linux/drivers/net/ethernet/intel/e1000e/80003es2lan.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2013 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
  30 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
  31 */
  32
  33#include "e1000.h"
  34
  35/* A table for the GG82563 cable length where the range is defined
  36 * with a lower bound at "index" and the upper bound at
  37 * "index + 5".
  38 */
  39static const u16 e1000_gg82563_cable_length_table[] = {
  40        0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  41};
  42
  43#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  44                ARRAY_SIZE(e1000_gg82563_cable_length_table)
  45
  46static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  47static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  48static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  49static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  50static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  51static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  52static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  53static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  54                                           u16 *data);
  55static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  56                                            u16 data);
  57static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  58
  59/**
  60 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  61 *  @hw: pointer to the HW structure
  62 **/
  63static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  64{
  65        struct e1000_phy_info *phy = &hw->phy;
  66        s32 ret_val;
  67
  68        if (hw->phy.media_type != e1000_media_type_copper) {
  69                phy->type = e1000_phy_none;
  70                return 0;
  71        } else {
  72                phy->ops.power_up = e1000_power_up_phy_copper;
  73                phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  74        }
  75
  76        phy->addr = 1;
  77        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  78        phy->reset_delay_us = 100;
  79        phy->type = e1000_phy_gg82563;
  80
  81        /* This can only be done after all function pointers are setup. */
  82        ret_val = e1000e_get_phy_id(hw);
  83
  84        /* Verify phy id */
  85        if (phy->id != GG82563_E_PHY_ID)
  86                return -E1000_ERR_PHY;
  87
  88        return ret_val;
  89}
  90
  91/**
  92 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  93 *  @hw: pointer to the HW structure
  94 **/
  95static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  96{
  97        struct e1000_nvm_info *nvm = &hw->nvm;
  98        u32 eecd = er32(EECD);
  99        u16 size;
 100
 101        nvm->opcode_bits = 8;
 102        nvm->delay_usec = 1;
 103        switch (nvm->override) {
 104        case e1000_nvm_override_spi_large:
 105                nvm->page_size = 32;
 106                nvm->address_bits = 16;
 107                break;
 108        case e1000_nvm_override_spi_small:
 109                nvm->page_size = 8;
 110                nvm->address_bits = 8;
 111                break;
 112        default:
 113                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 114                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 115                break;
 116        }
 117
 118        nvm->type = e1000_nvm_eeprom_spi;
 119
 120        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 121                     E1000_EECD_SIZE_EX_SHIFT);
 122
 123        /* Added to a constant, "size" becomes the left-shift value
 124         * for setting word_size.
 125         */
 126        size += NVM_WORD_SIZE_BASE_SHIFT;
 127
 128        /* EEPROM access above 16k is unsupported */
 129        if (size > 14)
 130                size = 14;
 131        nvm->word_size = 1 << size;
 132
 133        return 0;
 134}
 135
 136/**
 137 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 138 *  @hw: pointer to the HW structure
 139 **/
 140static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 141{
 142        struct e1000_mac_info *mac = &hw->mac;
 143
 144        /* Set media type and media-dependent function pointers */
 145        switch (hw->adapter->pdev->device) {
 146        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 147                hw->phy.media_type = e1000_media_type_internal_serdes;
 148                mac->ops.check_for_link = e1000e_check_for_serdes_link;
 149                mac->ops.setup_physical_interface =
 150                    e1000e_setup_fiber_serdes_link;
 151                break;
 152        default:
 153                hw->phy.media_type = e1000_media_type_copper;
 154                mac->ops.check_for_link = e1000e_check_for_copper_link;
 155                mac->ops.setup_physical_interface =
 156                    e1000_setup_copper_link_80003es2lan;
 157                break;
 158        }
 159
 160        /* Set mta register count */
 161        mac->mta_reg_count = 128;
 162        /* Set rar entry count */
 163        mac->rar_entry_count = E1000_RAR_ENTRIES;
 164        /* FWSM register */
 165        mac->has_fwsm = true;
 166        /* ARC supported; valid only if manageability features are enabled. */
 167        mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 168        /* Adaptive IFS not supported */
 169        mac->adaptive_ifs = false;
 170
 171        /* set lan id for port to determine which phy lock to use */
 172        hw->mac.ops.set_lan_id(hw);
 173
 174        return 0;
 175}
 176
 177static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 178{
 179        struct e1000_hw *hw = &adapter->hw;
 180        s32 rc;
 181
 182        rc = e1000_init_mac_params_80003es2lan(hw);
 183        if (rc)
 184                return rc;
 185
 186        rc = e1000_init_nvm_params_80003es2lan(hw);
 187        if (rc)
 188                return rc;
 189
 190        rc = e1000_init_phy_params_80003es2lan(hw);
 191        if (rc)
 192                return rc;
 193
 194        return 0;
 195}
 196
 197/**
 198 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 199 *  @hw: pointer to the HW structure
 200 *
 201 *  A wrapper to acquire access rights to the correct PHY.
