linux/drivers/net/can/mcp251x.c
<<
>>
Prefs
   1/*
   2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 *
  21 * This program is free software; you can redistribute it and/or modify
  22 * it under the terms of the version 2 of the GNU General Public License
  23 * as published by the Free Software Foundation
  24 *
  25 * This program is distributed in the hope that it will be useful,
  26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28 * GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with this program; if not, write to the Free Software
  32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  33 *
  34 *
  35 *
  36 * Your platform definition file should specify something like:
  37 *
  38 * static struct mcp251x_platform_data mcp251x_info = {
  39 *         .oscillator_frequency = 8000000,
  40 * };
  41 *
  42 * static struct spi_board_info spi_board_info[] = {
  43 *         {
  44 *                 .modalias = "mcp2510",
  45 *                      // or "mcp2515" depending on your controller
  46 *                 .platform_data = &mcp251x_info,
  47 *                 .irq = IRQ_EINT13,
  48 *                 .max_speed_hz = 2*1000*1000,
  49 *                 .chip_select = 2,
  50 *         },
  51 * };
  52 *
  53 * Please see mcp251x.h for a description of the fields in
  54 * struct mcp251x_platform_data.
  55 *
  56 */
  57
  58#include <linux/can/core.h>
  59#include <linux/can/dev.h>
  60#include <linux/can/led.h>
  61#include <linux/can/platform/mcp251x.h>
  62#include <linux/completion.h>
  63#include <linux/delay.h>
  64#include <linux/device.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/freezer.h>
  67#include <linux/interrupt.h>
  68#include <linux/io.h>
  69#include <linux/kernel.h>
  70#include <linux/module.h>
  71#include <linux/netdevice.h>
  72#include <linux/platform_device.h>
  73#include <linux/slab.h>
  74#include <linux/spi/spi.h>
  75#include <linux/uaccess.h>
  76#include <linux/regulator/consumer.h>
  77
  78/* SPI interface instruction set */
  79#define INSTRUCTION_WRITE       0x02
  80#define INSTRUCTION_READ        0x03
  81#define INSTRUCTION_BIT_MODIFY  0x05
  82#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  83#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  84#define INSTRUCTION_RESET       0xC0
  85#define RTS_TXB0                0x01
  86#define RTS_TXB1                0x02
  87#define RTS_TXB2                0x04
  88#define INSTRUCTION_RTS(n)      (0x80 | ((n) & 0x07))
  89
  90
  91/* MPC251x registers */
  92#define CANSTAT       0x0e
  93#define CANCTRL       0x0f
  94#  define CANCTRL_REQOP_MASK        0xe0
  95#  define CANCTRL_REQOP_CONF        0x80
  96#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  97#  define CANCTRL_REQOP_LOOPBACK    0x40
  98#  define CANCTRL_REQOP_SLEEP       0x20
  99#  define CANCTRL_REQOP_NORMAL      0x00
 100#  define CANCTRL_OSM               0x08
 101#  define CANCTRL_ABAT              0x10
 102#define TEC           0x1c
 103#define REC           0x1d
 104#define CNF1          0x2a
 105#  define CNF1_SJW_SHIFT   6
 106#define CNF2          0x29
 107#  define CNF2_BTLMODE     0x80
 108#  define CNF2_SAM         0x40
 109#  define CNF2_PS1_SHIFT   3
 110#define CNF3          0x28
 111#  define CNF3_SOF         0x08
 112#  define CNF3_WAKFIL      0x04
 113#  define CNF3_PHSEG2_MASK 0x07
 114#define CANINTE       0x2b
 115#  define CANINTE_MERRE 0x80
 116#  define CANINTE_WAKIE 0x40
 117#  define CANINTE_ERRIE 0x20
 118#  define CANINTE_TX2IE 0x10
 119#  define CANINTE_TX1IE 0x08
 120#  define CANINTE_TX0IE 0x04
 121#  define CANINTE_RX1IE 0x02
 122#  define CANINTE_RX0IE 0x01
 123#define CANINTF       0x2c
 124#  define CANINTF_MERRF 0x80
 125#  define CANINTF_WAKIF 0x40
 126#  define CANINTF_ERRIF 0x20
 127#  define CANINTF_TX2IF 0x10
 128#  define CANINTF_TX1IF 0x08
 129#  define CANINTF_TX0IF 0x04
 130#  define CANINTF_RX1IF 0x02
 131#  define CANINTF_RX0IF 0x01
 132#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 133#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 134#  define CANINTF_ERR (CANINTF_ERRIF)
 135#define EFLG          0x2d
 136#  define EFLG_EWARN    0x01
 137#  define EFLG_RXWAR    0x02
 138#  define EFLG_TXWAR    0x04
 139#  define EFLG_RXEP     0x08
 140#  define EFLG_TXEP     0x10
 141#  define EFLG_TXBO     0x20
 142#  define EFLG_RX0OVR   0x40
 143#  define EFLG_RX1OVR   0x80
 144#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 145#  define TXBCTRL_ABTF  0x40
 146#  define TXBCTRL_MLOA  0x20
 147#  define TXBCTRL_TXERR 0x10
 148#  define TXBCTRL_TXREQ 0x08
 149#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 150#  define SIDH_SHIFT    3
 151#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 152#  define SIDL_SID_MASK    7
 153#  define SIDL_SID_SHIFT   5
 154#  define SIDL_EXIDE_SHIFT 3
 155#  define SIDL_EID_SHIFT   16
 156#  define SIDL_EID_MASK    3
