linux/drivers/net/ethernet/micrel/ksz884x.c
<<
>>
Prefs
   1/**
   2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 *      Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL                  0x0000
  41#define DMA_TX_ENABLE                   0x00000001
  42#define DMA_TX_CRC_ENABLE               0x00000002
  43#define DMA_TX_PAD_ENABLE               0x00000004
  44#define DMA_TX_LOOPBACK                 0x00000100
  45#define DMA_TX_FLOW_ENABLE              0x00000200
  46#define DMA_TX_CSUM_IP                  0x00010000
  47#define DMA_TX_CSUM_TCP                 0x00020000
  48#define DMA_TX_CSUM_UDP                 0x00040000
  49#define DMA_TX_BURST_SIZE               0x3F000000
  50
  51#define KS_DMA_RX_CTRL                  0x0004
  52#define DMA_RX_ENABLE                   0x00000001
  53#define KS884X_DMA_RX_MULTICAST         0x00000002
  54#define DMA_RX_PROMISCUOUS              0x00000004
  55#define DMA_RX_ERROR                    0x00000008
  56#define DMA_RX_UNICAST                  0x00000010
  57#define DMA_RX_ALL_MULTICAST            0x00000020
  58#define DMA_RX_BROADCAST                0x00000040
  59#define DMA_RX_FLOW_ENABLE              0x00000200
  60#define DMA_RX_CSUM_IP                  0x00010000
  61#define DMA_RX_CSUM_TCP                 0x00020000
  62#define DMA_RX_CSUM_UDP                 0x00040000
  63#define DMA_RX_BURST_SIZE               0x3F000000
  64
  65#define DMA_BURST_SHIFT                 24
  66#define DMA_BURST_DEFAULT               8
  67
  68#define KS_DMA_TX_START                 0x0008
  69#define KS_DMA_RX_START                 0x000C
  70#define DMA_START                       0x00000001
  71
  72#define KS_DMA_TX_ADDR                  0x0010
  73#define KS_DMA_RX_ADDR                  0x0014
  74
  75#define DMA_ADDR_LIST_MASK              0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT             2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET       0x0020
  80#define KS884X_MULTICAST_1_OFFSET       0x0021
  81#define KS884X_MULTICAST_2_OFFSET       0x0022
  82#define KS884x_MULTICAST_3_OFFSET       0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET       0x0024
  85#define KS884X_MULTICAST_5_OFFSET       0x0025
  86#define KS884X_MULTICAST_6_OFFSET       0x0026
  87#define KS884X_MULTICAST_7_OFFSET       0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE        0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS        0x002C
  95
  96#define KS884X_INT_RX_STOPPED           0x02000000
  97#define KS884X_INT_TX_STOPPED           0x04000000
  98#define KS884X_INT_RX_OVERRUN           0x08000000
  99#define KS884X_INT_TX_EMPTY             0x10000000
 100#define KS884X_INT_RX                   0x20000000
 101#define KS884X_INT_TX                   0x40000000
 102#define KS884X_INT_PHY                  0x80000000
 103
 104#define KS884X_INT_RX_MASK              \
 105        (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK              \
 107        (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO                0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI                0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO                0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI                0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO                0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI                0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO                0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI                0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO                0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI                0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO                0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI                0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO                0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI                0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO                0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI                0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO                0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI                0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO                0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI                0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO                0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI                0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO                0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI                0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO                0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI                0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO                0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI                0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO                0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI                0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO                0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI                0x00FC
 176
 177#define ADD_ADDR_HI_MASK                0x0000FFFF
 178#define ADD_ADDR_ENABLE                 0x80000000
 179#define ADD_ADDR_INCR                   8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET            0x0200
 185#define KS884X_ADDR_1_OFFSET            0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET            0x0202
 188#define KS884X_ADDR_3_OFFSET            0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET            0x0204
 191#define KS884X_ADDR_5_OFFSET            0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET          0x0210
 195
 196#define BUS_SPEED_125_MHZ               0x0000
 197#define BUS_SPEED_62_5_MHZ              0x0001
 198#define BUS_SPEED_41_66_MHZ             0x0002
 199#define BUS_SPEED_25_MHZ                0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET       0x0212
 203
 204#define EEPROM_CHIP_SELECT              0x0001
 205#define EEPROM_SERIAL_CLOCK             0x0002
 206#define EEPROM_DATA_OUT                 0x0004
 207#define EEPROM_DATA_IN                  0x0008
 208#define EEPROM_ACCESS_ENABLE            0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET          0x0214
 212
 213#define RX_MEM_TEST_FAILED              0x0008
 214#define RX_MEM_TEST_FINISHED            0x0010
 215#define TX_MEM_TEST_FAILED              0x0800
 216#define TX_MEM_TEST_FINISHED            0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET       0x0216
 220#define GLOBAL_SOFTWARE_RESET           0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET      0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET          0x021A
 226#define KS8841_WOL_MAGIC_ENABLE         0x0080
 227#define KS8841_WOL_FRAME3_ENABLE        0x0008
 228#define KS8841_WOL_FRAME2_ENABLE        0x0004
 229#define KS8841_WOL_FRAME1_ENABLE        0x0002
 230#define KS8841_WOL_FRAME0_ENABLE        0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET     0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET   0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET   0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P                   0x04A0
 239#define KS884X_IACR_OFFSET              KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P                  0x04A2
 243#define KS884X_IADR2_P                  0x04A4
 244#define KS884X_IADR3_P                  0x04A6
 245#define KS884X_IADR4_P                  0x04A8
 246#define KS884X_IADR5_P                  0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET      KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET    (KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET        KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET        (KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET        KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET        (KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET        KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET        (KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET        KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET        (KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET        KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P                 0x04D0
 263#define KS884X_P1MBSR_P                 0x04D2
 264#define KS884X_PHY1ILR_P                0x04D4
 265#define KS884X_PHY1IHR_P                0x04D6
 266#define KS884X_P1ANAR_P                 0x04D8
 267#define KS884X_P1ANLPR_P                0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P                 0x04E0
 271#define KS884X_P2MBSR_P                 0x04E2
 272#define KS884X_PHY2ILR_P                0x04E4
 273#define KS884X_PHY2IHR_P                0x04E6
 274#define KS884X_P2ANAR_P                 0x04E8
 275#define KS884X_P2ANLPR_P                0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET        KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL               (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET          0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL                    0
 284
 285#define PHY_RESET                       0x8000
 286#define PHY_LOOPBACK                    0x4000
 287#define PHY_SPEED_100MBIT               0x2000
 288#define PHY_AUTO_NEG_ENABLE             0x1000
 289#define PHY_POWER_DOWN                  0x0800
 290#define PHY_MII_DISABLE                 0x0400
 291#define PHY_AUTO_NEG_RESTART            0x0200
 292#define PHY_FULL_DUPLEX                 0x0100
 293#define PHY_COLLISION_TEST              0x0080
 294#define PHY_HP_MDIX                     0x0020
 295#define PHY_FORCE_MDIX                  0x0010
 296#define PHY_AUTO_MDIX_DISABLE           0x0008
 297#define PHY_REMOTE_FAULT_DISABLE        0x0004
 298#define PHY_TRANSMIT_DISABLE            0x0002
 299#define PHY_LED_DISABLE                 0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET        0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS                  1
 305
 306#define PHY_100BT4_CAPABLE              0x8000
 307#define PHY_100BTX_FD_CAPABLE           0x4000
 308#define PHY_100BTX_CAPABLE              0x2000
 309#define PHY_10BT_FD_CAPABLE             0x1000
 310#define PHY_10BT_CAPABLE                0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE        0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE        0x0020
 313#define PHY_REMOTE_FAULT                0x0010
 314#define PHY_AUTO_NEG_CAPABLE            0x0008
 315#define PHY_LINK_STATUS                 0x0004
 316#define PHY_JABBER_DETECT               0x0002
 317#define PHY_EXTENDED_CAPABILITY         0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET          0x04
 320#define KS884X_PHY_ID_2_OFFSET          0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1                    2
 324#define PHY_REG_ID_2                    3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET      0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION        4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE          0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT       0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE         0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE          0x0400
 336#define PHY_AUTO_NEG_100BT4             0x0200
 337#define PHY_AUTO_NEG_100BTX_FD          0x0100
 338#define PHY_AUTO_NEG_100BTX             0x0080
 339#define PHY_AUTO_NEG_10BT_FD            0x0040
 340#define PHY_AUTO_NEG_10BT               0x0020
 341#define PHY_AUTO_NEG_SELECTOR           0x001F
 342#define PHY_AUTO_NEG_802_3              0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET    0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY       5
 350
 351#define PHY_REMOTE_NEXT_PAGE            0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE          0x4000
 353#define PHY_REMOTE_REMOTE_FAULT         0x2000
 354#define PHY_REMOTE_SYM_PAUSE            0x0400
 355#define PHY_REMOTE_100BTX_FD            0x0100
 356#define PHY_REMOTE_100BTX               0x0080
 357#define PHY_REMOTE_10BT_FD              0x0040
 358#define PHY_REMOTE_10BT                 0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P                  0x04F0
 362#define KS884X_P1PHYCTRL_P              0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P                  0x04F4
 366#define KS884X_P2PHYCTRL_P              0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET       KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL            (KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET       0x00
 372
 373#define PHY_START_CABLE_DIAG            0x8000
 374#define PHY_CABLE_DIAG_RESULT           0x6000
 375#define PHY_CABLE_STAT_NORMAL           0x0000
 376#define PHY_CABLE_STAT_OPEN             0x2000
 377#define PHY_CABLE_STAT_SHORT            0x4000
 378#define PHY_CABLE_STAT_FAILED           0x6000
 379#define PHY_CABLE_10M_SHORT             0x1000
 380#define PHY_CABLE_FAULT_COUNTER         0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET      0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY      0x0020
 385#define PHY_STAT_MDIX                   0x0010
 386#define PHY_FORCE_LINK                  0x0008
 387#define PHY_POWER_SAVING_DISABLE        0x0004
 388#define PHY_REMOTE_LOOPBACK             0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P                  0x0400
 392#define KS884X_CHIP_ID_OFFSET           KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET         (KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID                   0x88
 396
 397#define REG_CHIP_ID_41                  0x8810
 398#define REG_CHIP_ID_42                  0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41          0xFF10
 401#define KS884X_CHIP_ID_MASK             0xFFF0
 402#define KS884X_CHIP_ID_SHIFT            4
 403#define KS884X_REVISION_MASK            0x000E
 404#define KS884X_REVISION_SHIFT           1
 405#define KS8842_START                    0x0001
 406
 407#define CHIP_IP_41_M                    0x8810
 408#define CHIP_IP_42_M                    0x8800
 409#define CHIP_IP_61_M                    0x8890
 410#define CHIP_IP_62_M                    0x8880
 411
 412#define CHIP_IP_41_P                    0x8850
 413#define CHIP_IP_42_P                    0x8840
 414#define CHIP_IP_61_P                    0x88D0
 415#define CHIP_IP_62_P                    0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P                  0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET     KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL                 0x8000
 422#define SWITCH_TX_FLOW_CTRL             0x2000
 423#define SWITCH_RX_FLOW_CTRL             0x1000
 424#define SWITCH_CHECK_LENGTH             0x0800
 425#define SWITCH_AGING_ENABLE             0x0400
 426#define SWITCH_FAST_AGING               0x0200
 427#define SWITCH_AGGR_BACKOFF             0x0100
 428#define SWITCH_PASS_PAUSE               0x0008
 429#define SWITCH_LINK_AUTO_AGING          0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P                  0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET     KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE              0x8000
 436#define SWITCH_IGMP_SNOOP               0x4000
 437#define IPV6_MLD_SNOOP_ENABLE           0x2000
 438#define IPV6_MLD_SNOOP_OPTION           0x1000
 439#define PRIORITY_SCHEME_SELECT          0x0800
 440#define SWITCH_MIRROR_RX_TX             0x0100
 441#define UNICAST_VLAN_BOUNDARY           0x0080
 442#define MULTICAST_STORM_DISABLE         0x0040
 443#define SWITCH_BACK_PRESSURE            0x0020
 444#define FAIR_FLOW_CTRL                  0x0010
 445#define NO_EXC_COLLISION_DROP           0x0008
 446#define SWITCH_HUGE_PACKET              0x0004
 447#define SWITCH_LEGAL_PACKET             0x0002
 448#define SWITCH_BUF_RESERVE              0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P                  0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET     KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO         0xFF00
 455#define SWITCH_REPEATER                 0x0080
 456#define SWITCH_HALF_DUPLEX              0x0040
 457#define SWITCH_FLOW_CTRL                0x0020
 458#define SWITCH_10_MBIT                  0x0010
 459#define SWITCH_REPLACE_NULL_VID         0x0008
 460#define BROADCAST_STORM_RATE_HI         0x0007
 461
 462#define BROADCAST_STORM_RATE            0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P                  0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P                  0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET     KS8842_SGCR5_P
 470
 471#define LED_MODE                        0x8200
 472#define LED_SPEED_DUPLEX_ACT            0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT       0x8000
 474#define LED_DUPLEX_10_100               0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P                  0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET     KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK            3
 481#define KS8842_PRIORITY_SHIFT           2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P                  0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET     KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE      0x0008
 488#define SWITCH_UNK_DEF_PORT_3           0x0004
 489#define SWITCH_UNK_DEF_PORT_2           0x0002
 490#define SWITCH_UNK_DEF_PORT_1           0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P                 0x0470
 494#define KS8842_MACAR2_P                 0x0472
 495#define KS8842_MACAR3_P                 0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET        KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET        (KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET        KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET        (KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET        KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET        (KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P                  0x0480
 505#define KS8842_TOSR2_P                  0x0482
 506#define KS8842_TOSR3_P                  0x0484
 507#define KS8842_TOSR4_P                  0x0486
 508#define KS8842_TOSR5_P                  0x0488
 509#define KS8842_TOSR6_P                  0x048A
 510#define KS8842_TOSR7_P                  0x0490
 511#define KS8842_TOSR8_P                  0x0492
 512#define KS8842_TOS_1_OFFSET             KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET             KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET             KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET             KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET             KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET             KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET             KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET             KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P                  0x0500
 524#define KS8842_P1CR2_P                  0x0502
 525#define KS8842_P1VIDR_P                 0x0504
 526#define KS8842_P1CR3_P                  0x0506
 527#define KS8842_P1IRCR_P                 0x0508
 528#define KS8842_P1ERCR_P                 0x050A
 529#define KS884X_P1SCSLMD_P               0x0510
 530#define KS884X_P1CR4_P                  0x0512
 531#define KS884X_P1SR_P                   0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P                  0x0520
 535#define KS8842_P2CR2_P                  0x0522
 536#define KS8842_P2VIDR_P                 0x0524
 537#define KS8842_P2CR3_P                  0x0526
 538#define KS8842_P2IRCR_P                 0x0528
 539#define KS8842_P2ERCR_P                 0x052A
 540#define KS884X_P2SCSLMD_P               0x0530
 541#define KS884X_P2CR4_P                  0x0532
 542#define KS884X_P2SR_P                   0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P                  0x0540
 546#define KS8842_P3CR2_P                  0x0542
 547#define KS8842_P3VIDR_P                 0x0544
 548#define KS8842_P3CR3_P                  0x0546
 549#define KS8842_P3IRCR_P                 0x0548
 550#define KS8842_P3ERCR_P                 0x054A
 551
 552#define KS8842_PORT_1_CTRL_1            KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1            KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1            KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)              \
 557        (addr = KS8842_PORT_1_CTRL_1 + (port) * \
 558                (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET       0x00
 561
 562#define PORT_BROADCAST_STORM            0x0080
 563#define PORT_DIFFSERV_ENABLE            0x0040
 564#define PORT_802_1P_ENABLE              0x0020
 565#define PORT_BASED_PRIORITY_MASK        0x0018
 566#define PORT_BASED_PRIORITY_BASE        0x0003
 567#define PORT_BASED_PRIORITY_SHIFT       3
 568#define PORT_BASED_PRIORITY_0           0x0000
 569#define PORT_BASED_PRIORITY_1           0x0008
 570#define PORT_BASED_PRIORITY_2           0x0010
 571#define PORT_BASED_PRIORITY_3           0x0018
 572#define PORT_INSERT_TAG                 0x0004
 573#define PORT_REMOVE_TAG                 0x0002
 574#define PORT_PRIO_QUEUE_ENABLE          0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET       0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER        0x4000
 579#define PORT_DISCARD_NON_VID            0x2000
 580#define PORT_FORCE_FLOW_CTRL            0x1000
 581#define PORT_BACK_PRESSURE              0x0800
 582#define PORT_TX_ENABLE                  0x0400
 583#define PORT_RX_ENABLE                  0x0200
 584#define PORT_LEARN_DISABLE              0x0100
 585#define PORT_MIRROR_SNIFFER             0x0080
 586#define PORT_MIRROR_RX                  0x0040
 587#define PORT_MIRROR_TX                  0x0020
 588#define PORT_USER_PRIORITY_CEILING      0x0008
 589#define PORT_VLAN_MEMBERSHIP            0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET     0x04
 592
 593#define PORT_DEFAULT_VID                0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET       0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE         0x000C
 598#define PORT_INGRESS_ALL                0x0000
 599#define PORT_INGRESS_UNICAST            0x0004
 600#define PORT_INGRESS_MULTICAST          0x0008
 601#define PORT_INGRESS_BROADCAST          0x000C
 602#define PORT_COUNT_IFG                  0x0002
 603#define PORT_COUNT_PREAMBLE             0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET      0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET     0x0A
 607
 608#define PORT_PRIORITY_RATE              0x0F
 609#define PORT_PRIORITY_RATE_SHIFT        4
 610
 611#define KS884X_PORT_LINK_MD             0x10
 612
 613#define PORT_CABLE_10M_SHORT            0x8000
 614#define PORT_CABLE_DIAG_RESULT          0x6000
 615#define PORT_CABLE_STAT_NORMAL          0x0000
 616#define PORT_CABLE_STAT_OPEN            0x2000
 617#define PORT_CABLE_STAT_SHORT           0x4000
 618#define PORT_CABLE_STAT_FAILED          0x6000
 619#define PORT_START_CABLE_DIAG           0x1000
 620#define PORT_FORCE_LINK                 0x0800
 621#define PORT_POWER_SAVING_DISABLE       0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK        0x0200
 623#define PORT_CABLE_FAULT_COUNTER        0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET       0x12
 626
 627#define PORT_LED_OFF                    0x8000
 628#define PORT_TX_DISABLE                 0x4000
 629#define PORT_AUTO_NEG_RESTART           0x2000
 630#define PORT_REMOTE_FAULT_DISABLE       0x1000
 631#define PORT_POWER_DOWN                 0x0800
 632#define PORT_AUTO_MDIX_DISABLE          0x0400
 633#define PORT_FORCE_MDIX                 0x0200
 634#define PORT_LOOPBACK                   0x0100
 635#define PORT_AUTO_NEG_ENABLE            0x0080
 636#define PORT_FORCE_100_MBIT             0x0040
 637#define PORT_FORCE_FULL_DUPLEX          0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE         0x0010
 639#define PORT_AUTO_NEG_100BTX_FD         0x0008
 640#define PORT_AUTO_NEG_100BTX            0x0004
 641#define PORT_AUTO_NEG_10BT_FD           0x0002
 642#define PORT_AUTO_NEG_10BT              0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET       0x14
 645
 646#define PORT_HP_MDIX                    0x8000
 647#define PORT_REVERSED_POLARITY          0x2000
 648#define PORT_RX_FLOW_CTRL               0x0800
 649#define PORT_TX_FLOW_CTRL               0x1000
 650#define PORT_STATUS_SPEED_100MBIT       0x0400
 651#define PORT_STATUS_FULL_DUPLEX         0x0200
 652#define PORT_REMOTE_FAULT               0x0100
 653#define PORT_MDIX_STATUS                0x0080
 654#define PORT_AUTO_NEG_COMPLETE          0x0040
 655#define PORT_STATUS_LINK_GOOD           0x0020
 656#define PORT_REMOTE_SYM_PAUSE           0x0010
 657#define PORT_REMOTE_100BTX_FD           0x0008
 658#define PORT_REMOTE_100BTX              0x0004
 659#define PORT_REMOTE_10BT_FD             0x0002
 660#define PORT_REMOTE_10BT                0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR           00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS      00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID          00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE       00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID        00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID            00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR           0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS      0x00070000
 673#define STATIC_MAC_TABLE_VALID          0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE       0x00100000
 675#define STATIC_MAC_TABLE_USE_FID        0x00200000
 676#define STATIC_MAC_TABLE_FID            0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT      16
 679#define STATIC_MAC_FID_SHIFT            22
 680
 681/*
 682#define VLAN_TABLE_VID                  00-00000000-00000FFF
