linux/drivers/net/ethernet/intel/igb/e1000_82575.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2013 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28/* e1000_82575
  29 * e1000_82576
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/types.h>
  35#include <linux/if_ether.h>
  36#include <linux/i2c.h>
  37
  38#include "e1000_mac.h"
  39#include "e1000_82575.h"
  40#include "e1000_i210.h"
  41
  42static s32  igb_get_invariants_82575(struct e1000_hw *);
  43static s32  igb_acquire_phy_82575(struct e1000_hw *);
  44static void igb_release_phy_82575(struct e1000_hw *);
  45static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  46static void igb_release_nvm_82575(struct e1000_hw *);
  47static s32  igb_check_for_link_82575(struct e1000_hw *);
  48static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  49static s32  igb_init_hw_82575(struct e1000_hw *);
  50static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  51static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  52static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
  53static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
  54static s32  igb_reset_hw_82575(struct e1000_hw *);
  55static s32  igb_reset_hw_82580(struct e1000_hw *);
  56static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  57static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  58static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  59static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  60static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  61static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  62static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  63static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  64static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  65                                                 u16 *);
  66static s32  igb_get_phy_id_82575(struct e1000_hw *);
  67static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  68static bool igb_sgmii_active_82575(struct e1000_hw *);
  69static s32  igb_reset_init_script_82575(struct e1000_hw *);
  70static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  71static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  72static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  73static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  74static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  75static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  76static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  77static const u16 e1000_82580_rxpbs_table[] =
  78        { 36, 72, 144, 1, 2, 4, 8, 16,
  79          35, 70, 140 };
  80#define E1000_82580_RXPBS_TABLE_SIZE \
  81        (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
  82
  83/**
  84 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  85 *  @hw: pointer to the HW structure
  86 *
  87 *  Called to determine if the I2C pins are being used for I2C or as an
  88 *  external MDIO interface since the two options are mutually exclusive.
  89 **/
  90static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  91{
  92        u32 reg = 0;
  93        bool ext_mdio = false;
  94
  95        switch (hw->mac.type) {
  96        case e1000_82575:
  97        case e1000_82576:
  98                reg = rd32(E1000_MDIC);
  99                ext_mdio = !!(reg & E1000_MDIC_DEST);
 100                break;
 101        case e1000_82580:
 102        case e1000_i350:
 103        case e1000_i354:
 104        case e1000_i210:
 105        case e1000_i211:
 106                reg = rd32(E1000_MDICNFG);
 107                ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 108                break;
 109        default:
 110                break;
 111        }
 112        return ext_mdio;
 113}
 114
 115/**
 116 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 117 *  @hw: pointer to the HW structure
 118 **/
 119static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 120{
 121        struct e1000_phy_info *phy = &hw->phy;
 122        s32 ret_val = 0;
 123        u32 ctrl_ext;
 124
 125        if (hw->phy.media_type != e1000_media_type_copper) {
 126                phy->type = e1000_phy_none;
 127                goto out;
 128        }
 129
 130        phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 131        phy->reset_delay_us     = 100;
 132
 133        ctrl_ext = rd32(E1000_CTRL_EXT);
 134
 135        if (igb_sgmii_active_82575(hw)) {
 136                phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 137                ctrl_ext |= E1000_CTRL_I2C_ENA;
 138        } else {
 139                phy->ops.reset = igb_phy_hw_reset;
 140                ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 141        }
 142
 143        wr32(E1000_CTRL_EXT, ctrl_ext);
 144        igb_reset_mdicnfg_82580(hw);
 145
 146        if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 147                phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 148                phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 149        } else {
 150                switch (hw->mac.type) {
 151                case e1000_82580:
 152                case e1000_i350:
 153                case e1000_i354:
 154                        phy->ops.read_reg = igb_read_phy_reg_82580;
 155                        phy->ops.write_reg = igb_write_phy_reg_82580;
 156                        break;
 157                case e1000_i210:
 158                case e1000_i211:
 159                        phy->ops.read_reg = igb_read_phy_reg_gs40g;
 160                        phy->ops.write_reg = igb_write_phy_reg_gs40g;
 161                        break;
 162                default:
 163                        phy->ops.read_reg = igb_read_phy_reg_igp;
 164                        phy->ops.write_reg = igb_write_phy_reg_igp;
 165                }
 166        }
 167
 168        /* set lan id */
 169        hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 170                        E1000_STATUS_FUNC_SHIFT;
 171
 172        /* Set phy->phy_addr and phy->id. */
 173        ret_val = igb_get_phy_id_82575(hw);
 174        if (ret_val)
 175                return ret_val;
 176
 177        /* Verify phy id and set remaining function pointers */
 178        switch (phy->id) {
 179        case M88E1543_E_PHY_ID:
 180        case I347AT4_E_PHY_ID:
 181        case M88E1112_E_PHY_ID:
 182        case M88E1111_I_PHY_ID:
 183                phy->type               = e1000_phy_m88;
 184                phy->ops.check_polarity = igb_check_polarity_m88;
 185                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 186                if (phy->id != M88E1111_I_PHY_ID)
 187                        phy->ops.get_cable_length =
 188                                         igb_get_cable_length_m88_gen2;
 189                else
 190                        phy->ops.get_cable_length = igb_get_cable_length_m88;
 191                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 192                break;
 193        case IGP03E1000_E_PHY_ID:
 194                phy->type = e1000_phy_igp_3;
 195                phy->ops.get_phy_info = igb_get_phy_info_igp;
 196                phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 197                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 198                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 199                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 200                break;
 201        case I82580_I_PHY_ID:
 202        case I350_I_PHY_ID:
 203                phy->type = e1000_phy_82580;
 204                phy->ops.force_speed_duplex =
 205                                         igb_phy_force_speed_duplex_82580;
 206                phy->ops.get_cable_length = igb_get_cable_length_82580;
 207                phy->ops.get_phy_info = igb_get_phy_info_82580;
 208                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 209                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 210                break;
 211        case I210_I_PHY_ID:
 212                phy->type               = e1000_phy_i210;
 213                phy->ops.check_polarity = igb_check_polarity_m88;
 214                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 215                phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 216                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 217                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 218                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 219                break;
 220        default:
 221                ret_val = -E1000_ERR_PHY;
 222                goto out;
 223        }
 224
 225out:
 226        return ret_val;
 227}
 228
 229/**
 230 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 231 *  @hw: pointer to the HW structure
 232 **/
 233static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 234{
 235        struct e1000_nvm_info *nvm = &hw->nvm;
 236        u32 eecd = rd32(E1000_EECD);
 237        u16 size;
 238
 239        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 240                     E1000_EECD_SIZE_EX_SHIFT);
 241
 242        /* Added to a constant, "size" becomes the left-shift value
 243         * for setting word_size.
 244         */
 245        size += NVM_WORD_SIZE_BASE_SHIFT;
 246
 247        /* Just in case size is out of range, cap it to the largest
 248         * EEPROM size supported
 249         */
 250        if (size > 15)
 251                size = 15;
 252
 253        nvm->word_size = 1 << size;
 254        nvm->opcode_bits = 8;
 255        nvm->delay_usec = 1;
 256
 257        switch (nvm->override) {
 258        case e1000_nvm_override_spi_large:
 259                nvm->page_size = 32;
 260                nvm->address_bits = 16;
 261                break;
 262        case e1000_nvm_override_spi_small:
 263                nvm->page_size = 8;
 264                nvm->address_bits = 8;
 265                break;
 266        default:
 267                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 268                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 269                                    16 : 8;
 270                break;
 271        }
 272        if (nvm->word_size == (1 << 15))
 273                nvm->page_size = 128;
 274
 275        nvm->type = e1000_nvm_eeprom_spi;
 276
 277        /* NVM Function Pointers */
 278        nvm->ops.acquire = igb_acquire_nvm_82575;
 279        nvm->ops.release = igb_release_nvm_82575;
 280        nvm->ops.write = igb_write_nvm_spi;
 281        nvm->ops.validate = igb_validate_nvm_checksum;
 282        nvm->ops.update = igb_update_nvm_checksum;
 283        if (nvm->word_size < (1 << 15))
 284                nvm->ops.read = igb_read_nvm_eerd;
 285        else
 286                nvm->ops.read = igb_read_nvm_spi;
 287
 288        /* override generic family function pointers for specific descendants */
 289        switch (hw->mac.type) {
 290        case e1000_82580:
 291                nvm->ops.validate = igb_validate_nvm_checksum_82580;
 292                nvm->ops.update = igb_update_nvm_checksum_82580;
 293                break;
 294        case e1000_i354:
 295        case e1000_i350:
 296                nvm->ops.validate = igb_validate_nvm_checksum_i350;
 297                nvm->ops.update = igb_update_nvm_checksum_i350;
 298                break;
 299        default:
 300                break;
 301        }
 302
 303        return 0;
 304}
 305
 306/**
 307 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 308 *  @hw: pointer to the HW structure
 309 **/
 310static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 311{
 312        struct e1000_mac_info *mac = &hw->mac;
 313        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 314
 315        /* Set mta register count */
 316        mac->mta_reg_count = 128;
 317        /* Set rar entry count */
 318        switch (mac->type) {
 319        case e1000_82576:
 320                mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 321                break;
 322        case e1000_82580:
 323                mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 324                break;
 325        case e1000_i350:
 326        case e1000_i354:
 327                mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 328                break;
 329        default:
 330                mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 331                break;
 332        }
 333        /* reset */
 334        if (mac->type >= e1000_82580)
 335                mac->ops.reset_hw = igb_reset_hw_82580;
 336        else
 337                mac->ops.reset_hw = igb_reset_hw_82575;
 338
 339        if (mac->type >= e1000_i210) {
 340                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 341                mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 342
 343        } else {
 344                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 345                mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 346        }
 347
 348        /* Set if part includes ASF firmware */
 349        mac->asf_firmware_present = true;
 350        /* Set if manageability features are enabled. */
 351        mac->arc_subsystem_valid =
 352                (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 353                        ? true : false;
 354        /* enable EEE on i350 parts and later parts */
 355        if (mac->type >= e1000_i350)
 356                dev_spec->eee_disable = false;
 357        else
 358                dev_spec->eee_disable = true;
 359        /* Allow a single clear of the SW semaphore on I210 and newer */
 360        if (mac->type >= e1000_i210)
 361                dev_spec->clear_semaphore_once = true;
 362        /* physical interface link setup */
 363        mac->ops.setup_physical_interface =
 364                (hw->phy.media_type == e1000_media_type_copper)
 365                        ? igb_setup_copper_link_82575
 366                        : igb_setup_serdes_link_82575;
 367
 368        return 0;
 369}
 370
 371/**
 372 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 373 *  @hw: pointer to the HW structure
 374 *
 375 *  The media type is chosen based on SFP module.
