linux/drivers/net/ethernet/intel/igb/e1000_mac.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2013 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/if_ether.h>
  29#include <linux/delay.h>
  30#include <linux/pci.h>
  31#include <linux/netdevice.h>
  32#include <linux/etherdevice.h>
  33
  34#include "e1000_mac.h"
  35
  36#include "igb.h"
  37
  38static s32 igb_set_default_fc(struct e1000_hw *hw);
  39static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  40
  41/**
  42 *  igb_get_bus_info_pcie - Get PCIe bus information
  43 *  @hw: pointer to the HW structure
  44 *
  45 *  Determines and stores the system bus information for a particular
  46 *  network interface.  The following bus information is determined and stored:
  47 *  bus speed, bus width, type (PCIe), and PCIe function.
  48 **/
  49s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  50{
  51        struct e1000_bus_info *bus = &hw->bus;
  52        s32 ret_val;
  53        u32 reg;
  54        u16 pcie_link_status;
  55
  56        bus->type = e1000_bus_type_pci_express;
  57
  58        ret_val = igb_read_pcie_cap_reg(hw,
  59                                        PCI_EXP_LNKSTA,
  60                                        &pcie_link_status);
  61        if (ret_val) {
  62                bus->width = e1000_bus_width_unknown;
  63                bus->speed = e1000_bus_speed_unknown;
  64        } else {
  65                switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  66                case PCI_EXP_LNKSTA_CLS_2_5GB:
  67                        bus->speed = e1000_bus_speed_2500;
  68                        break;
  69                case PCI_EXP_LNKSTA_CLS_5_0GB:
  70                        bus->speed = e1000_bus_speed_5000;
  71                        break;
  72                default:
  73                        bus->speed = e1000_bus_speed_unknown;
  74                        break;
  75                }
  76
  77                bus->width = (enum e1000_bus_width)((pcie_link_status &
  78                                                     PCI_EXP_LNKSTA_NLW) >>
  79                                                     PCI_EXP_LNKSTA_NLW_SHIFT);
  80        }
  81
  82        reg = rd32(E1000_STATUS);
  83        bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  84
  85        return 0;
  86}
  87
  88/**
  89 *  igb_clear_vfta - Clear VLAN filter table
  90 *  @hw: pointer to the HW structure
  91 *
  92 *  Clears the register array which contains the VLAN filter table by
  93 *  setting all the values to 0.
  94 **/
  95void igb_clear_vfta(struct e1000_hw *hw)
  96{
  97        u32 offset;
  98
  99        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 100                array_wr32(E1000_VFTA, offset, 0);
 101                wrfl();
 102        }
 103}
 104
 105/**
 106 *  igb_write_vfta - Write value to VLAN filter table
 107 *  @hw: pointer to the HW structure
 108 *  @offset: register offset in VLAN filter table
 109 *  @value: register value written to VLAN filter table
 110 *
 111 *  Writes value at the given offset in the register array which stores
 112 *  the VLAN filter table.
 113 **/
 114static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 115{
 116        array_wr32(E1000_VFTA, offset, value);
 117        wrfl();
 118}
 119
 120/* Due to a hw errata, if the host tries to  configure the VFTA register
 121 * while performing queries from the BMC or DMA, then the VFTA in some
 122 * cases won't be written.
 123 */
 124
 125/**
 126 *  igb_clear_vfta_i350 - Clear VLAN filter table
 127 *  @hw: pointer to the HW structure
 128 *
 129 *  Clears the register array which contains the VLAN filter table by
 130 *  setting all the values to 0.
 131 **/
 132void igb_clear_vfta_i350(struct e1000_hw *hw)
 133{
 134        u32 offset;
 135        int i;
 136
 137        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 138                for (i = 0; i < 10; i++)
 139                        array_wr32(E1000_VFTA, offset, 0);
 140
 141                wrfl();
 142        }
 143}
 144
 145/**
 146 *  igb_write_vfta_i350 - Write value to VLAN filter table
 147 *  @hw: pointer to the HW structure
 148 *  @offset: register offset in VLAN filter table
 149 *  @value: register value written to VLAN filter table
 150 *
 151 *  Writes value at the given offset in the register array which stores
 152 *  the VLAN filter table.
 153 **/
 154static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
 155{
 156        int i;
 157
 158        for (i = 0; i < 10; i++)
 159                array_wr32(E1000_VFTA, offset, value);
 160
 161        wrfl();
 162}
 163
 164/**
 165 *  igb_init_rx_addrs - Initialize receive address's
 166 *  @hw: pointer to the HW structure
 167 *  @rar_count: receive address registers
 168 *
 169 *  Setups the receive address registers by setting the base receive address
 170 *  register to the devices MAC address and clearing all the other receive
 171 *  address registers to 0.
 172 **/
 173void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 174{
 175        u32 i;
 176        u8 mac_addr[ETH_ALEN] = {0};
 177
 178        /* Setup the receive address */
 179        hw_dbg("Programming MAC Address into RAR[0]\n");
 180
 181        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 182
 183        /* Zero out the other (rar_entry_count - 1) receive addresses */
 184        hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 185        for (i = 1; i < rar_count; i++)
 186                hw->mac.ops.rar_set(hw, mac_addr, i);
 187}
 188
 189/**
 190 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 191 *  @hw: pointer to the HW structure
 192 *  @vid: VLAN id to add or remove
 193 *  @add: if true add filter, if false remove
 194 *
 195 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 196 *  and if we are adding or removing the filter
 197 **/
 198s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
 199{
 200        u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
 201        u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
 202        u32 vfta;
 203        struct igb_adapter *adapter = hw->back;
 204        s32 ret_val = 0;
 205
 206        vfta = adapter->shadow_vfta[index];
 207
 208        /* bit was set/cleared before we started */
 209        if ((!!(vfta & mask)) == add) {
 210                ret_val = -E1000_ERR_CONFIG;
 211        } else {
 212                if (add)
 213                        vfta |= mask;
 214                else
 215                        vfta &= ~mask;
 216        }
 217        if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 218                igb_write_vfta_i350(hw, index, vfta);
 219        else
 220                igb_write_vfta(hw, index, vfta);
 221        adapter->shadow_vfta[index] = vfta;
 222
 223        return ret_val;
 224}
 225
 226/**
 227 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 228 *  @hw: pointer to the HW structure
 229 *
 230 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 231 *  can be setup by pre-boot software and must be treated like a permanent
 232 *  address and must override the actual permanent MAC address.  If an
 233 *  alternate MAC address is found it is saved in the hw struct and
 234 *  programmed into RAR0 and the function returns success, otherwise the
 235 *  function returns an error.
