linux/drivers/net/ethernet/marvell/mvneta.c
<<
>>
Prefs
   1/*
   2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
   3 *
   4 * Copyright (C) 2012 Marvell
   5 *
   6 * Rami Rosen <rosenr@marvell.com>
   7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
   8 *
   9 * This file is licensed under the terms of the GNU General Public
  10 * License version 2. This program is licensed "as is" without any
  11 * warranty of any kind, whether express or implied.
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/platform_device.h>
  18#include <linux/skbuff.h>
  19#include <linux/inetdevice.h>
  20#include <linux/mbus.h>
  21#include <linux/module.h>
  22#include <linux/interrupt.h>
  23#include <net/ip.h>
  24#include <net/ipv6.h>
  25#include <linux/of.h>
  26#include <linux/of_irq.h>
  27#include <linux/of_mdio.h>
  28#include <linux/of_net.h>
  29#include <linux/of_address.h>
  30#include <linux/phy.h>
  31#include <linux/clk.h>
  32
  33/* Registers */
  34#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
  35#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
  36#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
  37#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
  38#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
  39#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
  40#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
  41#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
  42#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
  43#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
  44#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
  45#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
  46#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
  47#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
  48#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
  49#define MVNETA_PORT_RX_RESET                    0x1cc0
  50#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
  51#define MVNETA_PHY_ADDR                         0x2000
  52#define      MVNETA_PHY_ADDR_MASK               0x1f
  53#define MVNETA_MBUS_RETRY                       0x2010
  54#define MVNETA_UNIT_INTR_CAUSE                  0x2080
  55#define MVNETA_UNIT_CONTROL                     0x20B0
  56#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
  57#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
  58#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
  59#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
  60#define MVNETA_BASE_ADDR_ENABLE                 0x2290
  61#define MVNETA_PORT_CONFIG                      0x2400
  62#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
  63#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
  64#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
  65#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
  66#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
  67#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
  68#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
  69#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
  70#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
  71                                                 MVNETA_DEF_RXQ_ARP(q)   | \
  72                                                 MVNETA_DEF_RXQ_TCP(q)   | \
  73                                                 MVNETA_DEF_RXQ_UDP(q)   | \
  74                                                 MVNETA_DEF_RXQ_BPDU(q)  | \
  75                                                 MVNETA_TX_UNSET_ERR_SUM | \
  76                                                 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  77#define MVNETA_PORT_CONFIG_EXTEND                0x2404
  78#define MVNETA_MAC_ADDR_LOW                      0x2414
  79#define MVNETA_MAC_ADDR_HIGH                     0x2418
  80#define MVNETA_SDMA_CONFIG                       0x241c
  81#define      MVNETA_SDMA_BRST_SIZE_16            4
  82#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
  83#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
  84#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
  85#define      MVNETA_DESC_SWAP                    BIT(6)
  86#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
  87#define MVNETA_PORT_STATUS                       0x2444
  88#define      MVNETA_TX_IN_PRGRS                  BIT(1)
  89#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
  90#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
  91#define MVNETA_SGMII_SERDES_CFG                  0x24A0
  92#define      MVNETA_SGMII_SERDES_PROTO           0x0cc7
  93#define MVNETA_TYPE_PRIO                         0x24bc
  94#define      MVNETA_FORCE_UNI                    BIT(21)
  95#define MVNETA_TXQ_CMD_1                         0x24e4
  96#define MVNETA_TXQ_CMD                           0x2448
  97#define      MVNETA_TXQ_DISABLE_SHIFT            8
  98#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
  99#define MVNETA_ACC_MODE                          0x2500
 100#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
 101#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
 102#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
 103#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
 104#define MVNETA_INTR_NEW_CAUSE                    0x25a0
 105#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
 106#define MVNETA_INTR_NEW_MASK                     0x25a4
 107#define MVNETA_INTR_OLD_CAUSE                    0x25a8
 108#define MVNETA_INTR_OLD_MASK                     0x25ac
 109#define MVNETA_INTR_MISC_CAUSE                   0x25b0
 110#define MVNETA_INTR_MISC_MASK                    0x25b4
 111#define MVNETA_INTR_ENABLE                       0x25b8
 112#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
 113#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000
 114#define MVNETA_RXQ_CMD                           0x2680
 115#define      MVNETA_RXQ_DISABLE_SHIFT            8
 116#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
 117#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
 118#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
 119#define MVNETA_GMAC_CTRL_0                       0x2c00
 120#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
 121#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
 122#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
 123#define MVNETA_GMAC_CTRL_2                       0x2c08
 124#define      MVNETA_GMAC2_PSC_ENABLE             BIT(3)
 125#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
 126#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
 127#define MVNETA_GMAC_STATUS                       0x2c10
 128#define      MVNETA_GMAC_LINK_UP                 BIT(0)
 129#define      MVNETA_GMAC_SPEED_1000              BIT(1)
 130#define      MVNETA_GMAC_SPEED_100               BIT(2)
 131#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
 132#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
 133#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
 134#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
 135#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
 136#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
 137#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
 138#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
 139#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
 140#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
 141#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
 142#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
 143#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
 144#define MVNETA_MIB_COUNTERS_BASE                 0x3080
 145#define      MVNETA_MIB_LATE_COLLISION           0x7c
 146#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
 147#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
 148#define MVNETA_DA_FILT_UCAST_BASE                0x3600
 149#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
 150#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
 151#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
 152#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
 153#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
 154#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
 155#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
 156#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
 157#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
 158#define MVNETA_PORT_TX_RESET                     0x3cf0
 159#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
 160#define MVNETA_TX_MTU                            0x3e0c
 161#define MVNETA_TX_TOKEN_SIZE                     0x3e14
 162#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
 163#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
 164#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
 165
 166#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK      0xff
 167
 168/* Descriptor ring Macros */
 169#define MVNETA_QUEUE_NEXT_DESC(q, index)        \
 170        (((index) < (q)->last_desc) ? ((index) + 1) : 0)
 171
 172/* Various constants */
 173
 174/* Coalescing */
 175#define MVNETA_TXDONE_COAL_PKTS         16
 176#define MVNETA_RX_COAL_PKTS             32
 177#define MVNETA_RX_COAL_USEC             100
 178
 179/* Timer */
 180#define MVNETA_TX_DONE_TIMER_PERIOD     10
 181
 182/* Napi polling weight */
 183#define MVNETA_RX_POLL_WEIGHT           64
 184
 185/* The two bytes Marvell header. Either contains a special value used
 186 * by Marvell switches when a specific hardware mode is enabled (not
 187 * supported by this driver) or is filled automatically by zeroes on
 188 * the RX side. Those two bytes being at the front of the Ethernet
 189 * header, they allow to have the IP header aligned on a 4 bytes
 190 * boundary automatically: the hardware skips those two bytes on its
 191 * own.
 192 */
 193#define MVNETA_MH_SIZE                  2
 194
 195#define MVNETA_VLAN_TAG_LEN             4
 196
 197#define MVNETA_CPU_D_CACHE_LINE_SIZE    32
 198#define MVNETA_TX_CSUM_MAX_SIZE         9800
 199#define MVNETA_ACC_MODE_EXT             1
 200
 201/* Timeout constants */
 202#define MVNETA_TX_DISABLE_TIMEOUT_MSEC  1000
 203#define MVNETA_RX_DISABLE_TIMEOUT_MSEC  1000
 204#define MVNETA_TX_FIFO_EMPTY_TIMEOUT    10000
 205
 206#define MVNETA_TX_MTU_MAX               0x3ffff
 207
 208/* Max number of Rx descriptors */
 209#define MVNETA_MAX_RXD 128
 210
 211/* Max number of Tx descriptors */
 212#define MVNETA_MAX_TXD 532
 213
 214/* descriptor aligned size */
 215#define MVNETA_DESC_ALIGNED_SIZE        32
 216
 217#define MVNETA_RX_PKT_SIZE(mtu) \
 218        ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
 219              ETH_HLEN + ETH_FCS_LEN,                        \
 220              MVNETA_CPU_D_CACHE_LINE_SIZE)
 221
 222#define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
 223
 224struct mvneta_stats {
 225        struct  u64_stats_sync syncp;
 226        u64     packets;
 227        u64     bytes;
 228};
 229
 230struct mvneta_port {
 231        int pkt_size;
 232        void __iomem *base;
 233        struct mvneta_rx_queue *rxqs;
 234        struct mvneta_tx_queue *txqs;
 235        struct timer_list tx_done_timer;
 236        struct net_device *dev;
 237
 238        u32 cause_rx_tx;
 239        struct napi_struct napi;
 240
 241        /* Flags */
 242        unsigned long flags;
 243#define MVNETA_F_TX_DONE_TIMER_BIT  0
 244
 245        /* Napi weight */
 246        int weight;
 247
 248        /* Core clock */
 249        struct clk *clk;
 250        u8 mcast_count[256];
 251        u16 tx_ring_size;
 252        u16 rx_ring_size;
 253        struct mvneta_stats tx_stats;
 254        struct mvneta_stats rx_stats;
 255
 256        struct mii_bus *mii_bus;
 257        struct phy_device *phy_dev;
 258        phy_interface_t phy_interface;
 259        struct device_node *phy_node;
 260        unsigned int link;
 261        unsigned int duplex;
 262        unsigned int speed;
 263};
 264
 265/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 266 * layout of the transmit and reception DMA descriptors, and their
 267 * layout is therefore defined by the hardware design
 268 */
 269
 270#define MVNETA_TX_L3_OFF_SHIFT  0
 271#define MVNETA_TX_IP_HLEN_SHIFT 8
 272#define MVNETA_TX_L4_UDP        BIT(16)
 273#define MVNETA_TX_L3_IP6        BIT(17)
 274#define MVNETA_TXD_IP_CSUM      BIT(18)
 275#define MVNETA_TXD_Z_PAD        BIT(19)
 276#define MVNETA_TXD_L_DESC       BIT(20)
 277#define MVNETA_TXD_F_DESC       BIT(21)
 278#define MVNETA_TXD_FLZ_DESC     (MVNETA_TXD_Z_PAD  | \
 279                                 MVNETA_TXD_L_DESC | \
 280                                 MVNETA_TXD_F_DESC)
 281#define MVNETA_TX_L4_CSUM_FULL  BIT(30)
 282#define MVNETA_TX_L4_CSUM_NOT   BIT(31)
 283
 284#define MVNETA_RXD_ERR_CRC              0x0
 285#define MVNETA_RXD_ERR_SUMMARY          BIT(16)
 286#define MVNETA_RXD_ERR_OVERRUN          BIT(17)
 287#define MVNETA_RXD_ERR_LEN              BIT(18)