 683#define VLAN_TABLE_FID                  00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP           00-00000000-00070000
 685#define VLAN_TABLE_VALID                00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID                  0x00000FFF
 689#define VLAN_TABLE_FID                  0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP           0x00070000
 691#define VLAN_TABLE_VALID                0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT            12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT     16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR          00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID           00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT      00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP     00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES       03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY     04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED      78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY     80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR          0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID           0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT      0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP     0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES       0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H     0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY     0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED      0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY     0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT           16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT      20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT     22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT       24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT     8
 723
 724/*
 725#define MIB_COUNTER_VALUE               00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID               00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW            00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE               0x3FFFFFFF
 731#define MIB_COUNTER_VALID               0x40000000
 732#define MIB_COUNTER_OVERFLOW            0x80000000
 733
 734#define MIB_PACKET_DROPPED              0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0      0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1      0x101
 738#define KS_MIB_PACKET_DROPPED_TX        0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0      0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1      0x104
 741#define KS_MIB_PACKET_DROPPED_RX        0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED                 LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_ORDER(i)               (ETH_ALEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE          1500
 749#define ETHERNET_HEADER_SIZE            (14 + VLAN_HLEN)
 750
 751#define MAX_ETHERNET_PACKET_SIZE        \
 752        (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE             (MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE                 (1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES              16
 758#define MAX_MULTICAST_LIST              32
 759
 760#define HW_MULTICAST_SIZE               8
 761
 762#define HW_TO_DEV_PORT(port)            (port - 1)
 763
 764enum {
 765        media_connected,
 766        media_disconnected
 767};
 768
 769enum {
 770        OID_COUNTER_UNKOWN,
 771
 772        OID_COUNTER_FIRST,
 773
 774        /* total transmit errors */
 775        OID_COUNTER_XMIT_ERROR,
 776
 777        /* total receive errors */
 778        OID_COUNTER_RCV_ERROR,
 779
 780        OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT                  16
 788#define BUFFER_ALIGNMENT                8
 789
 790#define NUM_OF_RX_DESC                  64
 791#define NUM_OF_TX_DESC                  64
 792
 793#define KS_DESC_RX_FRAME_LEN            0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE           0x00008000
 795#define KS_DESC_RX_ERROR_CRC            0x00010000
 796#define KS_DESC_RX_ERROR_RUNT           0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG       0x00040000
 798#define KS_DESC_RX_ERROR_PHY            0x00080000
 799#define KS884X_DESC_RX_PORT_MASK        0x00300000
 800#define KS_DESC_RX_MULTICAST            0x01000000
 801#define KS_DESC_RX_ERROR                0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP       0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP       0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP        0x10000000
 805#define KS_DESC_RX_LAST                 0x20000000
 806#define KS_DESC_RX_FIRST                0x40000000
 807#define KS_DESC_RX_ERROR_COND           \
 808        (KS_DESC_RX_ERROR_CRC |         \
 809        KS_DESC_RX_ERROR_RUNT |         \
 810        KS_DESC_RX_ERROR_PHY |          \
 811        KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED                0x80000000
 814
 815#define KS_DESC_BUF_SIZE                0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK        0x00300000
 817#define KS_DESC_END_OF_RING             0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP         0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP         0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP          0x10000000
 821#define KS_DESC_TX_LAST                 0x20000000
 822#define KS_DESC_TX_FIRST                0x40000000
 823#define KS_DESC_TX_INTERRUPT            0x80000000
 824
 825#define KS_DESC_PORT_SHIFT              20
 826
 827#define KS_DESC_RX_MASK                 (KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK                 \
 830        (KS_DESC_TX_INTERRUPT |         \
 831        KS_DESC_TX_FIRST |              \
 832        KS_DESC_TX_LAST |               \
 833        KS_DESC_TX_CSUM_GEN_IP |        \
 834        KS_DESC_TX_CSUM_GEN_TCP |       \
 835        KS_DESC_TX_CSUM_GEN_UDP |       \
 836        KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840        u32 hw_owned:1;
 841        u32 first_desc:1;
 842        u32 last_desc:1;
 843        u32 csum_err_ip:1;
 844        u32 csum_err_tcp:1;
 845        u32 csum_err_udp:1;
 846        u32 error:1;
 847        u32 multicast:1;
 848        u32 src_port:4;
 849        u32 err_phy:1;
 850        u32 err_too_long:1;
 851        u32 err_runt:1;
 852        u32 err_crc:1;
 853        u32 frame_type:1;
 854        u32 reserved1:4;
 855        u32 frame_len:11;
 856#else
 857        u32 frame_len:11;
 858        u32 reserved1:4;
 859        u32 frame_type:1;
 860        u32 err_crc:1;
 861        u32 err_runt:1;
 862        u32 err_too_long:1;
 863        u32 err_phy:1;
 864        u32 src_port:4;
 865        u32 multicast:1;
 866        u32 error:1;
 867        u32 csum_err_udp:1;
 868        u32 csum_err_tcp:1;
 869        u32 csum_err_ip:1;
 870        u32 last_desc:1;
 871        u32 first_desc:1;
 872        u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878        u32 hw_owned:1;
 879        u32 reserved1:31;
 880#else
 881        u32 reserved1:31;
 882        u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888        u32 reserved4:6;
 889        u32 end_of_ring:1;
 890        u32 reserved3:14;
 891        u32 buf_size:11;
 892#else
 893        u32 buf_size:11;
 894        u32 reserved3:14;
 895        u32 end_of_ring:1;
 896        u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902        u32 intr:1;
 903        u32 first_seg:1;
 904        u32 last_seg:1;
 905        u32 csum_gen_ip:1;
 906        u32 csum_gen_tcp:1;
 907        u32 csum_gen_udp:1;
 908        u32 end_of_ring:1;
 909        u32 reserved4:1;
 910        u32 dest_port:4;
 911        u32 reserved3:9;
 912        u32 buf_size:11;
 913#else
 914        u32 buf_size:11;
 915        u32 reserved3:9;
 916        u32 dest_port:4;
 917        u32 reserved4:1;
 918        u32 end_of_ring:1;
 919        u32 csum_gen_udp:1;
 920        u32 csum_gen_tcp:1;
 921        u32 csum_gen_ip:1;
 922        u32 last_seg:1;
 923        u32 first_seg:1;
 924        u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929        struct ksz_desc_rx_stat rx;
 930        struct ksz_desc_tx_stat tx;
 931        u32 data;
 932};
 933
 934union desc_buf {
 935        struct ksz_desc_rx_buf rx;
 936        struct ksz_desc_tx_buf tx;
 937        u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:       Descriptor control value.
 943 * @buf:        Descriptor buffer value.
 944 * @addr:       Physical address of memory buffer.
 945 * @next:       Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948        union desc_stat ctrl;
 949        union desc_buf buf;
 950        u32 addr;
 951        u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:       Descriptor control value.
 957 * @buf:        Descriptor buffer value.
 958 * @buf_size:   Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961        union desc_stat ctrl;
 962        union desc_buf buf;
 963        u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:        Associated socket buffer.
 969 * @dma:        Associated physical DMA address.
 970 * len:         Actual len used.
 971 */
 972struct ksz_dma_buf {
 973        struct sk_buff *skb;
 974        dma_addr_t dma;
 975        int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:        Hardware descriptor pointer to uncached physical memory.
 981 * @sw:         Cached memory to hold hardware descriptor values for
 982 *              manipulation.
 983 * @dma_buf:    Operating system dependent data structure to hold physical
 984 *              memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987        struct ksz_hw_desc *phw;
 988        struct ksz_sw_desc sw;
 989        struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:       First descriptor in the ring.
 997 * @cur:        Current descriptor being manipulated.
 998 * @ring_virt:  First hardware descriptor in the ring.
 999 * @ring_phys:  The physical address of the first descriptor of the ring.
1000 * @size:       Size of hardware descriptor.
1001 * @alloc:      Number of descriptors allocated.
1002 * @avail:      Number of descriptors available for use.
1003 * @last:       Index for last descriptor released to hardware.
1004 * @next:       Index for next descriptor available for use.
1005 * @mask:       Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008        struct ksz_desc *ring;
1009        struct ksz_desc *cur;
1010        struct ksz_hw_desc *ring_virt;
1011        u32 ring_phys;
1012        int size;
1013        int alloc;
1014        int avail;
1015        int last;
1016        int next;
1017        int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025        TABLE_STATIC_MAC = 0,
1026        TABLE_VLAN,
1027        TABLE_DYNAMIC_MAC,
1028        TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES       1024
1032#define STATIC_MAC_TABLE_ENTRIES        8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:   MAC address to filter.
1037 * @vid:        VID value.
1038 * @fid:        FID value.
1039 * @ports:      Port membership.
1040 * @override:   Override setting.
1041 * @use_fid:    FID use setting.
1042 * @valid:      Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045        u8 mac_addr[ETH_ALEN];
1046        u16 vid;
1047        u8 fid;
1048        u8 ports;
1049        u8 override:1;
1050        u8 use_fid:1;
1051        u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES              16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:        VID value.
1059 * @fid:        FID value.
1060 * @member:     Port membership.
1061 */
1062struct ksz_vlan_table {
1063        u16 vid;
1064        u8 fid;
1065        u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES                64
1069#define PRIO_802_1P_ENTRIES             8
1070#define PRIO_QUEUES                     4
1071
1072#define SWITCH_PORT_NUM                 2
1073#define TOTAL_PORT_NUM                  (SWITCH_PORT_NUM + 1)
1074#define HOST_MASK                       (1 << SWITCH_PORT_NUM)
1075#define PORT_MASK                       7
1076
1077#define MAIN_PORT                       0
1078#define OTHER_PORT                      1
1079#define HOST_PORT                       SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM                0x20
1082#define TOTAL_PORT_COUNTER_NUM          (PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY      0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY      0x01
1086#define MIB_COUNTER_RX_UNDERSIZE        0x02
1087#define MIB_COUNTER_RX_FRAGMENT         0x03
1088#define MIB_COUNTER_RX_OVERSIZE         0x04
1089#define MIB_COUNTER_RX_JABBER           0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR       0x06
1091#define MIB_COUNTER_RX_CRC_ERR          0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR    0x08
1093#define MIB_COUNTER_RX_CTRL_8808        0x09
1094#define MIB_COUNTER_RX_PAUSE            0x0A
1095#define MIB_COUNTER_RX_BROADCAST        0x0B
1096#define MIB_COUNTER_RX_MULTICAST        0x0C
1097#define MIB_COUNTER_RX_UNICAST          0x0D
1098#define MIB_COUNTER_RX_OCTET_64         0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127     0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255    0x10
1101#define MIB_COUNTER_RX_OCTET_256_511    0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023   0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522  0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY      0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY      0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION   0x16
1107#define MIB_COUNTER_TX_PAUSE            0x17
1108#define MIB_COUNTER_TX_BROADCAST        0x18
1109#define MIB_COUNTER_TX_MULTICAST        0x19
1110#define MIB_COUNTER_TX_UNICAST          0x1A
1111#define MIB_COUNTER_TX_DEFERRED         0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION  0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION  0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET   0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET   0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:    Current pointer to MIB counter index.
1123 * @link_down:  Indication the link has just gone down.
1124 * @state:      Connection status of the port.
1125 * @mib_start:  The starting counter index.  Some ports do not start at 0.
1126 * @counter:    64-bit MIB counter value.
1127 * @dropped:    Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140        u8 cnt_ptr;
1141        u8 link_down;
1142        u8 state;
1143        u8 mib_start;
1144
1145        u64 counter[TOTAL_PORT_COUNTER_NUM];
1146        u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:        VID value.
1152 * @member:     Port membership.
1153 * @port_prio:  Port priority.
1154 * @rx_rate:    Receive priority rate.
1155 * @tx_rate:    Transmit priority rate.
1156 * @stp_state:  Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159        u16 vid;
1160        u8 member;
1161        u8 port_prio;
1162        u32 rx_rate[PRIO_QUEUES];
1163        u32 tx_rate[PRIO_QUEUES];
1164        int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:  MAC table entries information.
1170 * @vlan_table: VLAN table entries information.
1171 * @port_cfg:   Port configuration information.
1172 * @diffserv:   DiffServ priority settings.  Possible values from 6-bit of ToS
1173 *              (bit7 ~ bit2) field.
1174 * @p_802_1p:   802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 *              Tag priority field.
1176 * @br_addr:    Bridge address.  Used for STP.
1177 * @other_addr: Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:  Broadcast storm percentage.
1179 * @member:     Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182        struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183        struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184        struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186        u8 diffserv[DIFFSERV_ENTRIES];
1187        u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189        u8 br_addr[ETH_ALEN];
1190        u8 other_addr[ETH_ALEN];
1191
1192        u8 broad_per;
1193        u8 member;
1194};
1195
1196#define TX_RATE_UNIT                    10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:      Connection status of the port.
1201 * @tx_rate:    Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:     Duplex mode.
1203 * @advertised: Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:    Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:    Port index to access actual hardware register.
1206 * @pdev:       Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209        uint state;
1210        uint tx_rate;
1211        u8 duplex;
1212        u8 advertised;
1213        u8 partner;
1214        u8 port_id;
1215        void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE                52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING                (1 << 0)
1222#define SMALL_PACKET_TX_BUG             (1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG          (1 << 2)
1224#define RX_HUGE_FRAME                   (1 << 4)
1225#define STP_SUPPORT                     (1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL                 (1 << 0)
1229#define FAST_AGING                      (1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io:                 Virtual address assigned.
1234 * @ksz_switch:         Pointer to KSZ8842 switch.
1235 * @port_info:          Port information.
1236 * @port_mib:           Port MIB information.
1237 * @dev_count:          Number of network devices this hardware supports.
1238 * @dst_ports:          Destination ports in switch for transmission.
1239 * @id:                 Hardware ID.  Used for display only.
1240 * @mib_cnt:            Number of MIB counters this hardware has.
1241 * @mib_port_cnt:       Number of ports with MIB counters.
1242 * @tx_cfg:             Cached transmit control settings.
1243 * @rx_cfg:             Cached receive control settings.
1244 * @intr_mask:          Current interrupt mask.
1245 * @intr_set:           Current interrup set.
1246 * @intr_blocked:       Interrupt blocked.
1247 * @rx_desc_info:       Receive descriptor information.
1248 * @tx_desc_info:       Transmit descriptor information.
1249 * @tx_int_cnt:         Transmit interrupt count.  Used for TX optimization.
1250 * @tx_int_mask:        Transmit interrupt mask.  Used for TX optimization.
1251 * @tx_size:            Transmit data size.  Used for TX optimization.
1252 *                      The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr:          Permanent MAC address.
1254 * @override_addr:      Overrided MAC address.
1255 * @address:            Additional MAC address entries.
1256 * @addr_list_size:     Additional MAC address list size.
1257 * @mac_override:       Indication of MAC address overrided.
1258 * @promiscuous:        Counter to keep track of promiscuous mode set.
1259 * @all_multi:          Counter to keep track of all multicast mode set.
1260 * @multi_list:         Multicast address entries.
1261 * @multi_bits:         Cached multicast hash table settings.
1262 * @multi_list_size:    Multicast address list size.
1263 * @enabled:            Indication of hardware enabled.
1264 * @rx_stop:            Indication of receive process stop.
1265 * @features:           Hardware features to enable.
1266 * @overrides:          Hardware features to override.
1267 * @parent:             Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270        void __iomem *io;
1271
1272        struct ksz_switch *ksz_switch;
1273        struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274        struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275        int dev_count;
1276        int dst_ports;
1277        int id;
1278        int mib_cnt;
1279        int mib_port_cnt;
1280
1281        u32 tx_cfg;
1282        u32 rx_cfg;
1283        u32 intr_mask;
1284        u32 intr_set;
1285        uint intr_blocked;
1286
1287        struct ksz_desc_info rx_desc_info;
1288        struct ksz_desc_info tx_desc_info;
1289
1290        int tx_int_cnt;
1291        int tx_int_mask;
1292        int tx_size;
1293
1294        u8 perm_addr[ETH_ALEN];
1295        u8 override_addr[ETH_ALEN];
1296        u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297        u8 addr_list_size;
1298        u8 mac_override;
1299        u8 promiscuous;
1300        u8 all_multi;
1301        u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302        u8 multi_bits[HW_MULTICAST_SIZE];
1303        u8 multi_list_size;
1304
1305        u8 enabled;
1306        u8 rx_stop;
1307        u8 reserved2[1];
1308
1309        uint features;
1310        uint overrides;
1311
1312        void *parent;
1313};
1314
1315enum {
1316        PHY_NO_FLOW_CTRL,
1317        PHY_FLOW_CTRL,
1318        PHY_TX_ONLY,
1319        PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex:             Duplex mode setting.  1 for half duplex, 2 for full
1325 *                      duplex, and 0 for auto, which normally results in full
1326 *                      duplex.
1327 * @speed:              Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328 *                      0 for auto, which normally results in 100 Mbit.
1329 * @force_link:         Force link setting.  0 for auto-negotiation, and 1 for
1330 *                      force.
1331 * @flow_ctrl:          Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332 *                      control, and PHY_FLOW_CTRL for flow control.
1333 *                      PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 *                      Mbit PHY.
1335 * @first_port:         Index of first port this port supports.
1336 * @mib_port_cnt:       Number of ports with MIB counters.
1337 * @port_cnt:           Number of ports this port supports.
1338 * @counter:            Port statistics counter.
1339 * @hw:                 Pointer to hardware structure.
1340 * @linked:             Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343        u8 duplex;
1344        u8 speed;
1345        u8 force_link;
1346        u8 flow_ctrl;
1347
1348        int first_port;
1349        int mib_port_cnt;
1350        int port_cnt;
1351        u64 counter[OID_COUNTER_LAST];
1352
1353        struct ksz_hw *hw;
1354        struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer:      Kernel timer.
1360 * @cnt:        Running timer counter.
1361 * @max:        Number of times to run timer; -1 for infinity.
1362 * @period:     Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365        struct timer_list timer;
1366        int cnt;
1367        int max;
1368        int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr:   Physical DMA address allocated.
1374 * @alloc_size: Allocation size.
1375 * @phys:       Actual physical address used.
1376 * @alloc_virt: Virtual address allocated.
1377 * @virt:       Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380        dma_addr_t dma_addr;
1381        uint alloc_size;
1382        uint phys;
1383        u8 *alloc_virt;
1384        u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter:    Wait queue to wakeup after counters are read.
1390 * @time:       Next time in jiffies to read counter.
1391 * @read:       Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394        wait_queue_head_t counter;
1395        unsigned long time;
1396        int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev:                Pointer to network device.
1402 * @pdev:               Pointer to PCI device.
1403 * @hw:                 Hardware structure.
1404 * @desc_pool:          Physical memory used for descriptor pool.
1405 * @hwlock:             Spinlock to prevent hardware from accessing.
1406 * @lock:               Mutex lock to prevent device from accessing.
1407 * @dev_rcv:            Receive process function used.
1408 * @last_skb:           Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index:          Buffer index for receiving fragments.
1410 * @skb_len:            Buffer length for receiving fragments.
1411 * @mib_read:           Workqueue to read MIB counters.
1412 * @mib_timer_info:     Timer to read MIB counters.
1413 * @counter:            Used for MIB reading.
1414 * @mtu:                Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415 *                      the maximum is MAX_RX_BUF_SIZE.
1416 * @opened:             Counter to keep track of device open.
1417 * @rx_tasklet:         Receive processing tasklet.
1418 * @tx_tasklet:         Transmit processing tasklet.
1419 * @wol_enable:         Wake-on-LAN enable set by ethtool.
1420 * @wol_support:        Wake-on-LAN support used by ethtool.
1421 * @pme_wait:           Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424        struct net_device *dev;
1425        struct pci_dev *pdev;
1426
1427        struct ksz_hw hw;
1428        struct ksz_shared_mem desc_pool;
1429
1430        spinlock_t hwlock;
1431        struct mutex lock;
1432
1433        int (*dev_rcv)(struct dev_info *);
1434
1435        struct sk_buff *last_skb;
1436        int skb_index;
1437        int skb_len;
1438
1439        struct work_struct mib_read;
1440        struct ksz_timer_info mib_timer_info;
1441        struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443        int mtu;
1444        int opened;
1445
1446        struct tasklet_struct rx_tasklet;
1447        struct tasklet_struct tx_tasklet;
1448
1449        int wol_enable;
1450        int wol_support;
1451        unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter:            Adapter device information.
1457 * @port:               Port information.
1458 * @monitor_time_info:  Timer to monitor ports.
1459 * @proc_sem:           Semaphore for proc accessing.
1460 * @id:                 Device ID.
1461 * @mii_if:             MII interface information.
1462 * @advertising:        Temporary variable to store advertised settings.
1463 * @msg_enable:         The message flags controlling driver output.
1464 * @media_state:        The connection status of the device.