 236 **/
 237s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 238{
 239        u32 i;
 240        s32 ret_val = 0;
 241        u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 242        u8 alt_mac_addr[ETH_ALEN];
 243
 244        /* Alternate MAC address is handled by the option ROM for 82580
 245         * and newer. SW support not required.
 246         */
 247        if (hw->mac.type >= e1000_82580)
 248                goto out;
 249
 250        ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 251                                 &nvm_alt_mac_addr_offset);
 252        if (ret_val) {
 253                hw_dbg("NVM Read Error\n");
 254                goto out;
 255        }
 256
 257        if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 258            (nvm_alt_mac_addr_offset == 0x0000))
 259                /* There is no Alternate MAC Address */
 260                goto out;
 261
 262        if (hw->bus.func == E1000_FUNC_1)
 263                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 264        if (hw->bus.func == E1000_FUNC_2)
 265                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 266
 267        if (hw->bus.func == E1000_FUNC_3)
 268                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 269        for (i = 0; i < ETH_ALEN; i += 2) {
 270                offset = nvm_alt_mac_addr_offset + (i >> 1);
 271                ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 272                if (ret_val) {
 273                        hw_dbg("NVM Read Error\n");
 274                        goto out;
 275                }
 276
 277                alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 278                alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 279        }
 280
 281        /* if multicast bit is set, the alternate address will not be used */
 282        if (is_multicast_ether_addr(alt_mac_addr)) {
 283                hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 284                goto out;
 285        }
 286
 287        /* We have a valid alternate MAC address, and we want to treat it the
 288         * same as the normal permanent MAC address stored by the HW into the
 289         * RAR. Do this by mapping this address into RAR0.
 290         */
 291        hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 292
 293out:
 294        return ret_val;
 295}
 296
 297/**
 298 *  igb_rar_set - Set receive address register
 299 *  @hw: pointer to the HW structure
 300 *  @addr: pointer to the receive address
 301 *  @index: receive address array register
 302 *
 303 *  Sets the receive address array register at index to the address passed
 304 *  in by addr.
 305 **/
 306void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 307{
 308        u32 rar_low, rar_high;
 309
 310        /* HW expects these in little endian so we reverse the byte order
 311         * from network order (big endian) to little endian
 312         */
 313        rar_low = ((u32) addr[0] |
 314                   ((u32) addr[1] << 8) |
 315                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 316
 317        rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 318
 319        /* If MAC address zero, no need to set the AV bit */
 320        if (rar_low || rar_high)
 321                rar_high |= E1000_RAH_AV;
 322
 323        /* Some bridges will combine consecutive 32-bit writes into
 324         * a single burst write, which will malfunction on some parts.
 325         * The flushes avoid this.
 326         */
 327        wr32(E1000_RAL(index), rar_low);
 328        wrfl();
 329        wr32(E1000_RAH(index), rar_high);
 330        wrfl();
 331}
 332
 333/**
 334 *  igb_mta_set - Set multicast filter table address
 335 *  @hw: pointer to the HW structure
 336 *  @hash_value: determines the MTA register and bit to set
 337 *
 338 *  The multicast table address is a register array of 32-bit registers.
 339 *  The hash_value is used to determine what register the bit is in, the
 340 *  current value is read, the new bit is OR'd in and the new value is
 341 *  written back into the register.
 342 **/
 343void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 344{
 345        u32 hash_bit, hash_reg, mta;
 346
 347        /* The MTA is a register array of 32-bit registers. It is
 348         * treated like an array of (32*mta_reg_count) bits.  We want to
 349         * set bit BitArray[hash_value]. So we figure out what register
 350         * the bit is in, read it, OR in the new bit, then write
 351         * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 352         * mask to bits 31:5 of the hash value which gives us the
 353         * register we're modifying.  The hash bit within that register
 354         * is determined by the lower 5 bits of the hash value.
 355         */
 356        hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 357        hash_bit = hash_value & 0x1F;
 358
 359        mta = array_rd32(E1000_MTA, hash_reg);
 360
 361        mta |= (1 << hash_bit);
 362
 363        array_wr32(E1000_MTA, hash_reg, mta);
 364        wrfl();
 365}
 366
 367/**
 368 *  igb_hash_mc_addr - Generate a multicast hash value
 369 *  @hw: pointer to the HW structure
 370 *  @mc_addr: pointer to a multicast address
 371 *
 372 *  Generates a multicast address hash value which is used to determine
 373 *  the multicast filter table array address and new table value.  See
 374 *  igb_mta_set()
 375 **/
 376static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 377{
 378        u32 hash_value, hash_mask;
 379        u8 bit_shift = 0;
 380
 381        /* Register count multiplied by bits per register */
 382        hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 383
 384        /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 385         * where 0xFF would still fall within the hash mask.
 386         */
 387        while (hash_mask >> bit_shift != 0xFF)
 388                bit_shift++;
 389
 390        /* The portion of the address that is used for the hash table
 391         * is determined by the mc_filter_type setting.
 392         * The algorithm is such that there is a total of 8 bits of shifting.
 393         * The bit_shift for a mc_filter_type of 0 represents the number of
 394         * left-shifts where the MSB of mc_addr[5] would still fall within
 395         * the hash_mask.  Case 0 does this exactly.  Since there are a total
 396         * of 8 bits of shifting, then mc_addr[4] will shift right the
 397         * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 398         * cases are a variation of this algorithm...essentially raising the
 399         * number of bits to shift mc_addr[5] left, while still keeping the
 400         * 8-bit shifting total.
 401         *
 402         * For example, given the following Destination MAC Address and an
 403         * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 404         * we can see that the bit_shift for case 0 is 4.  These are the hash
 405         * values resulting from each mc_filter_type...
 406         * [0] [1] [2] [3] [4] [5]
 407         * 01  AA  00  12  34  56
 408         * LSB                 MSB
 409         *
 410         * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 411         * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 412         * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 413         * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 414         */
 415        switch (hw->mac.mc_filter_type) {
 416        default:
 417        case 0:
 418                break;
 419        case 1:
 420                bit_shift += 1;
 421                break;
 422        case 2:
 423                bit_shift += 2;
 424                break;
 425        case 3:
 426                bit_shift += 4;
 427                break;
 428        }
 429
 430        hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 431                                  (((u16) mc_addr[5]) << bit_shift)));
 432
 433        return hash_value;
 434}
 435
 436/**
 437 *  igb_update_mc_addr_list - Update Multicast addresses
 438 *  @hw: pointer to the HW structure
 439 *  @mc_addr_list: array of multicast addresses to program
 440 *  @mc_addr_count: number of multicast addresses to program
 441 *
 442 *  Updates entire Multicast Table Array.