 202 **/
 203static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 204{
 205        u16 mask;
 206
 207        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 208        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 209}
 210
 211/**
 212 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 213 *  @hw: pointer to the HW structure
 214 *
 215 *  A wrapper to release access rights to the correct PHY.
 216 **/
 217static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 218{
 219        u16 mask;
 220
 221        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 222        e1000_release_swfw_sync_80003es2lan(hw, mask);
 223}
 224
 225/**
 226 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 227 *  @hw: pointer to the HW structure
 228 *
 229 *  Acquire the semaphore to access the Kumeran interface.
 230 *
 231 **/
 232static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 233{
 234        u16 mask;
 235
 236        mask = E1000_SWFW_CSR_SM;
 237
 238        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 239}
 240
 241/**
 242 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 243 *  @hw: pointer to the HW structure
 244 *
 245 *  Release the semaphore used to access the Kumeran interface
 246 **/
 247static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 248{
 249        u16 mask;
 250
 251        mask = E1000_SWFW_CSR_SM;
 252
 253        e1000_release_swfw_sync_80003es2lan(hw, mask);
 254}
 255
 256/**
 257 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 258 *  @hw: pointer to the HW structure
 259 *
 260 *  Acquire the semaphore to access the EEPROM.
 261 **/
 262static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 263{
 264        s32 ret_val;
 265
 266        ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 267        if (ret_val)
 268                return ret_val;
 269
 270        ret_val = e1000e_acquire_nvm(hw);
 271
 272        if (ret_val)
 273                e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 274
 275        return ret_val;
 276}
 277
 278/**
 279 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 280 *  @hw: pointer to the HW structure
 281 *
 282 *  Release the semaphore used to access the EEPROM.
 283 **/
 284static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 285{
 286        e1000e_release_nvm(hw);
 287        e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 288}
 289
 290/**
 291 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 292 *  @hw: pointer to the HW structure
 293 *  @mask: specifies which semaphore to acquire
 294 *
 295 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 296 *  will also specify which port we're acquiring the lock for.
 297 **/
 298static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 299{
 300        u32 swfw_sync;
 301        u32 swmask = mask;
 302        u32 fwmask = mask << 16;
 303        s32 i = 0;
 304        s32 timeout = 50;
 305
 306        while (i < timeout) {
 307                if (e1000e_get_hw_semaphore(hw))
 308                        return -E1000_ERR_SWFW_SYNC;
 309
 310                swfw_sync = er32(SW_FW_SYNC);
 311                if (!(swfw_sync & (fwmask | swmask)))
 312                        break;
 313
 314                /* Firmware currently using resource (fwmask)
 315                 * or other software thread using resource (swmask)
 316                 */
 317                e1000e_put_hw_semaphore(hw);
 318                mdelay(5);
 319                i++;
 320        }
 321
 322        if (i == timeout) {
 323                e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 324                return -E1000_ERR_SWFW_SYNC;
 325        }
 326
 327        swfw_sync |= swmask;
 328        ew32(SW_FW_SYNC, swfw_sync);
 329
 330        e1000e_put_hw_semaphore(hw);
 331
 332        return 0;
 333}
 334
 335/**
 336 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 337 *  @hw: pointer to the HW structure
 338 *  @mask: specifies which semaphore to acquire
 339 *
 340 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 341 *  will also specify which port we're releasing the lock for.
 342 **/
 343static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 344{
 345        u32 swfw_sync;
 346
 347        while (e1000e_get_hw_semaphore(hw) != 0)
 348                ; /* Empty */
 349
 350        swfw_sync = er32(SW_FW_SYNC);
 351        swfw_sync &= ~mask;
 352        ew32(SW_FW_SYNC, swfw_sync);
 353
 354        e1000e_put_hw_semaphore(hw);
 355}
 356
 357/**
 358 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 359 *  @hw: pointer to the HW structure
 360 *  @offset: offset of the register to read
 361 *  @data: pointer to the data returned from the operation
 362 *
 363 *  Read the GG82563 PHY register.
 364 **/
 365static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 366                                                  u32 offset, u16 *data)
 367{
 368        s32 ret_val;
 369        u32 page_select;
 370        u16 temp;
 371
 372        ret_val = e1000_acquire_phy_80003es2lan(hw);
 373        if (ret_val)
 374                return ret_val;
 375
 376        /* Select Configuration Page */
 377        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 378                page_select = GG82563_PHY_PAGE_SELECT;
 379        } else {
 380                /* Use Alternative Page Select register to access
 381                 * registers 30 and 31
 382                 */
 383                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 384        }
 385
 386        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 387        ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 388        if (ret_val) {
 389                e1000_release_phy_80003es2lan(hw);
 390                return ret_val;
 391        }
 392
 393        if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 394                /* The "ready" bit in the MDIC register may be incorrectly set
 395                 * before the device has completed the "Page Select" MDI
 396                 * transaction.  So we wait 200us after each MDI command...