1465 * @multicast:          The all multicast state of the device.
1466 * @promiscuous:        The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469        struct dev_info *adapter;
1470        struct ksz_port port;
1471        struct ksz_timer_info monitor_timer_info;
1472
1473        struct semaphore proc_sem;
1474        int id;
1475
1476        struct mii_if_info mii_if;
1477        u32 advertising;
1478
1479        u32 msg_enable;
1480        int media_state;
1481        int multicast;
1482        int promiscuous;
1483};
1484
1485#define DRV_NAME                "KSZ884X PCI"
1486#define DEVICE_NAME             "KSZ884x PCI"
1487#define DRV_VERSION             "1.0.0"
1488#define DRV_RELDATE             "Feb 8, 2010"
1489
1490static char version[] =
1491        "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501        writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506        hw->intr_blocked = hw->intr_mask;
1507        writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508        hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513        hw->intr_set = interrupt;
1514        writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519        hw->intr_blocked = 0;
1520        hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525        hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530        u32 read_intr;
1531
1532        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533        hw->intr_set = read_intr & ~interrupt;
1534        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535        hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw:         The hardware instance.
1541 * @bit:        The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548        hw->intr_mask |= bit;
1549
1550        if (!hw->intr_blocked)
1551                hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556        u32 read_intr;
1557
1558        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559        hw->intr_set = read_intr | interrupt;
1560        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565        *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566        *status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571        if (interrupt)
1572                hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585        uint interrupt = 0;
1586
1587        if (!hw->intr_blocked) {
1588                hw_dis_intr(hw);
1589                interrupt = hw->intr_blocked;
1590        }
1591        return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600        status.rx.hw_owned = 0;
1601        desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606        desc->sw.ctrl.tx.hw_owned = 1;
1607        if (desc->sw.buf_size != desc->sw.buf.data) {
1608                desc->sw.buf_size = desc->sw.buf.data;
1609                desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610        }
1611        desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616        *desc = &info->ring[info->last];
1617        info->last++;
1618        info->last &= info->mask;
1619        info->avail--;
1620        (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625        desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630        desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634        struct ksz_desc **desc)
1635{
1636        *desc = &info->ring[info->next];
1637        info->next++;
1638        info->next &= info->mask;
1639        info->avail--;
1640        (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645        desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650        desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ                      0x10
1656#define TABLE_SEL_SHIFT                 2
1657
1658#define HW_DELAY(hw, reg)                       \
1659        do {                                    \
1660                u16 dummy;                      \
1661                dummy = readw(hw->io + reg);    \
1662        } while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw:         The hardware instance.
1667 * @table:      The table selector.
1668 * @addr:       The address of the table entry.
1669 * @data:       Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676        u16 ctrl_addr;
1677        uint interrupt;
1678
1679        ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681        interrupt = hw_block_intr(hw);
1682
1683        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684        HW_DELAY(hw, KS884X_IACR_OFFSET);
1685        *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687        hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw:         The hardware instance.
1693 * @table:      The table selector.
1694 * @addr:       The address of the table entry.
1695 * @data_hi:    The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo:    The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702        u32 data_lo)
1703{
1704        u16 ctrl_addr;
1705        uint interrupt;
1706
1707        ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709        interrupt = hw_block_intr(hw);
1710
1711        writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712        writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715        HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717        hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw:         The hardware instance.
1723 * @addr:       The address of the table entry.
1724 * @mac_addr:   The MAC address.
1725 * @ports:      The port members.
1726 * @override:   The flag to override the port receive/transmit settings.
1727 * @valid:      The flag to indicate entry is valid.
1728 * @use_fid:    The flag to indicate the FID is valid.
1729 * @fid:        The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch.  It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735        u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737        u32 data_hi;
1738        u32 data_lo;
1739
1740        data_lo = ((u32) mac_addr[2] << 24) |
1741                ((u32) mac_addr[3] << 16) |
1742                ((u32) mac_addr[4] << 8) | mac_addr[5];
1743        data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744        data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746        if (override)
1747                data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748        if (use_fid) {
1749                data_hi |= STATIC_MAC_TABLE_USE_FID;
1750                data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751        }
1752        if (valid)
1753                data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755        sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw:         The hardware instance.
1761 * @addr:       The address of the table entry.
1762 * @vid:        Buffer to store the VID.
1763 * @fid:        Buffer to store the VID.
1764 * @member:     Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch.  It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772        u8 *member)
1773{
1774        u32 data;
1775
1776        sw_r_table(hw, TABLE_VLAN, addr, &data);
1777        if (data & VLAN_TABLE_VALID) {
1778                *vid = (u16)(data & VLAN_TABLE_VID);
1779                *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780                *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781                        VLAN_TABLE_MEMBERSHIP_SHIFT);
1782                return 0;
1783        }
1784        return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw:         The hardware instance.
1790 * @port:       The port index.
1791 * @addr:       The address of the counter.
1792 * @cnt:        Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799        u32 data;
1800        u16 ctrl_addr;
1801        uint interrupt;
1802        int timeout;
1803
1804        ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806        interrupt = hw_block_intr(hw);
1807
1808        ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810        HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812        for (timeout = 100; timeout > 0; timeout--) {
1813                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815                if (data & MIB_COUNTER_VALID) {
1816                        if (data & MIB_COUNTER_OVERFLOW)
1817                                *cnt += MIB_COUNTER_VALUE + 1;
1818                        *cnt += data & MIB_COUNTER_VALUE;
1819                        break;
1820                }
1821        }
1822
1823        hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw:         The hardware instance.
1829 * @port:       The port index.
1830 * @cnt:        Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837        u32 cur;
1838        u32 data;
1839        u16 ctrl_addr;
1840        uint interrupt;
1841        int index;
1842
1843        index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844        do {
1845                interrupt = hw_block_intr(hw);
1846
1847                ctrl_addr = (u16) index;
1848                ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849                        << 8);
1850                writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851                HW_DELAY(hw, KS884X_IACR_OFFSET);
1852                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854                hw_restore_intr(hw, interrupt);
1855
1856                data &= MIB_PACKET_DROPPED;
1857                cur = *last;
1858                if (data != cur) {
1859                        *last = data;
1860                        if (data < cur)
1861                                data += MIB_PACKET_DROPPED + 1;
1862                        data -= cur;
1863                        *cnt += data;
1864                }
1865                ++last;
1866                ++cnt;
1867                index -= KS_MIB_PACKET_DROPPED_TX -
1868                        KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869        } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw:         The hardware instance.
1875 * @port:       The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow.  The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885        struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887        if (mib->mib_start < PORT_COUNTER_NUM)
1888                while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890                                &mib->counter[mib->cnt_ptr]);
1891                        ++mib->cnt_ptr;
1892                }
1893        if (hw->mib_cnt > PORT_COUNTER_NUM)
1894                port_r_mib_pkt(hw, port, mib->dropped,
1895                        &mib->counter[PORT_COUNTER_NUM]);
1896        mib->cnt_ptr = 0;
1897        return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw:         The hardware instance.
1903 * @port:       The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910        struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912        mib->cnt_ptr = 0;
1913        if (mib->mib_start < PORT_COUNTER_NUM)
1914                do {
1915                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916                                &mib->counter[mib->cnt_ptr]);
1917                        ++mib->cnt_ptr;
1918                } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919        if (hw->mib_cnt > PORT_COUNTER_NUM)
1920                port_r_mib_pkt(hw, port, mib->dropped,
1921                        &mib->counter[PORT_COUNTER_NUM]);
1922        memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923        mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw:         The hardware instance.
1933 * @port:       The port index.
1934 * @offset:     The offset of the port register.
1935 * @bits:       The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944        u32 addr;
1945        u16 data;
1946
1947        PORT_CTRL_ADDR(port, addr);
1948        addr += offset;
1949        data = readw(hw->io + addr);
1950        return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw:         The hardware instance.
1956 * @port:       The port index.
1957 * @offset:     The offset of the port register.
1958 * @bits:       The data bits to set.
1959 * @set:        The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964        int set)
1965{
1966        u32 addr;
1967        u16 data;
1968
1969        PORT_CTRL_ADDR(port, addr);
1970        addr += offset;
1971        data = readw(hw->io + addr);
1972        if (set)
1973                data |= bits;
1974        else
1975                data &= ~bits;
1976        writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw:         The hardware instance.
1982 * @port:       The port index.
1983 * @offset:     The offset of the register.
1984 * @shift:      Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993        u16 data;
1994        u16 bit = 1 << port;
1995
1996        data = readw(hw->io + addr);
1997        data >>= shift;
1998        return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw:         The hardware instance.
2004 * @port:       The port index.
2005 * @offset:     The offset of the register.
2006 * @shift:      Number of bits to shift.
2007 * @set:        The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012        int set)
2013{
2014        u16 data;
2015        u16 bits = 1 << port;
2016
2017        data = readw(hw->io + addr);
2018        bits <<= shift;
2019        if (set)
2020                data |= bits;
2021        else
2022                data &= ~bits;
2023        writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw:         The hardware instance.
2029 * @port:       The port index.
2030 * @offset:     The offset of the port register.
2031 * @data:       Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037        u32 addr;
2038
2039        PORT_CTRL_ADDR(port, addr);
2040        addr += offset;
2041        *data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw:         The hardware instance.
2047 * @port:       The port index.
2048 * @offset:     The offset of the port register.
2049 * @data:       Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055        u32 addr;
2056
2057        PORT_CTRL_ADDR(port, addr);
2058        addr += offset;
2059        *data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw:         The hardware instance.
2065 * @port:       The port index.
2066 * @offset:     The offset of the port register.
2067 * @data:       Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073        u32 addr;
2074
2075        PORT_CTRL_ADDR(port, addr);
2076        addr += offset;
2077        writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw:         The hardware instance.
2083 * @addr:       The address of the switch register.
2084 * @bits:       The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093        u16 data;
2094
2095        data = readw(hw->io + addr);
2096        return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw:         The hardware instance.
2102 * @addr:       The address of the switch register.
2103 * @bits:       The data bits to set.
2104 * @set:        The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110        u16 data;
2111
2112        data = readw(hw->io + addr);
2113        if (set)
2114                data |= bits;
2115        else
2116                data &= ~bits;
2117        writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124        port_cfg(hw, p,
2125                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130        return port_chk(hw, p,
2131                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE 10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE           9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw:         The hardware instance.
2143 * @percent:    Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149        u16 data;
2150        u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152        if (value > BROADCAST_STORM_RATE)
2153                value = BROADCAST_STORM_RATE;
2154
2155        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156        data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157        data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw:         The hardware instance.
2164 * @percent:    Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170        int num;
2171        u16 data;
2172
2173        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174        num = (data & BROADCAST_STORM_RATE_HI);
2175        num <<= 8;
2176        num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177        num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178        *percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw:         The hardware instance.
2184 * @port:       The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190        port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw:         The hardware instance.
2196 * @port:       The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203        port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw:         The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214        int port;
2215
2216        hw->ksz_switch->broad_per = 1;
2217        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218        for (port = 0; port < TOTAL_PORT_NUM; port++)
2219                sw_dis_broad_storm(hw, port);
2220        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw:         The hardware instance.
2226 * @percent:    Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions.  The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233        if (percent > 100)
2234                percent = 100;
2235
2236        sw_cfg_broad_storm(hw, percent);
2237        sw_get_broad_storm(hw, &percent);
2238        hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw:         The hardware instance.
2244 * @port:       The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250        u32 addr;
2251
2252        PORT_CTRL_ADDR(port, addr);
2253        addr += KS8842_PORT_IN_RATE_OFFSET;
2254        writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw:         The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265        int port;
2266        int prio;
2267        struct ksz_switch *sw = hw->ksz_switch;
2268
2269        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270                for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271                        sw->port_cfg[port].rx_rate[prio] =
2272                        sw->port_cfg[port].tx_rate[prio] = 0;
2273                }
2274                sw_dis_prio_rate(hw, port);
2275        }
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282        port_cfg(hw, p,
2283                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288        port_cfg(hw, p,
2289                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294        return port_chk(hw, p,
2295                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300        return port_chk(hw, p,
2301                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2307{
2308        port_cfg(hw, p,
2309                KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2310}
2311
2312static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2313{
2314        port_cfg(hw, p,
2315                KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2316}
2317
2318static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2319{
2320        port_cfg(hw, p,
2321                KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2322}
2323
2324static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2325{
2326        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2327}
2328
2329static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2330{
2331        if (!(hw->overrides & FAST_AGING)) {
2332                sw_cfg_fast_aging(hw, 1);
2333                mdelay(1);
2334                sw_cfg_fast_aging(hw, 0);
2335        }
2336}
2337
2338/* VLAN */
2339
2340static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2341{
2342        port_cfg(hw, p,
2343                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2344}
2345
2346static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2347{
2348        port_cfg(hw, p,
2349                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2350}
2351
2352static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2353{
2354        return port_chk(hw, p,
2355                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2356}
2357
2358static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2359{
2360        return port_chk(hw, p,
2361                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2362}
2363
2364static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2365{
2366        port_cfg(hw, p,
2367                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2368}
2369
2370static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2371{
2372        port_cfg(hw, p,
2373                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2374}
2375
2376static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2377{
2378        return port_chk(hw, p,
2379                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2380}
2381
2382static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2383{
2384        return port_chk(hw, p,
2385                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2386}
2387
2388/* Mirroring */
2389
2390static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2391{
2392        port_cfg(hw, p,
2393                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2394}
2395
2396static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2397{
2398        port_cfg(hw, p,
2399                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2400}
2401
2402static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2403{
2404        port_cfg(hw, p,
2405                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2406}
2407
2408static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2409{
2410        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2411}
2412
2413static void sw_init_mirror(struct ksz_hw *hw)
2414{
2415        int port;
2416
2417        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2418                port_cfg_mirror_sniffer(hw, port, 0);
2419                port_cfg_mirror_rx(hw, port, 0);
2420                port_cfg_mirror_tx(hw, port, 0);
2421        }
2422        sw_cfg_mirror_rx_tx(hw, 0);
2423}
2424
2425static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2426{
2427        sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428                SWITCH_UNK_DEF_PORT_ENABLE, set);
2429}
2430
2431static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2432{
2433        return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2434                SWITCH_UNK_DEF_PORT_ENABLE);
2435}
2436
2437static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2438{
2439        port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2440}
2441
2442static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2443{
2444        return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2445}
2446
2447/* Priority */
2448
2449static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2450{
2451        port_cfg(hw, p,
2452                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2453}
2454
2455static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2456{
2457        port_cfg(hw, p,
2458                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2459}
2460
2461static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2462{
2463        port_cfg(hw, p,
2464                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2465}
2466
2467static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2468{
2469        port_cfg(hw, p,
2470                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2471}
2472
2473static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2474{
2475        return port_chk(hw, p,
2476                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2477}
2478
2479static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2480{
2481        return port_chk(hw, p,
2482                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2483}
2484
2485static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2486{
2487        return port_chk(hw, p,
2488                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2489}
2490
2491static inline int port_chk_prio(struct ksz_hw *hw, int p)
2492{
2493        return port_chk(hw, p,
2494                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2495}
2496
2497/**
2498 * sw_dis_diffserv - disable switch DiffServ priority
2499 * @hw:         The hardware instance.
2500 * @port:       The port index.
2501 *
2502 * This routine disables the DiffServ priority function of the switch.
2503 */
2504static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2505{
2506        port_cfg_diffserv(hw, port, 0);
2507}
2508
2509/**
2510 * sw_dis_802_1p - disable switch 802.1p priority
2511 * @hw:         The hardware instance.
2512 * @port:       The port index.
2513 *
2514 * This routine disables the 802.1p priority function of the switch.
2515 */
2516static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2517{
2518        port_cfg_802_1p(hw, port, 0);
2519}
2520
2521/**
2522 * sw_cfg_replace_null_vid -
2523 * @hw:         The hardware instance.
2524 * @set:        The flag to disable or enable.
2525 *
2526 */
2527static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2528{
2529        sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2530}
2531
2532/**
2533 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2534 * @hw:         The hardware instance.
2535 * @port:       The port index.
2536 * @set:        The flag to disable or enable.
2537 *
2538 * This routine enables the 802.1p priority re-mapping function of the switch.
2539 * That allows 802.1p priority field to be replaced with the port's default
2540 * tag's priority value if the ingress packet's 802.1p priority has a higher
2541 * priority than port's default tag's priority.
2542 */
2543static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2544{
2545        port_cfg_replace_vid(hw, port, set);
2546}
2547
2548/**
2549 * sw_cfg_port_based - configure switch port based priority
2550 * @hw:         The hardware instance.
2551 * @port:       The port index.
2552 * @prio:       The priority to set.
2553 *
2554 * This routine configures the port based priority of the switch.
2555 */
2556static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2557{
2558        u16 data;
2559
2560        if (prio > PORT_BASED_PRIORITY_BASE)
2561                prio = PORT_BASED_PRIORITY_BASE;
2562
2563        hw->ksz_switch->port_cfg[port].port_prio = prio;
2564
2565        port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2566        data &= ~PORT_BASED_PRIORITY_MASK;
2567        data |= prio << PORT_BASED_PRIORITY_SHIFT;
2568        port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2569}
2570
2571/**
2572 * sw_dis_multi_queue - disable transmit multiple queues
2573 * @hw:         The hardware instance.
2574 * @port:       The port index.
2575 *
2576 * This routine disables the transmit multiple queues selection of the switch
2577 * port.  Only single transmit queue on the port.
2578 */
2579static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2580{
2581        port_cfg_prio(hw, port, 0);
2582}
2583
2584/**
2585 * sw_init_prio - initialize switch priority
2586 * @hw:         The hardware instance.
2587 *
2588 * This routine initializes the switch QoS priority functions.
2589 */
2590static void sw_init_prio(struct ksz_hw *hw)
2591{
2592        int port;
2593        int tos;
2594        struct ksz_switch *sw = hw->ksz_switch;
2595
2596        /*
2597         * Init all the 802.1p tag priority value to be assigned to different
2598         * priority queue.
2599         */
2600        sw->p_802_1p[0] = 0;
2601        sw->p_802_1p[1] = 0;
2602        sw->p_802_1p[2] = 1;
2603        sw->p_802_1p[3] = 1;
2604        sw->p_802_1p[4] = 2;
2605        sw->p_802_1p[5] = 2;
2606        sw->p_802_1p[6] = 3;
2607        sw->p_802_1p[7] = 3;
2608
2609        /*
2610         * Init all the DiffServ priority value to be assigned to priority
2611         * queue 0.
2612         */
2613        for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2614                sw->diffserv[tos] = 0;
2615
2616        /* All QoS functions disabled. */
2617        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2618                sw_dis_multi_queue(hw, port);
2619                sw_dis_diffserv(hw, port);
2620                sw_dis_802_1p(hw, port);
2621                sw_cfg_replace_vid(hw, port, 0);
2622
2623                sw->port_cfg[port].port_prio = 0;
2624                sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2625        }
2626        sw_cfg_replace_null_vid(hw, 0);
2627}
2628
2629/**
2630 * port_get_def_vid - get port default VID.
2631 * @hw:         The hardware instance.
2632 * @port:       The port index.
2633 * @vid:        Buffer to store the VID.
2634 *
2635 * This routine retrieves the default VID of the port.
2636 */
2637static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2638{
2639        u32 addr;
2640
2641        PORT_CTRL_ADDR(port, addr);
2642        addr += KS8842_PORT_CTRL_VID_OFFSET;
2643        *vid = readw(hw->io + addr);
2644}
2645
2646/**
2647 * sw_init_vlan - initialize switch VLAN
2648 * @hw:         The hardware instance.
2649 *
2650 * This routine initializes the VLAN function of the switch.
2651 */
2652static void sw_init_vlan(struct ksz_hw *hw)
2653{
2654        int port;
2655        int entry;
2656        struct ksz_switch *sw = hw->ksz_switch;
2657
2658        /* Read 16 VLAN entries from device's VLAN table. */
2659        for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2660                sw_r_vlan_table(hw, entry,
2661                        &sw->vlan_table[entry].vid,
2662                        &sw->vlan_table[entry].fid,
2663                        &sw->vlan_table[entry].member);
2664        }
2665
2666        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2667                port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2668                sw->port_cfg[port].member = PORT_MASK;
2669        }
2670}
2671
2672/**
2673 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2674 * @hw:         The hardware instance.
2675 * @port:       The port index.
2676 * @member:     The port-based VLAN membership.
2677 *
2678 * This routine configures the port-based VLAN membership of the port.
2679 */
2680static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2681{
2682        u32 addr;
2683        u8 data;
2684
2685        PORT_CTRL_ADDR(port, addr);
2686        addr += KS8842_PORT_CTRL_2_OFFSET;
2687
2688        data = readb(hw->io + addr);
2689        data &= ~PORT_VLAN_MEMBERSHIP;
2690        data |= (member & PORT_MASK);
2691        writeb(data, hw->io + addr);
2692
2693        hw->ksz_switch->port_cfg[port].member = member;
2694}
2695
2696/**
2697 * sw_get_addr - get the switch MAC address.