 443 *  The caller must have a packed mc_addr_list of multicast addresses.
 444 **/
 445void igb_update_mc_addr_list(struct e1000_hw *hw,
 446                             u8 *mc_addr_list, u32 mc_addr_count)
 447{
 448        u32 hash_value, hash_bit, hash_reg;
 449        int i;
 450
 451        /* clear mta_shadow */
 452        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 453
 454        /* update mta_shadow from mc_addr_list */
 455        for (i = 0; (u32) i < mc_addr_count; i++) {
 456                hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 457
 458                hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 459                hash_bit = hash_value & 0x1F;
 460
 461                hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 462                mc_addr_list += (ETH_ALEN);
 463        }
 464
 465        /* replace the entire MTA table */
 466        for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 467                array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 468        wrfl();
 469}
 470
 471/**
 472 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 473 *  @hw: pointer to the HW structure
 474 *
 475 *  Clears the base hardware counters by reading the counter registers.
 476 **/
 477void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 478{
 479        rd32(E1000_CRCERRS);
 480        rd32(E1000_SYMERRS);
 481        rd32(E1000_MPC);
 482        rd32(E1000_SCC);
 483        rd32(E1000_ECOL);
 484        rd32(E1000_MCC);
 485        rd32(E1000_LATECOL);
 486        rd32(E1000_COLC);
 487        rd32(E1000_DC);
 488        rd32(E1000_SEC);
 489        rd32(E1000_RLEC);
 490        rd32(E1000_XONRXC);
 491        rd32(E1000_XONTXC);
 492        rd32(E1000_XOFFRXC);
 493        rd32(E1000_XOFFTXC);
 494        rd32(E1000_FCRUC);
 495        rd32(E1000_GPRC);
 496        rd32(E1000_BPRC);
 497        rd32(E1000_MPRC);
 498        rd32(E1000_GPTC);
 499        rd32(E1000_GORCL);
 500        rd32(E1000_GORCH);
 501        rd32(E1000_GOTCL);
 502        rd32(E1000_GOTCH);
 503        rd32(E1000_RNBC);
 504        rd32(E1000_RUC);
 505        rd32(E1000_RFC);
 506        rd32(E1000_ROC);
 507        rd32(E1000_RJC);
 508        rd32(E1000_TORL);
 509        rd32(E1000_TORH);
 510        rd32(E1000_TOTL);
 511        rd32(E1000_TOTH);
 512        rd32(E1000_TPR);
 513        rd32(E1000_TPT);
 514        rd32(E1000_MPTC);
 515        rd32(E1000_BPTC);
 516}
 517
 518/**
 519 *  igb_check_for_copper_link - Check for link (Copper)
 520 *  @hw: pointer to the HW structure
 521 *
 522 *  Checks to see of the link status of the hardware has changed.  If a
 523 *  change in link status has been detected, then we read the PHY registers
 524 *  to get the current speed/duplex if link exists.
 525 **/
 526s32 igb_check_for_copper_link(struct e1000_hw *hw)
 527{
 528        struct e1000_mac_info *mac = &hw->mac;
 529        s32 ret_val;
 530        bool link;
 531
 532        /* We only want to go out to the PHY registers to see if Auto-Neg
 533         * has completed and/or if our link status has changed.  The
 534         * get_link_status flag is set upon receiving a Link Status
 535         * Change or Rx Sequence Error interrupt.
 536         */
 537        if (!mac->get_link_status) {
 538                ret_val = 0;
 539                goto out;
 540        }
 541
 542        /* First we want to see if the MII Status Register reports
 543         * link.  If so, then we want to get the current speed/duplex
 544         * of the PHY.
 545         */
 546        ret_val = igb_phy_has_link(hw, 1, 0, &link);
 547        if (ret_val)
 548                goto out;
 549
 550        if (!link)
 551                goto out; /* No link detected */
 552
 553        mac->get_link_status = false;
 554
 555        /* Check if there was DownShift, must be checked
 556         * immediately after link-up
 557         */
 558        igb_check_downshift(hw);
 559
 560        /* If we are forcing speed/duplex, then we simply return since
 561         * we have already determined whether we have link or not.
 562         */
 563        if (!mac->autoneg) {
 564                ret_val = -E1000_ERR_CONFIG;
 565                goto out;
 566        }
 567
 568        /* Auto-Neg is enabled.  Auto Speed Detection takes care
 569         * of MAC speed/duplex configuration.  So we only need to
 570         * configure Collision Distance in the MAC.
 571         */
 572        igb_config_collision_dist(hw);
 573
 574        /* Configure Flow Control now that Auto-Neg has completed.
 575         * First, we need to restore the desired flow control
 576         * settings because we may have had to re-autoneg with a
 577         * different link partner.
 578         */
 579        ret_val = igb_config_fc_after_link_up(hw);
 580        if (ret_val)
 581                hw_dbg("Error configuring flow control\n");
 582
 583out:
 584        return ret_val;
 585}
 586
 587/**
 588 *  igb_setup_link - Setup flow control and link settings
 589 *  @hw: pointer to the HW structure
 590 *
 591 *  Determines which flow control settings to use, then configures flow
 592 *  control.  Calls the appropriate media-specific link configuration
 593 *  function.  Assuming the adapter has a valid link partner, a valid link
 594 *  should be established.  Assumes the hardware has previously been reset
 595 *  and the transmitter and receiver are not enabled.
 596 **/
 597s32 igb_setup_link(struct e1000_hw *hw)
 598{
 599        s32 ret_val = 0;
 600
 601        /* In the case of the phy reset being blocked, we already have a link.
 602         * We do not need to set it up again.
 603         */
 604        if (igb_check_reset_block(hw))
 605                goto out;
 606
 607        /* If requested flow control is set to default, set flow control
 608         * based on the EEPROM flow control settings.
 609         */
 610        if (hw->fc.requested_mode == e1000_fc_default) {
 611                ret_val = igb_set_default_fc(hw);
 612                if (ret_val)
 613                        goto out;
 614        }
 615
 616        /* We want to save off the original Flow Control configuration just
 617         * in case we get disconnected and then reconnected into a different
 618         * hub or switch with different Flow Control capabilities.