 397                 */
 398                usleep_range(200, 400);
 399
 400                /* ...and verify the command was successful. */
 401                ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 402
 403                if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 404                        e1000_release_phy_80003es2lan(hw);
 405                        return -E1000_ERR_PHY;
 406                }
 407
 408                usleep_range(200, 400);
 409
 410                ret_val = e1000e_read_phy_reg_mdic(hw,
 411                                                   MAX_PHY_REG_ADDRESS & offset,
 412                                                   data);
 413
 414                usleep_range(200, 400);
 415        } else {
 416                ret_val = e1000e_read_phy_reg_mdic(hw,
 417                                                   MAX_PHY_REG_ADDRESS & offset,
 418                                                   data);
 419        }
 420
 421        e1000_release_phy_80003es2lan(hw);
 422
 423        return ret_val;
 424}
 425
 426/**
 427 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 428 *  @hw: pointer to the HW structure
 429 *  @offset: offset of the register to read
 430 *  @data: value to write to the register
 431 *
 432 *  Write to the GG82563 PHY register.
 433 **/
 434static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 435                                                   u32 offset, u16 data)
 436{
 437        s32 ret_val;
 438        u32 page_select;
 439        u16 temp;
 440
 441        ret_val = e1000_acquire_phy_80003es2lan(hw);
 442        if (ret_val)
 443                return ret_val;
 444
 445        /* Select Configuration Page */
 446        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 447                page_select = GG82563_PHY_PAGE_SELECT;
 448        } else {
 449                /* Use Alternative Page Select register to access
 450                 * registers 30 and 31
 451                 */
 452                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 453        }
 454
 455        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 456        ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 457        if (ret_val) {
 458                e1000_release_phy_80003es2lan(hw);
 459                return ret_val;
 460        }
 461
 462        if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 463                /* The "ready" bit in the MDIC register may be incorrectly set
 464                 * before the device has completed the "Page Select" MDI
 465                 * transaction.  So we wait 200us after each MDI command...
 466                 */
 467                usleep_range(200, 400);
 468
 469                /* ...and verify the command was successful. */
 470                ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 471
 472                if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 473                        e1000_release_phy_80003es2lan(hw);
 474                        return -E1000_ERR_PHY;
 475                }
 476
 477                usleep_range(200, 400);
 478
 479                ret_val = e1000e_write_phy_reg_mdic(hw,
 480                                                    MAX_PHY_REG_ADDRESS &
 481                                                    offset, data);
 482
 483                usleep_range(200, 400);
 484        } else {
 485                ret_val = e1000e_write_phy_reg_mdic(hw,
 486                                                    MAX_PHY_REG_ADDRESS &
 487                                                    offset, data);
 488        }
 489
 490        e1000_release_phy_80003es2lan(hw);
 491
 492        return ret_val;
 493}
 494
 495/**
 496 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 497 *  @hw: pointer to the HW structure
 498 *  @offset: offset of the register to read
 499 *  @words: number of words to write
 500 *  @data: buffer of data to write to the NVM
 501 *
 502 *  Write "words" of data to the ESB2 NVM.
 503 **/
 504static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 505                                       u16 words, u16 *data)
 506{
 507        return e1000e_write_nvm_spi(hw, offset, words, data);
 508}
 509
 510/**
 511 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 512 *  @hw: pointer to the HW structure
 513 *
 514 *  Wait a specific amount of time for manageability processes to complete.
 515 *  This is a function pointer entry point called by the phy module.
 516 **/
 517static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 518{
 519        s32 timeout = PHY_CFG_TIMEOUT;
 520        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 521
 522        if (hw->bus.func == 1)
 523                mask = E1000_NVM_CFG_DONE_PORT_1;
 524
 525        while (timeout) {
 526                if (er32(EEMNGCTL) & mask)
 527                        break;
 528                usleep_range(1000, 2000);
 529                timeout--;
 530        }
 531        if (!timeout) {
 532                e_dbg("MNG configuration cycle has not completed.\n");
 533                return -E1000_ERR_RESET;
 534        }
 535
 536        return 0;
 537}
 538
 539/**
 540 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 541 *  @hw: pointer to the HW structure
 542 *
 543 *  Force the speed and duplex settings onto the PHY.  This is a
 544 *  function pointer entry point called by the phy module.
 545 **/
 546static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 547{
 548        s32 ret_val;
 549        u16 phy_data;
 550        bool link;
 551
 552        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 553         * forced whenever speed and duplex are forced.