2698 * @hw:         The hardware instance.
2699 * @mac_addr:   Buffer to store the MAC address.
2700 *
2701 * This function retrieves the MAC address of the switch.
2702 */
2703static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2704{
2705        int i;
2706
2707        for (i = 0; i < 6; i += 2) {
2708                mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2709                mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2710        }
2711}
2712
2713/**
2714 * sw_set_addr - configure switch MAC address
2715 * @hw:         The hardware instance.
2716 * @mac_addr:   The MAC address.
2717 *
2718 * This function configures the MAC address of the switch.
2719 */
2720static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2721{
2722        int i;
2723
2724        for (i = 0; i < 6; i += 2) {
2725                writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2726                writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2727        }
2728}
2729
2730/**
2731 * sw_set_global_ctrl - set switch global control
2732 * @hw:         The hardware instance.
2733 *
2734 * This routine sets the global control of the switch function.
2735 */
2736static void sw_set_global_ctrl(struct ksz_hw *hw)
2737{
2738        u16 data;
2739
2740        /* Enable switch MII flow control. */
2741        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2742        data |= SWITCH_FLOW_CTRL;
2743        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2744
2745        data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2746
2747        /* Enable aggressive back off algorithm in half duplex mode. */
2748        data |= SWITCH_AGGR_BACKOFF;
2749
2750        /* Enable automatic fast aging when link changed detected. */
2751        data |= SWITCH_AGING_ENABLE;
2752        data |= SWITCH_LINK_AUTO_AGING;
2753
2754        if (hw->overrides & FAST_AGING)
2755                data |= SWITCH_FAST_AGING;
2756        else
2757                data &= ~SWITCH_FAST_AGING;
2758        writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2759
2760        data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2761
2762        /* Enable no excessive collision drop. */
2763        data |= NO_EXC_COLLISION_DROP;
2764        writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2765}
2766
2767enum {
2768        STP_STATE_DISABLED = 0,
2769        STP_STATE_LISTENING,
2770        STP_STATE_LEARNING,
2771        STP_STATE_FORWARDING,
2772        STP_STATE_BLOCKED,
2773        STP_STATE_SIMPLE
2774};
2775
2776/**
2777 * port_set_stp_state - configure port spanning tree state
2778 * @hw:         The hardware instance.
2779 * @port:       The port index.
2780 * @state:      The spanning tree state.
2781 *
2782 * This routine configures the spanning tree state of the port.
2783 */
2784static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2785{
2786        u16 data;
2787
2788        port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2789        switch (state) {
2790        case STP_STATE_DISABLED:
2791                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2792                data |= PORT_LEARN_DISABLE;
2793                break;
2794        case STP_STATE_LISTENING:
2795/*
2796 * No need to turn on transmit because of port direct mode.
2797 * Turning on receive is required if static MAC table is not setup.
2798 */
2799                data &= ~PORT_TX_ENABLE;
2800                data |= PORT_RX_ENABLE;
2801                data |= PORT_LEARN_DISABLE;
2802                break;
2803        case STP_STATE_LEARNING:
2804                data &= ~PORT_TX_ENABLE;
2805                data |= PORT_RX_ENABLE;
2806                data &= ~PORT_LEARN_DISABLE;
2807                break;
2808        case STP_STATE_FORWARDING:
2809                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810                data &= ~PORT_LEARN_DISABLE;
2811                break;
2812        case STP_STATE_BLOCKED:
2813/*
2814 * Need to setup static MAC table with override to keep receiving BPDU
2815 * messages.  See sw_init_stp routine.
2816 */
2817                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2818                data |= PORT_LEARN_DISABLE;
2819                break;
2820        case STP_STATE_SIMPLE:
2821                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2822                data |= PORT_LEARN_DISABLE;
2823                break;
2824        }
2825        port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2826        hw->ksz_switch->port_cfg[port].stp_state = state;
2827}
2828
2829#define STP_ENTRY                       0
2830#define BROADCAST_ENTRY                 1
2831#define BRIDGE_ADDR_ENTRY               2
2832#define IPV6_ADDR_ENTRY                 3
2833
2834/**
2835 * sw_clr_sta_mac_table - clear static MAC table
2836 * @hw:         The hardware instance.
2837 *
2838 * This routine clears the static MAC table.
2839 */
2840static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2841{
2842        struct ksz_mac_table *entry;
2843        int i;
2844
2845        for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2846                entry = &hw->ksz_switch->mac_table[i];
2847                sw_w_sta_mac_table(hw, i,
2848                        entry->mac_addr, entry->ports,
2849                        entry->override, 0,
2850                        entry->use_fid, entry->fid);
2851        }
2852}
2853
2854/**
2855 * sw_init_stp - initialize switch spanning tree support
2856 * @hw:         The hardware instance.
2857 *
2858 * This routine initializes the spanning tree support of the switch.
2859 */
2860static void sw_init_stp(struct ksz_hw *hw)
2861{
2862        struct ksz_mac_table *entry;
2863
2864        entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2865        entry->mac_addr[0] = 0x01;
2866        entry->mac_addr[1] = 0x80;
2867        entry->mac_addr[2] = 0xC2;
2868        entry->mac_addr[3] = 0x00;
2869        entry->mac_addr[4] = 0x00;
2870        entry->mac_addr[5] = 0x00;
2871        entry->ports = HOST_MASK;
2872        entry->override = 1;
2873        entry->valid = 1;
2874        sw_w_sta_mac_table(hw, STP_ENTRY,
2875                entry->mac_addr, entry->ports,
2876                entry->override, entry->valid,
2877                entry->use_fid, entry->fid);
2878}
2879
2880/**
2881 * sw_block_addr - block certain packets from the host port
2882 * @hw:         The hardware instance.
2883 *
2884 * This routine blocks certain packets from reaching to the host port.
2885 */
2886static void sw_block_addr(struct ksz_hw *hw)
2887{
2888        struct ksz_mac_table *entry;
2889        int i;
2890
2891        for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2892                entry = &hw->ksz_switch->mac_table[i];
2893                entry->valid = 0;
2894                sw_w_sta_mac_table(hw, i,
2895                        entry->mac_addr, entry->ports,
2896                        entry->override, entry->valid,
2897                        entry->use_fid, entry->fid);
2898        }
2899}
2900
2901#define PHY_LINK_SUPPORT                \
2902        (PHY_AUTO_NEG_ASYM_PAUSE |      \
2903        PHY_AUTO_NEG_SYM_PAUSE |        \
2904        PHY_AUTO_NEG_100BT4 |           \
2905        PHY_AUTO_NEG_100BTX_FD |        \
2906        PHY_AUTO_NEG_100BTX |           \
2907        PHY_AUTO_NEG_10BT_FD |          \
2908        PHY_AUTO_NEG_10BT)
2909
2910static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2911{
2912        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2913}
2914
2915static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2916{
2917        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2918}
2919
2920static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2921{
2922        *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2923}
2924
2925static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2926{
2927        *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2928}
2929
2930static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2931{
2932        writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2933}
2934
2935static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2936{
2937        *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2938}
2939
2940static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2941{
2942        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2943}
2944
2945static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2946{
2947        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2948}
2949
2950static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2951{
2952        *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2953}
2954
2955static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2956{
2957        writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2958}
2959
2960static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2961{
2962        *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2963}
2964
2965static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2966{
2967        writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2968}
2969
2970/**
2971 * hw_r_phy - read data from PHY register
2972 * @hw:         The hardware instance.
2973 * @port:       Port to read.
2974 * @reg:        PHY register to read.
2975 * @val:        Buffer to store the read data.
2976 *
2977 * This routine reads data from the PHY register.
2978 */
2979static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2980{
2981        int phy;
2982
2983        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2984        *val = readw(hw->io + phy);
2985}
2986
2987/**
2988 * port_w_phy - write data to PHY register
2989 * @hw:         The hardware instance.
2990 * @port:       Port to write.
2991 * @reg:        PHY register to write.
2992 * @val:        Word data to write.
2993 *
2994 * This routine writes data to the PHY register.
2995 */
2996static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2997{
2998        int phy;
2999
3000        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3001        writew(val, hw->io + phy);
3002}
3003
3004/*
3005 * EEPROM access functions
3006 */
3007
3008#define AT93C_CODE                      0
3009#define AT93C_WR_OFF                    0x00
3010#define AT93C_WR_ALL                    0x10
3011#define AT93C_ER_ALL                    0x20
3012#define AT93C_WR_ON                     0x30
3013
3014#define AT93C_WRITE                     1
3015#define AT93C_READ                      2
3016#define AT93C_ERASE                     3
3017
3018#define EEPROM_DELAY                    4
3019
3020static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3021{
3022        u16 data;
3023
3024        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3025        data &= ~gpio;
3026        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3027}
3028
3029static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3030{
3031        u16 data;
3032
3033        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3034        data |= gpio;
3035        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3036}
3037
3038static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3039{
3040        u16 data;
3041
3042        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3043        return (u8)(data & gpio);
3044}
3045
3046static void eeprom_clk(struct ksz_hw *hw)
3047{
3048        raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049        udelay(EEPROM_DELAY);
3050        drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3051        udelay(EEPROM_DELAY);
3052}
3053
3054static u16 spi_r(struct ksz_hw *hw)
3055{
3056        int i;
3057        u16 temp = 0;
3058
3059        for (i = 15; i >= 0; i--) {
3060                raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3061                udelay(EEPROM_DELAY);
3062
3063                temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3064
3065                drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3066                udelay(EEPROM_DELAY);
3067        }
3068        return temp;
3069}
3070
3071static void spi_w(struct ksz_hw *hw, u16 data)
3072{
3073        int i;
3074
3075        for (i = 15; i >= 0; i--) {
3076                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3077                        drop_gpio(hw, EEPROM_DATA_OUT);
3078                eeprom_clk(hw);
3079        }
3080}
3081
3082static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3083{
3084        int i;
3085
3086        /* Initial start bit */
3087        raise_gpio(hw, EEPROM_DATA_OUT);
3088        eeprom_clk(hw);
3089
3090        /* AT93C operation */
3091        for (i = 1; i >= 0; i--) {
3092                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3093                        drop_gpio(hw, EEPROM_DATA_OUT);
3094                eeprom_clk(hw);
3095        }
3096
3097        /* Address location */
3098        for (i = 5; i >= 0; i--) {
3099                (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3100                        drop_gpio(hw, EEPROM_DATA_OUT);
3101                eeprom_clk(hw);
3102        }
3103}
3104
3105#define EEPROM_DATA_RESERVED            0
3106#define EEPROM_DATA_MAC_ADDR_0          1
3107#define EEPROM_DATA_MAC_ADDR_1          2
3108#define EEPROM_DATA_MAC_ADDR_2          3
3109#define EEPROM_DATA_SUBSYS_ID           4
3110#define EEPROM_DATA_SUBSYS_VEN_ID       5
3111#define EEPROM_DATA_PM_CAP              6
3112
3113/* User defined EEPROM data */
3114#define EEPROM_DATA_OTHER_MAC_ADDR      9
3115
3116/**
3117 * eeprom_read - read from AT93C46 EEPROM
3118 * @hw:         The hardware instance.
3119 * @reg:        The register offset.
3120 *
3121 * This function reads a word from the AT93C46 EEPROM.
3122 *
3123 * Return the data value.
3124 */
3125static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3126{
3127        u16 data;
3128
3129        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3130
3131        spi_reg(hw, AT93C_READ, reg);
3132        data = spi_r(hw);
3133
3134        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3135
3136        return data;
3137}
3138
3139/**
3140 * eeprom_write - write to AT93C46 EEPROM
3141 * @hw:         The hardware instance.
3142 * @reg:        The register offset.
3143 * @data:       The data value.
3144 *
3145 * This procedure writes a word to the AT93C46 EEPROM.
3146 */
3147static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3148{
3149        int timeout;
3150
3151        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3152
3153        /* Enable write. */
3154        spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3155        drop_gpio(hw, EEPROM_CHIP_SELECT);
3156        udelay(1);
3157
3158        /* Erase the register. */
3159        raise_gpio(hw, EEPROM_CHIP_SELECT);
3160        spi_reg(hw, AT93C_ERASE, reg);
3161        drop_gpio(hw, EEPROM_CHIP_SELECT);
3162        udelay(1);
3163
3164        /* Check operation complete. */
3165        raise_gpio(hw, EEPROM_CHIP_SELECT);
3166        timeout = 8;
3167        mdelay(2);
3168        do {
3169                mdelay(1);
3170        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3171        drop_gpio(hw, EEPROM_CHIP_SELECT);
3172        udelay(1);
3173
3174        /* Write the register. */
3175        raise_gpio(hw, EEPROM_CHIP_SELECT);
3176        spi_reg(hw, AT93C_WRITE, reg);
3177        spi_w(hw, data);
3178        drop_gpio(hw, EEPROM_CHIP_SELECT);
3179        udelay(1);
3180
3181        /* Check operation complete. */
3182        raise_gpio(hw, EEPROM_CHIP_SELECT);
3183        timeout = 8;
3184        mdelay(2);
3185        do {
3186                mdelay(1);
3187        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3188        drop_gpio(hw, EEPROM_CHIP_SELECT);
3189        udelay(1);
3190
3191        /* Disable write. */
3192        raise_gpio(hw, EEPROM_CHIP_SELECT);
3193        spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3194
3195        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3196}
3197
3198/*
3199 * Link detection routines
3200 */
3201
3202static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3203{
3204        ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3205        switch (port->flow_ctrl) {
3206        case PHY_FLOW_CTRL:
3207                ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3208                break;
3209        /* Not supported. */
3210        case PHY_TX_ONLY:
3211        case PHY_RX_ONLY:
3212        default:
3213                break;
3214        }
3215        return ctrl;
3216}
3217
3218static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3219{
3220        u32 rx_cfg;
3221        u32 tx_cfg;
3222
3223        rx_cfg = hw->rx_cfg;
3224        tx_cfg = hw->tx_cfg;
3225        if (rx)
3226                hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3227        else
3228                hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3229        if (tx)
3230                hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3231        else
3232                hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3233        if (hw->enabled) {
3234                if (rx_cfg != hw->rx_cfg)
3235                        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3236                if (tx_cfg != hw->tx_cfg)
3237                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3238        }
3239}
3240
3241static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3242        u16 local, u16 remote)
3243{
3244        int rx;
3245        int tx;
3246
3247        if (hw->overrides & PAUSE_FLOW_CTRL)
3248                return;
3249
3250        rx = tx = 0;
3251        if (port->force_link)
3252                rx = tx = 1;
3253        if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3254                if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3255                        rx = tx = 1;
3256                } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3257                                (local & PHY_AUTO_NEG_PAUSE) ==
3258                                PHY_AUTO_NEG_ASYM_PAUSE) {
3259                        tx = 1;
3260                }
3261        } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3262                if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3263                        rx = 1;
3264        }
3265        if (!hw->ksz_switch)
3266                set_flow_ctrl(hw, rx, tx);
3267}
3268
3269static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3270        struct ksz_port_info *info, u16 link_status)
3271{
3272        if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3273                        !(hw->overrides & PAUSE_FLOW_CTRL)) {
3274                u32 cfg = hw->tx_cfg;
3275
3276                /* Disable flow control in the half duplex mode. */
3277                if (1 == info->duplex)
3278                        hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3279                if (hw->enabled && cfg != hw->tx_cfg)
3280                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3281        }
3282}
3283
3284/**
3285 * port_get_link_speed - get current link status
3286 * @port:       The port instance.
3287 *
3288 * This routine reads PHY registers to determine the current link status of the
3289 * switch ports.
3290 */
3291static void port_get_link_speed(struct ksz_port *port)
3292{
3293        uint interrupt;
3294        struct ksz_port_info *info;
3295        struct ksz_port_info *linked = NULL;
3296        struct ksz_hw *hw = port->hw;
3297        u16 data;
3298        u16 status;
3299        u8 local;
3300        u8 remote;
3301        int i;
3302        int p;
3303        int change = 0;
3304
3305        interrupt = hw_block_intr(hw);
3306
3307        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3308                info = &hw->port_info[p];
3309                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3310                port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3311
3312                /*
3313                 * Link status is changing all the time even when there is no
3314                 * cable connection!
3315                 */
3316                remote = status & (PORT_AUTO_NEG_COMPLETE |
3317                        PORT_STATUS_LINK_GOOD);
3318                local = (u8) data;
3319
3320                /* No change to status. */
3321                if (local == info->advertised && remote == info->partner)
3322                        continue;
3323
3324                info->advertised = local;
3325                info->partner = remote;
3326                if (status & PORT_STATUS_LINK_GOOD) {
3327
3328                        /* Remember the first linked port. */
3329                        if (!linked)
3330                                linked = info;
3331
3332                        info->tx_rate = 10 * TX_RATE_UNIT;
3333                        if (status & PORT_STATUS_SPEED_100MBIT)
3334                                info->tx_rate = 100 * TX_RATE_UNIT;
3335
3336                        info->duplex = 1;
3337                        if (status & PORT_STATUS_FULL_DUPLEX)
3338                                info->duplex = 2;
3339
3340                        if (media_connected != info->state) {
3341                                hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3342                                        &data);
3343                                hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3344                                        &status);
3345                                determine_flow_ctrl(hw, port, data, status);
3346                                if (hw->ksz_switch) {
3347                                        port_cfg_back_pressure(hw, p,
3348                                                (1 == info->duplex));
3349                                }
3350                                change |= 1 << i;
3351                                port_cfg_change(hw, port, info, status);
3352                        }
3353                        info->state = media_connected;
3354                } else {
3355                        if (media_disconnected != info->state) {
3356                                change |= 1 << i;
3357
3358                                /* Indicate the link just goes down. */
3359                                hw->port_mib[p].link_down = 1;
3360                        }
3361                        info->state = media_disconnected;
3362                }
3363                hw->port_mib[p].state = (u8) info->state;
3364        }
3365
3366        if (linked && media_disconnected == port->linked->state)
3367                port->linked = linked;
3368
3369        hw_restore_intr(hw, interrupt);
3370}
3371
3372#define PHY_RESET_TIMEOUT               10
3373
3374/**
3375 * port_set_link_speed - set port speed
3376 * @port:       The port instance.
3377 *
3378 * This routine sets the link speed of the switch ports.
3379 */
3380static void port_set_link_speed(struct ksz_port *port)
3381{
3382        struct ksz_port_info *info;
3383        struct ksz_hw *hw = port->hw;
3384        u16 data;
3385        u16 cfg;
3386        u8 status;
3387        int i;
3388        int p;
3389
3390        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3391                info = &hw->port_info[p];
3392
3393                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3394                port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3395
3396                cfg = 0;
3397                if (status & PORT_STATUS_LINK_GOOD)
3398                        cfg = data;
3399
3400                data |= PORT_AUTO_NEG_ENABLE;
3401                data = advertised_flow_ctrl(port, data);
3402
3403                data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3404                        PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3405
3406                /* Check if manual configuration is specified by the user. */
3407                if (port->speed || port->duplex) {
3408                        if (10 == port->speed)
3409                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410                                        PORT_AUTO_NEG_100BTX);
3411                        else if (100 == port->speed)
3412                                data &= ~(PORT_AUTO_NEG_10BT_FD |
3413                                        PORT_AUTO_NEG_10BT);
3414                        if (1 == port->duplex)
3415                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3416                                        PORT_AUTO_NEG_10BT_FD);
3417                        else if (2 == port->duplex)
3418                                data &= ~(PORT_AUTO_NEG_100BTX |
3419                                        PORT_AUTO_NEG_10BT);
3420                }
3421                if (data != cfg) {
3422                        data |= PORT_AUTO_NEG_RESTART;
3423                        port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3424                }
3425        }
3426}
3427
3428/**
3429 * port_force_link_speed - force port speed
3430 * @port:       The port instance.
3431 *
3432 * This routine forces the link speed of the switch ports.
3433 */
3434static void port_force_link_speed(struct ksz_port *port)
3435{
3436        struct ksz_hw *hw = port->hw;
3437        u16 data;
3438        int i;
3439        int phy;
3440        int p;
3441
3442        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3443                phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3444                hw_r_phy_ctrl(hw, phy, &data);
3445
3446                data &= ~PHY_AUTO_NEG_ENABLE;
3447
3448                if (10 == port->speed)
3449                        data &= ~PHY_SPEED_100MBIT;
3450                else if (100 == port->speed)
3451                        data |= PHY_SPEED_100MBIT;
3452                if (1 == port->duplex)
3453                        data &= ~PHY_FULL_DUPLEX;
3454                else if (2 == port->duplex)
3455                        data |= PHY_FULL_DUPLEX;
3456                hw_w_phy_ctrl(hw, phy, data);
3457        }
3458}
3459
3460static void port_set_power_saving(struct ksz_port *port, int enable)
3461{
3462        struct ksz_hw *hw = port->hw;
3463        int i;
3464        int p;
3465
3466        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3467                port_cfg(hw, p,
3468                        KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3469}
3470
3471/*
3472 * KSZ8841 power management functions
3473 */
3474
3475/**
3476 * hw_chk_wol_pme_status - check PMEN pin
3477 * @hw:         The hardware instance.