 157#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 158#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 159#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 160#  define DLC_RTR_SHIFT    6
 161#define TXBCTRL_OFF 0
 162#define TXBSIDH_OFF 1
 163#define TXBSIDL_OFF 2
 164#define TXBEID8_OFF 3
 165#define TXBEID0_OFF 4
 166#define TXBDLC_OFF  5
 167#define TXBDAT_OFF  6
 168#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 169#  define RXBCTRL_BUKT  0x04
 170#  define RXBCTRL_RXM0  0x20
 171#  define RXBCTRL_RXM1  0x40
 172#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 173#  define RXBSIDH_SHIFT 3
 174#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 175#  define RXBSIDL_IDE   0x08
 176#  define RXBSIDL_SRR   0x10
 177#  define RXBSIDL_EID   3
 178#  define RXBSIDL_SHIFT 5
 179#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 180#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 181#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 182#  define RXBDLC_LEN_MASK  0x0f
 183#  define RXBDLC_RTR       0x40
 184#define RXBCTRL_OFF 0
 185#define RXBSIDH_OFF 1
 186#define RXBSIDL_OFF 2
 187#define RXBEID8_OFF 3
 188#define RXBEID0_OFF 4
 189#define RXBDLC_OFF  5
 190#define RXBDAT_OFF  6
 191#define RXFSIDH(n) ((n) * 4)
 192#define RXFSIDL(n) ((n) * 4 + 1)
 193#define RXFEID8(n) ((n) * 4 + 2)
 194#define RXFEID0(n) ((n) * 4 + 3)
 195#define RXMSIDH(n) ((n) * 4 + 0x20)
 196#define RXMSIDL(n) ((n) * 4 + 0x21)
 197#define RXMEID8(n) ((n) * 4 + 0x22)
 198#define RXMEID0(n) ((n) * 4 + 0x23)
 199
 200#define GET_BYTE(val, byte)                     \
 201        (((val) >> ((byte) * 8)) & 0xff)
 202#define SET_BYTE(val, byte)                     \
 203        (((val) & 0xff) << ((byte) * 8))
 204
 205/*
 206 * Buffer size required for the largest SPI transfer (i.e., reading a
 207 * frame)
 208 */
 209#define CAN_FRAME_MAX_DATA_LEN  8
 210#define SPI_TRANSFER_BUF_LEN    (6 + CAN_FRAME_MAX_DATA_LEN)
 211#define CAN_FRAME_MAX_BITS      128
 212
 213#define TX_ECHO_SKB_MAX 1
 214
 215#define DEVICE_NAME "mcp251x"
 216
 217static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
 218module_param(mcp251x_enable_dma, int, S_IRUGO);
 219MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
 220
 221static const struct can_bittiming_const mcp251x_bittiming_const = {
 222        .name = DEVICE_NAME,
 223        .tseg1_min = 3,
 224        .tseg1_max = 16,
 225        .tseg2_min = 2,
 226        .tseg2_max = 8,
 227        .sjw_max = 4,
 228        .brp_min = 1,
 229        .brp_max = 64,
 230        .brp_inc = 1,
 231};
 232
 233enum mcp251x_model {
 234        CAN_MCP251X_MCP2510     = 0x2510,
 235        CAN_MCP251X_MCP2515     = 0x2515,
 236};
 237
 238struct mcp251x_priv {
 239        struct can_priv    can;
 240        struct net_device *net;
 241        struct spi_device *spi;
 242        enum mcp251x_model model;
 243
 244        struct mutex mcp_lock; /* SPI device lock */
 245
 246        u8 *spi_tx_buf;
 247        u8 *spi_rx_buf;
 248        dma_addr_t spi_tx_dma;
 249        dma_addr_t spi_rx_dma;
 250
 251        struct sk_buff *tx_skb;
 252        int tx_len;
 253
 254        struct workqueue_struct *wq;
 255        struct work_struct tx_work;
 256        struct work_struct restart_work;
 257
 258        int force_quit;
 259        int after_suspend;
 260#define AFTER_SUSPEND_UP 1
 261#define AFTER_SUSPEND_DOWN 2
 262#define AFTER_SUSPEND_POWER 4
 263#define AFTER_SUSPEND_RESTART 8
 264        int restart_tx;
 265        struct regulator *power;
 266        struct regulator *transceiver;
 267};
 268
 269#define MCP251X_IS(_model) \
 270static inline int mcp251x_is_##_model(struct spi_device *spi) \
 271{ \
 272        struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 273        return priv->model == CAN_MCP251X_MCP##_model; \
 274}
 275
 276MCP251X_IS(2510);
 277MCP251X_IS(2515);
 278
 279static void mcp251x_clean(struct net_device *net)
 280{
 281        struct mcp251x_priv *priv = netdev_priv(net);
 282
 283        if (priv->tx_skb || priv->tx_len)
 284                net->stats.tx_errors++;
 285        if (priv->tx_skb)
 286                dev_kfree_skb(priv->tx_skb);
 287        if (priv->tx_len)
 288                can_free_echo_skb(priv->net, 0);
 289        priv->tx_skb = NULL;
 290        priv->tx_len = 0;
 291}
 292
 293/*
 294 * Note about handling of error return of mcp251x_spi_trans: accessing
 295 * registers via SPI is not really different conceptually than using
 296 * normal I/O assembler instructions, although it's much more
 297 * complicated from a practical POV. So it's not advisable to always
 298 * check the return value of this function. Imagine that every
 299 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 300 * error();", it would be a great mess (well there are some situation
 301 * when exception handling C++ like could be useful after all). So we
 302 * just check that transfers are OK at the beginning of our
 303 * conversation with the chip and to avoid doing really nasty things
 304 * (like injecting bogus packets in the network stack).