 376 *  compatibility flags retrieved from SFP ID EEPROM.
 377 **/
 378static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 379{
 380        s32 ret_val = E1000_ERR_CONFIG;
 381        u32 ctrl_ext = 0;
 382        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 383        struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 384        u8 tranceiver_type = 0;
 385        s32 timeout = 3;
 386
 387        /* Turn I2C interface ON and power on sfp cage */
 388        ctrl_ext = rd32(E1000_CTRL_EXT);
 389        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 390        wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 391
 392        wrfl();
 393
 394        /* Read SFP module data */
 395        while (timeout) {
 396                ret_val = igb_read_sfp_data_byte(hw,
 397                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 398                        &tranceiver_type);
 399                if (ret_val == 0)
 400                        break;
 401                msleep(100);
 402                timeout--;
 403        }
 404        if (ret_val != 0)
 405                goto out;
 406
 407        ret_val = igb_read_sfp_data_byte(hw,
 408                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 409                        (u8 *)eth_flags);
 410        if (ret_val != 0)
 411                goto out;
 412
 413        /* Check if there is some SFP module plugged and powered */
 414        if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 415            (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 416                dev_spec->module_plugged = true;
 417                if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 418                        hw->phy.media_type = e1000_media_type_internal_serdes;
 419                } else if (eth_flags->e100_base_fx) {
 420                        dev_spec->sgmii_active = true;
 421                        hw->phy.media_type = e1000_media_type_internal_serdes;
 422                } else if (eth_flags->e1000_base_t) {
 423                        dev_spec->sgmii_active = true;
 424                        hw->phy.media_type = e1000_media_type_copper;
 425                } else {
 426                        hw->phy.media_type = e1000_media_type_unknown;
 427                        hw_dbg("PHY module has not been recognized\n");
 428                        goto out;
 429                }
 430        } else {
 431                hw->phy.media_type = e1000_media_type_unknown;
 432        }
 433        ret_val = 0;
 434out:
 435        /* Restore I2C interface setting */
 436        wr32(E1000_CTRL_EXT, ctrl_ext);
 437        return ret_val;
 438}
 439
 440static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 441{
 442        struct e1000_mac_info *mac = &hw->mac;
 443        struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
 444        s32 ret_val;
 445        u32 ctrl_ext = 0;
 446        u32 link_mode = 0;
 447
 448        switch (hw->device_id) {
 449        case E1000_DEV_ID_82575EB_COPPER:
 450        case E1000_DEV_ID_82575EB_FIBER_SERDES:
 451        case E1000_DEV_ID_82575GB_QUAD_COPPER:
 452                mac->type = e1000_82575;
 453                break;
 454        case E1000_DEV_ID_82576:
 455        case E1000_DEV_ID_82576_NS:
 456        case E1000_DEV_ID_82576_NS_SERDES:
 457        case E1000_DEV_ID_82576_FIBER:
 458        case E1000_DEV_ID_82576_SERDES:
 459        case E1000_DEV_ID_82576_QUAD_COPPER:
 460        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 461        case E1000_DEV_ID_82576_SERDES_QUAD:
 462                mac->type = e1000_82576;
 463                break;
 464        case E1000_DEV_ID_82580_COPPER:
 465        case E1000_DEV_ID_82580_FIBER:
 466        case E1000_DEV_ID_82580_QUAD_FIBER:
 467        case E1000_DEV_ID_82580_SERDES:
 468        case E1000_DEV_ID_82580_SGMII:
 469        case E1000_DEV_ID_82580_COPPER_DUAL:
 470        case E1000_DEV_ID_DH89XXCC_SGMII:
 471        case E1000_DEV_ID_DH89XXCC_SERDES:
 472        case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 473        case E1000_DEV_ID_DH89XXCC_SFP:
 474                mac->type = e1000_82580;
 475                break;
 476        case E1000_DEV_ID_I350_COPPER:
 477        case E1000_DEV_ID_I350_FIBER:
 478        case E1000_DEV_ID_I350_SERDES:
 479        case E1000_DEV_ID_I350_SGMII:
 480                mac->type = e1000_i350;
 481                break;
 482        case E1000_DEV_ID_I210_COPPER:
 483        case E1000_DEV_ID_I210_FIBER:
 484        case E1000_DEV_ID_I210_SERDES:
 485        case E1000_DEV_ID_I210_SGMII:
 486        case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 487        case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 488                mac->type = e1000_i210;
 489                break;
 490        case E1000_DEV_ID_I211_COPPER:
 491                mac->type = e1000_i211;
 492                break;
 493        case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 494        case E1000_DEV_ID_I354_SGMII:
 495        case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 496                mac->type = e1000_i354;
 497                break;
 498        default:
 499                return -E1000_ERR_MAC_INIT;
 500                break;
 501        }
 502
 503        /* Set media type */
 504        /* The 82575 uses bits 22:23 for link mode. The mode can be changed
 505         * based on the EEPROM. We cannot rely upon device ID. There
 506         * is no distinguishable difference between fiber and internal
 507         * SerDes mode on the 82575. There can be an external PHY attached
 508         * on the SGMII interface. For this, we'll set sgmii_active to true.
 509         */
 510        hw->phy.media_type = e1000_media_type_copper;
 511        dev_spec->sgmii_active = false;
 512        dev_spec->module_plugged = false;
 513
 514        ctrl_ext = rd32(E1000_CTRL_EXT);
 515
 516        link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 517        switch (link_mode) {
 518        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 519                hw->phy.media_type = e1000_media_type_internal_serdes;
 520                break;
 521        case E1000_CTRL_EXT_LINK_MODE_SGMII:
 522                /* Get phy control interface type set (MDIO vs. I2C)*/
 523                if (igb_sgmii_uses_mdio_82575(hw)) {
 524                        hw->phy.media_type = e1000_media_type_copper;
 525                        dev_spec->sgmii_active = true;
 526                        break;
 527                }
 528                /* fall through for I2C based SGMII */
 529        case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 530                /* read media type from SFP EEPROM */
 531                ret_val = igb_set_sfp_media_type_82575(hw);
 532                if ((ret_val != 0) ||
 533                    (hw->phy.media_type == e1000_media_type_unknown)) {
 534                        /* If media type was not identified then return media
 535                         * type defined by the CTRL_EXT settings.
 536                         */
 537                        hw->phy.media_type = e1000_media_type_internal_serdes;
 538
 539                        if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 540                                hw->phy.media_type = e1000_media_type_copper;
 541                                dev_spec->sgmii_active = true;
 542                        }
 543
 544                        break;
 545                }
 546
 547                /* do not change link mode for 100BaseFX */
 548                if (dev_spec->eth_flags.e100_base_fx)
 549                        break;
 550
 551                /* change current link mode setting */
 552                ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 553
 554                if (hw->phy.media_type == e1000_media_type_copper)
 555                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 556                else
 557                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 558
 559                wr32(E1000_CTRL_EXT, ctrl_ext);
 560
 561                break;
 562        default:
 563                break;
 564        }
 565
 566        /* mac initialization and operations */
 567        ret_val = igb_init_mac_params_82575(hw);
 568        if (ret_val)
 569                goto out;
 570
 571        /* NVM initialization */
 572        ret_val = igb_init_nvm_params_82575(hw);
 573        switch (hw->mac.type) {
 574        case e1000_i210:
 575        case e1000_i211:
 576                ret_val = igb_init_nvm_params_i210(hw);
 577                break;
 578        default:
 579                break;
 580        }
 581
 582        if (ret_val)
 583                goto out;
 584
 585        /* if part supports SR-IOV then initialize mailbox parameters */
 586        switch (mac->type) {
 587        case e1000_82576:
 588        case e1000_i350:
 589                igb_init_mbx_params_pf(hw);
 590                break;
 591        default:
 592                break;
 593        }
 594
 595        /* setup PHY parameters */
 596        ret_val = igb_init_phy_params_82575(hw);
 597
 598out:
 599        return ret_val;
 600}
 601
 602/**
 603 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 604 *  @hw: pointer to the HW structure
 605 *
 606 *  Acquire access rights to the correct PHY.  This is a
 607 *  function pointer entry point called by the api module.
 608 **/
 609static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 610{
 611        u16 mask = E1000_SWFW_PHY0_SM;
 612
 613        if (hw->bus.func == E1000_FUNC_1)
 614                mask = E1000_SWFW_PHY1_SM;
 615        else if (hw->bus.func == E1000_FUNC_2)
 616                mask = E1000_SWFW_PHY2_SM;
 617        else if (hw->bus.func == E1000_FUNC_3)
 618                mask = E1000_SWFW_PHY3_SM;
 619
 620        return hw->mac.ops.acquire_swfw_sync(hw, mask);
 621}
 622
 623/**
 624 *  igb_release_phy_82575 - Release rights to access PHY
 625 *  @hw: pointer to the HW structure
 626 *
 627 *  A wrapper to release access rights to the correct PHY.  This is a
 628 *  function pointer entry point called by the api module.
 629 **/
 630static void igb_release_phy_82575(struct e1000_hw *hw)
 631{
 632        u16 mask = E1000_SWFW_PHY0_SM;
 633
 634        if (hw->bus.func == E1000_FUNC_1)
 635                mask = E1000_SWFW_PHY1_SM;
 636        else if (hw->bus.func == E1000_FUNC_2)
 637                mask = E1000_SWFW_PHY2_SM;
 638        else if (hw->bus.func == E1000_FUNC_3)
 639                mask = E1000_SWFW_PHY3_SM;
 640
 641        hw->mac.ops.release_swfw_sync(hw, mask);
 642}
 643
 644/**
 645 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 646 *  @hw: pointer to the HW structure
 647 *  @offset: register offset to be read
 648 *  @data: pointer to the read data
 649 *
 650 *  Reads the PHY register at offset using the serial gigabit media independent
 651 *  interface and stores the retrieved information in data.