3478 *
3479 * This function is used to check PMEN pin is asserted.
3480 *
3481 * Return 1 if PMEN pin is asserted; otherwise, 0.
3482 */
3483static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3484{
3485        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3486        struct pci_dev *pdev = hw_priv->pdev;
3487        u16 data;
3488
3489        if (!pdev->pm_cap)
3490                return 0;
3491        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3492        return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3493}
3494
3495/**
3496 * hw_clr_wol_pme_status - clear PMEN pin
3497 * @hw:         The hardware instance.
3498 *
3499 * This routine is used to clear PME_Status to deassert PMEN pin.
3500 */
3501static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3502{
3503        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3504        struct pci_dev *pdev = hw_priv->pdev;
3505        u16 data;
3506
3507        if (!pdev->pm_cap)
3508                return;
3509
3510        /* Clear PME_Status to deassert PMEN pin. */
3511        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3512        data |= PCI_PM_CTRL_PME_STATUS;
3513        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3514}
3515
3516/**
3517 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3518 * @hw:         The hardware instance.
3519 * @set:        The flag indicating whether to enable or disable.
3520 *
3521 * This routine is used to enable or disable Wake-on-LAN.
3522 */
3523static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3524{
3525        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3526        struct pci_dev *pdev = hw_priv->pdev;
3527        u16 data;
3528
3529        if (!pdev->pm_cap)
3530                return;
3531        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3532        data &= ~PCI_PM_CTRL_STATE_MASK;
3533        if (set)
3534                data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3535        else
3536                data &= ~PCI_PM_CTRL_PME_ENABLE;
3537        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3538}
3539
3540/**
3541 * hw_cfg_wol - configure Wake-on-LAN features
3542 * @hw:         The hardware instance.
3543 * @frame:      The pattern frame bit.
3544 * @set:        The flag indicating whether to enable or disable.
3545 *
3546 * This routine is used to enable or disable certain Wake-on-LAN features.
3547 */
3548static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3549{
3550        u16 data;
3551
3552        data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3553        if (set)
3554                data |= frame;
3555        else
3556                data &= ~frame;
3557        writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3558}
3559
3560/**
3561 * hw_set_wol_frame - program Wake-on-LAN pattern
3562 * @hw:         The hardware instance.
3563 * @i:          The frame index.
3564 * @mask_size:  The size of the mask.
3565 * @mask:       Mask to ignore certain bytes in the pattern.
3566 * @frame_size: The size of the frame.
3567 * @pattern:    The frame data.
3568 *
3569 * This routine is used to program Wake-on-LAN pattern.
3570 */
3571static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3572        const u8 *mask, uint frame_size, const u8 *pattern)
3573{
3574        int bits;
3575        int from;
3576        int len;
3577        int to;
3578        u32 crc;
3579        u8 data[64];
3580        u8 val = 0;
3581
3582        if (frame_size > mask_size * 8)
3583                frame_size = mask_size * 8;
3584        if (frame_size > 64)
3585                frame_size = 64;
3586
3587        i *= 0x10;
3588        writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3589        writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3590
3591        bits = len = from = to = 0;
3592        do {
3593                if (bits) {
3594                        if ((val & 1))
3595                                data[to++] = pattern[from];
3596                        val >>= 1;
3597                        ++from;
3598                        --bits;
3599                } else {
3600                        val = mask[len];
3601                        writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3602                                + len);
3603                        ++len;
3604                        if (val)
3605                                bits = 8;
3606                        else
3607                                from += 8;
3608                }
3609        } while (from < (int) frame_size);
3610        if (val) {
3611                bits = mask[len - 1];
3612                val <<= (from % 8);
3613                bits &= ~val;
3614                writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3615                        1);
3616        }
3617        crc = ether_crc(to, data);
3618        writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3619}
3620
3621/**
3622 * hw_add_wol_arp - add ARP pattern
3623 * @hw:         The hardware instance.
3624 * @ip_addr:    The IPv4 address assigned to the device.
3625 *
3626 * This routine is used to add ARP pattern for waking up the host.
3627 */
3628static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3629{
3630        static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3631        u8 pattern[42] = {
3632                0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3633                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3634                0x08, 0x06,
3635                0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3636                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3637                0x00, 0x00, 0x00, 0x00,
3638                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3639                0x00, 0x00, 0x00, 0x00 };
3640
3641        memcpy(&pattern[38], ip_addr, 4);
3642        hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3643}
3644
3645/**
3646 * hw_add_wol_bcast - add broadcast pattern
3647 * @hw:         The hardware instance.
3648 *
3649 * This routine is used to add broadcast pattern for waking up the host.
3650 */
3651static void hw_add_wol_bcast(struct ksz_hw *hw)
3652{
3653        static const u8 mask[] = { 0x3F };
3654        static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3655
3656        hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3657}
3658
3659/**
3660 * hw_add_wol_mcast - add multicast pattern
3661 * @hw:         The hardware instance.
3662 *
3663 * This routine is used to add multicast pattern for waking up the host.
3664 *
3665 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3666 * by IPv6 ping command.  Note that multicast packets are filtred through the
3667 * multicast hash table, so not all multicast packets can wake up the host.
3668 */
3669static void hw_add_wol_mcast(struct ksz_hw *hw)
3670{
3671        static const u8 mask[] = { 0x3F };
3672        u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3673
3674        memcpy(&pattern[3], &hw->override_addr[3], 3);
3675        hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3676}
3677
3678/**
3679 * hw_add_wol_ucast - add unicast pattern
3680 * @hw:         The hardware instance.
3681 *
3682 * This routine is used to add unicast pattern to wakeup the host.
3683 *
3684 * It is assumed the unicast packet is directed to the device, as the hardware
3685 * can only receive them in normal case.
3686 */
3687static void hw_add_wol_ucast(struct ksz_hw *hw)
3688{
3689        static const u8 mask[] = { 0x3F };
3690
3691        hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3692}
3693
3694/**
3695 * hw_enable_wol - enable Wake-on-LAN
3696 * @hw:         The hardware instance.
3697 * @wol_enable: The Wake-on-LAN settings.
3698 * @net_addr:   The IPv4 address assigned to the device.
3699 *
3700 * This routine is used to enable Wake-on-LAN depending on driver settings.
3701 */
3702static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3703{
3704        hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3705        hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3706        hw_add_wol_ucast(hw);
3707        hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3708        hw_add_wol_mcast(hw);
3709        hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3710        hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3711        hw_add_wol_arp(hw, net_addr);
3712}
3713
3714/**
3715 * hw_init - check driver is correct for the hardware
3716 * @hw:         The hardware instance.
3717 *
3718 * This function checks the hardware is correct for this driver and sets the
3719 * hardware up for proper initialization.
3720 *
3721 * Return number of ports or 0 if not right.
3722 */
3723static int hw_init(struct ksz_hw *hw)
3724{
3725        int rc = 0;
3726        u16 data;
3727        u16 revision;
3728
3729        /* Set bus speed to 125MHz. */
3730        writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3731
3732        /* Check KSZ884x chip ID. */
3733        data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3734
3735        revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3736        data &= KS884X_CHIP_ID_MASK_41;
3737        if (REG_CHIP_ID_41 == data)
3738                rc = 1;
3739        else if (REG_CHIP_ID_42 == data)
3740                rc = 2;
3741        else
3742                return 0;
3743
3744        /* Setup hardware features or bug workarounds. */
3745        if (revision <= 1) {
3746                hw->features |= SMALL_PACKET_TX_BUG;
3747                if (1 == rc)
3748                        hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3749        }
3750        return rc;
3751}
3752
3753/**
3754 * hw_reset - reset the hardware
3755 * @hw:         The hardware instance.
3756 *
3757 * This routine resets the hardware.
3758 */
3759static void hw_reset(struct ksz_hw *hw)
3760{
3761        writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762
3763        /* Wait for device to reset. */
3764        mdelay(10);
3765
3766        /* Write 0 to clear device reset. */
3767        writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3768}
3769
3770/**
3771 * hw_setup - setup the hardware
3772 * @hw:         The hardware instance.
3773 *
3774 * This routine setup the hardware for proper operation.
3775 */
3776static void hw_setup(struct ksz_hw *hw)
3777{
3778#if SET_DEFAULT_LED
3779        u16 data;
3780
3781        /* Change default LED mode. */
3782        data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3783        data &= ~LED_MODE;
3784        data |= SET_DEFAULT_LED;
3785        writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3786#endif
3787
3788        /* Setup transmit control. */
3789        hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3790                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3791
3792        /* Setup receive control. */
3793        hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3794                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3795        hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3796
3797        /* Hardware cannot handle UDP packet in IP fragments. */
3798        hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3799
3800        if (hw->all_multi)
3801                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3802        if (hw->promiscuous)
3803                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3804}
3805
3806/**
3807 * hw_setup_intr - setup interrupt mask
3808 * @hw:         The hardware instance.
3809 *
3810 * This routine setup the interrupt mask for proper operation.
3811 */
3812static void hw_setup_intr(struct ksz_hw *hw)
3813{
3814        hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3815}
3816
3817static void ksz_check_desc_num(struct ksz_desc_info *info)
3818{
3819#define MIN_DESC_SHIFT  2
3820
3821        int alloc = info->alloc;
3822        int shift;
3823
3824        shift = 0;
3825        while (!(alloc & 1)) {
3826                shift++;
3827                alloc >>= 1;
3828        }
3829        if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3830                pr_alert("Hardware descriptor numbers not right!\n");
3831                while (alloc) {
3832                        shift++;
3833                        alloc >>= 1;
3834                }
3835                if (shift < MIN_DESC_SHIFT)
3836                        shift = MIN_DESC_SHIFT;
3837                alloc = 1 << shift;
3838                info->alloc = alloc;
3839        }
3840        info->mask = info->alloc - 1;
3841}
3842
3843static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3844{
3845        int i;
3846        u32 phys = desc_info->ring_phys;
3847        struct ksz_hw_desc *desc = desc_info->ring_virt;
3848        struct ksz_desc *cur = desc_info->ring;
3849        struct ksz_desc *previous = NULL;
3850
3851        for (i = 0; i < desc_info->alloc; i++) {
3852                cur->phw = desc++;
3853                phys += desc_info->size;
3854                previous = cur++;
3855                previous->phw->next = cpu_to_le32(phys);
3856        }
3857        previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3858        previous->sw.buf.rx.end_of_ring = 1;
3859        previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3860
3861        desc_info->avail = desc_info->alloc;
3862        desc_info->last = desc_info->next = 0;
3863
3864        desc_info->cur = desc_info->ring;
3865}
3866
3867/**
3868 * hw_set_desc_base - set descriptor base addresses
3869 * @hw:         The hardware instance.
3870 * @tx_addr:    The transmit descriptor base.
3871 * @rx_addr:    The receive descriptor base.
3872 *
3873 * This routine programs the descriptor base addresses after reset.
3874 */
3875static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3876{
3877        /* Set base address of Tx/Rx descriptors. */
3878        writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3879        writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3880}
3881
3882static void hw_reset_pkts(struct ksz_desc_info *info)
3883{
3884        info->cur = info->ring;
3885        info->avail = info->alloc;
3886        info->last = info->next = 0;
3887}
3888
3889static inline void hw_resume_rx(struct ksz_hw *hw)
3890{
3891        writel(DMA_START, hw->io + KS_DMA_RX_START);
3892}
3893
3894/**
3895 * hw_start_rx - start receiving
3896 * @hw:         The hardware instance.
3897 *
3898 * This routine starts the receive function of the hardware.
3899 */
3900static void hw_start_rx(struct ksz_hw *hw)
3901{
3902        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3903
3904        /* Notify when the receive stops. */
3905        hw->intr_mask |= KS884X_INT_RX_STOPPED;
3906
3907        writel(DMA_START, hw->io + KS_DMA_RX_START);
3908        hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3909        hw->rx_stop++;
3910
3911        /* Variable overflows. */
3912        if (0 == hw->rx_stop)
3913                hw->rx_stop = 2;
3914}
3915
3916/**
3917 * hw_stop_rx - stop receiving
3918 * @hw:         The hardware instance.
3919 *
3920 * This routine stops the receive function of the hardware.
3921 */
3922static void hw_stop_rx(struct ksz_hw *hw)
3923{
3924        hw->rx_stop = 0;
3925        hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3926        writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3927}
3928
3929/**
3930 * hw_start_tx - start transmitting
3931 * @hw:         The hardware instance.
3932 *
3933 * This routine starts the transmit function of the hardware.
3934 */
3935static void hw_start_tx(struct ksz_hw *hw)
3936{
3937        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3938}
3939
3940/**
3941 * hw_stop_tx - stop transmitting
3942 * @hw:         The hardware instance.
3943 *
3944 * This routine stops the transmit function of the hardware.
3945 */
3946static void hw_stop_tx(struct ksz_hw *hw)
3947{
3948        writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3949}
3950
3951/**
3952 * hw_disable - disable hardware
3953 * @hw:         The hardware instance.
3954 *
3955 * This routine disables the hardware.
3956 */
3957static void hw_disable(struct ksz_hw *hw)
3958{
3959        hw_stop_rx(hw);
3960        hw_stop_tx(hw);
3961        hw->enabled = 0;
3962}
3963
3964/**
3965 * hw_enable - enable hardware
3966 * @hw:         The hardware instance.
3967 *
3968 * This routine enables the hardware.
3969 */
3970static void hw_enable(struct ksz_hw *hw)
3971{
3972        hw_start_tx(hw);
3973        hw_start_rx(hw);
3974        hw->enabled = 1;
3975}
3976
3977/**
3978 * hw_alloc_pkt - allocate enough descriptors for transmission
3979 * @hw:         The hardware instance.
3980 * @length:     The length of the packet.
3981 * @physical:   Number of descriptors required.
3982 *
3983 * This function allocates descriptors for transmission.
3984 *
3985 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3986 */
3987static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3988{
3989        /* Always leave one descriptor free. */
3990        if (hw->tx_desc_info.avail <= 1)
3991                return 0;
3992
3993        /* Allocate a descriptor for transmission and mark it current. */
3994        get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3995        hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3996
3997        /* Keep track of number of transmit descriptors used so far. */
3998        ++hw->tx_int_cnt;
3999        hw->tx_size += length;
4000
4001        /* Cannot hold on too much data. */
4002        if (hw->tx_size >= MAX_TX_HELD_SIZE)
4003                hw->tx_int_cnt = hw->tx_int_mask + 1;
4004
4005        if (physical > hw->tx_desc_info.avail)
4006                return 1;
4007
4008        return hw->tx_desc_info.avail;
4009}
4010
4011/**
4012 * hw_send_pkt - mark packet for transmission
4013 * @hw:         The hardware instance.
4014 *
4015 * This routine marks the packet for transmission in PCI version.
4016 */
4017static void hw_send_pkt(struct ksz_hw *hw)
4018{
4019        struct ksz_desc *cur = hw->tx_desc_info.cur;
4020
4021        cur->sw.buf.tx.last_seg = 1;
4022
4023        /* Interrupt only after specified number of descriptors used. */
4024        if (hw->tx_int_cnt > hw->tx_int_mask) {
4025                cur->sw.buf.tx.intr = 1;
4026                hw->tx_int_cnt = 0;
4027                hw->tx_size = 0;
4028        }
4029
4030        /* KSZ8842 supports port directed transmission. */
4031        cur->sw.buf.tx.dest_port = hw->dst_ports;
4032
4033        release_desc(cur);
4034
4035        writel(0, hw->io + KS_DMA_TX_START);
4036}
4037
4038static int empty_addr(u8 *addr)
4039{
4040        u32 *addr1 = (u32 *) addr;
4041        u16 *addr2 = (u16 *) &addr[4];
4042
4043        return 0 == *addr1 && 0 == *addr2;
4044}
4045
4046/**
4047 * hw_set_addr - set MAC address
4048 * @hw:         The hardware instance.
4049 *
4050 * This routine programs the MAC address of the hardware when the address is
4051 * overrided.
4052 */
4053static void hw_set_addr(struct ksz_hw *hw)
4054{
4055        int i;
4056
4057        for (i = 0; i < ETH_ALEN; i++)
4058                writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4059                        hw->io + KS884X_ADDR_0_OFFSET + i);
4060
4061        sw_set_addr(hw, hw->override_addr);
4062}
4063
4064/**
4065 * hw_read_addr - read MAC address
4066 * @hw:         The hardware instance.
4067 *
4068 * This routine retrieves the MAC address of the hardware.
4069 */
4070static void hw_read_addr(struct ksz_hw *hw)
4071{
4072        int i;
4073
4074        for (i = 0; i < ETH_ALEN; i++)
4075                hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4076                        KS884X_ADDR_0_OFFSET + i);
4077
4078        if (!hw->mac_override) {
4079                memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4080                if (empty_addr(hw->override_addr)) {
4081                        memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4082                        memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4083                               ETH_ALEN);
4084                        hw->override_addr[5] += hw->id;
4085                        hw_set_addr(hw);
4086                }
4087        }
4088}
4089
4090static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4091{
4092        int i;
4093        u32 mac_addr_lo;
4094        u32 mac_addr_hi;
4095
4096        mac_addr_hi = 0;
4097        for (i = 0; i < 2; i++) {
4098                mac_addr_hi <<= 8;
4099                mac_addr_hi |= mac_addr[i];
4100        }
4101        mac_addr_hi |= ADD_ADDR_ENABLE;
4102        mac_addr_lo = 0;
4103        for (i = 2; i < 6; i++) {
4104                mac_addr_lo <<= 8;
4105                mac_addr_lo |= mac_addr[i];
4106        }
4107        index *= ADD_ADDR_INCR;
4108
4109        writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4110        writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4111}
4112
4113static void hw_set_add_addr(struct ksz_hw *hw)
4114{
4115        int i;
4116
4117        for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4118                if (empty_addr(hw->address[i]))
4119                        writel(0, hw->io + ADD_ADDR_INCR * i +
4120                                KS_ADD_ADDR_0_HI);
4121                else
4122                        hw_ena_add_addr(hw, i, hw->address[i]);
4123        }
4124}
4125
4126static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4127{
4128        int i;
4129        int j = ADDITIONAL_ENTRIES;
4130
4131        if (!memcmp(hw->override_addr, mac_addr, ETH_ALEN))
4132                return 0;
4133        for (i = 0; i < hw->addr_list_size; i++) {
4134                if (!memcmp(hw->address[i], mac_addr, ETH_ALEN))
4135                        return 0;
4136                if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4137                        j = i;
4138        }
4139        if (j < ADDITIONAL_ENTRIES) {
4140                memcpy(hw->address[j], mac_addr, ETH_ALEN);
4141                hw_ena_add_addr(hw, j, hw->address[j]);
4142                return 0;
4143        }
4144        return -1;
4145}
4146
4147static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4148{
4149        int i;
4150
4151        for (i = 0; i < hw->addr_list_size; i++) {
4152                if (!memcmp(hw->address[i], mac_addr, ETH_ALEN)) {
4153                        memset(hw->address[i], 0, ETH_ALEN);
4154                        writel(0, hw->io + ADD_ADDR_INCR * i +
4155                                KS_ADD_ADDR_0_HI);
4156                        return 0;
4157                }
4158        }
4159        return -1;
4160}
4161
4162/**
4163 * hw_clr_multicast - clear multicast addresses
4164 * @hw:         The hardware instance.
4165 *
4166 * This routine removes all multicast addresses set in the hardware.
4167 */
4168static void hw_clr_multicast(struct ksz_hw *hw)
4169{
4170        int i;
4171
4172        for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4173                hw->multi_bits[i] = 0;
4174
4175                writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4176        }
4177}
4178
4179/**
4180 * hw_set_grp_addr - set multicast addresses
4181 * @hw:         The hardware instance.
4182 *
4183 * This routine programs multicast addresses for the hardware to accept those
4184 * addresses.
4185 */
4186static void hw_set_grp_addr(struct ksz_hw *hw)
4187{
4188        int i;
4189        int index;
4190        int position;
4191        int value;
4192
4193        memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4194
4195        for (i = 0; i < hw->multi_list_size; i++) {
4196                position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4197                index = position >> 3;
4198                value = 1 << (position & 7);
4199                hw->multi_bits[index] |= (u8) value;
4200        }
4201
4202        for (i = 0; i < HW_MULTICAST_SIZE; i++)
4203                writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4204                        i);
4205}
4206
4207/**
4208 * hw_set_multicast - enable or disable all multicast receiving
4209 * @hw:         The hardware instance.
4210 * @multicast:  To turn on or off the all multicast feature.