 305 */
 306static int mcp251x_spi_trans(struct spi_device *spi, int len)
 307{
 308        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 309        struct spi_transfer t = {
 310                .tx_buf = priv->spi_tx_buf,
 311                .rx_buf = priv->spi_rx_buf,
 312                .len = len,
 313                .cs_change = 0,
 314        };
 315        struct spi_message m;
 316        int ret;
 317
 318        spi_message_init(&m);
 319
 320        if (mcp251x_enable_dma) {
 321                t.tx_dma = priv->spi_tx_dma;
 322                t.rx_dma = priv->spi_rx_dma;
 323                m.is_dma_mapped = 1;
 324        }
 325
 326        spi_message_add_tail(&t, &m);
 327
 328        ret = spi_sync(spi, &m);
 329        if (ret)
 330                dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 331        return ret;
 332}
 333
 334static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
 335{
 336        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 337        u8 val = 0;
 338
 339        priv->spi_tx_buf[0] = INSTRUCTION_READ;
 340        priv->spi_tx_buf[1] = reg;
 341
 342        mcp251x_spi_trans(spi, 3);
 343        val = priv->spi_rx_buf[2];
 344
 345        return val;
 346}
 347
 348static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
 349                uint8_t *v1, uint8_t *v2)
 350{
 351        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 352
 353        priv->spi_tx_buf[0] = INSTRUCTION_READ;
 354        priv->spi_tx_buf[1] = reg;
 355
 356        mcp251x_spi_trans(spi, 4);
 357
 358        *v1 = priv->spi_rx_buf[2];
 359        *v2 = priv->spi_rx_buf[3];
 360}
 361
 362static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
 363{
 364        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 365
 366        priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 367        priv->spi_tx_buf[1] = reg;
 368        priv->spi_tx_buf[2] = val;
 369
 370        mcp251x_spi_trans(spi, 3);
 371}
 372
 373static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 374                               u8 mask, uint8_t val)
 375{
 376        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 377
 378        priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 379        priv->spi_tx_buf[1] = reg;
 380        priv->spi_tx_buf[2] = mask;
 381        priv->spi_tx_buf[3] = val;
 382
 383        mcp251x_spi_trans(spi, 4);
 384}
 385
 386static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 387                                int len, int tx_buf_idx)
 388{
 389        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 390
 391        if (mcp251x_is_2510(spi)) {
 392                int i;
 393
 394                for (i = 1; i < TXBDAT_OFF + len; i++)
 395                        mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 396                                          buf[i]);
 397        } else {
 398                memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 399                mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 400        }
 401}
 402
 403static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 404                          int tx_buf_idx)
 405{
 406        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 407        u32 sid, eid, exide, rtr;
 408        u8 buf[SPI_TRANSFER_BUF_LEN];
 409
 410        exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 411        if (exide)
 412                sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 413        else
 414                sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 415        eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 416        rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 417
 418        buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 419        buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 420        buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 421                (exide << SIDL_EXIDE_SHIFT) |
 422                ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 423        buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 424        buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 425        buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 426        memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 427        mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 428
 429        /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 430        priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 431        mcp251x_spi_trans(priv->spi, 1);
 432}
 433
 434static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 435                                int buf_idx)
 436{
 437        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 438
 439        if (mcp251x_is_2510(spi)) {
 440                int i, len;
 441
 442                for (i = 1; i < RXBDAT_OFF; i++)
 443                        buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 444
 445                len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 446                for (; i < (RXBDAT_OFF + len); i++)
 447                        buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 448        } else {
 449                priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 450                mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 451                memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 452        }
 453}
 454
 455static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 456{
 457        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 458        struct sk_buff *skb;
 459        struct can_frame *frame;
 460        u8 buf[SPI_TRANSFER_BUF_LEN];
 461
 462        skb = alloc_can_skb(priv->net, &frame);
 463        if (!skb) {
 464                dev_err(&spi->dev, "cannot allocate RX skb\n");
 465                priv->net->stats.rx_dropped++;
 466                return;
 467        }
 468
 469        mcp251x_hw_rx_frame(spi, buf, buf_idx);
 470        if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 471                /* Extended ID format */
 472                frame->can_id = CAN_EFF_FLAG;
 473                frame->can_id |=
 474                        /* Extended ID part */
 475                        SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 476                        SET_BYTE(buf[RXBEID8_OFF], 1) |
 477                        SET_BYTE(buf[RXBEID0_OFF], 0) |
 478                        /* Standard ID part */