 288#define MVNETA_RXD_ERR_RESOURCE         (BIT(17) | BIT(18))
 289#define MVNETA_RXD_ERR_CODE_MASK        (BIT(17) | BIT(18))
 290#define MVNETA_RXD_L3_IP4               BIT(25)
 291#define MVNETA_RXD_FIRST_LAST_DESC      (BIT(26) | BIT(27))
 292#define MVNETA_RXD_L4_CSUM_OK           BIT(30)
 293
 294#if defined(__LITTLE_ENDIAN)
 295struct mvneta_tx_desc {
 296        u32  command;           /* Options used by HW for packet transmitting.*/
 297        u16  reserverd1;        /* csum_l4 (for future use)             */
 298        u16  data_size;         /* Data size of transmitted packet in bytes */
 299        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 300        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 301        u32  reserved3[4];      /* Reserved - (for future use)          */
 302};
 303
 304struct mvneta_rx_desc {
 305        u32  status;            /* Info about received packet           */
 306        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 307        u16  data_size;         /* Size of received packet in bytes     */
 308
 309        u32  buf_phys_addr;     /* Physical address of the buffer       */
 310        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 311
 312        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 313        u16  reserved3;         /* prefetch_cmd, for future use         */
 314        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 315
 316        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 317        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 318};
 319#else
 320struct mvneta_tx_desc {
 321        u16  data_size;         /* Data size of transmitted packet in bytes */
 322        u16  reserverd1;        /* csum_l4 (for future use)             */
 323        u32  command;           /* Options used by HW for packet transmitting.*/
 324        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 325        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 326        u32  reserved3[4];      /* Reserved - (for future use)          */
 327};
 328
 329struct mvneta_rx_desc {
 330        u16  data_size;         /* Size of received packet in bytes     */
 331        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 332        u32  status;            /* Info about received packet           */
 333
 334        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 335        u32  buf_phys_addr;     /* Physical address of the buffer       */
 336
 337        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 338        u16  reserved3;         /* prefetch_cmd, for future use         */
 339        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 340
 341        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 342        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 343};
 344#endif
 345
 346struct mvneta_tx_queue {
 347        /* Number of this TX queue, in the range 0-7 */
 348        u8 id;
 349
 350        /* Number of TX DMA descriptors in the descriptor ring */
 351        int size;
 352
 353        /* Number of currently used TX DMA descriptor in the
 354         * descriptor ring
 355         */
 356        int count;
 357
 358        /* Array of transmitted skb */
 359        struct sk_buff **tx_skb;
 360
 361        /* Index of last TX DMA descriptor that was inserted */
 362        int txq_put_index;
 363
 364        /* Index of the TX DMA descriptor to be cleaned up */
 365        int txq_get_index;
 366
 367        u32 done_pkts_coal;
 368
 369        /* Virtual address of the TX DMA descriptors array */
 370        struct mvneta_tx_desc *descs;
 371
 372        /* DMA address of the TX DMA descriptors array */
 373        dma_addr_t descs_phys;
 374
 375        /* Index of the last TX DMA descriptor */
 376        int last_desc;
 377
 378        /* Index of the next TX DMA descriptor to process */
 379        int next_desc_to_proc;
 380};
 381
 382struct mvneta_rx_queue {
 383        /* rx queue number, in the range 0-7 */
 384        u8 id;
 385
 386        /* num of rx descriptors in the rx descriptor ring */
 387        int size;
 388
 389        /* counter of times when mvneta_refill() failed */
 390        int missed;
 391
 392        u32 pkts_coal;
 393        u32 time_coal;
 394
 395        /* Virtual address of the RX DMA descriptors array */
 396        struct mvneta_rx_desc *descs;
 397
 398        /* DMA address of the RX DMA descriptors array */
 399        dma_addr_t descs_phys;
 400
 401        /* Index of the last RX DMA descriptor */
 402        int last_desc;
 403
 404        /* Index of the next RX DMA descriptor to process */
 405        int next_desc_to_proc;
 406};
 407
 408static int rxq_number = 8;
 409static int txq_number = 8;
 410
 411static int rxq_def;
 412
 413#define MVNETA_DRIVER_NAME "mvneta"
 414#define MVNETA_DRIVER_VERSION "1.0"
 415
 416/* Utility/helper methods */
 417
 418/* Write helper method */
 419static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
 420{
 421        writel(data, pp->base + offset);
 422}
 423
 424/* Read helper method */
 425static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
 426{
 427        return readl(pp->base + offset);
 428}
 429
 430/* Increment txq get counter */
 431static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
 432{
 433        txq->txq_get_index++;
 434        if (txq->txq_get_index == txq->size)
 435                txq->txq_get_index = 0;
 436}
 437
 438/* Increment txq put counter */
 439static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
 440{
 441        txq->txq_put_index++;
 442        if (txq->txq_put_index == txq->size)
 443                txq->txq_put_index = 0;
 444}
 445
 446
 447/* Clear all MIB counters */
 448static void mvneta_mib_counters_clear(struct mvneta_port *pp)
 449{
 450        int i;
 451        u32 dummy;
 452
 453        /* Perform dummy reads from MIB counters */
 454        for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
 455                dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
 456}
 457
 458/* Get System Network Statistics */
 459struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
 460                                             struct rtnl_link_stats64 *stats)
 461{
 462        struct mvneta_port *pp = netdev_priv(dev);
 463        unsigned int start;
 464
 465        memset(stats, 0, sizeof(struct rtnl_link_stats64));
 466
 467        do {
 468                start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
 469                stats->rx_packets = pp->rx_stats.packets;
 470                stats->rx_bytes = pp->rx_stats.bytes;
 471        } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
 472
 473
 474        do {
 475                start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
 476                stats->tx_packets = pp->tx_stats.packets;
 477                stats->tx_bytes = pp->tx_stats.bytes;
 478        } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
 479
 480        stats->rx_errors        = dev->stats.rx_errors;
 481        stats->rx_dropped       = dev->stats.rx_dropped;
 482
 483        stats->tx_dropped       = dev->stats.tx_dropped;
 484
 485        return stats;
 486}
 487
 488/* Rx descriptors helper methods */
 489
 490/* Checks whether the given RX descriptor is both the first and the
 491 * last descriptor for the RX packet. Each RX packet is currently
 492 * received through a single RX descriptor, so not having each RX
 493 * descriptor with its first and last bits set is an error
 494 */
 495static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
 496{
 497        return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
 498                MVNETA_RXD_FIRST_LAST_DESC;
 499}
 500
 501/* Add number of descriptors ready to receive new packets */
 502static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
 503                                          struct mvneta_rx_queue *rxq,
 504                                          int ndescs)
 505{
 506        /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
 507         * be added at once
 508         */
 509        while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
 510                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 511                            (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
 512                             MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 513                ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
 514        }
 515
 516        mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 517                    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 518}
 519
 520/* Get number of RX descriptors occupied by received packets */
 521static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
 522                                        struct mvneta_rx_queue *rxq)
 523{
 524        u32 val;
 525
 526        val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
 527        return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
 528}
 529
 530/* Update num of rx desc called upon return from rx path or
 531 * from mvneta_rxq_drop_pkts().
 532 */
 533static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
 534                                       struct mvneta_rx_queue *rxq,
 535                                       int rx_done, int rx_filled)
 536{
 537        u32 val;
 538
 539        if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
 540                val = rx_done |
 541                  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
 542                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 543                return;
 544        }
 545
 546        /* Only 255 descriptors can be added at once */
 547        while ((rx_done > 0) || (rx_filled > 0)) {
 548                if (rx_done <= 0xff) {
 549                        val = rx_done;
 550                        rx_done = 0;
 551                } else {
 552                        val = 0xff;
 553                        rx_done -= 0xff;
 554                }
 555                if (rx_filled <= 0xff) {
 556                        val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 557                        rx_filled = 0;
 558                } else {
 559                        val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 560                        rx_filled -= 0xff;
 561                }
 562                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 563        }
 564}
 565
 566/* Get pointer to next RX descriptor to be processed by SW */
 567static struct mvneta_rx_desc *
 568mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
 569{
 570        int rx_desc = rxq->next_desc_to_proc;
 571
 572        rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
 573        return rxq->descs + rx_desc;
 574}
 575
 576/* Change maximum receive size of the port. */
 577static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
 578{
 579        u32 val;
 580
 581        val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 582        val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
 583        val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
 584                MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
 585        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 586}
 587
 588
 589/* Set rx queue offset */
 590static void mvneta_rxq_offset_set(struct mvneta_port *pp,
 591                                  struct mvneta_rx_queue *rxq,
 592                                  int offset)
 593{
 594        u32 val;
 595
 596        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 597        val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
 598
 599        /* Offset is in */
 600        val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
 601        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 602}
 603
 604
 605/* Tx descriptors helper methods */
 606
 607/* Update HW with number of TX descriptors to be sent */
 608static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
 609                                     struct mvneta_tx_queue *txq,
 610                                     int pend_desc)
 611{
 612        u32 val;
 613
 614        /* Only 255 descriptors can be added at once ; Assume caller
 615         * process TX desriptors in quanta less than 256
 616         */
 617        val = pend_desc;
 618        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
 619}
 620
 621/* Get pointer to next TX descriptor to be processed (send) by HW */
 622static struct mvneta_tx_desc *
 623mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
 624{
 625        int tx_desc = txq->next_desc_to_proc;
 626
 627        txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
 628        return txq->descs + tx_desc;
 629}
 630
 631/* Release the last allocated TX descriptor. Useful to handle DMA
 632 * mapping failures in the TX path.