4211 *
4212 * This routine enables/disables the hardware to accept all multicast packets.
4213 */
4214static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4215{
4216        /* Stop receiving for reconfiguration. */
4217        hw_stop_rx(hw);
4218
4219        if (multicast)
4220                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4221        else
4222                hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4223
4224        if (hw->enabled)
4225                hw_start_rx(hw);
4226}
4227
4228/**
4229 * hw_set_promiscuous - enable or disable promiscuous receiving
4230 * @hw:         The hardware instance.
4231 * @prom:       To turn on or off the promiscuous feature.
4232 *
4233 * This routine enables/disables the hardware to accept all packets.
4234 */
4235static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4236{
4237        /* Stop receiving for reconfiguration. */
4238        hw_stop_rx(hw);
4239
4240        if (prom)
4241                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4242        else
4243                hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4244
4245        if (hw->enabled)
4246                hw_start_rx(hw);
4247}
4248
4249/**
4250 * sw_enable - enable the switch
4251 * @hw:         The hardware instance.
4252 * @enable:     The flag to enable or disable the switch
4253 *
4254 * This routine is used to enable/disable the switch in KSZ8842.
4255 */
4256static void sw_enable(struct ksz_hw *hw, int enable)
4257{
4258        int port;
4259
4260        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4261                if (hw->dev_count > 1) {
4262                        /* Set port-base vlan membership with host port. */
4263                        sw_cfg_port_base_vlan(hw, port,
4264                                HOST_MASK | (1 << port));
4265                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
4266                } else {
4267                        sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4268                        port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4269                }
4270        }
4271        if (hw->dev_count > 1)
4272                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4273        else
4274                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4275
4276        if (enable)
4277                enable = KS8842_START;
4278        writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4279}
4280
4281/**
4282 * sw_setup - setup the switch
4283 * @hw:         The hardware instance.
4284 *
4285 * This routine setup the hardware switch engine for default operation.
4286 */
4287static void sw_setup(struct ksz_hw *hw)
4288{
4289        int port;
4290
4291        sw_set_global_ctrl(hw);
4292
4293        /* Enable switch broadcast storm protection at 10% percent rate. */
4294        sw_init_broad_storm(hw);
4295        hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4296        for (port = 0; port < SWITCH_PORT_NUM; port++)
4297                sw_ena_broad_storm(hw, port);
4298
4299        sw_init_prio(hw);
4300
4301        sw_init_mirror(hw);
4302
4303        sw_init_prio_rate(hw);
4304
4305        sw_init_vlan(hw);
4306
4307        if (hw->features & STP_SUPPORT)
4308                sw_init_stp(hw);
4309        if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4310                        SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4311                hw->overrides |= PAUSE_FLOW_CTRL;
4312        sw_enable(hw, 1);
4313}
4314
4315/**
4316 * ksz_start_timer - start kernel timer
4317 * @info:       Kernel timer information.
4318 * @time:       The time tick.
4319 *
4320 * This routine starts the kernel timer after the specified time tick.
4321 */
4322static void ksz_start_timer(struct ksz_timer_info *info, int time)
4323{
4324        info->cnt = 0;
4325        info->timer.expires = jiffies + time;
4326        add_timer(&info->timer);
4327
4328        /* infinity */
4329        info->max = -1;
4330}
4331
4332/**
4333 * ksz_stop_timer - stop kernel timer
4334 * @info:       Kernel timer information.
4335 *
4336 * This routine stops the kernel timer.
4337 */
4338static void ksz_stop_timer(struct ksz_timer_info *info)
4339{
4340        if (info->max) {
4341                info->max = 0;
4342                del_timer_sync(&info->timer);
4343        }
4344}
4345
4346static void ksz_init_timer(struct ksz_timer_info *info, int period,
4347        void (*function)(unsigned long), void *data)
4348{
4349        info->max = 0;
4350        info->period = period;
4351        init_timer(&info->timer);
4352        info->timer.function = function;
4353        info->timer.data = (unsigned long) data;
4354}
4355
4356static void ksz_update_timer(struct ksz_timer_info *info)
4357{
4358        ++info->cnt;
4359        if (info->max > 0) {
4360                if (info->cnt < info->max) {
4361                        info->timer.expires = jiffies + info->period;
4362                        add_timer(&info->timer);
4363                } else
4364                        info->max = 0;
4365        } else if (info->max < 0) {
4366                info->timer.expires = jiffies + info->period;
4367                add_timer(&info->timer);
4368        }
4369}
4370
4371/**
4372 * ksz_alloc_soft_desc - allocate software descriptors
4373 * @desc_info:  Descriptor information structure.
4374 * @transmit:   Indication that descriptors are for transmit.
4375 *
4376 * This local function allocates software descriptors for manipulation in
4377 * memory.
4378 *
4379 * Return 0 if successful.
4380 */
4381static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4382{
4383        desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4384                                  GFP_KERNEL);
4385        if (!desc_info->ring)
4386                return 1;
4387        hw_init_desc(desc_info, transmit);
4388        return 0;
4389}
4390
4391/**
4392 * ksz_alloc_desc - allocate hardware descriptors
4393 * @adapter:    Adapter information structure.
4394 *
4395 * This local function allocates hardware descriptors for receiving and
4396 * transmitting.
4397 *
4398 * Return 0 if successful.
4399 */
4400static int ksz_alloc_desc(struct dev_info *adapter)
4401{
4402        struct ksz_hw *hw = &adapter->hw;
4403        int offset;
4404
4405        /* Allocate memory for RX & TX descriptors. */
4406        adapter->desc_pool.alloc_size =
4407                hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4408                hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4409                DESC_ALIGNMENT;
4410
4411        adapter->desc_pool.alloc_virt =
4412                pci_alloc_consistent(
4413                        adapter->pdev, adapter->desc_pool.alloc_size,
4414                        &adapter->desc_pool.dma_addr);
4415        if (adapter->desc_pool.alloc_virt == NULL) {
4416                adapter->desc_pool.alloc_size = 0;
4417                return 1;
4418        }
4419        memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4420
4421        /* Align to the next cache line boundary. */
4422        offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4423                (DESC_ALIGNMENT -
4424                ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4425        adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4426        adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4427
4428        /* Allocate receive/transmit descriptors. */
4429        hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4430                adapter->desc_pool.virt;
4431        hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4432        offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4433        hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434                (adapter->desc_pool.virt + offset);
4435        hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4436
4437        if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4438                return 1;
4439        if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4440                return 1;
4441
4442        return 0;
4443}
4444
4445/**
4446 * free_dma_buf - release DMA buffer resources
4447 * @adapter:    Adapter information structure.
4448 *
4449 * This routine is just a helper function to release the DMA buffer resources.
4450 */
4451static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4452        int direction)
4453{
4454        pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4455        dev_kfree_skb(dma_buf->skb);
4456        dma_buf->skb = NULL;
4457        dma_buf->dma = 0;
4458}
4459
4460/**
4461 * ksz_init_rx_buffers - initialize receive descriptors
4462 * @adapter:    Adapter information structure.
4463 *
4464 * This routine initializes DMA buffers for receiving.
4465 */
4466static void ksz_init_rx_buffers(struct dev_info *adapter)
4467{
4468        int i;
4469        struct ksz_desc *desc;
4470        struct ksz_dma_buf *dma_buf;
4471        struct ksz_hw *hw = &adapter->hw;
4472        struct ksz_desc_info *info = &hw->rx_desc_info;
4473
4474        for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4475                get_rx_pkt(info, &desc);
4476
4477                dma_buf = DMA_BUFFER(desc);
4478                if (dma_buf->skb && dma_buf->len != adapter->mtu)
4479                        free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4480                dma_buf->len = adapter->mtu;
4481                if (!dma_buf->skb)
4482                        dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4483                if (dma_buf->skb && !dma_buf->dma)
4484                        dma_buf->dma = pci_map_single(
4485                                adapter->pdev,
4486                                skb_tail_pointer(dma_buf->skb),
4487                                dma_buf->len,
4488                                PCI_DMA_FROMDEVICE);
4489
4490                /* Set descriptor. */
4491                set_rx_buf(desc, dma_buf->dma);
4492                set_rx_len(desc, dma_buf->len);
4493                release_desc(desc);
4494        }
4495}
4496
4497/**
4498 * ksz_alloc_mem - allocate memory for hardware descriptors
4499 * @adapter:    Adapter information structure.
4500 *
4501 * This function allocates memory for use by hardware descriptors for receiving
4502 * and transmitting.
4503 *
4504 * Return 0 if successful.
4505 */
4506static int ksz_alloc_mem(struct dev_info *adapter)
4507{
4508        struct ksz_hw *hw = &adapter->hw;
4509
4510        /* Determine the number of receive and transmit descriptors. */
4511        hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4512        hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4513
4514        /* Determine how many descriptors to skip transmit interrupt. */
4515        hw->tx_int_cnt = 0;
4516        hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4517        if (hw->tx_int_mask > 8)
4518                hw->tx_int_mask = 8;
4519        while (hw->tx_int_mask) {
4520                hw->tx_int_cnt++;
4521                hw->tx_int_mask >>= 1;
4522        }
4523        if (hw->tx_int_cnt) {
4524                hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4525                hw->tx_int_cnt = 0;
4526        }
4527
4528        /* Determine the descriptor size. */
4529        hw->rx_desc_info.size =
4530                (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4531                DESC_ALIGNMENT) * DESC_ALIGNMENT);
4532        hw->tx_desc_info.size =
4533                (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4534                DESC_ALIGNMENT) * DESC_ALIGNMENT);
4535        if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4536                pr_alert("Hardware descriptor size not right!\n");
4537        ksz_check_desc_num(&hw->rx_desc_info);
4538        ksz_check_desc_num(&hw->tx_desc_info);
4539
4540        /* Allocate descriptors. */
4541        if (ksz_alloc_desc(adapter))
4542                return 1;
4543
4544        return 0;
4545}
4546
4547/**
4548 * ksz_free_desc - free software and hardware descriptors
4549 * @adapter:    Adapter information structure.
4550 *
4551 * This local routine frees the software and hardware descriptors allocated by
4552 * ksz_alloc_desc().
4553 */
4554static void ksz_free_desc(struct dev_info *adapter)
4555{
4556        struct ksz_hw *hw = &adapter->hw;
4557
4558        /* Reset descriptor. */
4559        hw->rx_desc_info.ring_virt = NULL;
4560        hw->tx_desc_info.ring_virt = NULL;
4561        hw->rx_desc_info.ring_phys = 0;
4562        hw->tx_desc_info.ring_phys = 0;
4563
4564        /* Free memory. */
4565        if (adapter->desc_pool.alloc_virt)
4566                pci_free_consistent(
4567                        adapter->pdev,
4568                        adapter->desc_pool.alloc_size,
4569                        adapter->desc_pool.alloc_virt,
4570                        adapter->desc_pool.dma_addr);
4571
4572        /* Reset resource pool. */
4573        adapter->desc_pool.alloc_size = 0;
4574        adapter->desc_pool.alloc_virt = NULL;
4575
4576        kfree(hw->rx_desc_info.ring);
4577        hw->rx_desc_info.ring = NULL;
4578        kfree(hw->tx_desc_info.ring);
4579        hw->tx_desc_info.ring = NULL;
4580}
4581
4582/**
4583 * ksz_free_buffers - free buffers used in the descriptors
4584 * @adapter:    Adapter information structure.
4585 * @desc_info:  Descriptor information structure.
4586 *
4587 * This local routine frees buffers used in the DMA buffers.
4588 */
4589static void ksz_free_buffers(struct dev_info *adapter,
4590        struct ksz_desc_info *desc_info, int direction)
4591{
4592        int i;
4593        struct ksz_dma_buf *dma_buf;
4594        struct ksz_desc *desc = desc_info->ring;
4595
4596        for (i = 0; i < desc_info->alloc; i++) {
4597                dma_buf = DMA_BUFFER(desc);
4598                if (dma_buf->skb)
4599                        free_dma_buf(adapter, dma_buf, direction);
4600                desc++;
4601        }
4602}
4603
4604/**
4605 * ksz_free_mem - free all resources used by descriptors
4606 * @adapter:    Adapter information structure.
4607 *
4608 * This local routine frees all the resources allocated by ksz_alloc_mem().
4609 */
4610static void ksz_free_mem(struct dev_info *adapter)
4611{
4612        /* Free transmit buffers. */
4613        ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4614                PCI_DMA_TODEVICE);
4615
4616        /* Free receive buffers. */
4617        ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4618                PCI_DMA_FROMDEVICE);
4619
4620        /* Free descriptors. */
4621        ksz_free_desc(adapter);
4622}
4623
4624static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4625        u64 *counter)
4626{
4627        int i;
4628        int mib;
4629        int port;
4630        struct ksz_port_mib *port_mib;
4631
4632        memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4633        for (i = 0, port = first; i < cnt; i++, port++) {
4634                port_mib = &hw->port_mib[port];
4635                for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4636                        counter[mib] += port_mib->counter[mib];
4637        }
4638}
4639
4640/**
4641 * send_packet - send packet
4642 * @skb:        Socket buffer.
4643 * @dev:        Network device.
4644 *
4645 * This routine is used to send a packet out to the network.
4646 */
4647static void send_packet(struct sk_buff *skb, struct net_device *dev)
4648{
4649        struct ksz_desc *desc;
4650        struct ksz_desc *first;
4651        struct dev_priv *priv = netdev_priv(dev);
4652        struct dev_info *hw_priv = priv->adapter;
4653        struct ksz_hw *hw = &hw_priv->hw;
4654        struct ksz_desc_info *info = &hw->tx_desc_info;
4655        struct ksz_dma_buf *dma_buf;
4656        int len;
4657        int last_frag = skb_shinfo(skb)->nr_frags;
4658
4659        /*
4660         * KSZ8842 with multiple device interfaces needs to be told which port
4661         * to send.
4662         */
4663        if (hw->dev_count > 1)
4664                hw->dst_ports = 1 << priv->port.first_port;
4665
4666        /* Hardware will pad the length to 60. */
4667        len = skb->len;
4668
4669        /* Remember the very first descriptor. */
4670        first = info->cur;
4671        desc = first;
4672
4673        dma_buf = DMA_BUFFER(desc);
4674        if (last_frag) {
4675                int frag;
4676                skb_frag_t *this_frag;
4677
4678                dma_buf->len = skb_headlen(skb);
4679
4680                dma_buf->dma = pci_map_single(
4681                        hw_priv->pdev, skb->data, dma_buf->len,
4682                        PCI_DMA_TODEVICE);
4683                set_tx_buf(desc, dma_buf->dma);
4684                set_tx_len(desc, dma_buf->len);
4685
4686                frag = 0;
4687                do {
4688                        this_frag = &skb_shinfo(skb)->frags[frag];
4689
4690                        /* Get a new descriptor. */
4691                        get_tx_pkt(info, &desc);
4692
4693                        /* Keep track of descriptors used so far. */
4694                        ++hw->tx_int_cnt;
4695
4696                        dma_buf = DMA_BUFFER(desc);
4697                        dma_buf->len = skb_frag_size(this_frag);
4698
4699                        dma_buf->dma = pci_map_single(
4700                                hw_priv->pdev,
4701                                skb_frag_address(this_frag),
4702                                dma_buf->len,
4703                                PCI_DMA_TODEVICE);
4704                        set_tx_buf(desc, dma_buf->dma);
4705                        set_tx_len(desc, dma_buf->len);
4706
4707                        frag++;
4708                        if (frag == last_frag)
4709                                break;
4710
4711                        /* Do not release the last descriptor here. */
4712                        release_desc(desc);
4713                } while (1);
4714
4715                /* current points to the last descriptor. */
4716                info->cur = desc;
4717
4718                /* Release the first descriptor. */
4719                release_desc(first);
4720        } else {
4721                dma_buf->len = len;
4722
4723                dma_buf->dma = pci_map_single(
4724                        hw_priv->pdev, skb->data, dma_buf->len,
4725                        PCI_DMA_TODEVICE);
4726                set_tx_buf(desc, dma_buf->dma);
4727                set_tx_len(desc, dma_buf->len);
4728        }
4729
4730        if (skb->ip_summed == CHECKSUM_PARTIAL) {
4731                (desc)->sw.buf.tx.csum_gen_tcp = 1;
4732                (desc)->sw.buf.tx.csum_gen_udp = 1;
4733        }
4734
4735        /*
4736         * The last descriptor holds the packet so that it can be returned to
4737         * network subsystem after all descriptors are transmitted.
4738         */
4739        dma_buf->skb = skb;
4740
4741        hw_send_pkt(hw);
4742
4743        /* Update transmit statistics. */
4744        dev->stats.tx_packets++;
4745        dev->stats.tx_bytes += len;
4746}
4747
4748/**
4749 * transmit_cleanup - clean up transmit descriptors
4750 * @dev:        Network device.
4751 *
4752 * This routine is called to clean up the transmitted buffers.
4753 */
4754static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4755{
4756        int last;
4757        union desc_stat status;
4758        struct ksz_hw *hw = &hw_priv->hw;
4759        struct ksz_desc_info *info = &hw->tx_desc_info;
4760        struct ksz_desc *desc;
4761        struct ksz_dma_buf *dma_buf;
4762        struct net_device *dev = NULL;
4763
4764        spin_lock_irq(&hw_priv->hwlock);
4765        last = info->last;
4766
4767        while (info->avail < info->alloc) {
4768                /* Get next descriptor which is not hardware owned. */
4769                desc = &info->ring[last];
4770                status.data = le32_to_cpu(desc->phw->ctrl.data);
4771                if (status.tx.hw_owned) {
4772                        if (normal)
4773                                break;
4774                        else
4775                                reset_desc(desc, status);
4776                }
4777
4778                dma_buf = DMA_BUFFER(desc);
4779                pci_unmap_single(
4780                        hw_priv->pdev, dma_buf->dma, dma_buf->len,
4781                        PCI_DMA_TODEVICE);
4782
4783                /* This descriptor contains the last buffer in the packet. */
4784                if (dma_buf->skb) {
4785                        dev = dma_buf->skb->dev;
4786
4787                        /* Release the packet back to network subsystem. */
4788                        dev_kfree_skb_irq(dma_buf->skb);
4789                        dma_buf->skb = NULL;
4790                }
4791
4792                /* Free the transmitted descriptor. */
4793                last++;
4794                last &= info->mask;
4795                info->avail++;
4796        }
4797        info->last = last;
4798        spin_unlock_irq(&hw_priv->hwlock);
4799
4800        /* Notify the network subsystem that the packet has been sent. */
4801        if (dev)
4802                dev->trans_start = jiffies;
4803}
4804
4805/**
4806 * transmit_done - transmit done processing
4807 * @dev:        Network device.
4808 *
4809 * This routine is called when the transmit interrupt is triggered, indicating
4810 * either a packet is sent successfully or there are transmit errors.
4811 */
4812static void tx_done(struct dev_info *hw_priv)
4813{
4814        struct ksz_hw *hw = &hw_priv->hw;
4815        int port;
4816
4817        transmit_cleanup(hw_priv, 1);
4818
4819        for (port = 0; port < hw->dev_count; port++) {
4820                struct net_device *dev = hw->port_info[port].pdev;
4821
4822                if (netif_running(dev) && netif_queue_stopped(dev))
4823                        netif_wake_queue(dev);
4824        }
4825}
4826
4827static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4828{
4829        skb->dev = old->dev;
4830        skb->protocol = old->protocol;
4831        skb->ip_summed = old->ip_summed;
4832        skb->csum = old->csum;
4833        skb_set_network_header(skb, ETH_HLEN);
4834
4835        dev_kfree_skb(old);
4836}
4837
4838/**
4839 * netdev_tx - send out packet
4840 * @skb:        Socket buffer.
4841 * @dev:        Network device.
4842 *
4843 * This function is used by the upper network layer to send out a packet.
4844 *
4845 * Return 0 if successful; otherwise an error code indicating failure.