 619         */
 620        hw->fc.current_mode = hw->fc.requested_mode;
 621
 622        hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 623
 624        /* Call the necessary media_type subroutine to configure the link. */
 625        ret_val = hw->mac.ops.setup_physical_interface(hw);
 626        if (ret_val)
 627                goto out;
 628
 629        /* Initialize the flow control address, type, and PAUSE timer
 630         * registers to their default values.  This is done even if flow
 631         * control is disabled, because it does not hurt anything to
 632         * initialize these registers.
 633         */
 634        hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 635        wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 636        wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 637        wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 638
 639        wr32(E1000_FCTTV, hw->fc.pause_time);
 640
 641        ret_val = igb_set_fc_watermarks(hw);
 642
 643out:
 644
 645        return ret_val;
 646}
 647
 648/**
 649 *  igb_config_collision_dist - Configure collision distance
 650 *  @hw: pointer to the HW structure
 651 *
 652 *  Configures the collision distance to the default value and is used
 653 *  during link setup. Currently no func pointer exists and all
 654 *  implementations are handled in the generic version of this function.
 655 **/
 656void igb_config_collision_dist(struct e1000_hw *hw)
 657{
 658        u32 tctl;
 659
 660        tctl = rd32(E1000_TCTL);
 661
 662        tctl &= ~E1000_TCTL_COLD;
 663        tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 664
 665        wr32(E1000_TCTL, tctl);
 666        wrfl();
 667}
 668
 669/**
 670 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 671 *  @hw: pointer to the HW structure
 672 *
 673 *  Sets the flow control high/low threshold (watermark) registers.  If
 674 *  flow control XON frame transmission is enabled, then set XON frame
 675 *  tansmission as well.
 676 **/
 677static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 678{
 679        s32 ret_val = 0;
 680        u32 fcrtl = 0, fcrth = 0;
 681
 682        /* Set the flow control receive threshold registers.  Normally,
 683         * these registers will be set to a default threshold that may be
 684         * adjusted later by the driver's runtime code.  However, if the
 685         * ability to transmit pause frames is not enabled, then these
 686         * registers will be set to 0.
 687         */
 688        if (hw->fc.current_mode & e1000_fc_tx_pause) {
 689                /* We need to set up the Receive Threshold high and low water
 690                 * marks as well as (optionally) enabling the transmission of
 691                 * XON frames.
 692                 */
 693                fcrtl = hw->fc.low_water;
 694                if (hw->fc.send_xon)
 695                        fcrtl |= E1000_FCRTL_XONE;
 696
 697                fcrth = hw->fc.high_water;
 698        }
 699        wr32(E1000_FCRTL, fcrtl);
 700        wr32(E1000_FCRTH, fcrth);
 701
 702        return ret_val;
 703}
 704
 705/**
 706 *  igb_set_default_fc - Set flow control default values
 707 *  @hw: pointer to the HW structure
 708 *
 709 *  Read the EEPROM for the default values for flow control and store the
 710 *  values.
 711 **/
 712static s32 igb_set_default_fc(struct e1000_hw *hw)
 713{
 714        s32 ret_val = 0;
 715        u16 lan_offset;
 716        u16 nvm_data;
 717
 718        /* Read and store word 0x0F of the EEPROM. This word contains bits
 719         * that determine the hardware's default PAUSE (flow control) mode,
 720         * a bit that determines whether the HW defaults to enabling or
 721         * disabling auto-negotiation, and the direction of the
 722         * SW defined pins. If there is no SW over-ride of the flow
 723         * control setting, then the variable hw->fc will
 724         * be initialized based on a value in the EEPROM.
 725         */
 726        if (hw->mac.type == e1000_i350) {
 727                lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 728                ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
 729                                           + lan_offset, 1, &nvm_data);
 730         } else {
 731                ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
 732                                           1, &nvm_data);
 733         }
 734
 735        if (ret_val) {
 736                hw_dbg("NVM Read Error\n");
 737                goto out;
 738        }
 739
 740        if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 741                hw->fc.requested_mode = e1000_fc_none;
 742        else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
 743                 NVM_WORD0F_ASM_DIR)
 744                hw->fc.requested_mode = e1000_fc_tx_pause;
 745        else
 746                hw->fc.requested_mode = e1000_fc_full;
 747
 748out:
 749        return ret_val;
 750}
 751
 752/**
 753 *  igb_force_mac_fc - Force the MAC's flow control settings
 754 *  @hw: pointer to the HW structure
 755 *
 756 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 757 *  device control register to reflect the adapter settings.  TFCE and RFCE
 758 *  need to be explicitly set by software when a copper PHY is used because
 759 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 760 *  also configure these bits when link is forced on a fiber connection.
 761 **/
 762s32 igb_force_mac_fc(struct e1000_hw *hw)
 763{
 764        u32 ctrl;
 765        s32 ret_val = 0;
 766
 767        ctrl = rd32(E1000_CTRL);
 768
 769        /* Because we didn't get link via the internal auto-negotiation
 770         * mechanism (we either forced link or we got link via PHY
 771         * auto-neg), we have to manually enable/disable transmit an
 772         * receive flow control.
 773         *
 774         * The "Case" statement below enables/disable flow control
 775         * according to the "hw->fc.current_mode" parameter.
 776         *
 777         * The possible values of the "fc" parameter are:
 778         *      0:  Flow control is completely disabled
 779         *      1:  Rx flow control is enabled (we can receive pause
 780         *          frames but not send pause frames).
 781         *      2:  Tx flow control is enabled (we can send pause frames
 782         *          frames but we do not receive pause frames).
 783         *      3:  Both Rx and TX flow control (symmetric) is enabled.
 784         *  other:  No other values should be possible at this point.
 785         */
 786        hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 787
 788        switch (hw->fc.current_mode) {
 789        case e1000_fc_none:
 790                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 791                break;
 792        case e1000_fc_rx_pause:
 793                ctrl &= (~E1000_CTRL_TFCE);
 794                ctrl |= E1000_CTRL_RFCE;
 795                break;
 796        case e1000_fc_tx_pause:
 797                ctrl &= (~E1000_CTRL_RFCE);
 798                ctrl |= E1000_CTRL_TFCE;
 799                break;
 800        case e1000_fc_full:
 801                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 802                break;
 803        default:
 804                hw_dbg("Flow control param set incorrectly\n");
 805                ret_val = -E1000_ERR_CONFIG;
 806                goto out;
 807        }
 808
 809        wr32(E1000_CTRL, ctrl);
 810
 811out:
 812        return ret_val;
 813}
 814
 815/**
 816 *  igb_config_fc_after_link_up - Configures flow control after link
 817 *  @hw: pointer to the HW structure
 818 *
 819 *  Checks the status of auto-negotiation after link up to ensure that the
 820 *  speed and duplex were not forced.  If the link needed to be forced, then
 821 *  flow control needs to be forced also.  If auto-negotiation is enabled
 822 *  and did not fail, then we configure flow control based on our link
 823 *  partner.