 633 */
 634static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
 635{
 636        if (txq->next_desc_to_proc == 0)
 637                txq->next_desc_to_proc = txq->last_desc - 1;
 638        else
 639                txq->next_desc_to_proc--;
 640}
 641
 642/* Set rxq buf size */
 643static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
 644                                    struct mvneta_rx_queue *rxq,
 645                                    int buf_size)
 646{
 647        u32 val;
 648
 649        val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
 650
 651        val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
 652        val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
 653
 654        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
 655}
 656
 657/* Disable buffer management (BM) */
 658static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
 659                                  struct mvneta_rx_queue *rxq)
 660{
 661        u32 val;
 662
 663        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 664        val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
 665        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 666}
 667
 668
 669
 670/* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
 671static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
 672{
 673        u32  val;
 674
 675        val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
 676
 677        if (enable)
 678                val |= MVNETA_GMAC2_PORT_RGMII;
 679        else
 680                val &= ~MVNETA_GMAC2_PORT_RGMII;
 681
 682        mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
 683}
 684
 685/* Config SGMII port */
 686static void mvneta_port_sgmii_config(struct mvneta_port *pp)
 687{
 688        u32 val;
 689
 690        val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
 691        val |= MVNETA_GMAC2_PSC_ENABLE;
 692        mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
 693
 694        mvreg_write(pp, MVNETA_SGMII_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
 695}
 696
 697/* Start the Ethernet port RX and TX activity */
 698static void mvneta_port_up(struct mvneta_port *pp)
 699{
 700        int queue;
 701        u32 q_map;
 702
 703        /* Enable all initialized TXs. */
 704        mvneta_mib_counters_clear(pp);
 705        q_map = 0;
 706        for (queue = 0; queue < txq_number; queue++) {
 707                struct mvneta_tx_queue *txq = &pp->txqs[queue];
 708                if (txq->descs != NULL)
 709                        q_map |= (1 << queue);
 710        }
 711        mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
 712
 713        /* Enable all initialized RXQs. */
 714        q_map = 0;
 715        for (queue = 0; queue < rxq_number; queue++) {
 716                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
 717                if (rxq->descs != NULL)
 718                        q_map |= (1 << queue);
 719        }
 720
 721        mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
 722}
 723
 724/* Stop the Ethernet port activity */
 725static void mvneta_port_down(struct mvneta_port *pp)
 726{
 727        u32 val;
 728        int count;
 729
 730        /* Stop Rx port activity. Check port Rx activity. */
 731        val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
 732
 733        /* Issue stop command for active channels only */
 734        if (val != 0)
 735                mvreg_write(pp, MVNETA_RXQ_CMD,
 736                            val << MVNETA_RXQ_DISABLE_SHIFT);
 737
 738        /* Wait for all Rx activity to terminate. */
 739        count = 0;
 740        do {
 741                if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
 742                        netdev_warn(pp->dev,
 743                                    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
 744                                    val);
 745                        break;
 746                }
 747                mdelay(1);
 748
 749                val = mvreg_read(pp, MVNETA_RXQ_CMD);
 750        } while (val & 0xff);
 751
 752        /* Stop Tx port activity. Check port Tx activity. Issue stop
 753         * command for active channels only
 754         */
 755        val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
 756
 757        if (val != 0)
 758                mvreg_write(pp, MVNETA_TXQ_CMD,
 759                            (val << MVNETA_TXQ_DISABLE_SHIFT));
 760
 761        /* Wait for all Tx activity to terminate. */
 762        count = 0;
 763        do {
 764                if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
 765                        netdev_warn(pp->dev,
 766                                    "TIMEOUT for TX stopped status=0x%08x\n",
 767                                    val);
 768                        break;
 769                }
 770                mdelay(1);
 771
 772                /* Check TX Command reg that all Txqs are stopped */
 773                val = mvreg_read(pp, MVNETA_TXQ_CMD);
 774
 775        } while (val & 0xff);
 776
 777        /* Double check to verify that TX FIFO is empty */
 778        count = 0;
 779        do {
 780                if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
 781                        netdev_warn(pp->dev,
 782                                    "TX FIFO empty timeout status=0x08%x\n",
 783                                    val);
 784                        break;
 785                }
 786                mdelay(1);
 787
 788                val = mvreg_read(pp, MVNETA_PORT_STATUS);
 789        } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
 790                 (val & MVNETA_TX_IN_PRGRS));
 791
 792        udelay(200);
 793}
 794
 795/* Enable the port by setting the port enable bit of the MAC control register */
 796static void mvneta_port_enable(struct mvneta_port *pp)
 797{
 798        u32 val;
 799
 800        /* Enable port */
 801        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 802        val |= MVNETA_GMAC0_PORT_ENABLE;
 803        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 804}
 805
 806/* Disable the port and wait for about 200 usec before retuning */
 807static void mvneta_port_disable(struct mvneta_port *pp)
 808{
 809        u32 val;
 810
 811        /* Reset the Enable bit in the Serial Control Register */
 812        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 813        val &= ~MVNETA_GMAC0_PORT_ENABLE;
 814        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 815
 816        udelay(200);
 817}
 818
 819/* Multicast tables methods */
 820
 821/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
 822static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
 823{
 824        int offset;
 825        u32 val;
 826
 827        if (queue == -1) {
 828                val = 0;
 829        } else {
 830                val = 0x1 | (queue << 1);
 831                val |= (val << 24) | (val << 16) | (val << 8);
 832        }
 833
 834        for (offset = 0; offset <= 0xc; offset += 4)
 835                mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
 836}
 837
 838/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
 839static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
 840{
 841        int offset;
 842        u32 val;
 843
 844        if (queue == -1) {
 845                val = 0;
 846        } else {
 847                val = 0x1 | (queue << 1);
 848                val |= (val << 24) | (val << 16) | (val << 8);
 849        }
 850
 851        for (offset = 0; offset <= 0xfc; offset += 4)
 852                mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
 853
 854}
 855
 856/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
 857static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
 858{
 859        int offset;
 860        u32 val;
 861
 862        if (queue == -1) {
 863                memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
 864                val = 0;
 865        } else {
 866                memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
 867                val = 0x1 | (queue << 1);
 868                val |= (val << 24) | (val << 16) | (val << 8);
 869        }
 870
 871        for (offset = 0; offset <= 0xfc; offset += 4)
 872                mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
 873}
 874
 875/* This method sets defaults to the NETA port:
 876 *      Clears interrupt Cause and Mask registers.
 877 *      Clears all MAC tables.
 878 *      Sets defaults to all registers.
 879 *      Resets RX and TX descriptor rings.
 880 *      Resets PHY.
 881 * This method can be called after mvneta_port_down() to return the port
 882 *      settings to defaults.
 883 */
 884static void mvneta_defaults_set(struct mvneta_port *pp)
 885{
 886        int cpu;
 887        int queue;
 888        u32 val;
 889
 890        /* Clear all Cause registers */
 891        mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
 892        mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
 893        mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
 894
 895        /* Mask all interrupts */
 896        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
 897        mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
 898        mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
 899        mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
 900
 901        /* Enable MBUS Retry bit16 */
 902        mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
 903
 904        /* Set CPU queue access map - all CPUs have access to all RX
 905         * queues and to all TX queues
 906         */
 907        for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
 908                mvreg_write(pp, MVNETA_CPU_MAP(cpu),
 909                            (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
 910                             MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
 911
 912        /* Reset RX and TX DMAs */
 913        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
 914        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
 915
 916        /* Disable Legacy WRR, Disable EJP, Release from reset */
 917        mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
 918        for (queue = 0; queue < txq_number; queue++) {
 919                mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
 920                mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
 921        }
 922
 923        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
 924        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
 925
 926        /* Set Port Acceleration Mode */
 927        val = MVNETA_ACC_MODE_EXT;
 928        mvreg_write(pp, MVNETA_ACC_MODE, val);
 929
 930        /* Update val of portCfg register accordingly with all RxQueue types */
 931        val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
 932        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
 933
 934        val = 0;
 935        mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
 936        mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
 937
 938        /* Build PORT_SDMA_CONFIG_REG */
 939        val = 0;
 940
 941        /* Default burst size */
 942        val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
 943        val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
 944        val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
 945
 946#if defined(__BIG_ENDIAN)
 947        val |= MVNETA_DESC_SWAP;
 948#endif
 949
 950        /* Assign port SDMA configuration */
 951        mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
 952
 953        /* Disable PHY polling in hardware, since we're using the
 954         * kernel phylib to do this.
 955         */
 956        val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
 957        val &= ~MVNETA_PHY_POLLING_ENABLE;
 958        mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
 959
 960        mvneta_set_ucast_table(pp, -1);
 961        mvneta_set_special_mcast_table(pp, -1);
 962        mvneta_set_other_mcast_table(pp, -1);
 963
 964        /* Set port interrupt enable register - default enable all */
 965        mvreg_write(pp, MVNETA_INTR_ENABLE,
 966                    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
 967                     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
 968}
 969
 970/* Set max sizes for tx queues */
 971static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
 972
 973{
 974        u32 val, size, mtu;
 975        int queue;
 976
 977        mtu = max_tx_size * 8;
 978        if (mtu > MVNETA_TX_MTU_MAX)
 979                mtu = MVNETA_TX_MTU_MAX;
 980
 981        /* Set MTU */
 982        val = mvreg_read(pp, MVNETA_TX_MTU);
 983        val &= ~MVNETA_TX_MTU_MAX;
 984        val |= mtu;
 985        mvreg_write(pp, MVNETA_TX_MTU, val);
 986
 987        /* TX token size and all TXQs token size must be larger that MTU */
 988        val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
 989
 990        size = val & MVNETA_TX_TOKEN_SIZE_MAX;
 991        if (size < mtu) {
 992                size = mtu;
 993                val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
 994                val |= size;
 995                mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
 996        }
 997        for (queue = 0; queue < txq_number; queue++) {
 998                val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
 999
1000                size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1001                if (size < mtu) {
1002                        size = mtu;
1003                        val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1004                        val |= size;
1005                        mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1006                }
1007        }
1008}
1009
1010/* Set unicast address */
1011static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1012                                  int queue)
1013{
1014        unsigned int unicast_reg;
1015        unsigned int tbl_offset;
1016        unsigned int reg_offset;
1017
1018        /* Locate the Unicast table entry */
1019        last_nibble = (0xf & last_nibble);
1020
1021        /* offset from unicast tbl base */
1022        tbl_offset = (last_nibble / 4) * 4;
1023
1024        /* offset within the above reg  */
1025        reg_offset = last_nibble % 4;
1026
1027        unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1028
1029        if (queue == -1) {
1030                /* Clear accepts frame bit at specified unicast DA tbl entry */
1031                unicast_reg &= ~(0xff << (8 * reg_offset));
1032        } else {
1033                unicast_reg &= ~(0xff << (8 * reg_offset));
1034                unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1035        }
1036
1037        mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1038}
1039
1040/* Set mac address */
1041static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1042                                int queue)
1043{
1044        unsigned int mac_h;
1045        unsigned int mac_l;
1046
1047        if (queue != -1) {
1048                mac_l = (addr[4] << 8) | (addr[5]);
1049                mac_h = (addr[0] << 24) | (addr[1] << 16) |
1050                        (addr[2] << 8) | (addr[3] << 0);
1051
1052                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1053                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1054        }
1055
1056        /* Accept frames of this address */
1057        mvneta_set_ucast_addr(pp, addr[5], queue);
1058}
1059
1060/* Set the number of packets that will be received before RX interrupt
1061 * will be generated by HW.
1062 */
1063static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1064                                    struct mvneta_rx_queue *rxq, u32 value)
1065{
1066        mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1067                    value | MVNETA_RXQ_NON_OCCUPIED(0));
1068        rxq->pkts_coal = value;
1069}
1070
1071/* Set the time delay in usec before RX interrupt will be generated by
1072 * HW.
