_oobinfo_large;
1583                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1584                break;
1585        case 2048:
1586                nand_chip->ecc.layout = &atmel_oobinfo_large;
1587                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1588                break;
1589        case 4096:
1590                nand_chip->ecc.layout = &atmel_oobinfo_large;
1591                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1592                break;
1593        default:
1594                /* page size not handled by HW ECC */
1595                /* switching back to soft ECC */
1596                nand_chip->ecc.mode = NAND_ECC_SOFT;
1597                return 0;
1598        }
1599
1600        /* set up for HW ECC */
1601        nand_chip->ecc.calculate = atmel_nand_calculate;
1602        nand_chip->ecc.correct = atmel_nand_correct;
1603        nand_chip->ecc.hwctl = atmel_nand_hwctl;
1604        nand_chip->ecc.read_page = atmel_nand_read_page;
1605        nand_chip->ecc.bytes = 4;
1606        nand_chip->ecc.strength = 1;
1607
1608        return 0;
1609}
1610
1611/* SMC interrupt service routine */
1612static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1613{
1614        struct atmel_nand_host *host = dev_id;
1615        u32 status, mask, pending;
1616        irqreturn_t ret = IRQ_HANDLED;
1617
1618        status = nfc_readl(host->nfc->hsmc_regs, SR);
1619        mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1620        pending = status & mask;
1621
1622        if (pending & NFC_SR_XFR_DONE) {
1623                complete(&host->nfc->comp_nfc);
1624                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1625        } else if (pending & NFC_SR_RB_EDGE) {
1626                complete(&host->nfc->comp_nfc);
1627                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1628        } else if (pending & NFC_SR_CMD_DONE) {
1629                complete(&host->nfc->comp_nfc);
1630                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1631        } else {
1632                ret = IRQ_NONE;
1633        }
1634
1635        return ret;
1636}
1637
1638/* NFC(Nand Flash Controller) related functions */
1639static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1640{
1641        unsigned long timeout;
1642        init_completion(&host->nfc->comp_nfc);
1643
1644        /* Enable interrupt that need to wait for */
1645        nfc_writel(host->nfc->hsmc_regs, IER, flag);
1646
1647        timeout = wait_for_completion_timeout(&host->nfc->comp_nfc,
1648                        msecs_to_jiffies(NFC_TIME_OUT_MS));
1649        if (timeout)
1650                return 0;
1651
1652        /* Time out to wait for the interrupt */
1653        dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1654        return -ETIMEDOUT;
1655}
1656
1657static int nfc_send_command(struct atmel_nand_host *host,
1658        unsigned int cmd, unsigned int addr, unsigned char cycle0)
1659{
1660        unsigned long timeout;
1661        dev_dbg(host->dev,
1662                "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1663                cmd, addr, cycle0);
1664
1665        timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1666        while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1667                        & NFCADDR_CMD_NFCBUSY) {
1668                if (time_after(jiffies, timeout)) {
1669                        dev_err(host->dev,
1670                                "Time out to wait CMD_NFCBUSY ready!\n");
1671                        return -ETIMEDOUT;
1672                }
1673        }
1674        nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1675        nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1676        return nfc_wait_interrupt(host, NFC_SR_CMD_DONE);
1677}
1678
1679static int nfc_device_ready(struct mtd_info *mtd)
1680{
1681        struct nand_chip *nand_chip = mtd->priv;
1682        struct atmel_nand_host *host = nand_chip->priv;
1683        if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE))
1684                return 1;
1685        return 0;
1686}
1687
1688static void nfc_select_chip(struct mtd_info *mtd, int chip)
1689{
1690        struct nand_chip *nand_chip = mtd->priv;
1691        struct atmel_nand_host *host = nand_chip->priv;
1692
1693        if (chip == -1)
1694                nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1695        else
1696                nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1697}