 479                        (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 480                          (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 481                /* Remote transmission request */
 482                if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 483                        frame->can_id |= CAN_RTR_FLAG;
 484        } else {
 485                /* Standard ID format */
 486                frame->can_id =
 487                        (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 488                        (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 489                if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 490                        frame->can_id |= CAN_RTR_FLAG;
 491        }
 492        /* Data length */
 493        frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 494        memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 495
 496        priv->net->stats.rx_packets++;
 497        priv->net->stats.rx_bytes += frame->can_dlc;
 498
 499        can_led_event(priv->net, CAN_LED_EVENT_RX);
 500
 501        netif_rx_ni(skb);
 502}
 503
 504static void mcp251x_hw_sleep(struct spi_device *spi)
 505{
 506        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 507}
 508
 509static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 510                                           struct net_device *net)
 511{
 512        struct mcp251x_priv *priv = netdev_priv(net);
 513        struct spi_device *spi = priv->spi;
 514
 515        if (priv->tx_skb || priv->tx_len) {
 516                dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 517                return NETDEV_TX_BUSY;
 518        }
 519
 520        if (can_dropped_invalid_skb(net, skb))
 521                return NETDEV_TX_OK;
 522
 523        netif_stop_queue(net);
 524        priv->tx_skb = skb;
 525        queue_work(priv->wq, &priv->tx_work);
 526
 527        return NETDEV_TX_OK;
 528}
 529
 530static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 531{
 532        struct mcp251x_priv *priv = netdev_priv(net);
 533
 534        switch (mode) {
 535        case CAN_MODE_START:
 536                mcp251x_clean(net);
 537                /* We have to delay work since SPI I/O may sleep */
 538                priv->can.state = CAN_STATE_ERROR_ACTIVE;
 539                priv->restart_tx = 1;
 540                if (priv->can.restart_ms == 0)
 541                        priv->after_suspend = AFTER_SUSPEND_RESTART;
 542                queue_work(priv->wq, &priv->restart_work);
 543                break;
 544        default:
 545                return -EOPNOTSUPP;
 546        }
 547
 548        return 0;
 549}
 550
 551static int mcp251x_set_normal_mode(struct spi_device *spi)
 552{
 553        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 554        unsigned long timeout;
 555
 556        /* Enable interrupts */
 557        mcp251x_write_reg(spi, CANINTE,
 558                          CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 559                          CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 560
 561        if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 562                /* Put device into loopback mode */
 563                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 564        } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 565                /* Put device into listen-only mode */
 566                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 567        } else {
 568                /* Put device into normal mode */
 569                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 570
 571                /* Wait for the device to enter normal mode */
 572                timeout = jiffies + HZ;
 573                while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 574                        schedule();
 575                        if (time_after(jiffies, timeout)) {
 576                                dev_err(&spi->dev, "MCP251x didn't"
 577                                        " enter in normal mode\n");
 578                                return -EBUSY;
 579                        }
 580                }
 581        }
 582        priv->can.state = CAN_STATE_ERROR_ACTIVE;
 583        return 0;
 584}
 585
 586static int mcp251x_do_set_bittiming(struct net_device *net)
 587{
 588        struct mcp251x_priv *priv = netdev_priv(net);
 589        struct can_bittiming *bt = &priv->can.bittiming;
 590        struct spi_device *spi = priv->spi;
 591
 592        mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 593                          (bt->brp - 1));
 594        mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 595                          (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 596                           CNF2_SAM : 0) |
 597                          ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 598                          (bt->prop_seg - 1));
 599        mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 600                           (bt->phase_seg2 - 1));
 601        dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 602                 mcp251x_read_reg(spi, CNF1),
 603                 mcp251x_read_reg(spi, CNF2),
 604                 mcp251x_read_reg(spi, CNF3));
 605
 606        return 0;
 607}
 608
 609static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
 610                         struct spi_device *spi)
 611{
 612        mcp251x_do_set_bittiming(net);
 613
 614        mcp251x_write_reg(spi, RXBCTRL(0),
 615                          RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 616        mcp251x_write_reg(spi, RXBCTRL(1),
 617                          RXBCTRL_RXM0 | RXBCTRL_RXM1);
 618        return 0;
 619}
 620
 621static int mcp251x_hw_reset(struct spi_device *spi)
 622{
 623        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 624        int ret;
 625        unsigned long timeout;
 626
 627        priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 628        ret = spi_write(spi, priv->spi_tx_buf, 1);
 629        if (ret) {
 630                dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
 631                return -EIO;
 632        }
 633
 634        /* Wait for reset to finish */
 635        timeout = jiffies + HZ;
 636        mdelay(10);
 637        while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
 638               != CANCTRL_REQOP_CONF) {
 639                schedule();
 640                if (time_after(jiffies, timeout)) {
 641                        dev_err(&spi->dev, "MCP251x didn't"