 652 **/
 653static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 654                                          u16 *data)
 655{
 656        s32 ret_val = -E1000_ERR_PARAM;
 657
 658        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 659                hw_dbg("PHY Address %u is out of range\n", offset);
 660                goto out;
 661        }
 662
 663        ret_val = hw->phy.ops.acquire(hw);
 664        if (ret_val)
 665                goto out;
 666
 667        ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 668
 669        hw->phy.ops.release(hw);
 670
 671out:
 672        return ret_val;
 673}
 674
 675/**
 676 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 677 *  @hw: pointer to the HW structure
 678 *  @offset: register offset to write to
 679 *  @data: data to write at register offset
 680 *
 681 *  Writes the data to PHY register at the offset using the serial gigabit
 682 *  media independent interface.
 683 **/
 684static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 685                                           u16 data)
 686{
 687        s32 ret_val = -E1000_ERR_PARAM;
 688
 689
 690        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 691                hw_dbg("PHY Address %d is out of range\n", offset);
 692                goto out;
 693        }
 694
 695        ret_val = hw->phy.ops.acquire(hw);
 696        if (ret_val)
 697                goto out;
 698
 699        ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 700
 701        hw->phy.ops.release(hw);
 702
 703out:
 704        return ret_val;
 705}
 706
 707/**
 708 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 709 *  @hw: pointer to the HW structure
 710 *
 711 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 712 *  sgmi interface.
 713 **/
 714static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 715{
 716        struct e1000_phy_info *phy = &hw->phy;
 717        s32  ret_val = 0;
 718        u16 phy_id;
 719        u32 ctrl_ext;
 720        u32 mdic;
 721
 722        /* Extra read required for some PHY's on i354 */
 723        if (hw->mac.type == e1000_i354)
 724                igb_get_phy_id(hw);
 725
 726        /* For SGMII PHYs, we try the list of possible addresses until
 727         * we find one that works.  For non-SGMII PHYs
 728         * (e.g. integrated copper PHYs), an address of 1 should
 729         * work.  The result of this function should mean phy->phy_addr
 730         * and phy->id are set correctly.
 731         */
 732        if (!(igb_sgmii_active_82575(hw))) {
 733                phy->addr = 1;
 734                ret_val = igb_get_phy_id(hw);
 735                goto out;
 736        }
 737
 738        if (igb_sgmii_uses_mdio_82575(hw)) {
 739                switch (hw->mac.type) {
 740                case e1000_82575:
 741                case e1000_82576:
 742                        mdic = rd32(E1000_MDIC);
 743                        mdic &= E1000_MDIC_PHY_MASK;
 744                        phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 745                        break;
 746                case e1000_82580:
 747                case e1000_i350:
 748                case e1000_i354:
 749                case e1000_i210:
 750                case e1000_i211:
 751                        mdic = rd32(E1000_MDICNFG);
 752                        mdic &= E1000_MDICNFG_PHY_MASK;
 753                        phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 754                        break;
 755                default:
 756                        ret_val = -E1000_ERR_PHY;
 757                        goto out;
 758                        break;
 759                }
 760                ret_val = igb_get_phy_id(hw);
 761                goto out;
 762        }
 763
 764        /* Power on sgmii phy if it is disabled */
 765        ctrl_ext = rd32(E1000_CTRL_EXT);
 766        wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 767        wrfl();
 768        msleep(300);
 769
 770        /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 771         * Therefore, we need to test 1-7
 772         */
 773        for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 774                ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 775                if (ret_val == 0) {
 776                        hw_dbg("Vendor ID 0x%08X read at address %u\n",
 777                               phy_id, phy->addr);
 778                        /* At the time of this writing, The M88 part is
 779                         * the only supported SGMII PHY product.
 780                         */
 781                        if (phy_id == M88_VENDOR)
 782                                break;
 783                } else {
 784                        hw_dbg("PHY address %u was unreadable\n", phy->addr);
 785                }
 786        }
 787
 788        /* A valid PHY type couldn't be found. */
 789        if (phy->addr == 8) {
 790                phy->addr = 0;
 791                ret_val = -E1000_ERR_PHY;
 792                goto out;
 793        } else {
 794                ret_val = igb_get_phy_id(hw);
 795        }
 796
 797        /* restore previous sfp cage power state */
 798        wr32(E1000_CTRL_EXT, ctrl_ext);
 799
 800out:
 801        return ret_val;
 802}
 803
 804/**
 805 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 806 *  @hw: pointer to the HW structure
 807 *
 808 *  Resets the PHY using the serial gigabit media independent interface.
 809 **/
 810static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 811{
 812        s32 ret_val;
 813
 814        /* This isn't a true "hard" reset, but is the only reset
 815         * available to us at this time.
 816         */
 817
 818        hw_dbg("Soft resetting SGMII attached PHY...\n");
 819
 820        /* SFP documentation requires the following to configure the SPF module
 821         * to work on SGMII.  No further documentation is given.
 822         */
 823        ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 824        if (ret_val)
 825                goto out;
 826
 827        ret_val = igb_phy_sw_reset(hw);
 828
 829out:
 830        return ret_val;
 831}
 832
 833/**
 834 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 835 *  @hw: pointer to the HW structure
 836 *  @active: true to enable LPLU, false to disable
 837 *
 838 *  Sets the LPLU D0 state according to the active flag.  When
 839 *  activating LPLU this function also disables smart speed
 840 *  and vice versa.  LPLU will not be activated unless the
 841 *  device autonegotiation advertisement meets standards of
 842 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 843 *  This is a function pointer entry point only called by
 844 *  PHY setup routines.
 845 **/
 846static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 847{
 848        struct e1000_phy_info *phy = &hw->phy;
 849        s32 ret_val;
 850        u16 data;
 851
 852        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 853        if (ret_val)
 854                goto out;
 855
 856        if (active) {
 857                data |= IGP02E1000_PM_D0_LPLU;
 858                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 859                                                 data);
 860                if (ret_val)
 861                        goto out;
 862
 863                /* When LPLU is enabled, we should disable SmartSpeed */
 864                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 865                                                &data);
 866                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 867                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 868                                                 data);
 869                if (ret_val)
 870                        goto out;
 871        } else {
 872                data &= ~IGP02E1000_PM_D0_LPLU;
 873                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 874                                                 data);
 875                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 876                 * during Dx states where the power conservation is most
 877                 * important.  During driver activity we should enable
 878                 * SmartSpeed, so performance is maintained.
 879                 */
 880                if (phy->smart_speed == e1000_smart_speed_on) {
 881                        ret_val = phy->ops.read_reg(hw,
 882                                        IGP01E1000_PHY_PORT_CONFIG, &data);
 883                        if (ret_val)
 884                                goto out;
 885
 886                        data |= IGP01E1000_PSCFR_SMART_SPEED;
 887                        ret_val = phy->ops.write_reg(hw,
 888                                        IGP01E1000_PHY_PORT_CONFIG, data);
 889                        if (ret_val)
 890                                goto out;
 891                } else if (phy->smart_speed == e1000_smart_speed_off) {
 892                        ret_val = phy->ops.read_reg(hw,
 893                                        IGP01E1000_PHY_PORT_CONFIG, &data);
 894                        if (ret_val)
 895                                goto out;
 896
 897                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 898                        ret_val = phy->ops.write_reg(hw,
 899                                        IGP01E1000_PHY_PORT_CONFIG, data);
 900                        if (ret_val)
 901                                goto out;
 902                }
 903        }
 904
 905out:
 906        return ret_val;
 907}
 908
 909/**
 910 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 911 *  @hw: pointer to the HW structure
 912 *  @active: true to enable LPLU, false to disable
 913 *
 914 *  Sets the LPLU D0 state according to the active flag.  When
 915 *  activating LPLU this function also disables smart speed
 916 *  and vice versa.  LPLU will not be activated unless the
 917 *  device autonegotiation advertisement meets standards of
 918 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 919 *  This is a function pointer entry point only called by
 920 *  PHY setup routines.
 921 **/
 922static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
 923{
 924        struct e1000_phy_info *phy = &hw->phy;
 925        s32 ret_val = 0;
 926        u16 data;
 927
 928        data = rd32(E1000_82580_PHY_POWER_MGMT);
 929
 930        if (active) {
 931                data |= E1000_82580_PM_D0_LPLU;
 932
 933                /* When LPLU is enabled, we should disable SmartSpeed */
 934                data &= ~E1000_82580_PM_SPD;
 935        } else {
 936                data &= ~E1000_82580_PM_D0_LPLU;
 937
 938                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 939                 * during Dx states where the power conservation is most
 940                 * important.  During driver activity we should enable
 941                 * SmartSpeed, so performance is maintained.
 942                 */
 943                if (phy->smart_speed == e1000_smart_speed_on)
 944                        data |= E1000_82580_PM_SPD;
 945                else if (phy->smart_speed == e1000_smart_speed_off)
 946                        data &= ~E1000_82580_PM_SPD; }
 947
 948        wr32(E1000_82580_PHY_POWER_MGMT, data);
 949        return ret_val;
 950}
 951
 952/**
 953 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
 954 *  @hw: pointer to the HW structure
 955 *  @active: boolean used to enable/disable lplu
 956 *
 957 *  Success returns 0, Failure returns 1
 958 *
 959 *  The low power link up (lplu) state is set to the power management level D3
 960 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 961 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 962 *  is used during Dx states where the power conservation is most important.
 963 *  During driver activity, SmartSpeed should be enabled so performance is
 964 *  maintained.
 965 **/
 966static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
 967{
 968        struct e1000_phy_info *phy = &hw->phy;
 969        s32 ret_val = 0;
 970        u16 data;
 971
 972        data = rd32(E1000_82580_PHY_POWER_MGMT);
 973
 974        if (!active) {
 975                data &= ~E1000_82580_PM_D3_LPLU;
 976                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 977                 * during Dx states where the power conservation is most
 978                 * important.  During driver activity we should enable
 979                 * SmartSpeed, so performance is maintained.
 980                 */
 981                if (phy->smart_speed == e1000_smart_speed_on)
 982                        data |= E1000_82580_PM_SPD;
 983                else if (phy->smart_speed == e1000_smart_speed_off)
 984                        data &= ~E1000_82580_PM_SPD;
 985        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
 986                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
 987                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
 988                data |= E1000_82580_PM_D3_LPLU;
 989                /* When LPLU is enabled, we should disable SmartSpeed */
 990                data &= ~E1000_82580_PM_SPD;
 991        }
 992
 993        wr32(E1000_82580_PHY_POWER_MGMT, data);
 994        return ret_val;
 995}
 996
 997/**
 998 *  igb_acquire_nvm_82575 - Request for access to EEPROM
 999 *  @hw: pointer to the HW structure
1000 *
1001 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1002 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1003 *  Return successful if access grant bit set, else clear the request for
1004 *  EEPROM access and return -E1000_ERR_NVM (-1).