1073 */
1074static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1075                                    struct mvneta_rx_queue *rxq, u32 value)
1076{
1077        u32 val;
1078        unsigned long clk_rate;
1079
1080        clk_rate = clk_get_rate(pp->clk);
1081        val = (clk_rate / 1000000) * value;
1082
1083        mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1084        rxq->time_coal = value;
1085}
1086
1087/* Set threshold for TX_DONE pkts coalescing */
1088static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1089                                         struct mvneta_tx_queue *txq, u32 value)
1090{
1091        u32 val;
1092
1093        val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1094
1095        val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1096        val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1097
1098        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1099
1100        txq->done_pkts_coal = value;
1101}
1102
1103/* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
1104static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
1105{
1106        if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
1107                pp->tx_done_timer.expires = jiffies +
1108                        msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
1109                add_timer(&pp->tx_done_timer);
1110        }
1111}
1112
1113
1114/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1115static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1116                                u32 phys_addr, u32 cookie)
1117{
1118        rx_desc->buf_cookie = cookie;
1119        rx_desc->buf_phys_addr = phys_addr;
1120}
1121
1122/* Decrement sent descriptors counter */
1123static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1124                                     struct mvneta_tx_queue *txq,
1125                                     int sent_desc)
1126{
1127        u32 val;
1128
1129        /* Only 255 TX descriptors can be updated at once */
1130        while (sent_desc > 0xff) {
1131                val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1132                mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1133                sent_desc = sent_desc - 0xff;
1134        }
1135
1136        val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1137        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1138}
1139
1140/* Get number of TX descriptors already sent by HW */
1141static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1142                                        struct mvneta_tx_queue *txq)
1143{
1144        u32 val;
1145        int sent_desc;
1146
1147        val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1148        sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1149                MVNETA_TXQ_SENT_DESC_SHIFT;
1150
1151        return sent_desc;
1152}
1153
1154/* Get number of sent descriptors and decrement counter.
1155 *  The number of sent descriptors is returned.
1156 */
1157static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1158                                     struct mvneta_tx_queue *txq)
1159{
1160        int sent_desc;
1161
1162        /* Get number of sent descriptors */
1163        sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1164
1165        /* Decrement sent descriptors counter */
1166        if (sent_desc)
1167                mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1168
1169        return sent_desc;
1170}
1171
1172/* Set TXQ descriptors fields relevant for CSUM calculation */
1173static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1174                                int ip_hdr_len, int l4_proto)
1175{
1176        u32 command;
1177
1178        /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1179         * G_L4_chk, L4_type; required only for checksum
1180         * calculation
1181         */
1182        command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1183        command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1184
1185        if (l3_proto == swab16(ETH_P_IP))
1186                command |= MVNETA_TXD_IP_CSUM;
1187        else
1188                command |= MVNETA_TX_L3_IP6;
1189
1190        if (l4_proto == IPPROTO_TCP)
1191                command |=  MVNETA_TX_L4_CSUM_FULL;
1192        else if (l4_proto == IPPROTO_UDP)
1193                command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1194        else
1195                command |= MVNETA_TX_L4_CSUM_NOT;
1196
1197        return command;
1198}
1199
1200
1201/* Display more error info */
1202static void mvneta_rx_error(struct mvneta_port *pp,
1203                            struct mvneta_rx_desc *rx_desc)
1204{
1205        u32 status = rx_desc->status;
1206
1207        if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
1208                netdev_err(pp->dev,
1209                           "bad rx status %08x (buffer oversize), size=%d\n",
1210                           rx_desc->status, rx_desc->data_size);
1211                return;
1212        }
1213
1214        switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1215        case MVNETA_RXD_ERR_CRC:
1216                netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1217                           status, rx_desc->data_size);
1218                break;
1219        case MVNETA_RXD_ERR_OVERRUN:
1220                netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1221                           status, rx_desc->data_size);
1222                break;
1223        case MVNETA_RXD_ERR_LEN:
1224                netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1225                           status, rx_desc->data_size);
1226                break;
1227        case MVNETA_RXD_ERR_RESOURCE:
1228                netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1229                           status, rx_desc->data_size);
1230                break;
1231        }
1232}
1233
1234/* Handle RX checksum offload */
1235static void mvneta_rx_csum(struct mvneta_port *pp,
1236                           struct mvneta_rx_desc *rx_desc,
1237                           struct sk_buff *skb)
1238{
1239        if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
1240            (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
1241                skb->csum = 0;
1242                skb->ip_summed = CHECKSUM_UNNECESSARY;
1243                return;
1244        }
1245
1246        skb->ip_summed = CHECKSUM_NONE;
1247}
1248
1249/* Return tx queue pointer (find last set bit) according to causeTxDone reg */
1250static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1251                                                     u32 cause)
1252{
1253        int queue = fls(cause) - 1;
1254
1255        return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
1256}
1257
1258/* Free tx queue skbuffs */
1259static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1260                                 struct mvneta_tx_queue *txq, int num)
1261{
1262        int i;
1263
1264        for (i = 0; i < num; i++) {
1265                struct mvneta_tx_desc *tx_desc = txq->descs +
1266                        txq->txq_get_index;
1267                struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1268
1269                mvneta_txq_inc_get(txq);
1270
1271                if (!skb)
1272                        continue;
1273
1274                dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1275                                 tx_desc->data_size, DMA_TO_DEVICE);
1276                dev_kfree_skb_any(skb);
1277        }
1278}
1279
1280/* Handle end of transmission */
1281static int mvneta_txq_done(struct mvneta_port *pp,
1282                           struct mvneta_tx_queue *txq)
1283{
1284        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1285        int tx_done;
1286
1287        tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1288        if (tx_done == 0)
1289                return tx_done;
1290        mvneta_txq_bufs_free(pp, txq, tx_done);
1291
1292        txq->count -= tx_done;
1293
1294        if (netif_tx_queue_stopped(nq)) {
1295                if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1296                        netif_tx_wake_queue(nq);
1297        }
1298
1299        return tx_done;
1300}
1301
1302/* Refill processing */
1303static int mvneta_rx_refill(struct mvneta_port *pp,
1304                            struct mvneta_rx_desc *rx_desc)
1305
1306{
1307        dma_addr_t phys_addr;
1308        struct sk_buff *skb;
1309
1310        skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
1311        if (!skb)
1312                return -ENOMEM;
1313
1314        phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
1315                                   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1316                                   DMA_FROM_DEVICE);
1317        if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1318                dev_kfree_skb(skb);
1319                return -ENOMEM;
1320        }
1321
1322        mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1323
1324        return 0;
1325}
1326
1327/* Handle tx checksum */
1328static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1329{
1330        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1331                int ip_hdr_len = 0;
1332                u8 l4_proto;
1333
1334                if (skb->protocol == htons(ETH_P_IP)) {
1335                        struct iphdr *ip4h = ip_hdr(skb);
1336
1337                        /* Calculate IPv4 checksum and L4 checksum */
1338                        ip_hdr_len = ip4h->ihl;
1339                        l4_proto = ip4h->protocol;
1340                } else if (skb->protocol == htons(ETH_P_IPV6)) {
1341                        struct ipv6hdr *ip6h = ipv6_hdr(skb);
1342
1343                        /* Read l4_protocol from one of IPv6 extra headers */
1344                        if (skb_network_header_len(skb) > 0)
1345                                ip_hdr_len = (skb_network_header_len(skb) >> 2);
1346                        l4_proto = ip6h->nexthdr;
1347                } else
1348                        return MVNETA_TX_L4_CSUM_NOT;
1349
1350                return mvneta_txq_desc_csum(skb_network_offset(skb),
1351                                skb->protocol, ip_hdr_len, l4_proto);
1352        }
1353
1354        return MVNETA_TX_L4_CSUM_NOT;
1355}
1356
1357/* Returns rx queue pointer (find last set bit) according to causeRxTx
1358 * value
1359 */
1360static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1361                                                u32 cause)
1362{
1363        int queue = fls(cause >> 8) - 1;
1364
1365        return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1366}
1367
1368/* Drop packets received by the RXQ and free buffers */
1369static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1370                                 struct mvneta_rx_queue *rxq)
1371{
1372        int rx_done, i;
1373
1374        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1375        for (i = 0; i < rxq->size; i++) {
1376                struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1377                struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
1378
1379                dev_kfree_skb_any(skb);
1380                dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1381                                 rx_desc->data_size, DMA_FROM_DEVICE);
1382        }
1383
1384        if (rx_done)
1385                mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1386}
1387
1388/* Main rx processing */
1389static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1390                     struct mvneta_rx_queue *rxq)
1391{
1392        struct net_device *dev = pp->dev;
1393        int rx_done, rx_filled;
1394
1395        /* Get number of received packets */
1396        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1397
1398        if (rx_todo > rx_done)
1399                rx_todo = rx_done;
1400
1401        rx_done = 0;
1402        rx_filled = 0;
1403
1404        /* Fairness NAPI loop */
1405        while (rx_done < rx_todo) {
1406                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1407                struct sk_buff *skb;
1408                u32 rx_status;
1409                int rx_bytes, err;
1410
1411                prefetch(rx_desc);
1412                rx_done++;
1413                rx_filled++;
1414                rx_status = rx_desc->status;
1415                skb = (struct sk_buff *)rx_desc->buf_cookie;
1416
1417                if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