 642                                " enter in conf mode after reset\n");
 643                        return -EBUSY;
 644                }
 645        }
 646        return 0;
 647}
 648
 649static int mcp251x_hw_probe(struct spi_device *spi)
 650{
 651        int st1, st2;
 652
 653        mcp251x_hw_reset(spi);
 654
 655        /*
 656         * Please note that these are "magic values" based on after
 657         * reset defaults taken from data sheet which allows us to see
 658         * if we really have a chip on the bus (we avoid common all
 659         * zeroes or all ones situations)
 660         */
 661        st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
 662        st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
 663
 664        dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
 665
 666        /* Check for power up default values */
 667        return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
 668}
 669
 670static int mcp251x_power_enable(struct regulator *reg, int enable)
 671{
 672        if (IS_ERR(reg))
 673                return 0;
 674
 675        if (enable)
 676                return regulator_enable(reg);
 677        else
 678                return regulator_disable(reg);
 679}
 680
 681static void mcp251x_open_clean(struct net_device *net)
 682{
 683        struct mcp251x_priv *priv = netdev_priv(net);
 684        struct spi_device *spi = priv->spi;
 685
 686        free_irq(spi->irq, priv);
 687        mcp251x_hw_sleep(spi);
 688        mcp251x_power_enable(priv->transceiver, 0);
 689        close_candev(net);
 690}
 691
 692static int mcp251x_stop(struct net_device *net)
 693{
 694        struct mcp251x_priv *priv = netdev_priv(net);
 695        struct spi_device *spi = priv->spi;
 696
 697        close_candev(net);
 698
 699        priv->force_quit = 1;
 700        free_irq(spi->irq, priv);
 701        destroy_workqueue(priv->wq);
 702        priv->wq = NULL;
 703
 704        mutex_lock(&priv->mcp_lock);
 705
 706        /* Disable and clear pending interrupts */
 707        mcp251x_write_reg(spi, CANINTE, 0x00);
 708        mcp251x_write_reg(spi, CANINTF, 0x00);
 709
 710        mcp251x_write_reg(spi, TXBCTRL(0), 0);
 711        mcp251x_clean(net);
 712
 713        mcp251x_hw_sleep(spi);
 714
 715        mcp251x_power_enable(priv->transceiver, 0);
 716
 717        priv->can.state = CAN_STATE_STOPPED;
 718
 719        mutex_unlock(&priv->mcp_lock);
 720
 721        can_led_event(net, CAN_LED_EVENT_STOP);
 722
 723        return 0;
 724}
 725
 726static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 727{
 728        struct sk_buff *skb;
 729        struct can_frame *frame;
 730
 731        skb = alloc_can_err_skb(net, &frame);
 732        if (skb) {
 733                frame->can_id |= can_id;
 734                frame->data[1] = data1;
 735                netif_rx_ni(skb);
 736        } else {
 737                netdev_err(net, "cannot allocate error skb\n");
 738        }
 739}
 740
 741static void mcp251x_tx_work_handler(struct work_struct *ws)
 742{
 743        struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 744                                                 tx_work);
 745        struct spi_device *spi = priv->spi;
 746        struct net_device *net = priv->net;
 747        struct can_frame *frame;
 748
 749        mutex_lock(&priv->mcp_lock);
 750        if (priv->tx_skb) {
 751                if (priv->can.state == CAN_STATE_BUS_OFF) {
 752                        mcp251x_clean(net);
 753                } else {
 754                        frame = (struct can_frame *)priv->tx_skb->data;
 755
 756                        if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 757                                frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 758                        mcp251x_hw_tx(spi, frame, 0);
 759                        priv->tx_len = 1 + frame->can_dlc;
 760                        can_put_echo_skb(priv->tx_skb, net, 0);
 761                        priv->tx_skb = NULL;
 762                }
 763        }
 764        mutex_unlock(&priv->mcp_lock);
 765}
 766
 767static void mcp251x_restart_work_handler(struct work_struct *ws)
 768{
 769        struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 770                                                 restart_work);
 771        struct spi_device *spi = priv->spi;
 772        struct net_device *net = priv->net;
 773
 774        mutex_lock(&priv->mcp_lock);
 775        if (priv->after_suspend) {
 776                mdelay(10);
 777                mcp251x_hw_reset(spi);
 778                mcp251x_setup(net, priv, spi);
 779                if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 780                        mcp251x_set_normal_mode(spi);
 781                } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 782                        netif_device_attach(net);
 783                        mcp251x_clean(net);
 784                        mcp251x_set_normal_mode(spi);
 785                        netif_wake_queue(net);
 786                } else {
 787                        mcp251x_hw_sleep(spi);
 788                }
 789                priv->after_suspend = 0;
 790                priv->force_quit = 0;
 791        }
 792
 793        if (priv->restart_tx) {
 794                priv->restart_tx = 0;
 795                mcp251x_write_reg(spi, TXBCTRL(0), 0);
 796                mcp251x_clean(net);
 797                netif_wake_queue(net);
 798                mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 799        }
 800        mutex_unlock(&priv->mcp_lock);
 801}
 802
 803static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 804{
 805        struct mcp251x_priv *priv = dev_id;
 806        struct spi_device *spi = priv->spi;
 807        struct net_device *net = priv->net;
 808
 809        mutex_lock(&priv->mcp_lock);
 810        while (!priv->force_quit) {
 811                enum can_state new_state;
 812                u8 intf, eflag;
 813                u8 clear_intf = 0;
 814                int can_id = 0, data1 = 0;
 815
 816                mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 817
 818                /* mask out flags we don't care about */
 819                intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 820
 821                /* receive buffer 0 */
 822                if (intf & CANINTF_RX0IF) {
 823                        mcp251x_hw_rx(spi, 0);
 824                        /*
 825                         * Free one buffer ASAP
 826                         * (The MCP2515 does this automatically.)