4846 */
4847static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4848{
4849        struct dev_priv *priv = netdev_priv(dev);
4850        struct dev_info *hw_priv = priv->adapter;
4851        struct ksz_hw *hw = &hw_priv->hw;
4852        int left;
4853        int num = 1;
4854        int rc = 0;
4855
4856        if (hw->features & SMALL_PACKET_TX_BUG) {
4857                struct sk_buff *org_skb = skb;
4858
4859                if (skb->len <= 48) {
4860                        if (skb_end_pointer(skb) - skb->data >= 50) {
4861                                memset(&skb->data[skb->len], 0, 50 - skb->len);
4862                                skb->len = 50;
4863                        } else {
4864                                skb = netdev_alloc_skb(dev, 50);
4865                                if (!skb)
4866                                        return NETDEV_TX_BUSY;
4867                                memcpy(skb->data, org_skb->data, org_skb->len);
4868                                memset(&skb->data[org_skb->len], 0,
4869                                        50 - org_skb->len);
4870                                skb->len = 50;
4871                                copy_old_skb(org_skb, skb);
4872                        }
4873                }
4874        }
4875
4876        spin_lock_irq(&hw_priv->hwlock);
4877
4878        num = skb_shinfo(skb)->nr_frags + 1;
4879        left = hw_alloc_pkt(hw, skb->len, num);
4880        if (left) {
4881                if (left < num ||
4882                    (CHECKSUM_PARTIAL == skb->ip_summed &&
4883                     skb->protocol == htons(ETH_P_IPV6))) {
4884                        struct sk_buff *org_skb = skb;
4885
4886                        skb = netdev_alloc_skb(dev, org_skb->len);
4887                        if (!skb) {
4888                                rc = NETDEV_TX_BUSY;
4889                                goto unlock;
4890                        }
4891                        skb_copy_and_csum_dev(org_skb, skb->data);
4892                        org_skb->ip_summed = CHECKSUM_NONE;
4893                        skb->len = org_skb->len;
4894                        copy_old_skb(org_skb, skb);
4895                }
4896                send_packet(skb, dev);
4897                if (left <= num)
4898                        netif_stop_queue(dev);
4899        } else {
4900                /* Stop the transmit queue until packet is allocated. */
4901                netif_stop_queue(dev);
4902                rc = NETDEV_TX_BUSY;
4903        }
4904unlock:
4905        spin_unlock_irq(&hw_priv->hwlock);
4906
4907        return rc;
4908}
4909
4910/**
4911 * netdev_tx_timeout - transmit timeout processing
4912 * @dev:        Network device.
4913 *
4914 * This routine is called when the transmit timer expires.  That indicates the
4915 * hardware is not running correctly because transmit interrupts are not
4916 * triggered to free up resources so that the transmit routine can continue
4917 * sending out packets.  The hardware is reset to correct the problem.
4918 */
4919static void netdev_tx_timeout(struct net_device *dev)
4920{
4921        static unsigned long last_reset;
4922
4923        struct dev_priv *priv = netdev_priv(dev);
4924        struct dev_info *hw_priv = priv->adapter;
4925        struct ksz_hw *hw = &hw_priv->hw;
4926        int port;
4927
4928        if (hw->dev_count > 1) {
4929                /*
4930                 * Only reset the hardware if time between calls is long
4931                 * enough.
4932                 */
4933                if (jiffies - last_reset <= dev->watchdog_timeo)
4934                        hw_priv = NULL;
4935        }
4936
4937        last_reset = jiffies;
4938        if (hw_priv) {
4939                hw_dis_intr(hw);
4940                hw_disable(hw);
4941
4942                transmit_cleanup(hw_priv, 0);
4943                hw_reset_pkts(&hw->rx_desc_info);
4944                hw_reset_pkts(&hw->tx_desc_info);
4945                ksz_init_rx_buffers(hw_priv);
4946
4947                hw_reset(hw);
4948
4949                hw_set_desc_base(hw,
4950                        hw->tx_desc_info.ring_phys,
4951                        hw->rx_desc_info.ring_phys);
4952                hw_set_addr(hw);
4953                if (hw->all_multi)
4954                        hw_set_multicast(hw, hw->all_multi);
4955                else if (hw->multi_list_size)
4956                        hw_set_grp_addr(hw);
4957
4958                if (hw->dev_count > 1) {
4959                        hw_set_add_addr(hw);
4960                        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4961                                struct net_device *port_dev;
4962
4963                                port_set_stp_state(hw, port,
4964                                        STP_STATE_DISABLED);
4965
4966                                port_dev = hw->port_info[port].pdev;
4967                                if (netif_running(port_dev))
4968                                        port_set_stp_state(hw, port,
4969                                                STP_STATE_SIMPLE);
4970                        }
4971                }
4972
4973                hw_enable(hw);
4974                hw_ena_intr(hw);
4975        }
4976
4977        dev->trans_start = jiffies;
4978        netif_wake_queue(dev);
4979}
4980
4981static inline void csum_verified(struct sk_buff *skb)
4982{
4983        unsigned short protocol;
4984        struct iphdr *iph;
4985
4986        protocol = skb->protocol;
4987        skb_reset_network_header(skb);
4988        iph = (struct iphdr *) skb_network_header(skb);
4989        if (protocol == htons(ETH_P_8021Q)) {
4990                protocol = iph->tot_len;
4991                skb_set_network_header(skb, VLAN_HLEN);
4992                iph = (struct iphdr *) skb_network_header(skb);
4993        }
4994        if (protocol == htons(ETH_P_IP)) {
4995                if (iph->protocol == IPPROTO_TCP)
4996                        skb->ip_summed = CHECKSUM_UNNECESSARY;
4997        }
4998}
4999
5000static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5001        struct ksz_desc *desc, union desc_stat status)
5002{
5003        int packet_len;
5004        struct dev_priv *priv = netdev_priv(dev);
5005        struct dev_info *hw_priv = priv->adapter;
5006        struct ksz_dma_buf *dma_buf;
5007        struct sk_buff *skb;
5008        int rx_status;
5009
5010        /* Received length includes 4-byte CRC. */
5011        packet_len = status.rx.frame_len - 4;
5012
5013        dma_buf = DMA_BUFFER(desc);
5014        pci_dma_sync_single_for_cpu(
5015                hw_priv->pdev, dma_buf->dma, packet_len + 4,
5016                PCI_DMA_FROMDEVICE);
5017
5018        do {
5019                /* skb->data != skb->head */
5020                skb = netdev_alloc_skb(dev, packet_len + 2);
5021                if (!skb) {
5022                        dev->stats.rx_dropped++;
5023                        return -ENOMEM;
5024                }
5025
5026                /*
5027                 * Align socket buffer in 4-byte boundary for better
5028                 * performance.
5029                 */
5030                skb_reserve(skb, 2);
5031
5032                memcpy(skb_put(skb, packet_len),
5033                        dma_buf->skb->data, packet_len);
5034        } while (0);
5035
5036        skb->protocol = eth_type_trans(skb, dev);
5037
5038        if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5039                csum_verified(skb);
5040
5041        /* Update receive statistics. */
5042        dev->stats.rx_packets++;
5043        dev->stats.rx_bytes += packet_len;
5044
5045        /* Notify upper layer for received packet. */
5046        rx_status = netif_rx(skb);
5047
5048        return 0;
5049}
5050
5051static int dev_rcv_packets(struct dev_info *hw_priv)
5052{
5053        int next;
5054        union desc_stat status;
5055        struct ksz_hw *hw = &hw_priv->hw;
5056        struct net_device *dev = hw->port_info[0].pdev;
5057        struct ksz_desc_info *info = &hw->rx_desc_info;
5058        int left = info->alloc;
5059        struct ksz_desc *desc;
5060        int received = 0;
5061
5062        next = info->next;
5063        while (left--) {
5064                /* Get next descriptor which is not hardware owned. */
5065                desc = &info->ring[next];
5066                status.data = le32_to_cpu(desc->phw->ctrl.data);
5067                if (status.rx.hw_owned)
5068                        break;
5069
5070                /* Status valid only when last descriptor bit is set. */
5071                if (status.rx.last_desc && status.rx.first_desc) {
5072                        if (rx_proc(dev, hw, desc, status))
5073                                goto release_packet;
5074                        received++;
5075                }
5076
5077release_packet:
5078                release_desc(desc);
5079                next++;
5080                next &= info->mask;
5081        }
5082        info->next = next;
5083
5084        return received;
5085}
5086
5087static int port_rcv_packets(struct dev_info *hw_priv)
5088{
5089        int next;
5090        union desc_stat status;
5091        struct ksz_hw *hw = &hw_priv->hw;
5092        struct net_device *dev = hw->port_info[0].pdev;
5093        struct ksz_desc_info *info = &hw->rx_desc_info;
5094        int left = info->alloc;
5095        struct ksz_desc *desc;
5096        int received = 0;
5097
5098        next = info->next;
5099        while (left--) {
5100                /* Get next descriptor which is not hardware owned. */
5101                desc = &info->ring[next];
5102                status.data = le32_to_cpu(desc->phw->ctrl.data);
5103                if (status.rx.hw_owned)
5104                        break;
5105
5106                if (hw->dev_count > 1) {
5107                        /* Get received port number. */
5108                        int p = HW_TO_DEV_PORT(status.rx.src_port);
5109
5110                        dev = hw->port_info[p].pdev;
5111                        if (!netif_running(dev))
5112                                goto release_packet;
5113                }
5114
5115                /* Status valid only when last descriptor bit is set. */
5116                if (status.rx.last_desc && status.rx.first_desc) {
5117                        if (rx_proc(dev, hw, desc, status))
5118                                goto release_packet;
5119                        received++;
5120                }
5121
5122release_packet:
5123                release_desc(desc);
5124                next++;
5125                next &= info->mask;
5126        }
5127        info->next = next;
5128
5129        return received;
5130}
5131
5132static int dev_rcv_special(struct dev_info *hw_priv)
5133{
5134        int next;
5135        union desc_stat status;
5136        struct ksz_hw *hw = &hw_priv->hw;
5137        struct net_device *dev = hw->port_info[0].pdev;
5138        struct ksz_desc_info *info = &hw->rx_desc_info;
5139        int left = info->alloc;
5140        struct ksz_desc *desc;
5141        int received = 0;
5142
5143        next = info->next;
5144        while (left--) {
5145                /* Get next descriptor which is not hardware owned. */
5146                desc = &info->ring[next];
5147                status.data = le32_to_cpu(desc->phw->ctrl.data);
5148                if (status.rx.hw_owned)
5149                        break;
5150
5151                if (hw->dev_count > 1) {
5152                        /* Get received port number. */
5153                        int p = HW_TO_DEV_PORT(status.rx.src_port);
5154
5155                        dev = hw->port_info[p].pdev;
5156                        if (!netif_running(dev))
5157                                goto release_packet;
5158                }
5159
5160                /* Status valid only when last descriptor bit is set. */
5161                if (status.rx.last_desc && status.rx.first_desc) {
5162                        /*
5163                         * Receive without error.  With receive errors
5164                         * disabled, packets with receive errors will be
5165                         * dropped, so no need to check the error bit.
5166                         */
5167                        if (!status.rx.error || (status.data &
5168                                        KS_DESC_RX_ERROR_COND) ==
5169                                        KS_DESC_RX_ERROR_TOO_LONG) {
5170                                if (rx_proc(dev, hw, desc, status))
5171                                        goto release_packet;
5172                                received++;
5173                        } else {
5174                                struct dev_priv *priv = netdev_priv(dev);
5175
5176                                /* Update receive error statistics. */
5177                                priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5178                        }
5179                }
5180
5181release_packet:
5182                release_desc(desc);
5183                next++;
5184                next &= info->mask;
5185        }
5186        info->next = next;
5187
5188        return received;
5189}
5190
5191static void rx_proc_task(unsigned long data)
5192{
5193        struct dev_info *hw_priv = (struct dev_info *) data;
5194        struct ksz_hw *hw = &hw_priv->hw;
5195
5196        if (!hw->enabled)
5197                return;
5198        if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5199
5200                /* In case receive process is suspended because of overrun. */
5201                hw_resume_rx(hw);
5202
5203                /* tasklets are interruptible. */
5204                spin_lock_irq(&hw_priv->hwlock);
5205                hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5206                spin_unlock_irq(&hw_priv->hwlock);
5207        } else {
5208                hw_ack_intr(hw, KS884X_INT_RX);
5209                tasklet_schedule(&hw_priv->rx_tasklet);
5210        }
5211}
5212
5213static void tx_proc_task(unsigned long data)
5214{
5215        struct dev_info *hw_priv = (struct dev_info *) data;
5216        struct ksz_hw *hw = &hw_priv->hw;
5217
5218        hw_ack_intr(hw, KS884X_INT_TX_MASK);
5219
5220        tx_done(hw_priv);
5221
5222        /* tasklets are interruptible. */
5223        spin_lock_irq(&hw_priv->hwlock);
5224        hw_turn_on_intr(hw, KS884X_INT_TX);
5225        spin_unlock_irq(&hw_priv->hwlock);
5226}
5227
5228static inline void handle_rx_stop(struct ksz_hw *hw)
5229{
5230        /* Receive just has been stopped. */
5231        if (0 == hw->rx_stop)
5232                hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5233        else if (hw->rx_stop > 1) {
5234                if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5235                        hw_start_rx(hw);
5236                } else {
5237                        hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5238                        hw->rx_stop = 0;
5239                }
5240        } else
5241                /* Receive just has been started. */
5242                hw->rx_stop++;
5243}
5244
5245/**
5246 * netdev_intr - interrupt handling
5247 * @irq:        Interrupt number.
5248 * @dev_id:     Network device.
5249 *
5250 * This function is called by upper network layer to signal interrupt.
5251 *
5252 * Return IRQ_HANDLED if interrupt is handled.
5253 */
5254static irqreturn_t netdev_intr(int irq, void *dev_id)
5255{
5256        uint int_enable = 0;
5257        struct net_device *dev = (struct net_device *) dev_id;
5258        struct dev_priv *priv = netdev_priv(dev);
5259        struct dev_info *hw_priv = priv->adapter;
5260        struct ksz_hw *hw = &hw_priv->hw;
5261
5262        spin_lock(&hw_priv->hwlock);
5263
5264        hw_read_intr(hw, &int_enable);
5265
5266        /* Not our interrupt! */
5267        if (!int_enable) {
5268                spin_unlock(&hw_priv->hwlock);
5269                return IRQ_NONE;
5270        }
5271
5272        do {
5273                hw_ack_intr(hw, int_enable);
5274                int_enable &= hw->intr_mask;
5275
5276                if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5277                        hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5278                        tasklet_schedule(&hw_priv->tx_tasklet);
5279                }
5280
5281                if (likely(int_enable & KS884X_INT_RX)) {
5282                        hw_dis_intr_bit(hw, KS884X_INT_RX);
5283                        tasklet_schedule(&hw_priv->rx_tasklet);
5284                }
5285
5286                if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5287                        dev->stats.rx_fifo_errors++;
5288                        hw_resume_rx(hw);
5289                }
5290
5291                if (unlikely(int_enable & KS884X_INT_PHY)) {
5292                        struct ksz_port *port = &priv->port;
5293
5294                        hw->features |= LINK_INT_WORKING;
5295                        port_get_link_speed(port);
5296                }
5297
5298                if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5299                        handle_rx_stop(hw);
5300                        break;
5301                }
5302
5303                if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5304                        u32 data;
5305
5306                        hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5307                        pr_info("Tx stopped\n");
5308                        data = readl(hw->io + KS_DMA_TX_CTRL);
5309                        if (!(data & DMA_TX_ENABLE))
5310                                pr_info("Tx disabled\n");
5311                        break;
5312                }
5313        } while (0);
5314
5315        hw_ena_intr(hw);
5316
5317        spin_unlock(&hw_priv->hwlock);
5318
5319        return IRQ_HANDLED;
5320}
5321
5322/*
5323 * Linux network device functions
5324 */
5325
5326static unsigned long next_jiffies;
5327
5328#ifdef CONFIG_NET_POLL_CONTROLLER
5329static void netdev_netpoll(struct net_device *dev)
5330{
5331        struct dev_priv *priv = netdev_priv(dev);
5332        struct dev_info *hw_priv = priv->adapter;
5333
5334        hw_dis_intr(&hw_priv->hw);
5335        netdev_intr(dev->irq, dev);
5336}
5337#endif
5338
5339static void bridge_change(struct ksz_hw *hw)
5340{
5341        int port;
5342        u8  member;
5343        struct ksz_switch *sw = hw->ksz_switch;
5344
5345        /* No ports in forwarding state. */
5346        if (!sw->member) {
5347                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5348                sw_block_addr(hw);
5349        }
5350        for (port = 0; port < SWITCH_PORT_NUM; port++) {
5351                if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5352                        member = HOST_MASK | sw->member;
5353                else
5354                        member = HOST_MASK | (1 << port);
5355                if (member != sw->port_cfg[port].member)
5356                        sw_cfg_port_base_vlan(hw, port, member);
5357        }
5358}
5359
5360/**
5361 * netdev_close - close network device
5362 * @dev:        Network device.
5363 *
5364 * This function process the close operation of network device.  This is caused
5365 * by the user command "ifconfig ethX down."
5366 *
5367 * Return 0 if successful; otherwise an error code indicating failure.
5368 */
5369static int netdev_close(struct net_device *dev)
5370{
5371        struct dev_priv *priv = netdev_priv(dev);
5372        struct dev_info *hw_priv = priv->adapter;
5373        struct ksz_port *port = &priv->port;
5374        struct ksz_hw *hw = &hw_priv->hw;
5375        int pi;
5376
5377        netif_stop_queue(dev);
5378
5379        ksz_stop_timer(&priv->monitor_timer_info);
5380
5381        /* Need to shut the port manually in multiple device interfaces mode. */
5382        if (hw->dev_count > 1) {
5383                port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5384
5385                /* Port is closed.  Need to change bridge setting. */
5386                if (hw->features & STP_SUPPORT) {
5387                        pi = 1 << port->first_port;
5388                        if (hw->ksz_switch->member & pi) {
5389                                hw->ksz_switch->member &= ~pi;
5390                                bridge_change(hw);
5391                        }
5392                }
5393        }
5394        if (port->first_port > 0)
5395                hw_del_addr(hw, dev->dev_addr);
5396        if (!hw_priv->wol_enable)
5397                port_set_power_saving(port, true);
5398
5399        if (priv->multicast)
5400                --hw->all_multi;
5401        if (priv->promiscuous)
5402                --hw->promiscuous;
5403
5404        hw_priv->opened--;
5405        if (!(hw_priv->opened)) {
5406                ksz_stop_timer(&hw_priv->mib_timer_info);
5407                flush_work(&hw_priv->mib_read);
5408
5409                hw_dis_intr(hw);
5410                hw_disable(hw);
5411                hw_clr_multicast(hw);
5412
5413                /* Delay for receive task to stop scheduling itself. */
5414                msleep(2000 / HZ);
5415
5416                tasklet_kill(&hw_priv->rx_tasklet);
5417                tasklet_kill(&hw_priv->tx_tasklet);
5418                free_irq(dev->irq, hw_priv->dev);
5419
5420                transmit_cleanup(hw_priv, 0);
5421                hw_reset_pkts(&hw->rx_desc_info);
5422                hw_reset_pkts(&hw->tx_desc_info);
5423
5424                /* Clean out static MAC table when the switch is shutdown. */
5425                if (hw->features & STP_SUPPORT)
5426                        sw_clr_sta_mac_table(hw);
5427        }
5428
5429        return 0;
5430}
5431
5432static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5433{
5434        if (hw->ksz_switch) {
5435                u32 data;
5436
5437                data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5438                if (hw->features & RX_HUGE_FRAME)
5439                        data |= SWITCH_HUGE_PACKET;
5440                else
5441                        data &= ~SWITCH_HUGE_PACKET;
5442                writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5443        }
5444        if (hw->features & RX_HUGE_FRAME) {
5445                hw->rx_cfg |= DMA_RX_ERROR;
5446                hw_priv->dev_rcv = dev_rcv_special;
5447        } else {
5448                hw->rx_cfg &= ~DMA_RX_ERROR;
5449                if (hw->dev_count > 1)
5450                        hw_priv->dev_rcv = port_rcv_packets;
5451                else
5452                        hw_priv->dev_rcv = dev_rcv_packets;
5453        }
5454}
5455
5456static int prepare_hardware(struct net_device *dev)
5457{
5458        struct dev_priv *priv = netdev_priv(dev);
5459        struct dev_info *hw_priv = priv->adapter;
5460        struct ksz_hw *hw = &hw_priv->hw;
5461        int rc = 0;
5462
5463        /* Remember the network device that requests interrupts. */
5464        hw_priv->dev = dev;
5465        rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5466        if (rc)
5467                return rc;
5468        tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5469                     (unsigned long) hw_priv);
5470        tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5471                     (unsigned long) hw_priv);
5472
5473        hw->promiscuous = 0;
5474        hw->all_multi = 0;
5475        hw->multi_list_size = 0;
5476
5477        hw_reset(hw);
5478
5479        hw_set_desc_base(hw,
5480                hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5481        hw_set_addr(hw);
5482        hw_cfg_huge_frame(hw_priv, hw);
5483        ksz_init_rx_buffers(hw_priv);
5484        return 0;
5485}
5486
5487static void set_media_state(struct net_device *dev, int media_state)
5488{
5489        struct dev_priv *priv = netdev_priv(dev);
5490
5491        if (media_state == priv->media_state)
5492                netif_carrier_on(dev);
5493        else
5494                netif_carrier_off(dev);
5495        netif_info(priv, link, dev, "link %s\n",
5496                   media_state == priv->media_state ? "on" : "off");
5497}
5498
5499/**
5500 * netdev_open - open network device
5501 * @dev:        Network device.
5502 *
5503 * This function process the open operation of network device.  This is caused
5504 * by the user command "ifconfig ethX up."