1418                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1419                        dev->stats.rx_errors++;
1420                        mvneta_rx_error(pp, rx_desc);
1421                        mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
1422                                            (u32)skb);
1423                        continue;
1424                }
1425
1426                dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1427                                 rx_desc->data_size, DMA_FROM_DEVICE);
1428
1429                rx_bytes = rx_desc->data_size -
1430                        (ETH_FCS_LEN + MVNETA_MH_SIZE);
1431                u64_stats_update_begin(&pp->rx_stats.syncp);
1432                pp->rx_stats.packets++;
1433                pp->rx_stats.bytes += rx_bytes;
1434                u64_stats_update_end(&pp->rx_stats.syncp);
1435
1436                /* Linux processing */
1437                skb_reserve(skb, MVNETA_MH_SIZE);
1438                skb_put(skb, rx_bytes);
1439
1440                skb->protocol = eth_type_trans(skb, dev);
1441
1442                mvneta_rx_csum(pp, rx_desc, skb);
1443
1444                napi_gro_receive(&pp->napi, skb);
1445
1446                /* Refill processing */
1447                err = mvneta_rx_refill(pp, rx_desc);
1448                if (err) {
1449                        netdev_err(pp->dev, "Linux processing - Can't refill\n");
1450                        rxq->missed++;
1451                        rx_filled--;
1452                }
1453        }
1454
1455        /* Update rxq management counters */
1456        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1457
1458        return rx_done;
1459}
1460
1461/* Handle tx fragmentation processing */
1462static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1463                                  struct mvneta_tx_queue *txq)
1464{
1465        struct mvneta_tx_desc *tx_desc;
1466        int i;
1467
1468        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1469                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1470                void *addr = page_address(frag->page.p) + frag->page_offset;
1471
1472                tx_desc = mvneta_txq_next_desc_get(txq);
1473                tx_desc->data_size = frag->size;
1474
1475                tx_desc->buf_phys_addr =
1476                        dma_map_single(pp->dev->dev.parent, addr,
1477                                       tx_desc->data_size, DMA_TO_DEVICE);
1478
1479                if (dma_mapping_error(pp->dev->dev.parent,
1480                                      tx_desc->buf_phys_addr)) {
1481                        mvneta_txq_desc_put(txq);
1482                        goto error;
1483                }
1484
1485                if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1486                        /* Last descriptor */
1487                        tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1488
1489                        txq->tx_skb[txq->txq_put_index] = skb;
1490
1491                        mvneta_txq_inc_put(txq);
1492                } else {
1493                        /* Descriptor in the middle: Not First, Not Last */
1494                        tx_desc->command = 0;
1495
1496                        txq->tx_skb[txq->txq_put_index] = NULL;
1497                        mvneta_txq_inc_put(txq);
1498                }
1499        }
1500
1501        return 0;
1502
1503error:
1504        /* Release all descriptors that were used to map fragments of
1505         * this packet, as well as the corresponding DMA mappings
1506         */
1507        for (i = i - 1; i >= 0; i--) {
1508                tx_desc = txq->descs + i;
1509                dma_unmap_single(pp->dev->dev.parent,
1510                                 tx_desc->buf_phys_addr,
1511                                 tx_desc->data_size,
1512                                 DMA_TO_DEVICE);
1513                mvneta_txq_desc_put(txq);
1514        }
1515
1516        return -ENOMEM;
1517}
1518
1519/* Main tx processing */
1520static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1521{
1522        struct mvneta_port *pp = netdev_priv(dev);
1523        u16 txq_id = skb_get_queue_mapping(skb);
1524        struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1525        struct mvneta_tx_desc *tx_desc;
1526        struct netdev_queue *nq;
1527        int frags = 0;
1528        u32 tx_cmd;
1529
1530        if (!netif_running(dev))
1531                goto out;
1532
1533        frags = skb_shinfo(skb)->nr_frags + 1;
1534        nq    = netdev_get_tx_queue(dev, txq_id);
1535
1536        /* Get a descriptor for the first part of the packet */
1537        tx_desc = mvneta_txq_next_desc_get(txq);
1538
1539        tx_cmd = mvneta_skb_tx_csum(pp, skb);
1540
1541        tx_desc->data_size = skb_headlen(skb);
1542
1543        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1544                                                tx_desc->data_size,
1545                                                DMA_TO_DEVICE);
1546        if (unlikely(dma_mapping_error(dev->dev.parent,
1547                                       tx_desc->buf_phys_addr))) {
1548                mvneta_txq_desc_put(txq);
1549                frags = 0;
1550                goto out;
1551        }
1552
1553        if (frags == 1) {
1554                /* First and Last descriptor */
1555                tx_cmd |= MVNETA_TXD_FLZ_DESC;
1556                tx_desc->command = tx_cmd;
1557                txq->tx_skb[txq->txq_put_index] = skb;
1558                mvneta_txq_inc_put(txq);
1559        } else {
1560                /* First but not Last */
1561                tx_cmd |= MVNETA_TXD_F_DESC;
1562                txq->tx_skb[txq->txq_put_index] = NULL;
1563                mvneta_txq_inc_put(txq);
1564                tx_desc->command = tx_cmd;
1565                /* Continue with other skb fragments */
1566                if (mvneta_tx_frag_process(pp, skb, txq)) {
1567                        dma_unmap_single(dev->dev.parent,
1568                                         tx_desc->buf_phys_addr,
1569                                         tx_desc->data_size,
1570                                         DMA_TO_DEVICE);
1571                        mvneta_txq_desc_put(txq);
1572                        frags = 0;
1573                        goto out;
1574                }
1575        }
1576
1577        txq->count += frags;
1578        mvneta_txq_pend_desc_add(pp, txq, frags);
1579
1580        if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1581                netif_tx_stop_queue(nq);
1582
1583out:
1584        if (frags > 0) {
1585                u64_stats_update_begin(&pp->tx_stats.syncp);
1586                pp->tx_stats.packets++;
1587                pp->tx_stats.bytes += skb->len;
1588                u64_stats_update_end(&pp->tx_stats.syncp);
1589
1590        } else {
1591                dev->stats.tx_dropped++;
1592                dev_kfree_skb_any(skb);
1593        }
1594
1595        if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
1596                mvneta_txq_done(pp, txq);
1597
1598        /* If after calling mvneta_txq_done, count equals
1599         * frags, we need to set the timer
1600         */
1601        if (txq->count == frags && frags > 0)
1602                mvneta_add_tx_done_timer(pp);
1603
1604        return NETDEV_TX_OK;
1605}
1606
1607
1608/* Free tx resources, when resetting a port */
1609static void mvneta_txq_done_force(struct mvneta_port *pp,
1610                                  struct mvneta_tx_queue *txq)
1611
1612{
1613        int tx_done = txq->count;
1614
1615        mvneta_txq_bufs_free(pp, txq, tx_done);
1616
1617        /* reset txq */
1618        txq->count = 0;
1619        txq->txq_put_index = 0;
1620        txq->txq_get_index = 0;
1621}
1622
1623/* handle tx done - called from tx done timer callback */
1624static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
1625                              int *tx_todo)
1626{
1627        struct mvneta_tx_queue *txq;
1628        u32 tx_done = 0;
1629        struct netdev_queue *nq;
1630
1631        *tx_todo = 0;
1632        while (cause_tx_done != 0) {
1633                txq = mvneta_tx_done_policy(pp, cause_tx_done);
1634                if (!txq)
1635                        break;
1636
1637                nq = netdev_get_tx_queue(pp->dev, txq->id);
1638                __netif_tx_lock(nq, smp_processor_id());
1639
1640                if (txq->count) {
1641                        tx_done += mvneta_txq_done(pp, txq);
1642                        *tx_todo += txq->count;
1643                }
1644
1645                __netif_tx_unlock(nq);
1646                cause_tx_done &= ~((1 << txq->id));
1647        }
1648
1649        return tx_done;
1650}
1651
1652/* Compute crc8 of the specified address, using a unique algorithm ,
1653 * according to hw spec, different than generic crc8 algorithm
1654 */
1655static int mvneta_addr_crc(unsigned char *addr)
1656{
1657        int crc = 0;
1658        int i;
1659
1660        for (i = 0; i < ETH_ALEN; i++) {
1661                int j;
1662
1663                crc = (crc ^ addr[i]) << 8;
1664                for (j = 7; j >= 0; j--) {
1665                        if (crc & (0x100 << j))
1666                                crc ^= 0x107 << j;
1667                }
1668        }
1669
1670        return crc;
1671}
1672
1673/* This method controls the net device special MAC multicast support.
1674 * The Special Multicast Table for MAC addresses supports MAC of the form
1675 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1676 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1677 * Table entries in the DA-Filter table. This method set the Special
1678 * Multicast Table appropriate entry.
1679 */
1680static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1681                                          unsigned char last_byte,
1682                                          int queue)
1683{
1684        unsigned int smc_table_reg;
1685        unsigned int tbl_offset;
1686        unsigned int reg_offset;
1687
1688        /* Register offset from SMC table base    */
1689        tbl_offset = (last_byte / 4);
1690        /* Entry offset within the above reg */
1691        reg_offset = last_byte % 4;
1692
1693        smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1694                                        + tbl_offset * 4));
1695
1696        if (queue == -1)
1697                smc_table_reg &= ~(0xff << (8 * reg_offset));
1698        else {
1699                smc_table_reg &= ~(0xff << (8 * reg_offset));
1700                smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1701        }
1702
1703        mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1704                    smc_table_reg);
1705}
1706
1707/* This method controls the network device Other MAC multicast support.
1708 * The Other Multicast Table is used for multicast of another type.
1709 * A CRC-8 is used as an index to the Other Multicast Table entries
1710 * in the DA-Filter table.
1711 * The method gets the CRC-8 value from the calling routine and
1712 * sets the Other Multicast Table appropriate entry according to the
1713 * specified CRC-8 .
1714 */
1715static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1716                                        unsigned char crc8,
1717                                        int queue)
1718{
1719        unsigned int omc_table_reg;
1720        unsigned int tbl_offset;
1721        unsigned int reg_offset;
1722
1723        tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1724        reg_offset = crc8 % 4;       /* Entry offset within the above reg   */
1725
1726        omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1727
1728        if (queue == -1) {
1729                /* Clear accepts frame bit at specified Other DA table entry */
1730                omc_table_reg &= ~(0xff << (8 * reg_offset));
1731        } else {
1732                omc_table_reg &= ~(0xff << (8 * reg_offset));
1733                omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1734        }
1735
1736        mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1737}
1738
1739/* The network device supports multicast using two tables:
1740 *    1) Special Multicast Table for MAC addresses of the form
1741 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1742 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1743 *       Table entries in the DA-Filter table.
1744 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1745 *       is used as an index to the Other Multicast Table entries in the
1746 *       DA-Filter table.