1005 **/
1006static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1007{
1008        s32 ret_val;
1009
1010        ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1011        if (ret_val)
1012                goto out;
1013
1014        ret_val = igb_acquire_nvm(hw);
1015
1016        if (ret_val)
1017                hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1018
1019out:
1020        return ret_val;
1021}
1022
1023/**
1024 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1025 *  @hw: pointer to the HW structure
1026 *
1027 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1028 *  then release the semaphores acquired.
1029 **/
1030static void igb_release_nvm_82575(struct e1000_hw *hw)
1031{
1032        igb_release_nvm(hw);
1033        hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1034}
1035
1036/**
1037 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1038 *  @hw: pointer to the HW structure
1039 *  @mask: specifies which semaphore to acquire
1040 *
1041 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1042 *  will also specify which port we're acquiring the lock for.
1043 **/
1044static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1045{
1046        u32 swfw_sync;
1047        u32 swmask = mask;
1048        u32 fwmask = mask << 16;
1049        s32 ret_val = 0;
1050        s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1051
1052        while (i < timeout) {
1053                if (igb_get_hw_semaphore(hw)) {
1054                        ret_val = -E1000_ERR_SWFW_SYNC;
1055                        goto out;
1056                }
1057
1058                swfw_sync = rd32(E1000_SW_FW_SYNC);
1059                if (!(swfw_sync & (fwmask | swmask)))
1060                        break;
1061
1062                /* Firmware currently using resource (fwmask)
1063                 * or other software thread using resource (swmask)
1064                 */
1065                igb_put_hw_semaphore(hw);
1066                mdelay(5);
1067                i++;
1068        }
1069
1070        if (i == timeout) {
1071                hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1072                ret_val = -E1000_ERR_SWFW_SYNC;
1073                goto out;
1074        }
1075
1076        swfw_sync |= swmask;
1077        wr32(E1000_SW_FW_SYNC, swfw_sync);
1078
1079        igb_put_hw_semaphore(hw);
1080
1081out:
1082        return ret_val;
1083}
1084
1085/**
1086 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1087 *  @hw: pointer to the HW structure
1088 *  @mask: specifies which semaphore to acquire
1089 *
1090 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1091 *  will also specify which port we're releasing the lock for.
1092 **/
1093static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1094{
1095        u32 swfw_sync;
1096
1097        while (igb_get_hw_semaphore(hw) != 0);
1098        /* Empty */
1099
1100        swfw_sync = rd32(E1000_SW_FW_SYNC);
1101        swfw_sync &= ~mask;
1102        wr32(E1000_SW_FW_SYNC, swfw_sync);
1103
1104        igb_put_hw_semaphore(hw);
1105}
1106
1107/**
1108 *  igb_get_cfg_done_82575 - Read config done bit
1109 *  @hw: pointer to the HW structure
1110 *
1111 *  Read the management control register for the config done bit for
1112 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1113 *  to read the config done bit, so an error is *ONLY* logged and returns
1114 *  0.  If we were to return with error, EEPROM-less silicon
1115 *  would not be able to be reset or change link.
1116 **/
1117static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1118{
1119        s32 timeout = PHY_CFG_TIMEOUT;
1120        s32 ret_val = 0;
1121        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1122
1123        if (hw->bus.func == 1)
1124                mask = E1000_NVM_CFG_DONE_PORT_1;
1125        else if (hw->bus.func == E1000_FUNC_2)
1126                mask = E1000_NVM_CFG_DONE_PORT_2;
1127        else if (hw->bus.func == E1000_FUNC_3)
1128                mask = E1000_NVM_CFG_DONE_PORT_3;
1129
1130        while (timeout) {
1131                if (rd32(E1000_EEMNGCTL) & mask)
1132                        break;
1133                msleep(1);
1134                timeout--;
1135        }
1136        if (!timeout)
1137                hw_dbg("MNG configuration cycle has not completed.\n");
1138
1139        /* If EEPROM is not marked present, init the PHY manually */
1140        if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1141            (hw->phy.type == e1000_phy_igp_3))
1142                igb_phy_init_script_igp3(hw);
1143
1144        return ret_val;
1145}
1146
1147/**
1148 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1149 *  @hw: pointer to the HW structure
1150 *  @speed: stores the current speed
1151 *  @duplex: stores the current duplex
1152 *
1153 *  This is a wrapper function, if using the serial gigabit media independent
1154 *  interface, use PCS to retrieve the link speed and duplex information.
1155 *  Otherwise, use the generic function to get the link speed and duplex info.
1156 **/
1157static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1158                                        u16 *duplex)
1159{
1160        s32 ret_val;
1161
1162        if (hw->phy.media_type != e1000_media_type_copper)
1163                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1164                                                               duplex);
1165        else
1166                ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1167                                                                    duplex);
1168
1169        return ret_val;
1170}
1171
1172/**
1173 *  igb_check_for_link_82575 - Check for link
1174 *  @hw: pointer to the HW structure
1175 *
1176 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1177 *  use the generic interface for determining link.
1178 **/
1179static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1180{
1181        s32 ret_val;
1182        u16 speed, duplex;
1183
1184        if (hw->phy.media_type != e1000_media_type_copper) {
1185                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1186                                                             &duplex);
1187                /* Use this flag to determine if link needs to be checked or
1188                 * not.  If  we have link clear the flag so that we do not
1189                 * continue to check for link.
1190                 */
1191                hw->mac.get_link_status = !hw->mac.serdes_has_link;
1192
1193                /* Configure Flow Control now that Auto-Neg has completed.
1194                 * First, we need to restore the desired flow control
1195                 * settings because we may have had to re-autoneg with a
1196                 * different link partner.
1197                 */
1198                ret_val = igb_config_fc_after_link_up(hw);
1199                if (ret_val)
1200                        hw_dbg("Error configuring flow control\n");
1201        } else {
1202                ret_val = igb_check_for_copper_link(hw);
1203        }
1204
1205        return ret_val;
1206}
1207
1208/**
1209 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1210 *  @hw: pointer to the HW structure
1211 **/
1212void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1213{
1214        u32 reg;
1215
1216
1217        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1218            !igb_sgmii_active_82575(hw))
1219                return;
1220
1221        /* Enable PCS to turn on link */
1222        reg = rd32(E1000_PCS_CFG0);
1223        reg |= E1000_PCS_CFG_PCS_EN;
1224        wr32(E1000_PCS_CFG0, reg);
1225
1226        /* Power up the laser */
1227        reg = rd32(E1000_CTRL_EXT);
1228        reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1229        wr32(E1000_CTRL_EXT, reg);
1230
1231        /* flush the write to verify completion */
1232        wrfl();
1233        msleep(1);
1234}
1235
1236/**
1237 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1238 *  @hw: pointer to the HW structure
1239 *  @speed: stores the current speed
1240 *  @duplex: stores the current duplex
1241 *
1242 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1243 *  duplex, then store the values in the pointers provided.
1244 **/
1245static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1246                                                u16 *duplex)
1247{
1248        struct e1000_mac_info *mac = &hw->mac;
1249        u32 pcs, status;
1250
1251        /* Set up defaults for the return values of this function */
1252        mac->serdes_has_link = false;
1253        *speed = 0;
1254        *duplex = 0;
1255
1256        /* Read the PCS Status register for link state. For non-copper mode,
1257         * the status register is not accurate. The PCS status register is
1258         * used instead.
1259         */
1260        pcs = rd32(E1000_PCS_LSTAT);
1261
1262        /* The link up bit determines when link is up on autoneg. The sync ok
1263         * gets set once both sides sync up and agree upon link. Stable link
1264         * can be determined by checking for both link up and link sync ok
1265         */
1266        if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1267                mac->serdes_has_link = true;
1268
1269                /* Detect and store PCS speed */
1270                if (pcs & E1000_PCS_LSTS_SPEED_1000)
1271                        *speed = SPEED_1000;
1272                else if (pcs & E1000_PCS_LSTS_SPEED_100)
1273                        *speed = SPEED_100;
1274                else
1275                        *speed = SPEED_10;
1276
1277                /* Detect and store PCS duplex */
1278                if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1279                        *duplex = FULL_DUPLEX;
1280                else
1281                        *duplex = HALF_DUPLEX;
1282
1283        /* Check if it is an I354 2.5Gb backplane connection. */
1284                if (mac->type == e1000_i354) {
1285                        status = rd32(E1000_STATUS);
1286                        if ((status & E1000_STATUS_2P5_SKU) &&
1287                            !(status & E1000_STATUS_2P5_SKU_OVER)) {
1288                                *speed = SPEED_2500;
1289                                *duplex = FULL_DUPLEX;
1290                                hw_dbg("2500 Mbs, ");
1291                                hw_dbg("Full Duplex\n");
1292                        }
1293                }
1294
1295        }
1296
1297        return 0;
1298}
1299
1300/**
1301 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1302 *  @hw: pointer to the HW structure
1303 *
1304 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1305 *  when management pass thru is not enabled.
1306 **/
1307void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1308{
1309        u32 reg;
1310
1311        if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1312            igb_sgmii_active_82575(hw))
1313                return;
1314
1315        if (!igb_enable_mng_pass_thru(hw)) {
1316                /* Disable PCS to turn off link */
1317                reg = rd32(E1000_PCS_CFG0);
1318                reg &= ~E1000_PCS_CFG_PCS_EN;
1319                wr32(E1000_PCS_CFG0, reg);
1320
1321                /* shutdown the laser */
1322                reg = rd32(E1000_CTRL_EXT);
1323                reg |= E1000_CTRL_EXT_SDP3_DATA;
1324                wr32(E1000_CTRL_EXT, reg);
1325
1326                /* flush the write to verify completion */
1327                wrfl();
1328                msleep(1);
1329        }
1330}
1331
1332/**
1333 *  igb_reset_hw_82575 - Reset hardware
1334 *  @hw: pointer to the HW structure
1335 *
1336 *  This resets the hardware into a known state.  This is a
1337 *  function pointer entry point called by the api module.
1338 **/
1339static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1340{
1341        u32 ctrl;
1342        s32 ret_val;
1343
1344        /* Prevent the PCI-E bus from sticking if there is no TLP connection
1345         * on the last TLP read/write transaction when MAC is reset.