 554         */
 555        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 556        if (ret_val)
 557                return ret_val;
 558
 559        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 560        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 561        if (ret_val)
 562                return ret_val;
 563
 564        e_dbg("GG82563 PSCR: %X\n", phy_data);
 565
 566        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 567        if (ret_val)
 568                return ret_val;
 569
 570        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 571
 572        /* Reset the phy to commit changes. */
 573        phy_data |= BMCR_RESET;
 574
 575        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 576        if (ret_val)
 577                return ret_val;
 578
 579        udelay(1);
 580
 581        if (hw->phy.autoneg_wait_to_complete) {
 582                e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 583
 584                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 585                                                      100000, &link);
 586                if (ret_val)
 587                        return ret_val;
 588
 589                if (!link) {
 590                        /* We didn't get link.
 591                         * Reset the DSP and cross our fingers.
 592                         */
 593                        ret_val = e1000e_phy_reset_dsp(hw);
 594                        if (ret_val)
 595                                return ret_val;
 596                }
 597
 598                /* Try once more */
 599                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 600                                                      100000, &link);
 601                if (ret_val)
 602                        return ret_val;
 603        }
 604
 605        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 606        if (ret_val)
 607                return ret_val;
 608
 609        /* Resetting the phy means we need to verify the TX_CLK corresponds
 610         * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 611         */
 612        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 613        if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 614                phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 615        else
 616                phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 617
 618        /* In addition, we must re-enable CRS on Tx for both half and full
 619         * duplex.
 620         */
 621        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 622        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 623
 624        return ret_val;
 625}
 626
 627/**
 628 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 629 *  @hw: pointer to the HW structure
 630 *
 631 *  Find the approximate cable length as measured by the GG82563 PHY.
 632 *  This is a function pointer entry point called by the phy module.
 633 **/
 634static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 635{
 636        struct e1000_phy_info *phy = &hw->phy;
 637        s32 ret_val;
 638        u16 phy_data, index;
 639
 640        ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 641        if (ret_val)
 642                return ret_val;
 643
 644        index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 645
 646        if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 647                return -E1000_ERR_PHY;
 648
 649        phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 650        phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 651
 652        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 653
 654        return 0;
 655}
 656
 657/**
 658 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 659 *  @hw: pointer to the HW structure
 660 *  @speed: pointer to speed buffer
 661 *  @duplex: pointer to duplex buffer
 662 *
 663 *  Retrieve the current speed and duplex configuration.
 664 **/
 665static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 666                                              u16 *duplex)
 667{
 668        s32 ret_val;
 669
 670        if (hw->phy.media_type == e1000_media_type_copper) {
 671                ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 672                hw->phy.ops.cfg_on_link_up(hw);
 673        } else {
 674                ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 675                                                                   speed,
 676                                                                   duplex);
 677        }
 678
 679        return ret_val;
 680}
 681
 682/**
 683 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 684 *  @hw: pointer to the HW structure
 685 *
 686 *  Perform a global reset to the ESB2 controller.
 687 **/
 688static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 689{
 690        u32 ctrl;
 691        s32 ret_val;
 692        u16 kum_reg_data;
 693
 694        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 695         * on the last TLP read/write transaction when MAC is reset.
 696         */
 697        ret_val = e1000e_disable_pcie_master(hw);
 698        if (ret_val)
 699                e_dbg("PCI-E Master disable polling has failed.\n");
 700
 701        e_dbg("Masking off all interrupts\n");
 702        ew32(IMC, 0xffffffff);
 703
 704        ew32(RCTL, 0);
 705        ew32(TCTL, E1000_TCTL_PSP);
 706        e1e_flush();
 707
 708        usleep_range(10000, 20000);
 709
 710        ctrl = er32(CTRL);
 711
 712        ret_val = e1000_acquire_phy_80003es2lan(hw);
 713        if (ret_val)
 714                return ret_val;
 715
 716        e_dbg("Issuing a global reset to MAC\n");
 717        ew32(CTRL, ctrl | E1000_CTRL_RST);
 718        e1000_release_phy_80003es2lan(hw);
 719
 720        /* Disable IBIST slave mode (far-end loopback) */
 721        e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 722                                        &kum_reg_data);