1747 */
1748static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1749                                 int queue)
1750{
1751        unsigned char crc_result = 0;
1752
1753        if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1754                mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1755                return 0;
1756        }
1757
1758        crc_result = mvneta_addr_crc(p_addr);
1759        if (queue == -1) {
1760                if (pp->mcast_count[crc_result] == 0) {
1761                        netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1762                                    crc_result);
1763                        return -EINVAL;
1764                }
1765
1766                pp->mcast_count[crc_result]--;
1767                if (pp->mcast_count[crc_result] != 0) {
1768                        netdev_info(pp->dev,
1769                                    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1770                                    pp->mcast_count[crc_result], crc_result);
1771                        return -EINVAL;
1772                }
1773        } else
1774                pp->mcast_count[crc_result]++;
1775
1776        mvneta_set_other_mcast_addr(pp, crc_result, queue);
1777
1778        return 0;
1779}
1780
1781/* Configure Fitering mode of Ethernet port */
1782static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1783                                          int is_promisc)
1784{
1785        u32 port_cfg_reg, val;
1786
1787        port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1788
1789        val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1790
1791        /* Set / Clear UPM bit in port configuration register */
1792        if (is_promisc) {
1793                /* Accept all Unicast addresses */
1794                port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1795                val |= MVNETA_FORCE_UNI;
1796                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1797                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1798        } else {
1799                /* Reject all Unicast addresses */
1800                port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1801                val &= ~MVNETA_FORCE_UNI;
1802        }
1803
1804        mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1805        mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1806}
1807
1808/* register unicast and multicast addresses */
1809static void mvneta_set_rx_mode(struct net_device *dev)
1810{
1811        struct mvneta_port *pp = netdev_priv(dev);
1812        struct netdev_hw_addr *ha;
1813
1814        if (dev->flags & IFF_PROMISC) {
1815                /* Accept all: Multicast + Unicast */
1816                mvneta_rx_unicast_promisc_set(pp, 1);
1817                mvneta_set_ucast_table(pp, rxq_def);
1818                mvneta_set_special_mcast_table(pp, rxq_def);
1819                mvneta_set_other_mcast_table(pp, rxq_def);
1820        } else {
1821                /* Accept single Unicast */
1822                mvneta_rx_unicast_promisc_set(pp, 0);
1823                mvneta_set_ucast_table(pp, -1);
1824                mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1825
1826                if (dev->flags & IFF_ALLMULTI) {
1827                        /* Accept all multicast */
1828                        mvneta_set_special_mcast_table(pp, rxq_def);
1829                        mvneta_set_other_mcast_table(pp, rxq_def);
1830                } else {
1831                        /* Accept only initialized multicast */
1832                        mvneta_set_special_mcast_table(pp, -1);
1833                        mvneta_set_other_mcast_table(pp, -1);
1834
1835                        if (!netdev_mc_empty(dev)) {
1836                                netdev_for_each_mc_addr(ha, dev) {
1837                                        mvneta_mcast_addr_set(pp, ha->addr,
1838                                                              rxq_def);
1839                                }
1840                        }
1841                }
1842        }
1843}
1844
1845/* Interrupt handling - the callback for request_irq() */
1846static irqreturn_t mvneta_isr(int irq, void *dev_id)
1847{
1848        struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1849
1850        /* Mask all interrupts */
1851        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1852
1853        napi_schedule(&pp->napi);
1854
1855        return IRQ_HANDLED;
1856}
1857
1858/* NAPI handler
1859 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1860 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1861 * Bits 8 -15 of the cause Rx Tx register indicate that are received
1862 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1863 * Each CPU has its own causeRxTx register
1864 */
1865static int mvneta_poll(struct napi_struct *napi, int budget)
1866{
1867        int rx_done = 0;
1868        u32 cause_rx_tx;
1869        unsigned long flags;
1870        struct mvneta_port *pp = netdev_priv(napi->dev);
1871
1872        if (!netif_running(pp->dev)) {
1873                napi_complete(napi);
1874                return rx_done;
1875        }
1876
1877        /* Read cause register */
1878        cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1879                MVNETA_RX_INTR_MASK(rxq_number);
1880
1881        /* For the case where the last mvneta_poll did not process all
1882         * RX packets
1883         */
1884        cause_rx_tx |= pp->cause_rx_tx;
1885        if (rxq_number > 1) {
1886                while ((cause_rx_tx != 0) && (budget > 0)) {
1887                        int count;
1888                        struct mvneta_rx_queue *rxq;
1889                        /* get rx queue number from cause_rx_tx */
1890                        rxq = mvneta_rx_policy(pp, cause_rx_tx);
1891                        if (!rxq)
1892                                break;
1893
1894                        /* process the packet in that rx queue */
1895                        count = mvneta_rx(pp, budget, rxq);
1896                        rx_done += count;
1897                        budget -= count;
1898                        if (budget > 0) {
1899                                /* set off the rx bit of the
1900                                 * corresponding bit in the cause rx
1901                                 * tx register, so that next iteration
1902                                 * will find the next rx queue where
1903                                 * packets are received on
1904                                 */
1905                                cause_rx_tx &= ~((1 << rxq->id) << 8);
1906                        }
1907                }
1908        } else {
1909                rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1910                budget -= rx_done;
1911        }
1912
1913        if (budget > 0) {
1914                cause_rx_tx = 0;
1915                napi_complete(napi);
1916                local_irq_save(flags);
1917                mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1918                            MVNETA_RX_INTR_MASK(rxq_number));
1919                local_irq_restore(flags);
1920        }
1921
1922        pp->cause_rx_tx = cause_rx_tx;
1923        return rx_done;
1924}
1925
1926/* tx done timer callback */
1927static void mvneta_tx_done_timer_callback(unsigned long data)
1928{
1929        struct net_device *dev = (struct net_device *)data;
1930        struct mvneta_port *pp = netdev_priv(dev);
1931        int tx_done = 0, tx_todo = 0;
1932
1933        if (!netif_running(dev))
1934                return ;
1935
1936        clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
1937
1938        tx_done = mvneta_tx_done_gbe(pp,
1939                                     (((1 << txq_number) - 1) &
1940                                      MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
1941                                     &tx_todo);
1942        if (tx_todo > 0)
1943                mvneta_add_tx_done_timer(pp);
1944}
1945
1946/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1947static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1948                           int num)
1949{
1950        struct net_device *dev = pp->dev;
1951        int i;
1952
1953        for (i = 0; i < num; i++) {
1954                struct sk_buff *skb;
1955                struct mvneta_rx_desc *rx_desc;
1956                unsigned long phys_addr;
1957
1958                skb = dev_alloc_skb(pp->pkt_size);
1959                if (!skb) {
1960                        netdev_err(dev, "%s:rxq %d, %d of %d buffs  filled\n",
1961                                __func__, rxq->id, i, num);
1962                        break;
1963                }
1964
1965                rx_desc = rxq->descs + i;
1966                memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
1967                phys_addr = dma_map_single(dev->dev.parent, skb->head,
1968                                           MVNETA_RX_BUF_SIZE(pp->pkt_size),
1969                                           DMA_FROM_DEVICE);
1970                if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
1971                        dev_kfree_skb(skb);
1972                        break;
1973                }
1974
1975                mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1976        }
1977
1978        /* Add this number of RX descriptors as non occupied (ready to
1979         * get packets)
1980         */
1981        mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1982
1983        return i;
1984}
1985
1986/* Free all packets pending transmit from all TXQs and reset TX port */
1987static void mvneta_tx_reset(struct mvneta_port *pp)
1988{
1989        int queue;
1990
1991        /* free the skb's in the hal tx ring */
1992        for (queue = 0; queue < txq_number; queue++)
1993                mvneta_txq_done_force(pp, &pp->txqs[queue]);
1994
1995        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1996        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1997}
1998
1999static void mvneta_rx_reset(struct mvneta_port *pp)
2000{
2001        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2002        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2003}
2004
2005/* Rx/Tx queue initialization/cleanup methods */
2006
2007/* Create a specified RX queue */
2008static int mvneta_rxq_init(struct mvneta_port *pp,
2009                           struct mvneta_rx_queue *rxq)
2010
2011{
2012        rxq->size = pp->rx_ring_size;
2013
2014        /* Allocate memory for RX descriptors */
2015        rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2016                                        rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2017                                        &rxq->descs_phys, GFP_KERNEL);
2018        if (rxq->descs == NULL)
2019                return -ENOMEM;
2020
2021        BUG_ON(rxq->descs !=
2022               PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2023
2024        rxq->last_desc = rxq->size - 1;
2025
2026        /* Set Rx descriptors queue starting address */
2027        mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2028        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2029
2030        /* Set Offset */
2031        mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2032
2033        /* Set coalescing pkts and time */
2034        mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2035        mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2036
2037        /* Fill RXQ with buffers from RX pool */
2038        mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2039        mvneta_rxq_bm_disable(pp, rxq);
2040        mvneta_rxq_fill(pp, rxq, rxq->size);
2041
2042        return 0;
2043}
2044
2045/* Cleanup Rx queue */
2046static void mvneta_rxq_deinit(struct mvneta_port *pp,
2047                              struct mvneta_rx_queue *rxq)
2048{
2049        mvneta_rxq_drop_pkts(pp, rxq);
2050
2051        if (rxq->descs)
2052                dma_free_coherent(pp->dev->dev.parent,
2053                                  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2054                                  rxq->descs,
2055                                  rxq->descs_phys);
2056
2057        rxq->descs             = NULL;
2058        rxq->last_desc         = 0;
2059        rxq->next_desc_to_proc = 0;
2060        rxq->descs_phys        = 0;
2061}
2062
2063/* Create and initialize a tx queue */
2064static int mvneta_txq_init(struct mvneta_port *pp,
2065                           struct mvneta_tx_queue *txq)
2066{
2067        txq->size = pp->tx_ring_size;
2068
2069        /* Allocate memory for TX descriptors */
2070        txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2071                                        txq->size * MVNETA_DESC_ALIGNED_SIZE,
2072                                        &txq->descs_phys, GFP_KERNEL);
2073        if (txq->descs == NULL)
2074                return -ENOMEM;
2075
2076        /* Make sure descriptor address is cache line size aligned  */
2077        BUG_ON(txq->descs !=
2078               PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2079
2080        txq->last_desc = txq->size - 1;
2081
2082        /* Set maximum bandwidth for enabled TXQs */
2083        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2084        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2085
2086        /* Set Tx descriptors queue starting address */
2087        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2088        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2089
2090        txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2091        if (txq->tx_skb == NULL) {
2092                dma_free_coherent(pp->dev->dev.parent,
2093                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2094                                  txq->descs, txq->descs_phys);
2095                return -ENOMEM;
2096        }
2097        mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2098