1346         */
1347        ret_val = igb_disable_pcie_master(hw);
1348        if (ret_val)
1349                hw_dbg("PCI-E Master disable polling has failed.\n");
1350
1351        /* set the completion timeout for interface */
1352        ret_val = igb_set_pcie_completion_timeout(hw);
1353        if (ret_val) {
1354                hw_dbg("PCI-E Set completion timeout has failed.\n");
1355        }
1356
1357        hw_dbg("Masking off all interrupts\n");
1358        wr32(E1000_IMC, 0xffffffff);
1359
1360        wr32(E1000_RCTL, 0);
1361        wr32(E1000_TCTL, E1000_TCTL_PSP);
1362        wrfl();
1363
1364        msleep(10);
1365
1366        ctrl = rd32(E1000_CTRL);
1367
1368        hw_dbg("Issuing a global reset to MAC\n");
1369        wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1370
1371        ret_val = igb_get_auto_rd_done(hw);
1372        if (ret_val) {
1373                /* When auto config read does not complete, do not
1374                 * return with an error. This can happen in situations
1375                 * where there is no eeprom and prevents getting link.
1376                 */
1377                hw_dbg("Auto Read Done did not complete\n");
1378        }
1379
1380        /* If EEPROM is not present, run manual init scripts */
1381        if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1382                igb_reset_init_script_82575(hw);
1383
1384        /* Clear any pending interrupt events. */
1385        wr32(E1000_IMC, 0xffffffff);
1386        rd32(E1000_ICR);
1387
1388        /* Install any alternate MAC address into RAR0 */
1389        ret_val = igb_check_alt_mac_addr(hw);
1390
1391        return ret_val;
1392}
1393
1394/**
1395 *  igb_init_hw_82575 - Initialize hardware
1396 *  @hw: pointer to the HW structure
1397 *
1398 *  This inits the hardware readying it for operation.
1399 **/
1400static s32 igb_init_hw_82575(struct e1000_hw *hw)
1401{
1402        struct e1000_mac_info *mac = &hw->mac;
1403        s32 ret_val;
1404        u16 i, rar_count = mac->rar_entry_count;
1405
1406        /* Initialize identification LED */
1407        ret_val = igb_id_led_init(hw);
1408        if (ret_val) {
1409                hw_dbg("Error initializing identification LED\n");
1410                /* This is not fatal and we should not stop init due to this */
1411        }
1412
1413        /* Disabling VLAN filtering */
1414        hw_dbg("Initializing the IEEE VLAN\n");
1415        if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1416                igb_clear_vfta_i350(hw);
1417        else
1418                igb_clear_vfta(hw);
1419
1420        /* Setup the receive address */
1421        igb_init_rx_addrs(hw, rar_count);
1422
1423        /* Zero out the Multicast HASH table */
1424        hw_dbg("Zeroing the MTA\n");
1425        for (i = 0; i < mac->mta_reg_count; i++)
1426                array_wr32(E1000_MTA, i, 0);
1427
1428        /* Zero out the Unicast HASH table */
1429        hw_dbg("Zeroing the UTA\n");
1430        for (i = 0; i < mac->uta_reg_count; i++)
1431                array_wr32(E1000_UTA, i, 0);
1432
1433        /* Setup link and flow control */
1434        ret_val = igb_setup_link(hw);
1435
1436        /* Clear all of the statistics registers (clear on read).  It is
1437         * important that we do this after we have tried to establish link
1438         * because the symbol error count will increment wildly if there
1439         * is no link.
1440         */
1441        igb_clear_hw_cntrs_82575(hw);
1442        return ret_val;
1443}
1444
1445/**
1446 *  igb_setup_copper_link_82575 - Configure copper link settings
1447 *  @hw: pointer to the HW structure
1448 *
1449 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1450 *  for link, once link is established calls to configure collision distance
1451 *  and flow control are called.
1452 **/
1453static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1454{
1455        u32 ctrl;
1456        s32  ret_val;
1457        u32 phpm_reg;
1458
1459        ctrl = rd32(E1000_CTRL);
1460        ctrl |= E1000_CTRL_SLU;
1461        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1462        wr32(E1000_CTRL, ctrl);
1463
1464        /* Clear Go Link Disconnect bit on supported devices */
1465        switch (hw->mac.type) {
1466        case e1000_82580:
1467        case e1000_i350:
1468        case e1000_i210:
1469        case e1000_i211:
1470                phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1471                phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1472                wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1473                break;
1474        default:
1475                break;
1476        }
1477
1478        ret_val = igb_setup_serdes_link_82575(hw);
1479        if (ret_val)
1480                goto out;
1481
1482        if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1483                /* allow time for SFP cage time to power up phy */
1484                msleep(300);
1485
1486                ret_val = hw->phy.ops.reset(hw);
1487                if (ret_val) {
1488                        hw_dbg("Error resetting the PHY.\n");
1489                        goto out;
1490                }
1491        }
1492        switch (hw->phy.type) {
1493        case e1000_phy_i210:
1494        case e1000_phy_m88:
1495                switch (hw->phy.id) {
1496                case I347AT4_E_PHY_ID:
1497                case M88E1112_E_PHY_ID:
1498                case M88E1543_E_PHY_ID:
1499                case I210_I_PHY_ID:
1500                        ret_val = igb_copper_link_setup_m88_gen2(hw);
1501                        break;
1502                default:
1503                        ret_val = igb_copper_link_setup_m88(hw);
1504                        break;
1505                }
1506                break;
1507        case e1000_phy_igp_3:
1508                ret_val = igb_copper_link_setup_igp(hw);
1509                break;
1510        case e1000_phy_82580:
1511                ret_val = igb_copper_link_setup_82580(hw);
1512                break;
1513        default:
1514                ret_val = -E1000_ERR_PHY;
1515                break;
1516        }
1517
1518        if (ret_val)
1519                goto out;
1520
1521        ret_val = igb_setup_copper_link(hw);
1522out:
1523        return ret_val;
1524}
1525
1526/**
1527 *  igb_setup_serdes_link_82575 - Setup link for serdes
1528 *  @hw: pointer to the HW structure
1529 *
1530 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1531 *  used on copper connections where the serialized gigabit media independent
1532 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1533 *  for auto-negotiation or forces speed/duplex.
1534 **/
1535static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1536{
1537        u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1538        bool pcs_autoneg;
1539        s32 ret_val = E1000_SUCCESS;
1540        u16 data;
1541
1542        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1543            !igb_sgmii_active_82575(hw))
1544                return ret_val;
1545
1546
1547        /* On the 82575, SerDes loopback mode persists until it is
1548         * explicitly turned off or a power cycle is performed.  A read to
1549         * the register does not indicate its status.  Therefore, we ensure
1550         * loopback mode is disabled during initialization.
1551         */
1552        wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1553
1554        /* power on the sfp cage if present and turn on I2C */
1555        ctrl_ext = rd32(E1000_CTRL_EXT);
1556        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1557        ctrl_ext |= E1000_CTRL_I2C_ENA;
1558        wr32(E1000_CTRL_EXT, ctrl_ext);
1559
1560        ctrl_reg = rd32(E1000_CTRL);
1561        ctrl_reg |= E1000_CTRL_SLU;
1562
1563        if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1564                /* set both sw defined pins */
1565                ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1566
1567                /* Set switch control to serdes energy detect */
1568                reg = rd32(E1000_CONNSW);
1569                reg |= E1000_CONNSW_ENRGSRC;
1570                wr32(E1000_CONNSW, reg);
1571        }
1572
1573        reg = rd32(E1000_PCS_LCTL);
1574
1575        /* default pcs_autoneg to the same setting as mac autoneg */
1576        pcs_autoneg = hw->mac.autoneg;
1577
1578        switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1579        case E1000_CTRL_EXT_LINK_MODE_SGMII:
1580                /* sgmii mode lets the phy handle forcing speed/duplex */
1581                pcs_autoneg = true;
1582                /* autoneg time out should be disabled for SGMII mode */
1583                reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1584                break;
1585        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1586                /* disable PCS autoneg and support parallel detect only */
1587                pcs_autoneg = false;
1588        default:
1589                if (hw->mac.type == e1000_82575 ||
1590                    hw->mac.type == e1000_82576) {
1591                        ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1592                        if (ret_val) {
1593                                printk(KERN_DEBUG "NVM Read Error\n\n");
1594                                return ret_val;
1595                        }
1596
1597                        if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1598                                pcs_autoneg = false;
1599                }
1600
1601                /* non-SGMII modes only supports a speed of 1000/Full for the
1602                 * link so it is best to just force the MAC and let the pcs
1603                 * link either autoneg or be forced to 1000/Full
1604                 */
1605                ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1606                            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1607
1608                /* set speed of 1000/Full if speed/duplex is forced */
1609                reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1610                break;
1611        }
1612
1613        wr32(E1000_CTRL, ctrl_reg);
1614
1615        /* New SerDes mode allows for forcing speed or autonegotiating speed
1616         * at 1gb. Autoneg should be default set by most drivers. This is the
1617         * mode that will be compatible with older link partners and switches.
1618         * However, both are supported by the hardware and some drivers/tools.
1619         */
1620        reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1621                E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1622
1623        if (pcs_autoneg) {
1624                /* Set PCS register for autoneg */
1625                reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1626                       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1627
1628                /* Disable force flow control for autoneg */
1629                reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1630
1631                /* Configure flow control advertisement for autoneg */
1632                anadv_reg = rd32(E1000_PCS_ANADV);
1633                anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1634                switch (hw->fc.requested_mode) {
1635                case e1000_fc_full:
1636                case e1000_fc_rx_pause:
1637                        anadv_reg |= E1000_TXCW_ASM_DIR;
1638                        anadv_reg |= E1000_TXCW_PAUSE;
1639                        break;
1640                case e1000_fc_tx_pause:
1641                        anadv_reg |= E1000_TXCW_ASM_DIR;
1642                        break;
1643                default:
1644                        break;
1645                }
1646                wr32(E1000_PCS_ANADV, anadv_reg);
1647
1648                hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1649        } else {
1650                /* Set PCS register for forced link */
1651                reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1652
1653                /* Force flow control for forced link */
1654                reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1655
1656                hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1657        }
1658
1659        wr32(E1000_PCS_LCTL, reg);
1660
1661        if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1662                igb_force_mac_fc(hw);
1663
1664        return ret_val;
1665}
1666
1667/**
1668 *  igb_sgmii_active_82575 - Return sgmii state
1669 *  @hw: pointer to the HW structure
1670 *
1671 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1672 *  which can be enabled for use in the embedded applications.  Simply
1673 *  return the current state of the sgmii interface.