1698
1699static int nfc_make_addr(struct mtd_info *mtd, int column, int page_addr,
1700                unsigned int *addr1234, unsigned int *cycle0)
1701{
1702        struct nand_chip *chip = mtd->priv;
1703
1704        int acycle = 0;
1705        unsigned char addr_bytes[8];
1706        int index = 0, bit_shift;
1707
1708        BUG_ON(addr1234 == NULL || cycle0 == NULL);
1709
1710        *cycle0 = 0;
1711        *addr1234 = 0;
1712
1713        if (column != -1) {
1714                if (chip->options & NAND_BUSWIDTH_16)
1715                        column >>= 1;
1716                addr_bytes[acycle++] = column & 0xff;
1717                if (mtd->writesize > 512)
1718                        addr_bytes[acycle++] = (column >> 8) & 0xff;
1719        }
1720
1721        if (page_addr != -1) {
1722                addr_bytes[acycle++] = page_addr & 0xff;
1723                addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1724                if (chip->chipsize > (128 << 20))
1725                        addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1726        }
1727
1728        if (acycle > 4)
1729                *cycle0 = addr_bytes[index++];
1730
1731        for (bit_shift = 0; index < acycle; bit_shift += 8)
1732                *addr1234 += addr_bytes[index++] << bit_shift;
1733
1734        /* return acycle in cmd register */
1735        return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1736}
1737
1738static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1739                                int column, int page_addr)
1740{
1741        struct nand_chip *chip = mtd->priv;
1742        struct atmel_nand_host *host = chip->priv;
1743        unsigned long timeout;
1744        unsigned int nfc_addr_cmd = 0;
1745
1746        unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1747
1748        /* Set default settings: no cmd2, no addr cycle. read from nand */
1749        unsigned int cmd2 = 0;
1750        unsigned int vcmd2 = 0;
1751        int acycle = NFCADDR_CMD_ACYCLE_NONE;
1752        int csid = NFCADDR_CMD_CSID_3;
1753        int dataen = NFCADDR_CMD_DATADIS;
1754        int nfcwr = NFCADDR_CMD_NFCRD;
1755        unsigned int addr1234 = 0;
1756        unsigned int cycle0 = 0;
1757        bool do_addr = true;
1758        host->nfc->data_in_sram = NULL;
1759
1760        dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1761             __func__, command, column, page_addr);
1762
1763        switch (command) {
1764        case NAND_CMD_RESET:
1765                nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1766                nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1767                udelay(chip->chip_delay);
1768
1769                nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1770                timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1771                while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1772                        if (time_after(jiffies, timeout)) {
1773                                dev_err(host->dev,
1774                                        "Time out to wait status ready!\n");
1775                                break;
1776                        }
1777                }
1778                return;
1779        case NAND_CMD_STATUS:
1780                do_addr = false;
1781                break;
1782        case NAND_CMD_PARAM:
1783        case NAND_CMD_READID:
1784                do_addr = false;
1785                acycle = NFCADDR_CMD_ACYCLE_1;
1786                if (column != -1)
1787                        addr1234 = column;
1788                break;
1789        case NAND_CMD_RNDOUT:
1790                cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1791                vcmd2 = NFCADDR_CMD_VCMD2;
1792                break;
1793        case NAND_CMD_READ0:
1794        case NAND_CMD_READOOB:
1795                if (command == NAND_CMD_READOOB) {
1796                        column += mtd->writesize;
1797                        command = NAND_CMD_READ0; /* only READ0 is valid */
1798                        cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1799                }
1800                if (host->nfc->use_nfc_sram) {
1801                        /* Enable Data transfer to sram */
1802                        dataen = NFCADDR_CMD_DATAEN;
1803
1804                        /* Need enable PMECC now, since NFC will transfer
1805                         * data in bus after sending nfc read command.