2099        return 0;
2100}
2101
2102/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2103static void mvneta_txq_deinit(struct mvneta_port *pp,
2104                              struct mvneta_tx_queue *txq)
2105{
2106        kfree(txq->tx_skb);
2107
2108        if (txq->descs)
2109                dma_free_coherent(pp->dev->dev.parent,
2110                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2111                                  txq->descs, txq->descs_phys);
2112
2113        txq->descs             = NULL;
2114        txq->last_desc         = 0;
2115        txq->next_desc_to_proc = 0;
2116        txq->descs_phys        = 0;
2117
2118        /* Set minimum bandwidth for disabled TXQs */
2119        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2120        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2121
2122        /* Set Tx descriptors queue starting address and size */
2123        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2124        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2125}
2126
2127/* Cleanup all Tx queues */
2128static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2129{
2130        int queue;
2131
2132        for (queue = 0; queue < txq_number; queue++)
2133                mvneta_txq_deinit(pp, &pp->txqs[queue]);
2134}
2135
2136/* Cleanup all Rx queues */
2137static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2138{
2139        int queue;
2140
2141        for (queue = 0; queue < rxq_number; queue++)
2142                mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2143}
2144
2145
2146/* Init all Rx queues */
2147static int mvneta_setup_rxqs(struct mvneta_port *pp)
2148{
2149        int queue;
2150
2151        for (queue = 0; queue < rxq_number; queue++) {
2152                int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2153                if (err) {
2154                        netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2155                                   __func__, queue);
2156                        mvneta_cleanup_rxqs(pp);
2157                        return err;
2158                }
2159        }
2160
2161        return 0;
2162}
2163
2164/* Init all tx queues */
2165static int mvneta_setup_txqs(struct mvneta_port *pp)
2166{
2167        int queue;
2168
2169        for (queue = 0; queue < txq_number; queue++) {
2170                int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2171                if (err) {
2172                        netdev_err(pp->dev, "%s: can't create txq=%d\n",
2173                                   __func__, queue);
2174                        mvneta_cleanup_txqs(pp);
2175                        return err;
2176                }
2177        }
2178
2179        return 0;
2180}
2181
2182static void mvneta_start_dev(struct mvneta_port *pp)
2183{
2184        mvneta_max_rx_size_set(pp, pp->pkt_size);
2185        mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2186
2187        /* start the Rx/Tx activity */
2188        mvneta_port_enable(pp);
2189
2190        /* Enable polling on the port */
2191        napi_enable(&pp->napi);
2192
2193        /* Unmask interrupts */
2194        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2195                    MVNETA_RX_INTR_MASK(rxq_number));
2196
2197        phy_start(pp->phy_dev);
2198        netif_tx_start_all_queues(pp->dev);
2199}
2200
2201static void mvneta_stop_dev(struct mvneta_port *pp)
2202{
2203        phy_stop(pp->phy_dev);
2204
2205        napi_disable(&pp->napi);
2206
2207        netif_carrier_off(pp->dev);
2208
2209        mvneta_port_down(pp);
2210        netif_tx_stop_all_queues(pp->dev);
2211
2212        /* Stop the port activity */
2213        mvneta_port_disable(pp);
2214
2215        /* Clear all ethernet port interrupts */
2216        mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2217        mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2218
2219        /* Mask all ethernet port interrupts */
2220        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2221        mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2222        mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2223
2224        mvneta_tx_reset(pp);
2225        mvneta_rx_reset(pp);
2226}
2227
2228/* tx timeout callback - display a message and stop/start the network device */
2229static void mvneta_tx_timeout(struct net_device *dev)
2230{
2231        struct mvneta_port *pp = netdev_priv(dev);
2232
2233        netdev_info(dev, "tx timeout\n");
2234        mvneta_stop_dev(pp);
2235        mvneta_start_dev(pp);
2236}
2237
2238/* Return positive if MTU is valid */
2239static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2240{
2241        if (mtu < 68) {
2242                netdev_err(dev, "cannot change mtu to less than 68\n");
2243                return -EINVAL;
2244        }
2245
2246        /* 9676 == 9700 - 20 and rounding to 8 */
2247        if (mtu > 9676) {
2248                netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2249                mtu = 9676;
2250        }
2251
2252        if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2253                netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2254                        mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2255                mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2256        }
2257
2258        return mtu;
2259}
2260
2261/* Change the device mtu */
2262static int mvneta_change_mtu(struct net_device *dev, int mtu)
2263{
2264        struct mvneta_port *pp = netdev_priv(dev);
2265        int ret;
2266
2267        mtu = mvneta_check_mtu_valid(dev, mtu);
2268        if (mtu < 0)
2269                return -EINVAL;
2270
2271        dev->mtu = mtu;
2272
2273        if (!netif_running(dev))
2274                return 0;
2275
2276        /* The interface is running, so we have to force a
2277         * reallocation of the RXQs
2278         */
2279        mvneta_stop_dev(pp);
2280
2281        mvneta_cleanup_txqs(pp);
2282        mvneta_cleanup_rxqs(pp);
2283
2284        pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2285
2286        ret = mvneta_setup_rxqs(pp);
2287        if (ret) {
2288                netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2289                return ret;
2290        }
2291
2292        mvneta_setup_txqs(pp);
2293
2294        mvneta_start_dev(pp);
2295        mvneta_port_up(pp);
2296
2297        return 0;
2298}
2299
2300/* Get mac address */
2301static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2302{
2303        u32 mac_addr_l, mac_addr_h;
2304
2305        mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2306        mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2307        addr[0] = (mac_addr_h >> 24) & 0xFF;
2308        addr[1] = (mac_addr_h >> 16) & 0xFF;
2309        addr[2] = (mac_addr_h >> 8) & 0xFF;
2310        addr[3] = mac_addr_h & 0xFF;
2311        addr[4] = (mac_addr_l >> 8) & 0xFF;
2312        addr[5] = mac_addr_l & 0xFF;
2313}
2314
2315/* Handle setting mac address */
2316static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2317{
2318        struct mvneta_port *pp = netdev_priv(dev);
2319        u8 *mac = addr + 2;
2320        int i;
2321
2322        if (netif_running(dev))
2323                return -EBUSY;
2324
2325        /* Remove previous address table entry */
2326        mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2327
2328        /* Set new addr in hw */
2329        mvneta_mac_addr_set(pp, mac, rxq_def);
2330
2331        /* Set addr in the device */
2332        for (i = 0; i < ETH_ALEN; i++)
2333                dev->dev_addr[i] = mac[i];
2334
2335        return 0;
2336}
2337
2338static void mvneta_adjust_link(struct net_device *ndev)
2339{
2340        struct mvneta_port *pp = netdev_priv(ndev);
2341        struct phy_device *phydev = pp->phy_dev;
2342        int status_change = 0;
2343
2344        if (phydev->link) {
2345                if ((pp->speed != phydev->speed) ||
2346                    (pp->duplex != phydev->duplex)) {
2347                        u32 val;
2348
2349                        val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2350                        val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2351                                 MVNETA_GMAC_CONFIG_GMII_SPEED |
2352                                 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2353                                 MVNETA_GMAC_AN_SPEED_EN |
2354                                 MVNETA_GMAC_AN_DUPLEX_EN);
2355
2356                        if (phydev->duplex)
2357                                val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2358
2359                        if (phydev->speed == SPEED_1000)
2360                                val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2361                        else
2362                                val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2363
2364                        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2365
2366                        pp->duplex = phydev->duplex;
2367                        pp->speed  = phydev->speed;
2368                }
2369        }
2370
2371        if (phydev->link != pp->link) {
2372                if (!phydev->link) {
2373                        pp->duplex = -1;
2374                        pp->speed = 0;
2375                }
2376
2377                pp->link = phydev->link;
2378                status_change = 1;
2379        }
2380
2381        if (status_change) {
2382                if (phydev->link) {
2383                        u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2384                        val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2385                                MVNETA_GMAC_FORCE_LINK_DOWN);
2386                        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2387                        mvneta_port_up(pp);
2388                        netdev_info(pp->dev, "link up\n");
2389                } else {
2390                        mvneta_port_down(pp);
2391                        netdev_info(pp->dev, "link down\n");
2392                }
2393        }
2394}
2395
2396static int mvneta_mdio_probe(struct mvneta_port *pp)
2397{
2398        struct phy_device *phy_dev;
2399
2400        phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2401                                 pp->phy_interface);
2402        if (!phy_dev) {
2403                netdev_err(pp->dev, "could not find the PHY\n");
2404                return -ENODEV;
2405        }
2406
2407        phy_dev->supported &= PHY_GBIT_FEATURES;
2408        phy_dev->advertising = phy_dev->supported;
2409
2410        pp->phy_dev = phy_dev;
2411        pp->link    = 0;
2412        pp->duplex  = 0;
2413        pp->speed   = 0;
2414
2415        return 0;
2416}
2417
2418static void mvneta_mdio_remove(struct mvneta_port *pp)
2419{
2420        phy_disconnect(pp->phy_dev);
2421        pp->phy_dev = NULL;
2422}
2423
2424static int mvneta_open(struct net_device *dev)
2425{
2426        struct mvneta_port *pp = netdev_priv(dev);
2427        int ret;
2428
2429        mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2430
2431        pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2432
2433        ret = mvneta_setup_rxqs(pp);
2434        if (ret)
2435                return ret;
2436
2437        ret = mvneta_setup_txqs(pp);
2438        if (ret)
2439                goto err_cleanup_rxqs;
2440
2441        /* Connect to port interrupt line */
2442        ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2443                          MVNETA_DRIVER_NAME, pp);
2444        if (ret) {
2445                netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2446                goto err_cleanup_txqs;
2447        }
2448
2449        /* In default link is down */
2450        netif_carrier_off(pp->dev);
2451
2452        ret = mvneta_mdio_probe(pp);
2453        if (ret < 0) {
2454                netdev_err(dev, "cannot probe MDIO bus\n");
2455                goto err_free_irq;
2456        }
2457
2458        mvneta_start_dev(pp);
2459
2460        return 0;
2461
2462err_free_irq:
2463        free_irq(pp->dev->irq, pp);
2464err_cleanup_txqs:
2465        mvneta_cleanup_txqs(pp);
2466err_cleanup_rxqs:
2467        mvneta_cleanup_rxqs(pp);
2468        return ret;
2469}
2470
2471/* Stop the port, free port interrupt line */
2472static int mvneta_stop(struct net_device *dev)
2473{
2474        struct mvneta_port *pp = netdev_priv(dev);
2475
2476        mvneta_stop_dev(pp);
2477        mvneta_mdio_remove(pp);
2478        free_irq(dev->irq, pp);
2479        mvneta_cleanup_rxqs(pp);
2480        mvneta_cleanup_txqs(pp);
2481        del_timer(&pp->tx_done_timer);
2482        clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2483
2484        return 0;
2485}
2486
2487static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2488{
2489        struct mvneta_port *pp = netdev_priv(dev);
2490        int ret;
2491
2492        if (!pp->phy_dev)
2493                return -ENOTSUPP;
2494
2495        ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2496        if (!ret)
2497                mvneta_adjust_link(dev);
2498
2499        return ret;
2500}
2501
2502/* Ethtool methods */
2503
2504/* Get settings (phy address, speed) for ethtools */
2505int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2506{
2507        struct mvneta_port *pp = netdev_priv(dev);
2508
2509        if (!pp->phy_dev)
2510                return -ENODEV;
2511
2512        return phy_ethtool_gset(pp->phy_dev, cmd);
2513}
2514
2515/* Set settings (phy address, speed) for ethtools */
2516int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2517{
2518        struct mvneta_port *pp = netdev_priv(dev);
2519
2520        if (!pp->phy_dev)
2521                return -ENODEV;
2522
2523        return phy_ethtool_sset(pp->phy_dev, cmd);
2524}
2525
2526/* Set interrupt coalescing for ethtools */
2527static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2528                                       struct ethtool_coalesce *c)