 723        kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 724        e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 725                                         kum_reg_data);
 726
 727        ret_val = e1000e_get_auto_rd_done(hw);
 728        if (ret_val)
 729                /* We don't want to continue accessing MAC registers. */
 730                return ret_val;
 731
 732        /* Clear any pending interrupt events. */
 733        ew32(IMC, 0xffffffff);
 734        er32(ICR);
 735
 736        return e1000_check_alt_mac_addr_generic(hw);
 737}
 738
 739/**
 740 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 741 *  @hw: pointer to the HW structure
 742 *
 743 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 744 **/
 745static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 746{
 747        struct e1000_mac_info *mac = &hw->mac;
 748        u32 reg_data;
 749        s32 ret_val;
 750        u16 kum_reg_data;
 751        u16 i;
 752
 753        e1000_initialize_hw_bits_80003es2lan(hw);
 754
 755        /* Initialize identification LED */
 756        ret_val = mac->ops.id_led_init(hw);
 757        /* An error is not fatal and we should not stop init due to this */
 758        if (ret_val)
 759                e_dbg("Error initializing identification LED\n");
 760
 761        /* Disabling VLAN filtering */
 762        e_dbg("Initializing the IEEE VLAN\n");
 763        mac->ops.clear_vfta(hw);
 764
 765        /* Setup the receive address. */
 766        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 767
 768        /* Zero out the Multicast HASH table */
 769        e_dbg("Zeroing the MTA\n");
 770        for (i = 0; i < mac->mta_reg_count; i++)
 771                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 772
 773        /* Setup link and flow control */
 774        ret_val = mac->ops.setup_link(hw);
 775        if (ret_val)
 776                return ret_val;
 777
 778        /* Disable IBIST slave mode (far-end loopback) */
 779        e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 780                                        &kum_reg_data);
 781        kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 782        e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 783                                         kum_reg_data);
 784
 785        /* Set the transmit descriptor write-back policy */
 786        reg_data = er32(TXDCTL(0));
 787        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 788                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 789        ew32(TXDCTL(0), reg_data);
 790
 791        /* ...for both queues. */
 792        reg_data = er32(TXDCTL(1));
 793        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 794                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 795        ew32(TXDCTL(1), reg_data);
 796
 797        /* Enable retransmit on late collisions */
 798        reg_data = er32(TCTL);
 799        reg_data |= E1000_TCTL_RTLC;
 800        ew32(TCTL, reg_data);
 801
 802        /* Configure Gigabit Carry Extend Padding */
 803        reg_data = er32(TCTL_EXT);
 804        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 805        reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 806        ew32(TCTL_EXT, reg_data);
 807
 808        /* Configure Transmit Inter-Packet Gap */
 809        reg_data = er32(TIPG);
 810        reg_data &= ~E1000_TIPG_IPGT_MASK;
 811        reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 812        ew32(TIPG, reg_data);
 813
 814        reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 815        reg_data &= ~0x00100000;
 816        E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 817
 818        /* default to true to enable the MDIC W/A */
 819        hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 820
 821        ret_val =
 822            e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 823                                            E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 824        if (!ret_val) {
 825                if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 826                    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 827                        hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 828        }
 829
 830        /* Clear all of the statistics registers (clear on read).  It is
 831         * important that we do this after we have tried to establish link
 832         * because the symbol error count will increment wildly if there
 833         * is no link.
 834         */
 835        e1000_clear_hw_cntrs_80003es2lan(hw);
 836
 837        return ret_val;
 838}
 839
 840/**
 841 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 842 *  @hw: pointer to the HW structure
 843 *
 844 *  Initializes required hardware-dependent bits needed for normal operation.
 845 **/
 846static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 847{
 848        u32 reg;
 849
 850        /* Transmit Descriptor Control 0 */
 851        reg = er32(TXDCTL(0));
 852        reg |= (1 << 22);
 853        ew32(TXDCTL(0), reg);
 854
 855        /* Transmit Descriptor Control 1 */
 856        reg = er32(TXDCTL(1));
 857        reg |= (1 << 22);
 858        ew32(TXDCTL(1), reg);
 859
 860        /* Transmit Arbitration Control 0 */
 861        reg = er32(TARC(0));
 862        reg &= ~(0xF << 27);    /* 30:27 */
 863        if (hw->phy.media_type != e1000_media_type_copper)
 864                reg &= ~(1 << 20);
 865        ew32(TARC(0), reg);
 866
 867        /* Transmit Arbitration Control 1 */
 868        reg = er32(TARC(1));
 869        if (er32(TCTL) & E1000_TCTL_MULR)
 870                reg &= ~(1 << 28);
 871        else
 872                reg |= (1 << 28);
 873        ew32(TARC(1), reg);
 874
 875        /* Disable IPv6 extension header parsing because some malformed
 876         * IPv6 headers can hang the Rx.