 827                         */
 828                        if (mcp251x_is_2510(spi))
 829                                mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
 830                }
 831
 832                /* receive buffer 1 */
 833                if (intf & CANINTF_RX1IF) {
 834                        mcp251x_hw_rx(spi, 1);
 835                        /* the MCP2515 does this automatically */
 836                        if (mcp251x_is_2510(spi))
 837                                clear_intf |= CANINTF_RX1IF;
 838                }
 839
 840                /* any error or tx interrupt we need to clear? */
 841                if (intf & (CANINTF_ERR | CANINTF_TX))
 842                        clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 843                if (clear_intf)
 844                        mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 845
 846                if (eflag)
 847                        mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 848
 849                /* Update can state */
 850                if (eflag & EFLG_TXBO) {
 851                        new_state = CAN_STATE_BUS_OFF;
 852                        can_id |= CAN_ERR_BUSOFF;
 853                } else if (eflag & EFLG_TXEP) {
 854                        new_state = CAN_STATE_ERROR_PASSIVE;
 855                        can_id |= CAN_ERR_CRTL;
 856                        data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 857                } else if (eflag & EFLG_RXEP) {
 858                        new_state = CAN_STATE_ERROR_PASSIVE;
 859                        can_id |= CAN_ERR_CRTL;
 860                        data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 861                } else if (eflag & EFLG_TXWAR) {
 862                        new_state = CAN_STATE_ERROR_WARNING;
 863                        can_id |= CAN_ERR_CRTL;
 864                        data1 |= CAN_ERR_CRTL_TX_WARNING;
 865                } else if (eflag & EFLG_RXWAR) {
 866                        new_state = CAN_STATE_ERROR_WARNING;
 867                        can_id |= CAN_ERR_CRTL;
 868                        data1 |= CAN_ERR_CRTL_RX_WARNING;
 869                } else {
 870                        new_state = CAN_STATE_ERROR_ACTIVE;
 871                }
 872
 873                /* Update can state statistics */
 874                switch (priv->can.state) {
 875                case CAN_STATE_ERROR_ACTIVE:
 876                        if (new_state >= CAN_STATE_ERROR_WARNING &&
 877                            new_state <= CAN_STATE_BUS_OFF)
 878                                priv->can.can_stats.error_warning++;
 879                case CAN_STATE_ERROR_WARNING:   /* fallthrough */
 880                        if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 881                            new_state <= CAN_STATE_BUS_OFF)
 882                                priv->can.can_stats.error_passive++;
 883                        break;
 884                default:
 885                        break;
 886                }
 887                priv->can.state = new_state;
 888
 889                if (intf & CANINTF_ERRIF) {
 890                        /* Handle overflow counters */
 891                        if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 892                                if (eflag & EFLG_RX0OVR) {
 893                                        net->stats.rx_over_errors++;
 894                                        net->stats.rx_errors++;
 895                                }
 896                                if (eflag & EFLG_RX1OVR) {
 897                                        net->stats.rx_over_errors++;
 898                                        net->stats.rx_errors++;
 899                                }
 900                                can_id |= CAN_ERR_CRTL;
 901                                data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 902                        }
 903                        mcp251x_error_skb(net, can_id, data1);
 904                }
 905
 906                if (priv->can.state == CAN_STATE_BUS_OFF) {
 907                        if (priv->can.restart_ms == 0) {
 908                                priv->force_quit = 1;
 909                                can_bus_off(net);
 910                                mcp251x_hw_sleep(spi);
 911                                break;
 912                        }
 913                }
 914
 915                if (intf == 0)
 916                        break;
 917
 918                if (intf & CANINTF_TX) {
 919                        net->stats.tx_packets++;
 920                        net->stats.tx_bytes += priv->tx_len - 1;