 824 **/
 825s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 826{
 827        struct e1000_mac_info *mac = &hw->mac;
 828        s32 ret_val = 0;
 829        u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 830        u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 831        u16 speed, duplex;
 832
 833        /* Check for the case where we have fiber media and auto-neg failed
 834         * so we had to force link.  In this case, we need to force the
 835         * configuration of the MAC to match the "fc" parameter.
 836         */
 837        if (mac->autoneg_failed) {
 838                if (hw->phy.media_type == e1000_media_type_internal_serdes)
 839                        ret_val = igb_force_mac_fc(hw);
 840        } else {
 841                if (hw->phy.media_type == e1000_media_type_copper)
 842                        ret_val = igb_force_mac_fc(hw);
 843        }
 844
 845        if (ret_val) {
 846                hw_dbg("Error forcing flow control settings\n");
 847                goto out;
 848        }
 849
 850        /* Check for the case where we have copper media and auto-neg is
 851         * enabled.  In this case, we need to check and see if Auto-Neg
 852         * has completed, and if so, how the PHY and link partner has
 853         * flow control configured.
 854         */
 855        if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 856                /* Read the MII Status Register and check to see if AutoNeg
 857                 * has completed.  We read this twice because this reg has
 858                 * some "sticky" (latched) bits.
 859                 */
 860                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 861                                                   &mii_status_reg);
 862                if (ret_val)
 863                        goto out;
 864                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 865                                                   &mii_status_reg);
 866                if (ret_val)
 867                        goto out;
 868
 869                if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 870                        hw_dbg("Copper PHY and Auto Neg "
 871                                 "has not completed.\n");
 872                        goto out;
 873                }
 874
 875                /* The AutoNeg process has completed, so we now need to
 876                 * read both the Auto Negotiation Advertisement
 877                 * Register (Address 4) and the Auto_Negotiation Base
 878                 * Page Ability Register (Address 5) to determine how
 879                 * flow control was negotiated.
 880                 */
 881                ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 882                                            &mii_nway_adv_reg);
 883                if (ret_val)
 884                        goto out;
 885                ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 886                                            &mii_nway_lp_ability_reg);
 887                if (ret_val)
 888                        goto out;
 889
 890                /* Two bits in the Auto Negotiation Advertisement Register
 891                 * (Address 4) and two bits in the Auto Negotiation Base
 892                 * Page Ability Register (Address 5) determine flow control
 893                 * for both the PHY and the link partner.  The following
 894                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 895                 * 1999, describes these PAUSE resolution bits and how flow
 896                 * control is determined based upon these settings.
 897                 * NOTE:  DC = Don't Care
 898                 *
 899                 *   LOCAL DEVICE  |   LINK PARTNER
 900                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 901                 *-------|---------|-------|---------|--------------------
 902                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 903                 *   0   |    1    |   0   |   DC    | e1000_fc_none
 904                 *   0   |    1    |   1   |    0    | e1000_fc_none
 905                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 906                 *   1   |    0    |   0   |   DC    | e1000_fc_none
 907                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 908                 *   1   |    1    |   0   |    0    | e1000_fc_none
 909                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 910                 *
 911                 * Are both PAUSE bits set to 1?  If so, this implies
 912                 * Symmetric Flow Control is enabled at both ends.  The
 913                 * ASM_DIR bits are irrelevant per the spec.
 914                 *
 915                 * For Symmetric Flow Control:
 916                 *
 917                 *   LOCAL DEVICE  |   LINK PARTNER
 918                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 919                 *-------|---------|-------|---------|--------------------
 920                 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 921                 *
 922                 */
 923                if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 924                    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 925                        /* Now we need to check if the user selected RX ONLY
 926                         * of pause frames.  In this case, we had to advertise
 927                         * FULL flow control because we could not advertise RX
 928                         * ONLY. Hence, we must now check to see if we need to
 929                         * turn OFF  the TRANSMISSION of PAUSE frames.
 930                         */
 931                        if (hw->fc.requested_mode == e1000_fc_full) {
 932                                hw->fc.current_mode = e1000_fc_full;
 933                                hw_dbg("Flow Control = FULL.\r\n");
 934                        } else {
 935                                hw->fc.current_mode = e1000_fc_rx_pause;
 936                                hw_dbg("Flow Control = "
 937                                       "RX PAUSE frames only.\r\n");
 938                        }
 939                }
 940                /* For receiving PAUSE frames ONLY.
 941                 *
 942                 *   LOCAL DEVICE  |   LINK PARTNER
 943                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 944                 *-------|---------|-------|---------|--------------------
 945                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 946                 */
 947                else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 948                          (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 949                          (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 950                          (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 951                        hw->fc.current_mode = e1000_fc_tx_pause;
 952                        hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
 953                }
 954                /* For transmitting PAUSE frames ONLY.
 955                 *
 956                 *   LOCAL DEVICE  |   LINK PARTNER
 957                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 958                 *-------|---------|-------|---------|--------------------
 959                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 960                 */
 961                else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 962                         (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 963                         !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 964                         (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 965                        hw->fc.current_mode = e1000_fc_rx_pause;
 966                        hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
 967                }
 968                /* Per the IEEE spec, at this point flow control should be
 969                 * disabled.  However, we want to consider that we could
 970                 * be connected to a legacy switch that doesn't advertise
 971                 * desired flow control, but can be forced on the link
 972                 * partner.  So if we advertised no flow control, that is
 973                 * what we will resolve to.  If we advertised some kind of
 974                 * receive capability (Rx Pause Only or Full Flow Control)
 975                 * and the link partner advertised none, we will configure
 976                 * ourselves to enable Rx Flow Control only.  We can do
 977                 * this safely for two reasons:  If the link partner really
 978                 * didn't want flow control enabled, and we enable Rx, no
 979                 * harm done since we won't be receiving any PAUSE frames
 980                 * anyway.  If the intent on the link partner was to have
 981                 * flow control enabled, then by us enabling RX only, we
 982                 * can at least receive pause frames and process them.
 983                 * This is a good idea because in most cases, since we are
 984                 * predominantly a server NIC, more times than not we will
 985                 * be asked to delay transmission of packets than asking
 986                 * our link partner to pause transmission of frames.