2529{
2530        struct mvneta_port *pp = netdev_priv(dev);
2531        int queue;
2532
2533        for (queue = 0; queue < rxq_number; queue++) {
2534                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2535                rxq->time_coal = c->rx_coalesce_usecs;
2536                rxq->pkts_coal = c->rx_max_coalesced_frames;
2537                mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2538                mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2539        }
2540
2541        for (queue = 0; queue < txq_number; queue++) {
2542                struct mvneta_tx_queue *txq = &pp->txqs[queue];
2543                txq->done_pkts_coal = c->tx_max_coalesced_frames;
2544                mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2545        }
2546
2547        return 0;
2548}
2549
2550/* get coalescing for ethtools */
2551static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2552                                       struct ethtool_coalesce *c)
2553{
2554        struct mvneta_port *pp = netdev_priv(dev);
2555
2556        c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2557        c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2558
2559        c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2560        return 0;
2561}
2562
2563
2564static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2565                                    struct ethtool_drvinfo *drvinfo)
2566{
2567        strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2568                sizeof(drvinfo->driver));
2569        strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2570                sizeof(drvinfo->version));
2571        strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2572                sizeof(drvinfo->bus_info));
2573}
2574
2575
2576static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2577                                         struct ethtool_ringparam *ring)
2578{
2579        struct mvneta_port *pp = netdev_priv(netdev);
2580
2581        ring->rx_max_pending = MVNETA_MAX_RXD;
2582        ring->tx_max_pending = MVNETA_MAX_TXD;
2583        ring->rx_pending = pp->rx_ring_size;
2584        ring->tx_pending = pp->tx_ring_size;
2585}
2586
2587static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2588                                        struct ethtool_ringparam *ring)
2589{
2590        struct mvneta_port *pp = netdev_priv(dev);
2591
2592        if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2593                return -EINVAL;
2594        pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2595                ring->rx_pending : MVNETA_MAX_RXD;
2596        pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2597                ring->tx_pending : MVNETA_MAX_TXD;
2598
2599        if (netif_running(dev)) {
2600                mvneta_stop(dev);
2601                if (mvneta_open(dev)) {
2602                        netdev_err(dev,
2603                                   "error on opening device after ring param change\n");
2604                        return -ENOMEM;
2605                }
2606        }
2607
2608        return 0;
2609}
2610
2611static const struct net_device_ops mvneta_netdev_ops = {
2612        .ndo_open            = mvneta_open,
2613        .ndo_stop            = mvneta_stop,
2614        .ndo_start_xmit      = mvneta_tx,
2615        .ndo_set_rx_mode     = mvneta_set_rx_mode,
2616        .ndo_set_mac_address = mvneta_set_mac_addr,
2617        .ndo_change_mtu      = mvneta_change_mtu,
2618        .ndo_tx_timeout      = mvneta_tx_timeout,
2619        .ndo_get_stats64     = mvneta_get_stats64,
2620        .ndo_do_ioctl        = mvneta_ioctl,
2621};
2622
2623const struct ethtool_ops mvneta_eth_tool_ops = {
2624        .get_link       = ethtool_op_get_link,
2625        .get_settings   = mvneta_ethtool_get_settings,
2626        .set_settings   = mvneta_ethtool_set_settings,
2627        .set_coalesce   = mvneta_ethtool_set_coalesce,
2628        .get_coalesce   = mvneta_ethtool_get_coalesce,
2629        .get_drvinfo    = mvneta_ethtool_get_drvinfo,
2630        .get_ringparam  = mvneta_ethtool_get_ringparam,
2631        .set_ringparam  = mvneta_ethtool_set_ringparam,
2632};
2633
2634/* Initialize hw */
2635static int mvneta_init(struct mvneta_port *pp, int phy_addr)
2636{
2637        int queue;
2638
2639        /* Disable port */
2640        mvneta_port_disable(pp);
2641
2642        /* Set port default values */
2643        mvneta_defaults_set(pp);
2644
2645        pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2646                           GFP_KERNEL);
2647        if (!pp->txqs)
2648                return -ENOMEM;
2649
2650        /* Initialize TX descriptor rings */
2651        for (queue = 0; queue < txq_number; queue++) {
2652                struct mvneta_tx_queue *txq = &pp->txqs[queue];
2653                txq->id = queue;
2654                txq->size = pp->tx_ring_size;
2655                txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2656        }
2657
2658        pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2659                           GFP_KERNEL);
2660        if (!pp->rxqs) {
2661                kfree(pp->txqs);
2662                return -ENOMEM;
2663        }
2664
2665        /* Create Rx descriptor rings */
2666        for (queue = 0; queue < rxq_number; queue++) {
2667                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2668                rxq->id = queue;
2669                rxq->size = pp->rx_ring_size;
2670                rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2671                rxq->time_coal = MVNETA_RX_COAL_USEC;
2672        }
2673
2674        return 0;
2675}
2676
2677static void mvneta_deinit(struct mvneta_port *pp)
2678{
2679        kfree(pp->txqs);
2680        kfree(pp->rxqs);
2681}
2682
2683/* platform glue : initialize decoding windows */
2684static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2685                                     const struct mbus_dram_target_info *dram)
2686{
2687        u32 win_enable;
2688        u32 win_protect;
2689        int i;
2690
2691        for (i = 0; i < 6; i++) {
2692                mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2693                mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2694
2695                if (i < 4)
2696                        mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2697        }
2698
2699        win_enable = 0x3f;
2700        win_protect = 0;
2701
2702        for (i = 0; i < dram->num_cs; i++) {
2703                const struct mbus_dram_window *cs = dram->cs + i;
2704                mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2705                            (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2706
2707                mvreg_write(pp, MVNETA_WIN_SIZE(i),
2708                            (cs->size - 1) & 0xffff0000);
2709
2710                win_enable &= ~(1 << i);
2711                win_protect |= 3 << (2 * i);
2712        }
2713
2714        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2715}
2716
2717/* Power up the port */
2718static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2719{
2720        u32 val;
2721
2722        /* MAC Cause register should be cleared */
2723        mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2724
2725        if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2726                mvneta_port_sgmii_config(pp);
2727
2728        mvneta_gmac_rgmii_set(pp, 1);
2729
2730        /* Cancel Port Reset */
2731        val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2732        val &= ~MVNETA_GMAC2_PORT_RESET;
2733        mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2734
2735        while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2736                MVNETA_GMAC2_PORT_RESET) != 0)
2737                continue;
2738}
2739
2740/* Device initialization routine */
2741static int mvneta_probe(struct platform_device *pdev)
2742{
2743        const struct mbus_dram_target_info *dram_target_info;
2744        struct device_node *dn = pdev->dev.of_node;
2745        struct device_node *phy_node;
2746        u32 phy_addr;
2747        struct mvneta_port *pp;
2748        struct net_device *dev;
2749        const char *dt_mac_addr;
2750        char hw_mac_addr[ETH_ALEN];
2751        const char *mac_from;
2752        int phy_mode;
2753        int err;
2754
2755        /* Our multiqueue support is not complete, so for now, only
2756         * allow the usage of the first RX queue
2757         */
2758        if (rxq_def != 0) {
2759                dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2760                return -EINVAL;
2761        }
2762
2763        dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2764        if (!dev)
2765                return -ENOMEM;
2766
2767        dev->irq = irq_of_parse_and_map(dn, 0);
2768        if (dev->irq == 0) {
2769                err = -EINVAL;
2770                goto err_free_netdev;
2771        }
2772
2773        phy_node = of_parse_phandle(dn, "phy", 0);
2774        if (!phy_node) {
2775                dev_err(&pdev->dev, "no associated PHY\n");
2776                err = -ENODEV;
2777                goto err_free_irq;
2778        }
2779
2780        phy_mode = of_get_phy_mode(dn);
2781        if (phy_mode < 0) {
2782                dev_err(&pdev->dev, "incorrect phy-mode\n");
2783                err = -EINVAL;
2784                goto err_free_irq;
2785        }
2786
2787        dev->tx_queue_len = MVNETA_MAX_TXD;
2788        dev->watchdog_timeo = 5 * HZ;
2789        dev->netdev_ops = &mvneta_netdev_ops;
2790
2791        SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2792
2793        pp = netdev_priv(dev);
2794
2795        pp->weight = MVNETA_RX_POLL_WEIGHT;
2796        pp->phy_node = phy_node;
2797        pp->phy_interface = phy_mode;
2798
2799        pp->clk = devm_clk_get(&pdev->dev, NULL);
2800        if (IS_ERR(pp->clk)) {
2801                err = PTR_ERR(pp->clk);
2802                goto err_free_irq;
2803        }
2804
2805        clk_prepare_enable(pp->clk);
2806
2807        pp->base = of_iomap(dn, 0);
2808        if (pp->base == NULL) {
2809                err = -ENOMEM;
2810                goto err_clk;
2811        }
2812
2813        dt_mac_addr = of_get_mac_address(dn);
2814        if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
2815                mac_from = "device tree";
2816                memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
2817        } else {
2818                mvneta_get_mac_addr(pp, hw_mac_addr);
2819                if (is_valid_ether_addr(hw_mac_addr)) {
2820                        mac_from = "hardware";
2821                        memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
2822                } else {
2823                        mac_from = "random";
2824                        eth_hw_addr_random(dev);
2825                }
2826        }
2827
2828        pp->tx_done_timer.data = (unsigned long)dev;
2829        pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
2830        init_timer(&pp->tx_done_timer);
2831        clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2832
2833        pp->tx_ring_size = MVNETA_MAX_TXD;
2834        pp->rx_ring_size = MVNETA_MAX_RXD;
2835
2836        pp->dev = dev;
2837        SET_NETDEV_DEV(dev, &pdev->dev);
2838
2839        err = mvneta_init(pp, phy_addr);
2840        if (err < 0) {
2841                dev_err(&pdev->dev, "can't init eth hal\n");
2842                goto err_unmap;
2843        }
2844        mvneta_port_power_up(pp, phy_mode);
2845
2846        dram_target_info = mv_mbus_dram_info();
2847        if (dram_target_info)
2848                mvneta_conf_mbus_windows(pp, dram_target_info);
2849
2850        netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2851
2852        dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2853        dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2854        dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2855        dev->priv_flags |= IFF_UNICAST_FLT;
2856
2857        err = register_netdev(dev);
2858        if (err < 0) {
2859                dev_err(&pdev->dev, "failed to register\n");
2860                goto err_deinit;
2861        }
2862
2863        netdev_info(dev, "Using %s mac address %pM\n", mac_from,
2864                    dev->dev_addr);
2865
2866        platform_set_drvdata(pdev, pp->dev);
2867
2868        return 0;
2869
2870err_deinit:
2871        mvneta_deinit(pp);
2872err_unmap:
2873        iounmap(pp->base);
2874err_clk:
2875        clk_disable_unprepare(pp->clk);
2876err_free_irq:
2877        irq_dispose_mapping(dev->irq);
2878err_free_netdev:
2879        free_netdev(dev);
2880        return err;
2881}
2882
2883/* Device removal routine */
2884static int mvneta_remove(struct platform_device *pdev)
2885{
2886        struct net_device  *dev = platform_get_drvdata(pdev);
2887        struct mvneta_port *pp = netdev_priv(dev);
2888
2889        unregister_netdev(dev);
2890        mvneta_deinit(pp);
2891        clk_disable_unprepare(pp->clk);
2892        iounmap(pp->base);
2893        irq_dispose_mapping(dev->irq);
2894        free_netdev(dev);
2895
2896        return 0;
2897}
2898
2899static const struct of_device_id mvneta_match[] = {
2900        { .compatible = "marvell,armada-370-neta" },
2901        { }
2902};
2903MODULE_DEVICE_TABLE(of, mvneta_match);
2904
2905static struct platform_driver mvneta_driver = {
2906        .probe = mvneta_probe,
2907        .remove = mvneta_remove,
2908        .driver = {
2909                .name = MVNETA_DRIVER_NAME,
2910                .of_match_table = mvneta_match,
2911        },
2912};
2913
2914module_platform_driver(mvneta_driver);
2915
2916MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2917MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2918MODULE_LICENSE("GPL");
2919
2920module_param(rxq_number, int, S_IRUGO);
2921module_param(txq_number, int, S_IRUGO);
2922
2923module_param(rxq_def, int, S_IRUGO);
2924