1806                         */
1807                        if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1808                                pmecc_enable(host, NAND_ECC_READ);
1809                }
1810
1811                cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1812                vcmd2 = NFCADDR_CMD_VCMD2;
1813                break;
1814        /* For prgramming command, the cmd need set to write enable */
1815        case NAND_CMD_PAGEPROG:
1816        case NAND_CMD_SEQIN:
1817        case NAND_CMD_RNDIN:
1818                nfcwr = NFCADDR_CMD_NFCWR;
1819                if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1820                        dataen = NFCADDR_CMD_DATAEN;
1821                break;
1822        default:
1823                break;
1824        }
1825
1826        if (do_addr)
1827                acycle = nfc_make_addr(mtd, column, page_addr, &addr1234,
1828                                &cycle0);
1829
1830        nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1831        nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1832
1833        if (dataen == NFCADDR_CMD_DATAEN)
1834                if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE))
1835                        dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n");
1836
1837        /*
1838         * Program and erase have their own busy handlers status, sequential
1839         * in, and deplete1 need no delay.
1840         */
1841        switch (command) {
1842        case NAND_CMD_CACHEDPROG:
1843        case NAND_CMD_PAGEPROG:
1844        case NAND_CMD_ERASE1:
1845        case NAND_CMD_ERASE2:
1846        case NAND_CMD_RNDIN:
1847        case NAND_CMD_STATUS:
1848        case NAND_CMD_RNDOUT:
1849        case NAND_CMD_SEQIN:
1850        case NAND_CMD_READID:
1851                return;
1852
1853        case NAND_CMD_READ0:
1854                if (dataen == NFCADDR_CMD_DATAEN) {
1855                        host->nfc->data_in_sram = host->nfc->sram_bank0 +
1856                                nfc_get_sram_off(host);
1857                        return;
1858                }
1859                /* fall through */
1860        default:
1861                nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1862        }
1863}
1864
1865static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1866                        uint32_t offset, int data_len, const uint8_t *buf,
1867                        int oob_required, int page, int cached, int raw)
1868{
1869        int cfg, len;
1870        int status = 0;
1871        struct atmel_nand_host *host = chip->priv;
1872        void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1873
1874        /* Subpage write is not supported */
1875        if (offset || (data_len < mtd->writesize))
1876                return -EINVAL;
1877
1878        cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1879        len = mtd->writesize;
1880
1881        if (unlikely(raw)) {
1882                len += mtd->oobsize;
1883                nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1884        } else
1885                nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1886
1887        /* Copy page data to sram that will write to nand via NFC */
1888        if (use_dma) {
1889                if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1890                        /* Fall back to use cpu copy */
1891                        memcpy32_toio(sram, buf, len);
1892        } else {
1893                memcpy32_toio(sram, buf, len);
1894        }
1895
1896        if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1897                /*
1898                 * When use NFC sram, need set up PMECC before send
1899                 * NAND_CMD_SEQIN command. Since when the nand command
1900                 * is sent, nfc will do transfer from sram and nand.