 987                 */
 988                else if ((hw->fc.requested_mode == e1000_fc_none) ||
 989                         (hw->fc.requested_mode == e1000_fc_tx_pause) ||
 990                         (hw->fc.strict_ieee)) {
 991                        hw->fc.current_mode = e1000_fc_none;
 992                        hw_dbg("Flow Control = NONE.\r\n");
 993                } else {
 994                        hw->fc.current_mode = e1000_fc_rx_pause;
 995                        hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
 996                }
 997
 998                /* Now we need to do one last check...  If we auto-
 999                 * negotiated to HALF DUPLEX, flow control should not be
1000                 * enabled per IEEE 802.3 spec.
1001                 */
1002                ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1003                if (ret_val) {
1004                        hw_dbg("Error getting link speed and duplex\n");
1005                        goto out;
1006                }
1007
1008                if (duplex == HALF_DUPLEX)
1009                        hw->fc.current_mode = e1000_fc_none;
1010
1011                /* Now we call a subroutine to actually force the MAC
1012                 * controller to use the correct flow control settings.
1013                 */
1014                ret_val = igb_force_mac_fc(hw);
1015                if (ret_val) {
1016                        hw_dbg("Error forcing flow control settings\n");
1017                        goto out;
1018                }
1019        }
1020        /* Check for the case where we have SerDes media and auto-neg is
1021         * enabled.  In this case, we need to check and see if Auto-Neg
1022         * has completed, and if so, how the PHY and link partner has
1023         * flow control configured.
1024         */
1025        if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1026                && mac->autoneg) {
1027                /* Read the PCS_LSTS and check to see if AutoNeg
1028                 * has completed.
1029                 */
1030                pcs_status_reg = rd32(E1000_PCS_LSTAT);
1031
1032                if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1033                        hw_dbg("PCS Auto Neg has not completed.\n");
1034                        return ret_val;
1035                }
1036
1037                /* The AutoNeg process has completed, so we now need to
1038                 * read both the Auto Negotiation Advertisement
1039                 * Register (PCS_ANADV) and the Auto_Negotiation Base
1040                 * Page Ability Register (PCS_LPAB) to determine how
1041                 * flow control was negotiated.
1042                 */
1043                pcs_adv_reg = rd32(E1000_PCS_ANADV);
1044                pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1045
1046                /* Two bits in the Auto Negotiation Advertisement Register
1047                 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1048                 * Page Ability Register (PCS_LPAB) determine flow control
1049                 * for both the PHY and the link partner.  The following
1050                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1051                 * 1999, describes these PAUSE resolution bits and how flow
1052                 * control is determined based upon these settings.
1053                 * NOTE:  DC = Don't Care
1054                 *
1055                 *   LOCAL DEVICE  |   LINK PARTNER
1056                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1057                 *-------|---------|-------|---------|--------------------
1058                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1059                 *   0   |    1    |   0   |   DC    | e1000_fc_none
1060                 *   0   |    1    |   1   |    0    | e1000_fc_none
1061                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1062                 *   1   |    0    |   0   |   DC    | e1000_fc_none
1063                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1064                 *   1   |    1    |   0   |    0    | e1000_fc_none
1065                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1066                 *
1067                 * Are both PAUSE bits set to 1?  If so, this implies
1068                 * Symmetric Flow Control is enabled at both ends.  The
1069                 * ASM_DIR bits are irrelevant per the spec.
1070                 *
1071                 * For Symmetric Flow Control:
1072                 *
1073                 *   LOCAL DEVICE  |   LINK PARTNER
1074                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1075                 *-------|---------|-------|---------|--------------------
1076                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1077                 *
1078                 */
1079                if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1080                    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1081                        /* Now we need to check if the user selected Rx ONLY
1082                         * of pause frames.  In this case, we had to advertise
1083                         * FULL flow control because we could not advertise Rx
1084                         * ONLY. Hence, we must now check to see if we need to
1085                         * turn OFF the TRANSMISSION of PAUSE frames.
1086                         */
1087                        if (hw->fc.requested_mode == e1000_fc_full) {
1088                                hw->fc.current_mode = e1000_fc_full;
1089                                hw_dbg("Flow Control = FULL.\n");
1090                        } else {
1091                                hw->fc.current_mode = e1000_fc_rx_pause;
1092                                hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1093                        }
1094                }
1095                /* For receiving PAUSE frames ONLY.
1096                 *
1097                 *   LOCAL DEVICE  |   LINK PARTNER
1098                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1099                 *-------|---------|-------|---------|--------------------
1100                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1101                 */
1102                else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1103                          (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1104                          (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1105                          (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1106                        hw->fc.current_mode = e1000_fc_tx_pause;
1107                        hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1108                }
1109                /* For transmitting PAUSE frames ONLY.
1110                 *
1111                 *   LOCAL DEVICE  |   LINK PARTNER
1112                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1113                 *-------|---------|-------|---------|--------------------
1114                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1115                 */
1116                else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1117                         (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1118                         !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1119                         (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1120                        hw->fc.current_mode = e1000_fc_rx_pause;
1121                        hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1122                } else {
1123                        /* Per the IEEE spec, at this point flow control
1124                         * should be disabled.
1125                         */
1126                        hw->fc.current_mode = e1000_fc_none;
1127                        hw_dbg("Flow Control = NONE.\n");
1128                }
1129
1130                /* Now we call a subroutine to actually force the MAC
1131                 * controller to use the correct flow control settings.
1132                 */
1133                pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1134                pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1135                wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1136
1137                ret_val = igb_force_mac_fc(hw);
1138                if (ret_val) {
1139                        hw_dbg("Error forcing flow control settings\n");
1140                        return ret_val;
1141                }
1142        }
1143
1144out:
1145        return ret_val;
1146}
1147
1148/**
1149 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1150 *  @hw: pointer to the HW structure
1151 *  @speed: stores the current speed
1152 *  @duplex: stores the current duplex
1153 *
1154 *  Read the status register for the current speed/duplex and store the current
1155 *  speed and duplex for copper connections.