1674 **/
1675static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1676{
1677        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1678        return dev_spec->sgmii_active;
1679}
1680
1681/**
1682 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1683 *  @hw: pointer to the HW structure
1684 *
1685 *  Inits recommended HW defaults after a reset when there is no EEPROM
1686 *  detected. This is only for the 82575.
1687 **/
1688static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1689{
1690        if (hw->mac.type == e1000_82575) {
1691                hw_dbg("Running reset init script for 82575\n");
1692                /* SerDes configuration via SERDESCTRL */
1693                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1694                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1695                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1696                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1697
1698                /* CCM configuration via CCMCTL register */
1699                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1700                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1701
1702                /* PCIe lanes configuration */
1703                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1704                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1705                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1706                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1707
1708                /* PCIe PLL Configuration */
1709                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1710                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1711                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1712        }
1713
1714        return 0;
1715}
1716
1717/**
1718 *  igb_read_mac_addr_82575 - Read device MAC address
1719 *  @hw: pointer to the HW structure
1720 **/
1721static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1722{
1723        s32 ret_val = 0;
1724
1725        /* If there's an alternate MAC address place it in RAR0
1726         * so that it will override the Si installed default perm
1727         * address.
1728         */
1729        ret_val = igb_check_alt_mac_addr(hw);
1730        if (ret_val)
1731                goto out;
1732
1733        ret_val = igb_read_mac_addr(hw);
1734
1735out:
1736        return ret_val;
1737}
1738
1739/**
1740 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1741 * @hw: pointer to the HW structure
1742 *
1743 * In the case of a PHY power down to save power, or to turn off link during a
1744 * driver unload, or wake on lan is not enabled, remove the link.
1745 **/
1746void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1747{
1748        /* If the management interface is not enabled, then power down */
1749        if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1750                igb_power_down_phy_copper(hw);
1751}
1752
1753/**
1754 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1755 *  @hw: pointer to the HW structure
1756 *
1757 *  Clears the hardware counters by reading the counter registers.
1758 **/
1759static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1760{
1761        igb_clear_hw_cntrs_base(hw);
1762
1763        rd32(E1000_PRC64);
1764        rd32(E1000_PRC127);
1765        rd32(E1000_PRC255);
1766        rd32(E1000_PRC511);
1767        rd32(E1000_PRC1023);
1768        rd32(E1000_PRC1522);
1769        rd32(E1000_PTC64);
1770        rd32(E1000_PTC127);
1771        rd32(E1000_PTC255);
1772        rd32(E1000_PTC511);
1773        rd32(E1000_PTC1023);
1774        rd32(E1000_PTC1522);
1775
1776        rd32(E1000_ALGNERRC);
1777        rd32(E1000_RXERRC);
1778        rd32(E1000_TNCRS);
1779        rd32(E1000_CEXTERR);
1780        rd32(E1000_TSCTC);
1781        rd32(E1000_TSCTFC);
1782
1783        rd32(E1000_MGTPRC);
1784        rd32(E1000_MGTPDC);
1785        rd32(E1000_MGTPTC);
1786
1787        rd32(E1000_IAC);
1788        rd32(E1000_ICRXOC);
1789
1790        rd32(E1000_ICRXPTC);
1791        rd32(E1000_ICRXATC);
1792        rd32(E1000_ICTXPTC);
1793        rd32(E1000_ICTXATC);
1794        rd32(E1000_ICTXQEC);
1795        rd32(E1000_ICTXQMTC);
1796        rd32(E1000_ICRXDMTC);
1797
1798        rd32(E1000_CBTMPC);
1799        rd32(E1000_HTDPMC);
1800        rd32(E1000_CBRMPC);
1801        rd32(E1000_RPTHC);
1802        rd32(E1000_HGPTC);
1803        rd32(E1000_HTCBDPC);
1804        rd32(E1000_HGORCL);
1805        rd32(E1000_HGORCH);
1806        rd32(E1000_HGOTCL);
1807        rd32(E1000_HGOTCH);
1808        rd32(E1000_LENERRS);
1809
1810        /* This register should not be read in copper configurations */
1811        if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1812            igb_sgmii_active_82575(hw))
1813                rd32(E1000_SCVPC);
1814}
1815
1816/**
1817 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1818 *  @hw: pointer to the HW structure
1819 *
1820 *  After rx enable if managability is enabled then there is likely some
1821 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1822 *  function clears the fifos and flushes any packets that came in as rx was
1823 *  being enabled.
1824 **/
1825void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1826{
1827        u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1828        int i, ms_wait;
1829
1830        if (hw->mac.type != e1000_82575 ||
1831            !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1832                return;
1833
1834        /* Disable all RX queues */
1835        for (i = 0; i < 4; i++) {
1836                rxdctl[i] = rd32(E1000_RXDCTL(i));
1837                wr32(E1000_RXDCTL(i),
1838                     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1839        }
1840        /* Poll all queues to verify they have shut down */
1841        for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1842                msleep(1);
1843                rx_enabled = 0;
1844                for (i = 0; i < 4; i++)
1845                        rx_enabled |= rd32(E1000_RXDCTL(i));
1846                if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1847                        break;
1848        }
1849
1850        if (ms_wait == 10)
1851                hw_dbg("Queue disable timed out after 10ms\n");
1852
1853        /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1854         * incoming packets are rejected.  Set enable and wait 2ms so that
1855         * any packet that was coming in as RCTL.EN was set is flushed
1856         */
1857        rfctl = rd32(E1000_RFCTL);
1858        wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1859
1860        rlpml = rd32(E1000_RLPML);
1861        wr32(E1000_RLPML, 0);
1862
1863        rctl = rd32(E1000_RCTL);
1864        temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1865        temp_rctl |= E1000_RCTL_LPE;
1866
1867        wr32(E1000_RCTL, temp_rctl);
1868        wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1869        wrfl();
1870        msleep(2);
1871
1872        /* Enable RX queues that were previously enabled and restore our
1873         * previous state
1874         */
1875        for (i = 0; i < 4; i++)
1876                wr32(E1000_RXDCTL(i), rxdctl[i]);
1877        wr32(E1000_RCTL, rctl);
1878        wrfl();
1879
1880        wr32(E1000_RLPML, rlpml);
1881        wr32(E1000_RFCTL, rfctl);
1882
1883        /* Flush receive errors generated by workaround */
1884        rd32(E1000_ROC);
1885        rd32(E1000_RNBC);
1886        rd32(E1000_MPC);
1887}
1888
1889/**
1890 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1894 *  however the hardware default for these parts is 500us to 1ms which is less
1895 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1896 *  increase the value to either 10ms to 200ms for capability version 1 config,
1897 *  or 16ms to 55ms for version 2.
1898 **/
1899static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1900{
1901        u32 gcr = rd32(E1000_GCR);
1902        s32 ret_val = 0;
1903        u16 pcie_devctl2;
1904
1905        /* only take action if timeout value is defaulted to 0 */
1906        if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1907                goto out;
1908
1909        /* if capabilities version is type 1 we can write the
1910         * timeout of 10ms to 200ms through the GCR register
1911         */
1912        if (!(gcr & E1000_GCR_CAP_VER2)) {
1913                gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1914                goto out;
1915        }
1916
1917        /* for version 2 capabilities we need to write the config space
1918         * directly in order to set the completion timeout value for
1919         * 16ms to 55ms
1920         */
1921        ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1922                                        &pcie_devctl2);
1923        if (ret_val)
1924                goto out;
1925
1926        pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1927
1928        ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1929                                         &pcie_devctl2);
1930out:
1931        /* disable completion timeout resend */
1932        gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1933
1934        wr32(E1000_GCR, gcr);
1935        return ret_val;
1936}
1937
1938/**
1939 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1940 *  @hw: pointer to the hardware struct
1941 *  @enable: state to enter, either enabled or disabled
1942 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1943 *
1944 *  enables/disables L2 switch anti-spoofing functionality.
1945 **/
1946void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1947{
1948        u32 reg_val, reg_offset;
1949
1950        switch (hw->mac.type) {
1951        case e1000_82576:
1952                reg_offset = E1000_DTXSWC;
1953                break;
1954        case e1000_i350:
1955        case e1000_i354:
1956                reg_offset = E1000_TXSWC;
1957                break;
1958        default:
1959                return;
1960        }
1961
1962        reg_val = rd32(reg_offset);
1963        if (enable) {
1964                reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1965                             E1000_DTXSWC_VLAN_SPOOF_MASK);
1966                /* The PF can spoof - it has to in order to
1967                 * support emulation mode NICs
1968                 */
1969                reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1970        } else {
1971                reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1972                             E1000_DTXSWC_VLAN_SPOOF_MASK);
1973        }
1974        wr32(reg_offset, reg_val);
1975}
1976
1977/**
1978 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1979 *  @hw: pointer to the hardware struct
1980 *  @enable: state to enter, either enabled or disabled
1981 *
1982 *  enables/disables L2 switch loopback functionality.
1983 **/
1984void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1985{
1986        u32 dtxswc;
1987
1988        switch (hw->mac.type) {
1989        case e1000_82576:
1990                dtxswc = rd32(E1000_DTXSWC);
1991                if (enable)
1992                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1993                else
1994                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1995                wr32(E1000_DTXSWC, dtxswc);
1996                break;
1997        case e1000_i354:
1998        case e1000_i350:
1999                dtxswc = rd32(E1000_TXSWC);
2000                if (enable)
2001                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2002                else
2003                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2004                wr32(E1000_TXSWC, dtxswc);
2005                break;
2006        default:
2007                /* Currently no other hardware supports loopback */
2008                break;
2009        }
2010
2011}
2012
2013/**
2014 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2015 *  @hw: pointer to the hardware struct
2016 *  @enable: state to enter, either enabled or disabled
2017 *
2018 *  enables/disables replication of packets across multiple pools.
2019 **/
2020void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2021{
2022        u32 vt_ctl = rd32(E1000_VT_CTL);
2023
2024        if (enable)
2025                vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2026        else
2027                vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2028
2029        wr32(E1000_VT_CTL, vt_ctl);
2030}
2031
2032/**
2033 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2034 *  @hw: pointer to the HW structure
2035 *  @offset: register offset to be read
2036 *  @data: pointer to the read data
2037 *
2038 *  Reads the MDI control register in the PHY at offset and stores the
2039 *  information read to data.