1901                 */
1902                pmecc_enable(host, NAND_ECC_WRITE);
1903
1904        host->nfc->will_write_sram = true;
1905        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1906        host->nfc->will_write_sram = false;
1907
1908        if (likely(!raw))
1909                /* Need to write ecc into oob */
1910                status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1911
1912        if (status < 0)
1913                return status;
1914
1915        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1916        status = chip->waitfunc(mtd, chip);
1917
1918        if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1919                status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1920
1921        if (status & NAND_STATUS_FAIL)
1922                return -EIO;
1923
1924        return 0;
1925}
1926
1927static int nfc_sram_init(struct mtd_info *mtd)
1928{
1929        struct nand_chip *chip = mtd->priv;
1930        struct atmel_nand_host *host = chip->priv;
1931        int res = 0;
1932
1933        /* Initialize the NFC CFG register */
1934        unsigned int cfg_nfc = 0;
1935
1936        /* set page size and oob layout */
1937        switch (mtd->writesize) {
1938        case 512:
1939                cfg_nfc = NFC_CFG_PAGESIZE_512;
1940                break;
1941        case 1024:
1942                cfg_nfc = NFC_CFG_PAGESIZE_1024;
1943                break;
1944        case 2048:
1945                cfg_nfc = NFC_CFG_PAGESIZE_2048;
1946                break;
1947        case 4096:
1948                cfg_nfc = NFC_CFG_PAGESIZE_4096;
1949                break;
1950        case 8192:
1951                cfg_nfc = NFC_CFG_PAGESIZE_8192;
1952                break;
1953        default:
1954                dev_err(host->dev, "Unsupported page size for NFC.\n");
1955                res = -ENXIO;
1956                return res;
1957        }
1958
1959        /* oob bytes size = (NFCSPARESIZE + 1) * 4
1960         * Max support spare size is 512 bytes. */
1961        cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1962                & NFC_CFG_NFC_SPARESIZE);
1963        /* default set a max timeout */
1964        cfg_nfc |= NFC_CFG_RSPARE |
1965                        NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1966
1967        nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
1968
1969        host->nfc->will_write_sram = false;
1970        nfc_set_sram_bank(host, 0);
1971
1972        /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
1973        if (host->nfc->write_by_sram) {
1974                if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
1975                                chip->ecc.mode == NAND_ECC_NONE)
1976                        chip->write_page = nfc_sram_write_page;
1977                else
1978                        host->nfc->write_by_sram = false;
1979        }
1980
1981        dev_info(host->dev, "Using NFC Sram read %s\n",
1982                        host->nfc->write_by_sram ? "and write" : "");
1983        return 0;
1984}
1985
1986static struct platform_driver atmel_nand_nfc_driver;
1987/*
1988 * Probe for the NAND device.
1989 */
1990static int __init atmel_nand_probe(struct platform_device *pdev)
1991{
1992        struct atmel_nand_host *host;
1993        struct mtd_info *mtd;
1994        struct nand_chip *nand_chip;
1995        struct resource *mem;
1996        struct mtd_part_parser_data ppdata = {};
1997        int res, irq;
1998
1999        /* Allocate memory for the device structure (and zero it) */
2000        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2001        if (!host) {
2002                printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
2003                return -ENOMEM;
2004        }
2005
2006        res = platform_driver_register(&atmel_nand_nfc_driver);
2007        if (res)
2008                dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2009
2010        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2011        host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2012        if (IS_ERR(host->io_base)) {
2013                dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
2014                res = PTR_ERR(host->io_base);
2015                goto err_nand_ioremap;
2016        }
2017        host->io_phys = (dma_addr_t)mem->start;
2018
2019        mtd = &host->mtd;
2020        nand_chip = &host->nand_chip;
2021        host->dev = &pdev->dev;
2022        if (pdev->dev.of_node) {
2023                res = atmel_of_init_port(host, pdev->dev.of_node);
2024                if (res)
2025                        goto err_nand_ioremap;
2026        } else {
2027                memcpy(&host->board, dev_get_platdata(&pdev->dev),
2028                       sizeof(struct atmel_nand_data));
2029        }
2030
2031        nand_chip->priv = host;         /* link the private data structures */
2032        mtd->priv = nand_chip;
2033        mtd->owner = THIS_MODULE;
2034
2035        /* Set address of NAND IO lines */
2036        nand_chip->IO_ADDR_R = host->io_base;
2037        nand_chip->IO_ADDR_W = host->io_base;
2038
2039        if (nand_nfc.is_initialized) {
2040                /* NFC driver is probed and initialized */
2041                host->nfc = &nand_nfc;
2042
2043                nand_chip->select_chip = nfc_select_chip;
2044                nand_chip->dev_ready = nfc_device_ready;
2045                nand_chip->cmdfunc = nfc_nand_command;