 877         */
 878        reg = er32(RFCTL);
 879        reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 880        ew32(RFCTL, reg);
 881}
 882
 883/**
 884 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 885 *  @hw: pointer to the HW structure
 886 *
 887 *  Setup some GG82563 PHY registers for obtaining link
 888 **/
 889static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 890{
 891        struct e1000_phy_info *phy = &hw->phy;
 892        s32 ret_val;
 893        u32 reg;
 894        u16 data;
 895
 896        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 897        if (ret_val)
 898                return ret_val;
 899
 900        data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 901        /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 902        data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 903
 904        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 905        if (ret_val)
 906                return ret_val;
 907
 908        /* Options:
 909         *   MDI/MDI-X = 0 (default)
 910         *   0 - Auto for all speeds
 911         *   1 - MDI mode
 912         *   2 - MDI-X mode
 913         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 914         */
 915        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 916        if (ret_val)
 917                return ret_val;
 918
 919        data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 920
 921        switch (phy->mdix) {
 922        case 1:
 923                data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 924                break;
 925        case 2:
 926                data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 927                break;
 928        case 0:
 929        default:
 930                data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 931                break;
 932        }
 933
 934        /* Options:
 935         *   disable_polarity_correction = 0 (default)
 936         *       Automatic Correction for Reversed Cable Polarity
 937         *   0 - Disabled
 938         *   1 - Enabled
 939         */
 940        data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 941        if (phy->disable_polarity_correction)
 942                data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 943
 944        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 945        if (ret_val)
 946                return ret_val;
 947
 948        /* SW Reset the PHY so all changes take effect */
 949        ret_val = hw->phy.ops.commit(hw);
 950        if (ret_val) {
 951                e_dbg("Error Resetting the PHY\n");
 952                return ret_val;
 953        }
 954
 955        /* Bypass Rx and Tx FIFO's */
 956        reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 957        data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 958                E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 959        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 960        if (ret_val)
 961                return ret_val;
 962
 963        reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 964        ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 965        if (ret_val)
 966                return ret_val;
 967        data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 968        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 969        if (ret_val)
 970                return ret_val;
 971
 972        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 973        if (ret_val)
 974                return ret_val;
 975
 976        data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 977        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 978        if (ret_val)
 979                return ret_val;
 980
 981        reg = er32(CTRL_EXT);
 982        reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 983        ew32(CTRL_EXT, reg);
 984
 985        ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 986        if (ret_val)
 987                return ret_val;
 988
 989        /* Do not init these registers when the HW is in IAMT mode, since the
 990         * firmware will have already initialized them.  We only initialize
 991         * them if the HW is not in IAMT mode.
 992         */
 993        if (!hw->mac.ops.check_mng_mode(hw)) {
 994                /* Enable Electrical Idle on the PHY */
 995                data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 996                ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 997                if (ret_val)
 998                        return ret_val;
 999
1000                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1001                if (ret_val)
1002                        return ret_val;
1003
1004                data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1005                ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1006                if (ret_val)
1007                        return ret_val;
1008        }
1009
1010        /* Workaround: Disable padding in Kumeran interface in the MAC
1011         * and in the PHY to avoid CRC errors.
1012         */
1013        ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1014        if (ret_val)
1015                return ret_val;
1016
1017        data |= GG82563_ICR_DIS_PADDING;
1018        ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1019        if (ret_val)
1020                return ret_val;
1021
1022        return 0;
1023}
1024
1025/**
1026 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1027 *  @hw: pointer to the HW structure
1028 *
1029 *  Essentially a wrapper for setting up all things "copper" related.
1030 *  This is a function pointer entry point called by the mac module.
1031 **/
1032static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1033{
1034        u32 ctrl;
1035        s32 ret_val;
1036        u16 reg_data;
1037
1038        ctrl = er32(CTRL);
1039        ctrl |= E1000_CTRL_SLU;
1040        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1041        ew32(CTRL, ctrl);
1042
1043        /* Set the mac to wait the maximum time between each
1044         * iteration and increase the max iterations when
1045         * polling the phy; this fixes erroneous timeouts at 10Mbps.
1046         */
1047        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1048                                                   0xFFFF);
1049        if (ret_val)
1050                return ret_val;
1051        ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1052                                                  &reg_data);
1053        if (ret_val)
1054                return ret_val;
1055        reg_data |= 0x3F;
1056        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1057                                                   reg_data);
1058        if (ret_val)
1059                return ret_val;
1060        ret_val =
1061            e1000_read_kmrn_reg_80003es2lan(hw,
1062                                            E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1063                                            &reg_data);
1064        if (ret_val)
1065                return ret_val;
1066        reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1067        ret_val =
1068            e1000_write_kmrn_reg_80003es2lan(hw,
1069                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1070                                             reg_data);
1071        if (ret_val)
1072                return ret_val;
1073
1074        ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1075        if (ret_val)
1076                return ret_val;
1077
1078        return e1000e_setup_copper_link(hw);
1079}
1080
1081/**
1082 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1083 *  @hw: pointer to the HW structure
1084 *  @duplex: current duplex setting
1085 *
1086 *  Configure the KMRN interface by applying last minute quirks for
1087 *  10/100 operation.
1088 **/
1089static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1090{
1091        s32 ret_val = 0;
1092        u16 speed;
1093        u16 duplex;
1094
1095        if (hw->phy.media_type == e1000_media_type_copper) {
1096                ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1097                                                             &duplex);
1098                if (ret_val)
1099                        return ret_val;
1100
1101                if (speed == SPEED_1000)
1102                        ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1103                else
1104                        ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1105        }
1106
1107        return ret_val;
1108}
1109
1110/**
1111 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1112 *  @hw: pointer to the HW structure
1113 *  @duplex: current duplex setting
1114 *
1115 *  Configure the KMRN interface by applying last minute quirks for
1116 *  10/100 operation.