1156 **/
1157s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1158                                      u16 *duplex)
1159{
1160        u32 status;
1161
1162        status = rd32(E1000_STATUS);
1163        if (status & E1000_STATUS_SPEED_1000) {
1164                *speed = SPEED_1000;
1165                hw_dbg("1000 Mbs, ");
1166        } else if (status & E1000_STATUS_SPEED_100) {
1167                *speed = SPEED_100;
1168                hw_dbg("100 Mbs, ");
1169        } else {
1170                *speed = SPEED_10;
1171                hw_dbg("10 Mbs, ");
1172        }
1173
1174        if (status & E1000_STATUS_FD) {
1175                *duplex = FULL_DUPLEX;
1176                hw_dbg("Full Duplex\n");
1177        } else {
1178                *duplex = HALF_DUPLEX;
1179                hw_dbg("Half Duplex\n");
1180        }
1181
1182        return 0;
1183}
1184
1185/**
1186 *  igb_get_hw_semaphore - Acquire hardware semaphore
1187 *  @hw: pointer to the HW structure
1188 *
1189 *  Acquire the HW semaphore to access the PHY or NVM
1190 **/
1191s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1192{
1193        u32 swsm;
1194        s32 ret_val = 0;
1195        s32 timeout = hw->nvm.word_size + 1;
1196        s32 i = 0;
1197
1198        /* Get the SW semaphore */
1199        while (i < timeout) {
1200                swsm = rd32(E1000_SWSM);
1201                if (!(swsm & E1000_SWSM_SMBI))
1202                        break;
1203
1204                udelay(50);
1205                i++;
1206        }
1207
1208        if (i == timeout) {
1209                hw_dbg("Driver can't access device - SMBI bit is set.\n");
1210                ret_val = -E1000_ERR_NVM;
1211                goto out;
1212        }
1213
1214        /* Get the FW semaphore. */
1215        for (i = 0; i < timeout; i++) {
1216                swsm = rd32(E1000_SWSM);
1217                wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1218
1219                /* Semaphore acquired if bit latched */
1220                if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1221                        break;
1222
1223                udelay(50);
1224        }
1225
1226        if (i == timeout) {
1227                /* Release semaphores */
1228                igb_put_hw_semaphore(hw);
1229                hw_dbg("Driver can't access the NVM\n");
1230                ret_val = -E1000_ERR_NVM;
1231                goto out;
1232        }
1233
1234out:
1235        return ret_val;
1236}
1237
1238/**
1239 *  igb_put_hw_semaphore - Release hardware semaphore
1240 *  @hw: pointer to the HW structure
1241 *
1242 *  Release hardware semaphore used to access the PHY or NVM
1243 **/
1244void igb_put_hw_semaphore(struct e1000_hw *hw)
1245{
1246        u32 swsm;
1247
1248        swsm = rd32(E1000_SWSM);
1249
1250        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1251
1252        wr32(E1000_SWSM, swsm);
1253}
1254
1255/**
1256 *  igb_get_auto_rd_done - Check for auto read completion
1257 *  @hw: pointer to the HW structure
1258 *
1259 *  Check EEPROM for Auto Read done bit.
1260 **/
1261s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1262{
1263        s32 i = 0;
1264        s32 ret_val = 0;
1265
1266
1267        while (i < AUTO_READ_DONE_TIMEOUT) {
1268                if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1269                        break;
1270                msleep(1);
1271                i++;
1272        }
1273
1274        if (i == AUTO_READ_DONE_TIMEOUT) {
1275                hw_dbg("Auto read by HW from NVM has not completed.\n");
1276                ret_val = -E1000_ERR_RESET;
1277                goto out;
1278        }
1279
1280out:
1281        return ret_val;
1282}
1283
1284/**
1285 *  igb_valid_led_default - Verify a valid default LED config
1286 *  @hw: pointer to the HW structure
1287 *  @data: pointer to the NVM (EEPROM)
1288 *
1289 *  Read the EEPROM for the current default LED configuration.  If the
1290 *  LED configuration is not valid, set to a valid LED configuration.
1291 **/
1292static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1293{
1294        s32 ret_val;
1295
1296        ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1297        if (ret_val) {
1298                hw_dbg("NVM Read Error\n");
1299                goto out;
1300        }
1301
1302        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1303                switch(hw->phy.media_type) {
1304                case e1000_media_type_internal_serdes:
1305                        *data = ID_LED_DEFAULT_82575_SERDES;
1306                        break;
1307                case e1000_media_type_copper:
1308                default:
1309                        *data = ID_LED_DEFAULT;
1310                        break;
1311                }
1312        }
1313out:
1314        return ret_val;
1315}
1316
1317/**
1318 *  igb_id_led_init -
1319 *  @hw: pointer to the HW structure
1320 *
1321 **/
1322s32 igb_id_led_init(struct e1000_hw *hw)
1323{
1324        struct e1000_mac_info *mac = &hw->mac;
1325        s32 ret_val;
1326        const u32 ledctl_mask = 0x000000FF;
1327        const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1328        const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1329        u16 data, i, temp;
1330        const u16 led_mask = 0x0F;
1331
1332        /* i210 and i211 devices have different LED mechanism */
1333        if ((hw->mac.type == e1000_i210) ||
1334            (hw->mac.type == e1000_i211))
1335                ret_val = igb_valid_led_default_i210(hw, &data);
1336        else
1337                ret_val = igb_valid_led_default(hw, &data);
1338
1339        if (ret_val)
1340                goto out;
1341
1342        mac->ledctl_default = rd32(E1000_LEDCTL);
1343        mac->ledctl_mode1 = mac->ledctl_default;
1344        mac->ledctl_mode2 = mac->ledctl_default;
1345
1346        for (i = 0; i < 4; i++) {
1347                temp = (data >> (i << 2)) & led_mask;
1348                switch (temp) {
1349                case ID_LED_ON1_DEF2:
1350                case ID_LED_ON1_ON2:
1351                case ID_LED_ON1_OFF2:
1352                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1353                        mac->ledctl_mode1 |= ledctl_on << (i << 3);
1354                        break;
1355                case ID_LED_OFF1_DEF2:
1356                case ID_LED_OFF1_ON2:
1357                case ID_LED_OFF1_OFF2:
1358                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1359                        mac->ledctl_mode1 |= ledctl_off << (i << 3);
1360                        break;
1361                default:
1362                        /* Do nothing */
1363                        break;
1364                }
1365                switch (temp) {
1366                case ID_LED_DEF1_ON2:
1367                case ID_LED_ON1_ON2:
1368                case ID_LED_OFF1_ON2:
1369                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1370                        mac->ledctl_mode2 |= ledctl_on << (i << 3);
1371                        break;
1372                case ID_LED_DEF1_OFF2:
1373                case ID_LED_ON1_OFF2:
1374                case ID_LED_OFF1_OFF2:
1375                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1376                        mac->ledctl_mode2 |= ledctl_off << (i << 3);
1377                        break;
1378                default:
1379                        /* Do nothing */
1380                        break;
1381                }
1382        }
1383
1384out:
1385        return ret_val;
1386}
1387
1388/**
1389 *  igb_cleanup_led - Set LED config to default operation
1390 *  @hw: pointer to the HW structure
1391 *
1392 *  Remove the current LED configuration and set the LED configuration
1393 *  to the default value, saved from the EEPROM.