2046
2047                /* Initialize the interrupt for NFC */
2048                irq = platform_get_irq(pdev, 0);
2049                if (irq < 0) {
2050                        dev_err(host->dev, "Cannot get HSMC irq!\n");
2051                        res = irq;
2052                        goto err_nand_ioremap;
2053                }
2054
2055                res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2056                                0, "hsmc", host);
2057                if (res) {
2058                        dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2059                                irq);
2060                        goto err_nand_ioremap;
2061                }
2062        } else {
2063                res = atmel_nand_set_enable_ready_pins(mtd);
2064                if (res)
2065                        goto err_nand_ioremap;
2066
2067                nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2068        }
2069
2070        nand_chip->ecc.mode = host->board.ecc_mode;
2071        nand_chip->chip_delay = 20;             /* 20us command delay time */
2072
2073        if (host->board.bus_width_16)   /* 16-bit bus width */
2074                nand_chip->options |= NAND_BUSWIDTH_16;
2075
2076        nand_chip->read_buf = atmel_read_buf;
2077        nand_chip->write_buf = atmel_write_buf;
2078
2079        platform_set_drvdata(pdev, host);
2080        atmel_nand_enable(host);
2081
2082        if (gpio_is_valid(host->board.det_pin)) {
2083                res = devm_gpio_request(&pdev->dev,
2084                                host->board.det_pin, "nand_det");
2085                if (res < 0) {
2086                        dev_err(&pdev->dev,
2087                                "can't request det gpio %d\n",
2088                                host->board.det_pin);
2089                        goto err_no_card;
2090                }
2091
2092                res = gpio_direction_input(host->board.det_pin);
2093                if (res < 0) {
2094                        dev_err(&pdev->dev,
2095                                "can't request input direction det gpio %d\n",
2096                                host->board.det_pin);
2097                        goto err_no_card;
2098                }
2099
2100                if (gpio_get_value(host->board.det_pin)) {
2101                        printk(KERN_INFO "No SmartMedia card inserted.\n");
2102                        res = -ENXIO;
2103                        goto err_no_card;
2104                }
2105        }
2106
2107        if (host->board.on_flash_bbt || on_flash_bbt) {
2108                printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
2109                nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2110        }
2111
2112        if (!host->board.has_dma)
2113                use_dma = 0;
2114
2115        if (use_dma) {
2116                dma_cap_mask_t mask;
2117
2118                dma_cap_zero(mask);
2119                dma_cap_set(DMA_MEMCPY, mask);
2120                host->dma_chan = dma_request_channel(mask, NULL, NULL);
2121                if (!host->dma_chan) {
2122                        dev_err(host->dev, "Failed to request DMA channel\n");
2123                        use_dma = 0;
2124                }
2125        }
2126        if (use_dma)
2127                dev_info(host->dev, "Using %s for DMA transfers.\n",
2128                                        dma_chan_name(host->dma_chan));
2129        else
2130                dev_info(host->dev, "No DMA support for NAND access.\n");
2131
2132        /* first scan to find the device and get the page size */
2133        if (nand_scan_ident(mtd, 1, NULL)) {
2134                res = -ENXIO;
2135                goto err_scan_ident;
2136        }
2137
2138        if (nand_chip->ecc.mode == NAND_ECC_HW) {
2139                if (host->has_pmecc)
2140                        res = atmel_pmecc_nand_init_params(pdev, host);
2141                else
2142                        res = atmel_hw_nand_init_params(pdev, host);
2143
2144                if (res != 0)
2145                        goto err_hw_ecc;
2146        }
2147
2148        /* initialize the nfc configuration register */
2149        if (host->nfc && host->nfc->use_nfc_sram) {
2150                res = nfc_sram_init(mtd);
2151                if (res) {
2152                        host->nfc->use_nfc_sram = false;
2153                        dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2154                }
2155        }
2156
2157        /* second phase scan */
2158        if (nand_scan_tail(mtd)) {
2159                res = -ENXIO;
2160                goto err_scan_tail;
2161        }
2162
2163        mtd->name = "atmel_nand";
2164        ppdata.of_node = pdev->dev.of_node;
2165        res = mtd_device_parse_register(mtd, NULL, &ppdata,
2166                        host->board.parts, host->board.num_parts);
2167        if (!res)
2168                return res;
2169
2170err_scan_tail:
2171        if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2172                pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2173err_hw_ecc:
2174err_scan_ident:
2175err_no_card:
2176        atmel_nand_disable(host);
2177        if (host->dma_chan)
2178                dma_release_channel(host->dma_chan);
2179err_nand_ioremap:
2180        platform_driver_unregister(&atmel_nand_nfc_driver);
2181        return res;
2182}
2183
2184/*
2185 * Remove a NAND device.