1117 **/
1118static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1119{
1120        s32 ret_val;
1121        u32 tipg;
1122        u32 i = 0;
1123        u16 reg_data, reg_data2;
1124
1125        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1126        ret_val =
1127            e1000_write_kmrn_reg_80003es2lan(hw,
1128                                             E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1129                                             reg_data);
1130        if (ret_val)
1131                return ret_val;
1132
1133        /* Configure Transmit Inter-Packet Gap */
1134        tipg = er32(TIPG);
1135        tipg &= ~E1000_TIPG_IPGT_MASK;
1136        tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1137        ew32(TIPG, tipg);
1138
1139        do {
1140                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1141                if (ret_val)
1142                        return ret_val;
1143
1144                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1145                if (ret_val)
1146                        return ret_val;
1147                i++;
1148        } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1149
1150        if (duplex == HALF_DUPLEX)
1151                reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1152        else
1153                reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1154
1155        return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1156}
1157
1158/**
1159 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1160 *  @hw: pointer to the HW structure
1161 *
1162 *  Configure the KMRN interface by applying last minute quirks for
1163 *  gigabit operation.
1164 **/
1165static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1166{
1167        s32 ret_val;
1168        u16 reg_data, reg_data2;
1169        u32 tipg;
1170        u32 i = 0;
1171
1172        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1173        ret_val =
1174            e1000_write_kmrn_reg_80003es2lan(hw,
1175                                             E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1176                                             reg_data);
1177        if (ret_val)
1178                return ret_val;
1179
1180        /* Configure Transmit Inter-Packet Gap */
1181        tipg = er32(TIPG);
1182        tipg &= ~E1000_TIPG_IPGT_MASK;
1183        tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1184        ew32(TIPG, tipg);
1185
1186        do {
1187                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1188                if (ret_val)
1189                        return ret_val;
1190
1191                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1192                if (ret_val)
1193                        return ret_val;
1194                i++;
1195        } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1196
1197        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1198
1199        return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1200}
1201
1202/**
1203 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1204 *  @hw: pointer to the HW structure
1205 *  @offset: register offset to be read
1206 *  @data: pointer to the read data
1207 *
1208 *  Acquire semaphore, then read the PHY register at offset
1209 *  using the kumeran interface.  The information retrieved is stored in data.
1210 *  Release the semaphore before exiting.
1211 **/
1212static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1213                                           u16 *data)
1214{
1215        u32 kmrnctrlsta;
1216        s32 ret_val;
1217
1218        ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1219        if (ret_val)
1220                return ret_val;
1221
1222        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1223                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1224        ew32(KMRNCTRLSTA, kmrnctrlsta);
1225        e1e_flush();
1226
1227        udelay(2);
1228
1229        kmrnctrlsta = er32(KMRNCTRLSTA);
1230        *data = (u16)kmrnctrlsta;
1231
1232        e1000_release_mac_csr_80003es2lan(hw);
1233
1234        return ret_val;
1235}
1236
1237/**
1238 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1239 *  @hw: pointer to the HW structure
1240 *  @offset: register offset to write to
1241 *  @data: data to write at register offset
1242 *
1243 *  Acquire semaphore, then write the data to PHY register
1244 *  at the offset using the kumeran interface.  Release semaphore
1245 *  before exiting.
1246 **/
1247static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1248                                            u16 data)
1249{
1250        u32 kmrnctrlsta;
1251        s32 ret_val;
1252
1253        ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1254        if (ret_val)
1255                return ret_val;
1256
1257        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1258                       E1000_KMRNCTRLSTA_OFFSET) | data;
1259        ew32(KMRNCTRLSTA, kmrnctrlsta);
1260        e1e_flush();
1261
1262        udelay(2);
1263
1264        e1000_release_mac_csr_80003es2lan(hw);
1265
1266        return ret_val;
1267}
1268
1269/**
1270 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1271 *  @hw: pointer to the HW structure
1272 **/
1273static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1274{
1275        s32 ret_val;
1276
1277        /* If there's an alternate MAC address place it in RAR0
1278         * so that it will override the Si installed default perm
1279         * address.
1280         */
1281        ret_val = e1000_check_alt_mac_addr_generic(hw);
1282        if (ret_val)
1283                return ret_val;
1284
1285        return e1000_read_mac_addr_generic(hw);
1286}
1287
1288/**
1289 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1290 * @hw: pointer to the HW structure
1291 *
1292 * In the case of a PHY power down to save power, or to turn off link during a
1293 * driver unload, or wake on lan is not enabled, remove the link.
1294 **/
1295static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1296{
1297        /* If the management interface is not enabled, then power down */
1298        if (!(hw->mac.ops.check_mng_mode(hw) ||
1299              hw->phy.ops.check_reset_block(hw)))
1300                e1000_power_down_phy_copper(hw);
1301}
1302
1303/**
1304 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1305 *  @hw: pointer to the HW structure
1306 *
1307 *  Clears the hardware counters by reading the counter registers.