 921                        can_led_event(net, CAN_LED_EVENT_TX);
 922                        if (priv->tx_len) {
 923                                can_get_echo_skb(net, 0);
 924                                priv->tx_len = 0;
 925                        }
 926                        netif_wake_queue(net);
 927                }
 928
 929        }
 930        mutex_unlock(&priv->mcp_lock);
 931        return IRQ_HANDLED;
 932}
 933
 934static int mcp251x_open(struct net_device *net)
 935{
 936        struct mcp251x_priv *priv = netdev_priv(net);
 937        struct spi_device *spi = priv->spi;
 938        unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
 939        int ret;
 940
 941        ret = open_candev(net);
 942        if (ret) {
 943                dev_err(&spi->dev, "unable to set initial baudrate!\n");
 944                return ret;
 945        }
 946
 947        mutex_lock(&priv->mcp_lock);
 948        mcp251x_power_enable(priv->transceiver, 1);
 949
 950        priv->force_quit = 0;
 951        priv->tx_skb = NULL;
 952        priv->tx_len = 0;
 953
 954        ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 955                                   flags, DEVICE_NAME, priv);
 956        if (ret) {
 957                dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 958                mcp251x_power_enable(priv->transceiver, 0);
 959                close_candev(net);
 960                goto open_unlock;
 961        }
 962
 963        priv->wq = create_freezable_workqueue("mcp251x_wq");
 964        INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 965        INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 966
 967        ret = mcp251x_hw_reset(spi);
 968        if (ret) {
 969                mcp251x_open_clean(net);
 970                goto open_unlock;
 971        }
 972        ret = mcp251x_setup(net, priv, spi);
 973        if (ret) {
 974                mcp251x_open_clean(net);
 975                goto open_unlock;
 976        }
 977        ret = mcp251x_set_normal_mode(spi);
 978        if (ret) {
 979                mcp251x_open_clean(net);
 980                goto open_unlock;
 981        }
 982
 983        can_led_event(net, CAN_LED_EVENT_OPEN);
 984
 985        netif_wake_queue(net);
 986
 987open_unlock:
 988        mutex_unlock(&priv->mcp_lock);
 989        return ret;
 990}
 991
 992static const struct net_device_ops mcp251x_netdev_ops = {
 993        .ndo_open = mcp251x_open,
 994        .ndo_stop = mcp251x_stop,
 995        .ndo_start_xmit = mcp251x_hard_start_xmit,
 996};
 997
 998static int mcp251x_can_probe(struct spi_device *spi)
 999{
1000        struct net_device *net;
1001        struct mcp251x_priv *priv;
1002        struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1003        int ret = -ENODEV;
1004
1005        if (!pdata)
1006                /* Platform data is required for osc freq */
1007                goto error_out;
1008
1009        /* Allocate can/net device */
1010        net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1011        if (!net) {
1012                ret = -ENOMEM;
1013                goto error_alloc;
1014        }
1015
1016        net->netdev_ops = &mcp251x_netdev_ops;
1017        net->flags |= IFF_ECHO;
1018
1019        priv = netdev_priv(net);
1020        priv->can.bittiming_const = &mcp251x_bittiming_const;
1021        priv->can.do_set_mode = mcp251x_do_set_mode;
1022        priv->can.clock.freq = pdata->oscillator_frequency / 2;
1023        priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1024                CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1025        priv->model = spi_get_device_id(spi)->driver_data;
1026        priv->net = net;
1027
1028        priv->power = devm_regulator_get(&spi->dev, "vdd");
1029        priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
1030        if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1031            (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1032                ret = -EPROBE_DEFER;
1033                goto error_power;
1034        }
1035
1036        ret = mcp251x_power_enable(priv->power, 1);
1037        if (ret)
1038                goto error_power;
1039
1040        spi_set_drvdata(spi, priv);
1041
1042        priv->spi = spi;
1043        mutex_init(&priv->mcp_lock);
1044
1045        /* If requested, allocate DMA buffers */
1046        if (mcp251x_enable_dma) {
1047                spi->dev.coherent_dma_mask = ~0;
1048
1049                /*
1050                 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1051                 * that much and share it between Tx and Rx DMA buffers.