2040 **/
2041static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2042{
2043        s32 ret_val;
2044
2045        ret_val = hw->phy.ops.acquire(hw);
2046        if (ret_val)
2047                goto out;
2048
2049        ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2050
2051        hw->phy.ops.release(hw);
2052
2053out:
2054        return ret_val;
2055}
2056
2057/**
2058 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2059 *  @hw: pointer to the HW structure
2060 *  @offset: register offset to write to
2061 *  @data: data to write to register at offset
2062 *
2063 *  Writes data to MDI control register in the PHY at offset.
2064 **/
2065static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2066{
2067        s32 ret_val;
2068
2069
2070        ret_val = hw->phy.ops.acquire(hw);
2071        if (ret_val)
2072                goto out;
2073
2074        ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2075
2076        hw->phy.ops.release(hw);
2077
2078out:
2079        return ret_val;
2080}
2081
2082/**
2083 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2084 *  @hw: pointer to the HW structure
2085 *
2086 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2087 *  the values found in the EEPROM.  This addresses an issue in which these
2088 *  bits are not restored from EEPROM after reset.
2089 **/
2090static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2091{
2092        s32 ret_val = 0;
2093        u32 mdicnfg;
2094        u16 nvm_data = 0;
2095
2096        if (hw->mac.type != e1000_82580)
2097                goto out;
2098        if (!igb_sgmii_active_82575(hw))
2099                goto out;
2100
2101        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2102                                   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2103                                   &nvm_data);
2104        if (ret_val) {
2105                hw_dbg("NVM Read Error\n");
2106                goto out;
2107        }
2108
2109        mdicnfg = rd32(E1000_MDICNFG);
2110        if (nvm_data & NVM_WORD24_EXT_MDIO)
2111                mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2112        if (nvm_data & NVM_WORD24_COM_MDIO)
2113                mdicnfg |= E1000_MDICNFG_COM_MDIO;
2114        wr32(E1000_MDICNFG, mdicnfg);
2115out:
2116        return ret_val;
2117}
2118
2119/**
2120 *  igb_reset_hw_82580 - Reset hardware
2121 *  @hw: pointer to the HW structure
2122 *
2123 *  This resets function or entire device (all ports, etc.)
2124 *  to a known state.
2125 **/
2126static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2127{
2128        s32 ret_val = 0;
2129        /* BH SW mailbox bit in SW_FW_SYNC */
2130        u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2131        u32 ctrl;
2132        bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2133
2134        hw->dev_spec._82575.global_device_reset = false;
2135
2136        /* due to hw errata, global device reset doesn't always
2137         * work on 82580
2138         */
2139        if (hw->mac.type == e1000_82580)
2140                global_device_reset = false;
2141
2142        /* Get current control state. */
2143        ctrl = rd32(E1000_CTRL);
2144
2145        /* Prevent the PCI-E bus from sticking if there is no TLP connection
2146         * on the last TLP read/write transaction when MAC is reset.
2147         */
2148        ret_val = igb_disable_pcie_master(hw);
2149        if (ret_val)
2150                hw_dbg("PCI-E Master disable polling has failed.\n");
2151
2152        hw_dbg("Masking off all interrupts\n");
2153        wr32(E1000_IMC, 0xffffffff);
2154        wr32(E1000_RCTL, 0);
2155        wr32(E1000_TCTL, E1000_TCTL_PSP);
2156        wrfl();
2157
2158        msleep(10);
2159
2160        /* Determine whether or not a global dev reset is requested */
2161        if (global_device_reset &&
2162                hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2163                        global_device_reset = false;
2164
2165        if (global_device_reset &&
2166                !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2167                ctrl |= E1000_CTRL_DEV_RST;
2168        else
2169                ctrl |= E1000_CTRL_RST;
2170
2171        wr32(E1000_CTRL, ctrl);
2172        wrfl();
2173
2174        /* Add delay to insure DEV_RST has time to complete */
2175        if (global_device_reset)
2176                msleep(5);
2177
2178        ret_val = igb_get_auto_rd_done(hw);
2179        if (ret_val) {
2180                /* When auto config read does not complete, do not
2181                 * return with an error. This can happen in situations
2182                 * where there is no eeprom and prevents getting link.
2183                 */
2184                hw_dbg("Auto Read Done did not complete\n");
2185        }
2186
2187        /* clear global device reset status bit */
2188        wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2189
2190        /* Clear any pending interrupt events. */
2191        wr32(E1000_IMC, 0xffffffff);
2192        rd32(E1000_ICR);
2193
2194        ret_val = igb_reset_mdicnfg_82580(hw);
2195        if (ret_val)
2196                hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2197
2198        /* Install any alternate MAC address into RAR0 */
2199        ret_val = igb_check_alt_mac_addr(hw);
2200
2201        /* Release semaphore */
2202        if (global_device_reset)
2203                hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2204
2205        return ret_val;
2206}
2207
2208/**
2209 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2210 *  @data: data received by reading RXPBS register
2211 *
2212 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2213 *  This function converts the retrieved value into the correct table value
2214 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2215 *  0x0 36  72 144   1   2   4   8  16
2216 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2217 */
2218u16 igb_rxpbs_adjust_82580(u32 data)
2219{
2220        u16 ret_val = 0;
2221
2222        if (data < E1000_82580_RXPBS_TABLE_SIZE)
2223                ret_val = e1000_82580_rxpbs_table[data];
2224
2225        return ret_val;
2226}
2227
2228/**
2229 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2230 *  checksum
2231 *  @hw: pointer to the HW structure
2232 *  @offset: offset in words of the checksum protected region
2233 *
2234 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2235 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2236 **/
2237static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2238                                                 u16 offset)
2239{
2240        s32 ret_val = 0;
2241        u16 checksum = 0;
2242        u16 i, nvm_data;
2243
2244        for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2245                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2246                if (ret_val) {
2247                        hw_dbg("NVM Read Error\n");
2248                        goto out;
2249                }
2250                checksum += nvm_data;
2251        }
2252
2253        if (checksum != (u16) NVM_SUM) {
2254                hw_dbg("NVM Checksum Invalid\n");
2255                ret_val = -E1000_ERR_NVM;
2256                goto out;
2257        }
2258
2259out:
2260        return ret_val;
2261}
2262
2263/**
2264 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2265 *  checksum
2266 *  @hw: pointer to the HW structure
2267 *  @offset: offset in words of the checksum protected region
2268 *
2269 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2270 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2271 *  value to the EEPROM.
2272 **/
2273static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2274{
2275        s32 ret_val;
2276        u16 checksum = 0;
2277        u16 i, nvm_data;
2278
2279        for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2280                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2281                if (ret_val) {
2282                        hw_dbg("NVM Read Error while updating checksum.\n");
2283                        goto out;
2284                }
2285                checksum += nvm_data;
2286        }
2287        checksum = (u16) NVM_SUM - checksum;
2288        ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2289                                &checksum);
2290        if (ret_val)
2291                hw_dbg("NVM Write Error while updating checksum.\n");
2292
2293out:
2294        return ret_val;
2295}
2296
2297/**
2298 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2299 *  @hw: pointer to the HW structure
2300 *
2301 *  Calculates the EEPROM section checksum by reading/adding each word of
2302 *  the EEPROM and then verifies that the sum of the EEPROM is
2303 *  equal to 0xBABA.
2304 **/
2305static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2306{
2307        s32 ret_val = 0;
2308        u16 eeprom_regions_count = 1;
2309        u16 j, nvm_data;
2310        u16 nvm_offset;
2311
2312        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2313        if (ret_val) {
2314                hw_dbg("NVM Read Error\n");
2315                goto out;
2316        }
2317
2318        if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2319                /* if checksums compatibility bit is set validate checksums
2320                 * for all 4 ports.
2321                 */
2322                eeprom_regions_count = 4;
2323        }
2324
2325        for (j = 0; j < eeprom_regions_count; j++) {
2326                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2327                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2328                                                                nvm_offset);
2329                if (ret_val != 0)
2330                        goto out;
2331        }
2332
2333out:
2334        return ret_val;
2335}
2336
2337/**
2338 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2339 *  @hw: pointer to the HW structure
2340 *
2341 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2342 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2343 *  checksum and writes the value to the EEPROM.
2344 **/
2345static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2346{
2347        s32 ret_val;
2348        u16 j, nvm_data;
2349        u16 nvm_offset;
2350
2351        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2352        if (ret_val) {
2353                hw_dbg("NVM Read Error while updating checksum"
2354                        " compatibility bit.\n");
2355                goto out;
2356        }
2357
2358        if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2359                /* set compatibility bit to validate checksums appropriately */
2360                nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2361                ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2362                                        &nvm_data);
2363                if (ret_val) {
2364                        hw_dbg("NVM Write Error while updating checksum"
2365                                " compatibility bit.\n");
2366                        goto out;
2367                }
2368        }
2369
2370        for (j = 0; j < 4; j++) {
2371                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2372                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2373                if (ret_val)
2374                        goto out;
2375        }
2376
2377out:
2378        return ret_val;
2379}
2380
2381/**
2382 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2383 *  @hw: pointer to the HW structure
2384 *
2385 *  Calculates the EEPROM section checksum by reading/adding each word of
2386 *  the EEPROM and then verifies that the sum of the EEPROM is
2387 *  equal to 0xBABA.
2388 **/
2389static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2390{
2391        s32 ret_val = 0;
2392        u16 j;
2393        u16 nvm_offset;
2394
2395        for (j = 0; j < 4; j++) {
2396                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2397                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2398                                                                nvm_offset);
2399                if (ret_val != 0)
2400                        goto out;
2401        }
2402
2403out:
2404        return ret_val;
2405}
2406
2407/**
2408 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2409 *  @hw: pointer to the HW structure
2410 *
2411 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2412 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2413 *  checksum and writes the value to the EEPROM.
2414 **/
2415static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2416{
2417        s32 ret_val = 0;
2418        u16 j;
2419        u16 nvm_offset;
2420
2421        for (j = 0; j < 4; j++) {
2422                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2423                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2424                if (ret_val != 0)
2425                        goto out;
2426        }
2427
2428out:
2429        return ret_val;
2430}
2431
2432/**
2433 *  __igb_access_emi_reg - Read/write EMI register
2434 *  @hw: pointer to the HW structure
2435 *  @addr: EMI address to program
2436 *  @data: pointer to value to read/write from/to the EMI address
2437 *  @read: boolean flag to indicate read or write
2438 **/
2439static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2440                                  u16 *data, bool read)
2441{
2442        s32 ret_val = E1000_SUCCESS;
2443
2444        ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2445        if (ret_val)
2446                return ret_val;
2447
2448        if (read)
2449                ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2450        else
2451                ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2452
2453        return ret_val;
2454}
2455
2456/**
2457 *  igb_read_emi_reg - Read Extended Management Interface register
2458 *  @hw: pointer to the HW structure
2459 *  @addr: EMI address to program
2460 *  @data: value to be read from the EMI address
2461 **/
2462s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2463{
2464        return __igb_access_emi_reg(hw, addr, data, true);
2465}
2466
2467/**
2468 *  igb_set_eee_i350 - Enable/disable EEE support
2469 *  @hw: pointer to the HW structure
2470 *
2471 *  Enable/disable EEE based on setting in dev_spec structure.