1308 **/
1309static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1310{
1311        e1000e_clear_hw_cntrs_base(hw);
1312
1313        er32(PRC64);
1314        er32(PRC127);
1315        er32(PRC255);
1316        er32(PRC511);
1317        er32(PRC1023);
1318        er32(PRC1522);
1319        er32(PTC64);
1320        er32(PTC127);
1321        er32(PTC255);
1322        er32(PTC511);
1323        er32(PTC1023);
1324        er32(PTC1522);
1325
1326        er32(ALGNERRC);
1327        er32(RXERRC);
1328        er32(TNCRS);
1329        er32(CEXTERR);
1330        er32(TSCTC);
1331        er32(TSCTFC);
1332
1333        er32(MGTPRC);
1334        er32(MGTPDC);
1335        er32(MGTPTC);
1336
1337        er32(IAC);
1338        er32(ICRXOC);
1339
1340        er32(ICRXPTC);
1341        er32(ICRXATC);
1342        er32(ICTXPTC);
1343        er32(ICTXATC);
1344        er32(ICTXQEC);
1345        er32(ICTXQMTC);
1346        er32(ICRXDMTC);
1347}
1348
1349static const struct e1000_mac_operations es2_mac_ops = {
1350        .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1351        .id_led_init            = e1000e_id_led_init_generic,
1352        .blink_led              = e1000e_blink_led_generic,
1353        .check_mng_mode         = e1000e_check_mng_mode_generic,
1354        /* check_for_link dependent on media type */
1355        .cleanup_led            = e1000e_cleanup_led_generic,
1356        .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1357        .get_bus_info           = e1000e_get_bus_info_pcie,
1358        .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1359        .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1360        .led_on                 = e1000e_led_on_generic,
1361        .led_off                = e1000e_led_off_generic,
1362        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1363        .write_vfta             = e1000_write_vfta_generic,
1364        .clear_vfta             = e1000_clear_vfta_generic,
1365        .reset_hw               = e1000_reset_hw_80003es2lan,
1366        .init_hw                = e1000_init_hw_80003es2lan,
1367        .setup_link             = e1000e_setup_link_generic,
1368        /* setup_physical_interface dependent on media type */
1369        .setup_led              = e1000e_setup_led_generic,
1370        .config_collision_dist  = e1000e_config_collision_dist_generic,
1371        .rar_set                = e1000e_rar_set_generic,
1372};
1373
1374static const struct e1000_phy_operations es2_phy_ops = {
1375        .acquire                = e1000_acquire_phy_80003es2lan,
1376        .check_polarity         = e1000_check_polarity_m88,
1377        .check_reset_block      = e1000e_check_reset_block_generic,
1378        .commit                 = e1000e_phy_sw_reset,
1379        .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1380        .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1381        .get_cable_length       = e1000_get_cable_length_80003es2lan,
1382        .get_info               = e1000e_get_phy_info_m88,
1383        .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1384        .release                = e1000_release_phy_80003es2lan,
1385        .reset                  = e1000e_phy_hw_reset_generic,
1386        .set_d0_lplu_state      = NULL,
1387        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1388        .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1389        .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1390};
1391
1392static const struct e1000_nvm_operations es2_nvm_ops = {
1393        .acquire                = e1000_acquire_nvm_80003es2lan,
1394        .read                   = e1000e_read_nvm_eerd,
1395        .release                = e1000_release_nvm_80003es2lan,
1396        .reload                 = e1000e_reload_nvm_generic,
1397        .update                 = e1000e_update_nvm_checksum_generic,
1398        .valid_led_default      = e1000e_valid_led_default,
1399        .validate               = e1000e_validate_nvm_checksum_generic,
1400        .write                  = e1000_write_nvm_80003es2lan,
1401};
1402
1403const struct e1000_info e1000_es2_info = {
1404        .mac                    = e1000_80003es2lan,
1405        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1406                                  | FLAG_HAS_JUMBO_FRAMES
1407                                  | FLAG_HAS_WOL
1408                                  | FLAG_APME_IN_CTRL3
1409                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1410                                  | FLAG_RX_NEEDS_RESTART /* errata */
1411                                  | FLAG_TARC_SET_BIT_ZERO /* errata */
1412                                  | FLAG_APME_CHECK_PORT_B
1413                                  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1414        .flags2                 = FLAG2_DMA_BURST,
1415        .pba                    = 38,
1416        .max_hw_frame_size      = DEFAULT_JUMBO,
1417        .get_variants           = e1000_get_variants_80003es2lan,
1418        .mac_ops                = &es2_mac_ops,
1419        .phy_ops                = &es2_phy_ops,
1420        .nvm_ops                = &es2_nvm_ops,
1421};
1422