1052                 */
1053                priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1054                                                      PAGE_SIZE,
1055                                                      &priv->spi_tx_dma,
1056                                                      GFP_DMA);
1057
1058                if (priv->spi_tx_buf) {
1059                        priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1060                        priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1061                                                        (PAGE_SIZE / 2));
1062                } else {
1063                        /* Fall back to non-DMA */
1064                        mcp251x_enable_dma = 0;
1065                }
1066        }
1067
1068        /* Allocate non-DMA buffers */
1069        if (!mcp251x_enable_dma) {
1070                priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1071                if (!priv->spi_tx_buf) {
1072                        ret = -ENOMEM;
1073                        goto error_tx_buf;
1074                }
1075                priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1076                if (!priv->spi_rx_buf) {
1077                        ret = -ENOMEM;
1078                        goto error_rx_buf;
1079                }
1080        }
1081
1082        SET_NETDEV_DEV(net, &spi->dev);
1083
1084        /* Configure the SPI bus */
1085        spi->mode = spi->mode ? : SPI_MODE_0;
1086        if (mcp251x_is_2510(spi))
1087                spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1088        else
1089                spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1090        spi->bits_per_word = 8;
1091        spi_setup(spi);
1092
1093        /* Here is OK to not lock the MCP, no one knows about it yet */
1094        if (!mcp251x_hw_probe(spi)) {
1095                ret = -ENODEV;
1096                goto error_probe;
1097        }
1098        mcp251x_hw_sleep(spi);
1099
1100        ret = register_candev(net);
1101        if (ret)
1102                goto error_probe;
1103
1104        devm_can_led_init(net);
1105
1106        dev_info(&spi->dev, "probed\n");
1107
1108        return ret;
1109
1110error_probe:
1111        if (!mcp251x_enable_dma)
1112                kfree(priv->spi_rx_buf);
1113error_rx_buf:
1114        if (!mcp251x_enable_dma)
1115                kfree(priv->spi_tx_buf);
1116error_tx_buf:
1117        if (mcp251x_enable_dma)
1118                dma_free_coherent(&spi->dev, PAGE_SIZE,
1119                                  priv->spi_tx_buf, priv->spi_tx_dma);
1120        mcp251x_power_enable(priv->power, 0);
1121error_power:
1122        free_candev(net);
1123error_alloc:
1124        dev_err(&spi->dev, "probe failed\n");
1125error_out:
1126        return ret;
1127}
1128
1129static int mcp251x_can_remove(struct spi_device *spi)
1130{
1131        struct mcp251x_priv *priv = spi_get_drvdata(spi);
1132        struct net_device *net = priv->net;
1133
1134        unregister_candev(net);
1135
1136        if (mcp251x_enable_dma) {
1137                dma_free_coherent(&spi->dev, PAGE_SIZE,
1138                                  priv->spi_tx_buf, priv->spi_tx_dma);
1139        } else {
1140                kfree(priv->spi_tx_buf);
1141                kfree(priv->spi_rx_buf);
1142        }
1143
1144        mcp251x_power_enable(priv->power, 0);
1145
1146        free_candev(net);
1147
1148        return 0;
1149}
1150
1151#ifdef CONFIG_PM_SLEEP
1152
1153static int mcp251x_can_suspend(struct device *dev)
1154{
1155        struct spi_device *spi = to_spi_device(dev);
1156        struct mcp251x_priv *priv = spi_get_drvdata(spi);
1157        struct net_device *net = priv->net;
1158
1159        priv->force_quit = 1;
1160        disable_irq(spi->irq);
1161        /*
1162         * Note: at this point neither IST nor workqueues are running.
1163         * open/stop cannot be called anyway so locking is not needed
1164         */
1165        if (netif_running(net)) {
1166                netif_device_detach(net);
1167
1168                mcp251x_hw_sleep(spi);
1169                mcp251x_power_enable(priv->transceiver, 0);
1170                priv->after_suspend = AFTER_SUSPEND_UP;
1171        } else {
1172                priv->after_suspend = AFTER_SUSPEND_DOWN;
1173        }
1174
1175        if (!IS_ERR(priv->power)) {
1176                regulator_disable(priv->power);
1177                priv->after_suspend |= AFTER_SUSPEND_POWER;
1178        }
1179
1180        return 0;
1181}
1182
1183static int mcp251x_can_resume(struct device *dev)
1184{
1185        struct spi_device *spi = to_spi_device(dev);
1186        struct mcp251x_priv *priv = spi_get_drvdata(spi);
1187
1188        if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1189                mcp251x_power_enable(priv->power, 1);
1190                queue_work(priv->wq, &priv->restart_work);
1191        } else {
1192                if (priv->after_suspend & AFTER_SUSPEND_UP) {
1193                        mcp251x_power_enable(priv->transceiver, 1);
1194                        queue_work(priv->wq, &priv->restart_work);
1195                } else {
1196                        priv->after_suspend = 0;
1197                }
1198        }
1199        priv->force_quit = 0;
1200        enable_irq(spi->irq);
1201        return 0;
1202}
1203#endif
1204
1205static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1206        mcp251x_can_resume);
1207
1208static const struct spi_device_id mcp251x_id_table[] = {
1209        { "mcp2510",    CAN_MCP251X_MCP2510 },
1210        { "mcp2515",    CAN_MCP251X_MCP2515 },
1211        { },
1212};
1213
1214MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1215
1216static struct spi_driver mcp251x_can_driver = {
1217        .driver = {
1218                .name = DEVICE_NAME,
1219                .owner = THIS_MODULE,
1220                .pm = &mcp251x_can_pm_ops,
1221        },
1222
1223        .id_table = mcp251x_id_table,
1224        .probe = mcp251x_can_probe,
1225        .remove = mcp251x_can_remove,
1226};
1227module_spi_driver(mcp251x_can_driver);
1228
1229MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1230              "Christian Pellegrin <chripell@evolware.org>");
1231MODULE_DESCRIPTION("Microchip 251x CAN driver");
1232MODULE_LICENSE("GPL v2");
1233