1394 **/
1395s32 igb_cleanup_led(struct e1000_hw *hw)
1396{
1397        wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1398        return 0;
1399}
1400
1401/**
1402 *  igb_blink_led - Blink LED
1403 *  @hw: pointer to the HW structure
1404 *
1405 *  Blink the led's which are set to be on.
1406 **/
1407s32 igb_blink_led(struct e1000_hw *hw)
1408{
1409        u32 ledctl_blink = 0;
1410        u32 i;
1411
1412        if (hw->phy.media_type == e1000_media_type_fiber) {
1413                /* always blink LED0 for PCI-E fiber */
1414                ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1415                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1416        } else {
1417                /* Set the blink bit for each LED that's "on" (0x0E)
1418                 * (or "off" if inverted) in ledctl_mode2.  The blink
1419                 * logic in hardware only works when mode is set to "on"
1420                 * so it must be changed accordingly when the mode is
1421                 * "off" and inverted.
1422                 */
1423                ledctl_blink = hw->mac.ledctl_mode2;
1424                for (i = 0; i < 32; i += 8) {
1425                        u32 mode = (hw->mac.ledctl_mode2 >> i) &
1426                            E1000_LEDCTL_LED0_MODE_MASK;
1427                        u32 led_default = hw->mac.ledctl_default >> i;
1428
1429                        if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1430                             (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1431                            ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1432                             (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1433                                ledctl_blink &=
1434                                    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1435                                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1436                                                 E1000_LEDCTL_MODE_LED_ON) << i;
1437                        }
1438                }
1439        }
1440
1441        wr32(E1000_LEDCTL, ledctl_blink);
1442
1443        return 0;
1444}
1445
1446/**
1447 *  igb_led_off - Turn LED off
1448 *  @hw: pointer to the HW structure
1449 *
1450 *  Turn LED off.
1451 **/
1452s32 igb_led_off(struct e1000_hw *hw)
1453{
1454        switch (hw->phy.media_type) {
1455        case e1000_media_type_copper:
1456                wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1457                break;
1458        default:
1459                break;
1460        }
1461
1462        return 0;
1463}
1464
1465/**
1466 *  igb_disable_pcie_master - Disables PCI-express master access
1467 *  @hw: pointer to the HW structure
1468 *
1469 *  Returns 0 (0) if successful, else returns -10
1470 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1471 *  the master requests to be disabled.
1472 *
1473 *  Disables PCI-Express master access and verifies there are no pending
1474 *  requests.
1475 **/
1476s32 igb_disable_pcie_master(struct e1000_hw *hw)
1477{
1478        u32 ctrl;
1479        s32 timeout = MASTER_DISABLE_TIMEOUT;
1480        s32 ret_val = 0;
1481
1482        if (hw->bus.type != e1000_bus_type_pci_express)
1483                goto out;
1484
1485        ctrl = rd32(E1000_CTRL);
1486        ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1487        wr32(E1000_CTRL, ctrl);
1488
1489        while (timeout) {
1490                if (!(rd32(E1000_STATUS) &
1491                      E1000_STATUS_GIO_MASTER_ENABLE))
1492                        break;
1493                udelay(100);
1494                timeout--;
1495        }
1496
1497        if (!timeout) {
1498                hw_dbg("Master requests are pending.\n");
1499                ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1500                goto out;
1501        }
1502
1503out:
1504        return ret_val;
1505}
1506
1507/**
1508 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1509 *  @hw: pointer to the HW structure
1510 *
1511 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1512 *  set, which is forced to MDI mode only.
1513 **/
1514s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1515{
1516        s32 ret_val = 0;
1517
1518        /* All MDI settings are supported on 82580 and newer. */
1519        if (hw->mac.type >= e1000_82580)
1520                goto out;
1521
1522        if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1523                hw_dbg("Invalid MDI setting detected\n");
1524                hw->phy.mdix = 1;
1525                ret_val = -E1000_ERR_CONFIG;
1526                goto out;
1527        }
1528
1529out:
1530        return ret_val;
1531}
1532
1533/**
1534 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1535 *  @hw: pointer to the HW structure
1536 *  @reg: 32bit register offset such as E1000_SCTL
1537 *  @offset: register offset to write to
1538 *  @data: data to write at register offset
1539 *
1540 *  Writes an address/data control type register.  There are several of these
1541 *  and they all have the format address << 8 | data and bit 31 is polled for
1542 *  completion.
1543 **/
1544s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1545                              u32 offset, u8 data)
1546{
1547        u32 i, regvalue = 0;
1548        s32 ret_val = 0;
1549
1550        /* Set up the address and data */
1551        regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1552        wr32(reg, regvalue);
1553
1554        /* Poll the ready bit to see if the MDI read completed */
1555        for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1556                udelay(5);
1557                regvalue = rd32(reg);
1558                if (regvalue & E1000_GEN_CTL_READY)
1559                        break;
1560        }
1561        if (!(regvalue & E1000_GEN_CTL_READY)) {
1562                hw_dbg("Reg %08x did not indicate ready\n", reg);
1563                ret_val = -E1000_ERR_PHY;
1564                goto out;
1565        }
1566
1567out:
1568        return ret_val;
1569}
1570
1571/**
1572 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1573 *  @hw: pointer to the HW structure
1574 *
1575 *  Verifies the hardware needs to leave interface enabled so that frames can
1576 *  be directed to and from the management interface.
1577 **/
1578bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1579{
1580        u32 manc;
1581        u32 fwsm, factps;
1582        bool ret_val = false;
1583
1584        if (!hw->mac.asf_firmware_present)
1585                goto out;
1586
1587        manc = rd32(E1000_MANC);
1588
1589        if (!(manc & E1000_MANC_RCV_TCO_EN))
1590                goto out;
1591
1592        if (hw->mac.arc_subsystem_valid) {
1593                fwsm = rd32(E1000_FWSM);
1594                factps = rd32(E1000_FACTPS);
1595
1596                if (!(factps & E1000_FACTPS_MNGCG) &&
1597                    ((fwsm & E1000_FWSM_MODE_MASK) ==
1598                     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1599                        ret_val = true;
1600                        goto out;
1601                }
1602        } else {
1603                if ((manc & E1000_MANC_SMBUS_EN) &&
1604                    !(manc & E1000_MANC_ASF_EN)) {
1605                        ret_val = true;
1606                        goto out;
1607                }
1608        }
1609
1610out:
1611        return ret_val;
1612}
1613