2186 */
2187static int __exit atmel_nand_remove(struct platform_device *pdev)
2188{
2189        struct atmel_nand_host *host = platform_get_drvdata(pdev);
2190        struct mtd_info *mtd = &host->mtd;
2191
2192        nand_release(mtd);
2193
2194        atmel_nand_disable(host);
2195
2196        if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2197                pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2198                pmerrloc_writel(host->pmerrloc_base, ELDIS,
2199                                PMERRLOC_DISABLE);
2200        }
2201
2202        if (host->dma_chan)
2203                dma_release_channel(host->dma_chan);
2204
2205        platform_driver_unregister(&atmel_nand_nfc_driver);
2206
2207        return 0;
2208}
2209
2210#if defined(CONFIG_OF)
2211static const struct of_device_id atmel_nand_dt_ids[] = {
2212        { .compatible = "atmel,at91rm9200-nand" },
2213        { /* sentinel */ }
2214};
2215
2216MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2217#endif
2218
2219static int atmel_nand_nfc_probe(struct platform_device *pdev)
2220{
2221        struct atmel_nfc *nfc = &nand_nfc;
2222        struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2223
2224        nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2225        nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2226        if (IS_ERR(nfc->base_cmd_regs))
2227                return PTR_ERR(nfc->base_cmd_regs);
2228
2229        nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2230        nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2231        if (IS_ERR(nfc->hsmc_regs))
2232                return PTR_ERR(nfc->hsmc_regs);
2233
2234        nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2235        if (nfc_sram) {
2236                nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2237                if (IS_ERR(nfc->sram_bank0)) {
2238                        dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2239                                        PTR_ERR(nfc->sram_bank0));
2240                } else {
2241                        nfc->use_nfc_sram = true;
2242                        nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2243
2244                        if (pdev->dev.of_node)
2245                                nfc->write_by_sram = of_property_read_bool(
2246                                                pdev->dev.of_node,
2247                                                "atmel,write-by-sram");
2248                }
2249        }
2250
2251        nfc->is_initialized = true;
2252        dev_info(&pdev->dev, "NFC is probed.\n");
2253        return 0;
2254}
2255
2256#if defined(CONFIG_OF)
2257static struct of_device_id atmel_nand_nfc_match[] = {
2258        { .compatible = "atmel,sama5d3-nfc" },
2259        { /* sentinel */ }
2260};
2261#endif
2262
2263static struct platform_driver atmel_nand_nfc_driver = {
2264        .driver = {
2265                .name = "atmel_nand_nfc",
2266                .owner = THIS_MODULE,
2267                .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2268        },
2269        .probe = atmel_nand_nfc_probe,
2270};
2271
2272static struct platform_driver atmel_nand_driver = {
2273        .remove         = __exit_p(atmel_nand_remove),
2274        .driver         = {
2275                .name   = "atmel_nand",
2276                .owner  = THIS_MODULE,
2277                .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2278        },
2279};
2280
2281module_platform_driver_probe(atmel_nand_driver, atmel_nand_probe);
2282
2283MODULE_LICENSE("GPL");
2284MODULE_AUTHOR("Rick Bronson");
2285MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2286MODULE_ALIAS("platform:atmel_nand");
2287