2472 *
2473 **/
2474s32 igb_set_eee_i350(struct e1000_hw *hw)
2475{
2476        s32 ret_val = 0;
2477        u32 ipcnfg, eeer;
2478
2479        if ((hw->mac.type < e1000_i350) ||
2480            (hw->phy.media_type != e1000_media_type_copper))
2481                goto out;
2482        ipcnfg = rd32(E1000_IPCNFG);
2483        eeer = rd32(E1000_EEER);
2484
2485        /* enable or disable per user setting */
2486        if (!(hw->dev_spec._82575.eee_disable)) {
2487                u32 eee_su = rd32(E1000_EEE_SU);
2488
2489                ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2490                eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2491                        E1000_EEER_LPI_FC);
2492
2493                /* This bit should not be set in normal operation. */
2494                if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2495                        hw_dbg("LPI Clock Stop Bit should not be set!\n");
2496
2497        } else {
2498                ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2499                        E1000_IPCNFG_EEE_100M_AN);
2500                eeer &= ~(E1000_EEER_TX_LPI_EN |
2501                        E1000_EEER_RX_LPI_EN |
2502                        E1000_EEER_LPI_FC);
2503        }
2504        wr32(E1000_IPCNFG, ipcnfg);
2505        wr32(E1000_EEER, eeer);
2506        rd32(E1000_IPCNFG);
2507        rd32(E1000_EEER);
2508out:
2509
2510        return ret_val;
2511}
2512
2513/**
2514 *  igb_set_eee_i354 - Enable/disable EEE support
2515 *  @hw: pointer to the HW structure
2516 *
2517 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2518 *
2519 **/
2520s32 igb_set_eee_i354(struct e1000_hw *hw)
2521{
2522        struct e1000_phy_info *phy = &hw->phy;
2523        s32 ret_val = 0;
2524        u16 phy_data;
2525
2526        if ((hw->phy.media_type != e1000_media_type_copper) ||
2527            (phy->id != M88E1543_E_PHY_ID))
2528                goto out;
2529
2530        if (!hw->dev_spec._82575.eee_disable) {
2531                /* Switch to PHY page 18. */
2532                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2533                if (ret_val)
2534                        goto out;
2535
2536                ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2537                                            &phy_data);
2538                if (ret_val)
2539                        goto out;
2540
2541                phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2542                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2543                                             phy_data);
2544                if (ret_val)
2545                        goto out;
2546
2547                /* Return the PHY to page 0. */
2548                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2549                if (ret_val)
2550                        goto out;
2551
2552                /* Turn on EEE advertisement. */
2553                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2554                                             E1000_EEE_ADV_DEV_I354,
2555                                             &phy_data);
2556                if (ret_val)
2557                        goto out;
2558
2559                phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2560                            E1000_EEE_ADV_1000_SUPPORTED;
2561                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2562                                                E1000_EEE_ADV_DEV_I354,
2563                                                phy_data);
2564        } else {
2565                /* Turn off EEE advertisement. */
2566                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2567                                             E1000_EEE_ADV_DEV_I354,
2568                                             &phy_data);
2569                if (ret_val)
2570                        goto out;
2571
2572                phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2573                              E1000_EEE_ADV_1000_SUPPORTED);
2574                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2575                                              E1000_EEE_ADV_DEV_I354,
2576                                              phy_data);
2577        }
2578
2579out:
2580        return ret_val;
2581}
2582
2583/**
2584 *  igb_get_eee_status_i354 - Get EEE status
2585 *  @hw: pointer to the HW structure
2586 *  @status: EEE status
2587 *
2588 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2589 *  been received.
2590 **/
2591s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2592{
2593        struct e1000_phy_info *phy = &hw->phy;
2594        s32 ret_val = 0;
2595        u16 phy_data;
2596
2597        /* Check if EEE is supported on this device. */
2598        if ((hw->phy.media_type != e1000_media_type_copper) ||
2599            (phy->id != M88E1543_E_PHY_ID))
2600                goto out;
2601
2602        ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2603                                     E1000_PCS_STATUS_DEV_I354,
2604                                     &phy_data);
2605        if (ret_val)
2606                goto out;
2607
2608        *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2609                              E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2610
2611out:
2612        return ret_val;
2613}
2614
2615static const u8 e1000_emc_temp_data[4] = {
2616        E1000_EMC_INTERNAL_DATA,
2617        E1000_EMC_DIODE1_DATA,
2618        E1000_EMC_DIODE2_DATA,
2619        E1000_EMC_DIODE3_DATA
2620};
2621static const u8 e1000_emc_therm_limit[4] = {
2622        E1000_EMC_INTERNAL_THERM_LIMIT,
2623        E1000_EMC_DIODE1_THERM_LIMIT,
2624        E1000_EMC_DIODE2_THERM_LIMIT,
2625        E1000_EMC_DIODE3_THERM_LIMIT
2626};
2627
2628/**
2629 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2630 *  @hw: pointer to hardware structure
2631 *
2632 *  Updates the temperatures in mac.thermal_sensor_data
2633 **/
2634s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2635{
2636        s32 status = E1000_SUCCESS;
2637        u16 ets_offset;
2638        u16 ets_cfg;
2639        u16 ets_sensor;
2640        u8  num_sensors;
2641        u8  sensor_index;
2642        u8  sensor_location;
2643        u8  i;
2644        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2645
2646        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2647                return E1000_NOT_IMPLEMENTED;
2648
2649        data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2650
2651        /* Return the internal sensor only if ETS is unsupported */
2652        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2653        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2654                return status;
2655
2656        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2657        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2658            != NVM_ETS_TYPE_EMC)
2659                return E1000_NOT_IMPLEMENTED;
2660
2661        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2662        if (num_sensors > E1000_MAX_SENSORS)
2663                num_sensors = E1000_MAX_SENSORS;
2664
2665        for (i = 1; i < num_sensors; i++) {
2666                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2667                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2668                                NVM_ETS_DATA_INDEX_SHIFT);
2669                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2670                                   NVM_ETS_DATA_LOC_SHIFT);
2671
2672                if (sensor_location != 0)
2673                        hw->phy.ops.read_i2c_byte(hw,
2674                                        e1000_emc_temp_data[sensor_index],
2675                                        E1000_I2C_THERMAL_SENSOR_ADDR,
2676                                        &data->sensor[i].temp);
2677        }
2678        return status;
2679}
2680
2681/**
2682 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2683 *  @hw: pointer to hardware structure
2684 *
2685 *  Sets the thermal sensor thresholds according to the NVM map
2686 *  and save off the threshold and location values into mac.thermal_sensor_data
2687 **/
2688s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2689{
2690        s32 status = E1000_SUCCESS;
2691        u16 ets_offset;
2692        u16 ets_cfg;
2693        u16 ets_sensor;
2694        u8  low_thresh_delta;
2695        u8  num_sensors;
2696        u8  sensor_index;
2697        u8  sensor_location;
2698        u8  therm_limit;
2699        u8  i;
2700        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2701
2702        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2703                return E1000_NOT_IMPLEMENTED;
2704
2705        memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2706
2707        data->sensor[0].location = 0x1;
2708        data->sensor[0].caution_thresh =
2709                (rd32(E1000_THHIGHTC) & 0xFF);
2710        data->sensor[0].max_op_thresh =
2711                (rd32(E1000_THLOWTC) & 0xFF);
2712
2713        /* Return the internal sensor only if ETS is unsupported */
2714        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2715        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2716                return status;
2717
2718        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2719        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2720            != NVM_ETS_TYPE_EMC)
2721                return E1000_NOT_IMPLEMENTED;
2722
2723        low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2724                            NVM_ETS_LTHRES_DELTA_SHIFT);
2725        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2726
2727        for (i = 1; i <= num_sensors; i++) {
2728                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2729                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2730                                NVM_ETS_DATA_INDEX_SHIFT);
2731                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2732                                   NVM_ETS_DATA_LOC_SHIFT);
2733                therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2734
2735                hw->phy.ops.write_i2c_byte(hw,
2736                        e1000_emc_therm_limit[sensor_index],
2737                        E1000_I2C_THERMAL_SENSOR_ADDR,
2738                        therm_limit);
2739
2740                if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2741                        data->sensor[i].location = sensor_location;
2742                        data->sensor[i].caution_thresh = therm_limit;
2743                        data->sensor[i].max_op_thresh = therm_limit -
2744                                                        low_thresh_delta;
2745                }
2746        }
2747        return status;
2748}
2749
2750static struct e1000_mac_operations e1000_mac_ops_82575 = {
2751        .init_hw              = igb_init_hw_82575,
2752        .check_for_link       = igb_check_for_link_82575,
2753        .rar_set              = igb_rar_set,
2754        .read_mac_addr        = igb_read_mac_addr_82575,
2755        .get_speed_and_duplex = igb_get_link_up_info_82575,
2756#ifdef CONFIG_IGB_HWMON
2757        .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2758        .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2759#endif
2760};
2761
2762static struct e1000_phy_operations e1000_phy_ops_82575 = {
2763        .acquire              = igb_acquire_phy_82575,
2764        .get_cfg_done         = igb_get_cfg_done_82575,
2765        .release              = igb_release_phy_82575,
2766        .write_i2c_byte       = igb_write_i2c_byte,
2767        .read_i2c_byte        = igb_read_i2c_byte,
2768};
2769
2770static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2771        .acquire              = igb_acquire_nvm_82575,
2772        .read                 = igb_read_nvm_eerd,
2773        .release              = igb_release_nvm_82575,
2774        .write                = igb_write_nvm_spi,
2775};
2776
2777const struct e1000_info e1000_82575_info = {
2778        .get_invariants = igb_get_invariants_82575,
2779        .mac_ops = &e1000_mac_ops_82575,
2780        .phy_ops = &e1000_phy_ops_82575,
2781        .nvm_ops = &e1000_nvm_ops_82575,
2782};
2783
2784