5505 *
5506 * Return 0 if successful; otherwise an error code indicating failure.
5507 */
5508static int netdev_open(struct net_device *dev)
5509{
5510        struct dev_priv *priv = netdev_priv(dev);
5511        struct dev_info *hw_priv = priv->adapter;
5512        struct ksz_hw *hw = &hw_priv->hw;
5513        struct ksz_port *port = &priv->port;
5514        int i;
5515        int p;
5516        int rc = 0;
5517
5518        priv->multicast = 0;
5519        priv->promiscuous = 0;
5520
5521        /* Reset device statistics. */
5522        memset(&dev->stats, 0, sizeof(struct net_device_stats));
5523        memset((void *) port->counter, 0,
5524                (sizeof(u64) * OID_COUNTER_LAST));
5525
5526        if (!(hw_priv->opened)) {
5527                rc = prepare_hardware(dev);
5528                if (rc)
5529                        return rc;
5530                for (i = 0; i < hw->mib_port_cnt; i++) {
5531                        if (next_jiffies < jiffies)
5532                                next_jiffies = jiffies + HZ * 2;
5533                        else
5534                                next_jiffies += HZ * 1;
5535                        hw_priv->counter[i].time = next_jiffies;
5536                        hw->port_mib[i].state = media_disconnected;
5537                        port_init_cnt(hw, i);
5538                }
5539                if (hw->ksz_switch)
5540                        hw->port_mib[HOST_PORT].state = media_connected;
5541                else {
5542                        hw_add_wol_bcast(hw);
5543                        hw_cfg_wol_pme(hw, 0);
5544                        hw_clr_wol_pme_status(&hw_priv->hw);
5545                }
5546        }
5547        port_set_power_saving(port, false);
5548
5549        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5550                /*
5551                 * Initialize to invalid value so that link detection
5552                 * is done.
5553                 */
5554                hw->port_info[p].partner = 0xFF;
5555                hw->port_info[p].state = media_disconnected;
5556        }
5557
5558        /* Need to open the port in multiple device interfaces mode. */
5559        if (hw->dev_count > 1) {
5560                port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5561                if (port->first_port > 0)
5562                        hw_add_addr(hw, dev->dev_addr);
5563        }
5564
5565        port_get_link_speed(port);
5566        if (port->force_link)
5567                port_force_link_speed(port);
5568        else
5569                port_set_link_speed(port);
5570
5571        if (!(hw_priv->opened)) {
5572                hw_setup_intr(hw);
5573                hw_enable(hw);
5574                hw_ena_intr(hw);
5575
5576                if (hw->mib_port_cnt)
5577                        ksz_start_timer(&hw_priv->mib_timer_info,
5578                                hw_priv->mib_timer_info.period);
5579        }
5580
5581        hw_priv->opened++;
5582
5583        ksz_start_timer(&priv->monitor_timer_info,
5584                priv->monitor_timer_info.period);
5585
5586        priv->media_state = port->linked->state;
5587
5588        set_media_state(dev, media_connected);
5589        netif_start_queue(dev);
5590
5591        return 0;
5592}
5593
5594/* RX errors = rx_errors */
5595/* RX dropped = rx_dropped */
5596/* RX overruns = rx_fifo_errors */
5597/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5598/* TX errors = tx_errors */
5599/* TX dropped = tx_dropped */
5600/* TX overruns = tx_fifo_errors */
5601/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5602/* collisions = collisions */
5603
5604/**
5605 * netdev_query_statistics - query network device statistics
5606 * @dev:        Network device.
5607 *
5608 * This function returns the statistics of the network device.  The device
5609 * needs not be opened.
5610 *
5611 * Return network device statistics.
5612 */
5613static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5614{
5615        struct dev_priv *priv = netdev_priv(dev);
5616        struct ksz_port *port = &priv->port;
5617        struct ksz_hw *hw = &priv->adapter->hw;
5618        struct ksz_port_mib *mib;
5619        int i;
5620        int p;
5621
5622        dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5623        dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5624
5625        /* Reset to zero to add count later. */
5626        dev->stats.multicast = 0;
5627        dev->stats.collisions = 0;
5628        dev->stats.rx_length_errors = 0;
5629        dev->stats.rx_crc_errors = 0;
5630        dev->stats.rx_frame_errors = 0;
5631        dev->stats.tx_window_errors = 0;
5632
5633        for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5634                mib = &hw->port_mib[p];
5635
5636                dev->stats.multicast += (unsigned long)
5637                        mib->counter[MIB_COUNTER_RX_MULTICAST];
5638
5639                dev->stats.collisions += (unsigned long)
5640                        mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5641
5642                dev->stats.rx_length_errors += (unsigned long)(
5643                        mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5644                        mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5645                        mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5646                        mib->counter[MIB_COUNTER_RX_JABBER]);
5647                dev->stats.rx_crc_errors += (unsigned long)
5648                        mib->counter[MIB_COUNTER_RX_CRC_ERR];
5649                dev->stats.rx_frame_errors += (unsigned long)(
5650                        mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5651                        mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5652
5653                dev->stats.tx_window_errors += (unsigned long)
5654                        mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5655        }
5656
5657        return &dev->stats;
5658}
5659
5660/**
5661 * netdev_set_mac_address - set network device MAC address
5662 * @dev:        Network device.
5663 * @addr:       Buffer of MAC address.
5664 *
5665 * This function is used to set the MAC address of the network device.
5666 *
5667 * Return 0 to indicate success.
5668 */
5669static int netdev_set_mac_address(struct net_device *dev, void *addr)
5670{
5671        struct dev_priv *priv = netdev_priv(dev);
5672        struct dev_info *hw_priv = priv->adapter;
5673        struct ksz_hw *hw = &hw_priv->hw;
5674        struct sockaddr *mac = addr;
5675        uint interrupt;
5676
5677        if (priv->port.first_port > 0)
5678                hw_del_addr(hw, dev->dev_addr);
5679        else {
5680                hw->mac_override = 1;
5681                memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5682        }
5683
5684        memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5685
5686        interrupt = hw_block_intr(hw);
5687
5688        if (priv->port.first_port > 0)
5689                hw_add_addr(hw, dev->dev_addr);
5690        else
5691                hw_set_addr(hw);
5692        hw_restore_intr(hw, interrupt);
5693
5694        return 0;
5695}
5696
5697static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5698        struct ksz_hw *hw, int promiscuous)
5699{
5700        if (promiscuous != priv->promiscuous) {
5701                u8 prev_state = hw->promiscuous;
5702
5703                if (promiscuous)
5704                        ++hw->promiscuous;
5705                else
5706                        --hw->promiscuous;
5707                priv->promiscuous = promiscuous;
5708
5709                /* Turn on/off promiscuous mode. */
5710                if (hw->promiscuous <= 1 && prev_state <= 1)
5711                        hw_set_promiscuous(hw, hw->promiscuous);
5712
5713                /*
5714                 * Port is not in promiscuous mode, meaning it is released
5715                 * from the bridge.
5716                 */
5717                if ((hw->features & STP_SUPPORT) && !promiscuous &&
5718                    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5719                        struct ksz_switch *sw = hw->ksz_switch;
5720                        int port = priv->port.first_port;
5721
5722                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
5723                        port = 1 << port;
5724                        if (sw->member & port) {
5725                                sw->member &= ~port;
5726                                bridge_change(hw);
5727                        }
5728                }
5729        }
5730}
5731
5732static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5733        int multicast)
5734{
5735        if (multicast != priv->multicast) {
5736                u8 all_multi = hw->all_multi;
5737
5738                if (multicast)
5739                        ++hw->all_multi;
5740                else
5741                        --hw->all_multi;
5742                priv->multicast = multicast;
5743
5744                /* Turn on/off all multicast mode. */
5745                if (hw->all_multi <= 1 && all_multi <= 1)
5746                        hw_set_multicast(hw, hw->all_multi);
5747        }
5748}
5749
5750/**
5751 * netdev_set_rx_mode
5752 * @dev:        Network device.
5753 *
5754 * This routine is used to set multicast addresses or put the network device
5755 * into promiscuous mode.
5756 */
5757static void netdev_set_rx_mode(struct net_device *dev)
5758{
5759        struct dev_priv *priv = netdev_priv(dev);
5760        struct dev_info *hw_priv = priv->adapter;
5761        struct ksz_hw *hw = &hw_priv->hw;
5762        struct netdev_hw_addr *ha;
5763        int multicast = (dev->flags & IFF_ALLMULTI);
5764
5765        dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5766
5767        if (hw_priv->hw.dev_count > 1)
5768                multicast |= (dev->flags & IFF_MULTICAST);
5769        dev_set_multicast(priv, hw, multicast);
5770
5771        /* Cannot use different hashes in multiple device interfaces mode. */
5772        if (hw_priv->hw.dev_count > 1)
5773                return;
5774
5775        if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5776                int i = 0;
5777
5778                /* List too big to support so turn on all multicast mode. */
5779                if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5780                        if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5781                                hw->multi_list_size = MAX_MULTICAST_LIST;
5782                                ++hw->all_multi;
5783                                hw_set_multicast(hw, hw->all_multi);
5784                        }
5785                        return;
5786                }
5787
5788                netdev_for_each_mc_addr(ha, dev) {
5789                        if (i >= MAX_MULTICAST_LIST)
5790                                break;
5791                        memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5792                }
5793                hw->multi_list_size = (u8) i;
5794                hw_set_grp_addr(hw);
5795        } else {
5796                if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5797                        --hw->all_multi;
5798                        hw_set_multicast(hw, hw->all_multi);
5799                }
5800                hw->multi_list_size = 0;
5801                hw_clr_multicast(hw);
5802        }
5803}
5804
5805static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5806{
5807        struct dev_priv *priv = netdev_priv(dev);
5808        struct dev_info *hw_priv = priv->adapter;
5809        struct ksz_hw *hw = &hw_priv->hw;
5810        int hw_mtu;
5811
5812        if (netif_running(dev))
5813                return -EBUSY;
5814
5815        /* Cannot use different MTU in multiple device interfaces mode. */
5816        if (hw->dev_count > 1)
5817                if (dev != hw_priv->dev)
5818                        return 0;
5819        if (new_mtu < 60)
5820                return -EINVAL;
5821
5822        if (dev->mtu != new_mtu) {
5823                hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5824                if (hw_mtu > MAX_RX_BUF_SIZE)
5825                        return -EINVAL;
5826                if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5827                        hw->features |= RX_HUGE_FRAME;
5828                        hw_mtu = MAX_RX_BUF_SIZE;
5829                } else {
5830                        hw->features &= ~RX_HUGE_FRAME;
5831                        hw_mtu = REGULAR_RX_BUF_SIZE;
5832                }
5833                hw_mtu = (hw_mtu + 3) & ~3;
5834                hw_priv->mtu = hw_mtu;
5835                dev->mtu = new_mtu;
5836        }
5837        return 0;
5838}
5839
5840/**
5841 * netdev_ioctl - I/O control processing
5842 * @dev:        Network device.
5843 * @ifr:        Interface request structure.
5844 * @cmd:        I/O control code.
5845 *
5846 * This function is used to process I/O control calls.
5847 *
5848 * Return 0 to indicate success.
5849 */
5850static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5851{
5852        struct dev_priv *priv = netdev_priv(dev);
5853        struct dev_info *hw_priv = priv->adapter;
5854        struct ksz_hw *hw = &hw_priv->hw;
5855        struct ksz_port *port = &priv->port;
5856        int rc;
5857        int result = 0;
5858        struct mii_ioctl_data *data = if_mii(ifr);
5859
5860        if (down_interruptible(&priv->proc_sem))
5861                return -ERESTARTSYS;
5862
5863        /* assume success */
5864        rc = 0;
5865        switch (cmd) {
5866        /* Get address of MII PHY in use. */
5867        case SIOCGMIIPHY:
5868                data->phy_id = priv->id;
5869
5870                /* Fallthrough... */
5871
5872        /* Read MII PHY register. */
5873        case SIOCGMIIREG:
5874                if (data->phy_id != priv->id || data->reg_num >= 6)
5875                        result = -EIO;
5876                else
5877                        hw_r_phy(hw, port->linked->port_id, data->reg_num,
5878                                &data->val_out);
5879                break;
5880
5881        /* Write MII PHY register. */
5882        case SIOCSMIIREG:
5883                if (!capable(CAP_NET_ADMIN))
5884                        result = -EPERM;
5885                else if (data->phy_id != priv->id || data->reg_num >= 6)
5886                        result = -EIO;
5887                else
5888                        hw_w_phy(hw, port->linked->port_id, data->reg_num,
5889                                data->val_in);
5890                break;
5891
5892        default:
5893                result = -EOPNOTSUPP;
5894        }
5895
5896        up(&priv->proc_sem);
5897
5898        return result;
5899}
5900
5901/*
5902 * MII support
5903 */
5904
5905/**
5906 * mdio_read - read PHY register
5907 * @dev:        Network device.
5908 * @phy_id:     The PHY id.
5909 * @reg_num:    The register number.
5910 *
5911 * This function returns the PHY register value.
5912 *
5913 * Return the register value.
5914 */
5915static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5916{
5917        struct dev_priv *priv = netdev_priv(dev);
5918        struct ksz_port *port = &priv->port;
5919        struct ksz_hw *hw = port->hw;
5920        u16 val_out;
5921
5922        hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5923        return val_out;
5924}
5925
5926/**
5927 * mdio_write - set PHY register
5928 * @dev:        Network device.
5929 * @phy_id:     The PHY id.
5930 * @reg_num:    The register number.
5931 * @val:        The register value.
5932 *
5933 * This procedure sets the PHY register value.
5934 */
5935static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5936{
5937        struct dev_priv *priv = netdev_priv(dev);
5938        struct ksz_port *port = &priv->port;
5939        struct ksz_hw *hw = port->hw;
5940        int i;
5941        int pi;
5942
5943        for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5944                hw_w_phy(hw, pi, reg_num << 1, val);
5945}
5946
5947/*
5948 * ethtool support
5949 */
5950
5951#define EEPROM_SIZE                     0x40
5952
5953static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5954
5955#define ADVERTISED_ALL                  \
5956        (ADVERTISED_10baseT_Half |      \
5957        ADVERTISED_10baseT_Full |       \
5958        ADVERTISED_100baseT_Half |      \
5959        ADVERTISED_100baseT_Full)
5960
5961/* These functions use the MII functions in mii.c. */
5962
5963/**
5964 * netdev_get_settings - get network device settings
5965 * @dev:        Network device.
5966 * @cmd:        Ethtool command.
5967 *
5968 * This function queries the PHY and returns its state in the ethtool command.
5969 *
5970 * Return 0 if successful; otherwise an error code.
5971 */
5972static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5973{
5974        struct dev_priv *priv = netdev_priv(dev);
5975        struct dev_info *hw_priv = priv->adapter;
5976
5977        mutex_lock(&hw_priv->lock);
5978        mii_ethtool_gset(&priv->mii_if, cmd);
5979        cmd->advertising |= SUPPORTED_TP;
5980        mutex_unlock(&hw_priv->lock);
5981
5982        /* Save advertised settings for workaround in next function. */
5983        priv->advertising = cmd->advertising;
5984        return 0;
5985}
5986
5987/**
5988 * netdev_set_settings - set network device settings
5989 * @dev:        Network device.
5990 * @cmd:        Ethtool command.
5991 *
5992 * This function sets the PHY according to the ethtool command.
5993 *
5994 * Return 0 if successful; otherwise an error code.
5995 */
5996static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5997{
5998        struct dev_priv *priv = netdev_priv(dev);
5999        struct dev_info *hw_priv = priv->adapter;
6000        struct ksz_port *port = &priv->port;
6001        u32 speed = ethtool_cmd_speed(cmd);
6002        int rc;
6003
6004        /*
6005         * ethtool utility does not change advertised setting if auto
6006         * negotiation is not specified explicitly.
6007         */
6008        if (cmd->autoneg && priv->advertising == cmd->advertising) {
6009                cmd->advertising |= ADVERTISED_ALL;
6010                if (10 == speed)
6011                        cmd->advertising &=
6012                                ~(ADVERTISED_100baseT_Full |
6013                                ADVERTISED_100baseT_Half);
6014                else if (100 == speed)
6015                        cmd->advertising &=
6016                                ~(ADVERTISED_10baseT_Full |
6017                                ADVERTISED_10baseT_Half);
6018                if (0 == cmd->duplex)
6019                        cmd->advertising &=
6020                                ~(ADVERTISED_100baseT_Full |
6021                                ADVERTISED_10baseT_Full);
6022                else if (1 == cmd->duplex)
6023                        cmd->advertising &=
6024                                ~(ADVERTISED_100baseT_Half |
6025                                ADVERTISED_10baseT_Half);
6026        }
6027        mutex_lock(&hw_priv->lock);
6028        if (cmd->autoneg &&
6029                        (cmd->advertising & ADVERTISED_ALL) ==
6030                        ADVERTISED_ALL) {
6031                port->duplex = 0;
6032                port->speed = 0;
6033                port->force_link = 0;
6034        } else {
6035                port->duplex = cmd->duplex + 1;
6036                if (1000 != speed)
6037                        port->speed = speed;
6038                if (cmd->autoneg)
6039                        port->force_link = 0;
6040                else
6041                        port->force_link = 1;
6042        }
6043        rc = mii_ethtool_sset(&priv->mii_if, cmd);
6044        mutex_unlock(&hw_priv->lock);
6045        return rc;
6046}
6047
6048/**
6049 * netdev_nway_reset - restart auto-negotiation
6050 * @dev:        Network device.
6051 *
6052 * This function restarts the PHY for auto-negotiation.
6053 *
6054 * Return 0 if successful; otherwise an error code.
6055 */
6056static int netdev_nway_reset(struct net_device *dev)
6057{
6058        struct dev_priv *priv = netdev_priv(dev);
6059        struct dev_info *hw_priv = priv->adapter;
6060        int rc;
6061
6062        mutex_lock(&hw_priv->lock);
6063        rc = mii_nway_restart(&priv->mii_if);
6064        mutex_unlock(&hw_priv->lock);
6065        return rc;
6066}
6067
6068/**
6069 * netdev_get_link - get network device link status
6070 * @dev:        Network device.
6071 *
6072 * This function gets the link status from the PHY.
6073 *
6074 * Return true if PHY is linked and false otherwise.
6075 */
6076static u32 netdev_get_link(struct net_device *dev)
6077{
6078        struct dev_priv *priv = netdev_priv(dev);
6079        int rc;
6080
6081        rc = mii_link_ok(&priv->mii_if);
6082        return rc;
6083}
6084
6085/**
6086 * netdev_get_drvinfo - get network driver information
6087 * @dev:        Network device.
6088 * @info:       Ethtool driver info data structure.
6089 *
6090 * This procedure returns the driver information.
6091 */
6092static void netdev_get_drvinfo(struct net_device *dev,
6093        struct ethtool_drvinfo *info)
6094{
6095        struct dev_priv *priv = netdev_priv(dev);
6096        struct dev_info *hw_priv = priv->adapter;
6097
6098        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6099        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6100        strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6101                sizeof(info->bus_info));
6102}
6103
6104/**
6105 * netdev_get_regs_len - get length of register dump
6106 * @dev:        Network device.
6107 *
6108 * This function returns the length of the register dump.
6109 *
6110 * Return length of the register dump.
6111 */
6112static struct hw_regs {
6113        int start;
6114        int end;
6115} hw_regs_range[] = {
6116        { KS_DMA_TX_CTRL,       KS884X_INTERRUPTS_STATUS },
6117        { KS_ADD_ADDR_0_LO,     KS_ADD_ADDR_F_HI },
6118        { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6119        { KS884X_SIDER_P,       KS8842_SGCR7_P },
6120        { KS8842_MACAR1_P,      KS8842_TOSR8_P },
6121        { KS884X_P1MBCR_P,      KS8842_P3ERCR_P },
6122        { 0, 0 }
6123};
6124
6125static int netdev_get_regs_len(struct net_device *dev)
6126{
6127        struct hw_regs *range = hw_regs_range;
6128        int regs_len = 0x10 * sizeof(u32);
6129
6130        while (range->end > range->start) {
6131                regs_len += (range->end - range->start + 3) / 4 * 4;
6132                range++;
6133        }
6134        return regs_len;
6135}
6136
6137/**
6138 * netdev_get_regs - get register dump
6139 * @dev:        Network device.
6140 * @regs:       Ethtool registers data structure.
6141 * @ptr:        Buffer to store the register values.
6142 *
6143 * This procedure dumps the register values in the provided buffer.
6144 */
6145static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6146        void *ptr)
6147{
6148        struct dev_priv *priv = netdev_priv(dev);
6149        struct dev_info *hw_priv = priv->adapter;
6150        struct ksz_hw *hw = &hw_priv->hw;
6151        int *buf = (int *) ptr;
6152        struct hw_regs *range = hw_regs_range;
6153        int len;
6154
6155        mutex_lock(&hw_priv->lock);
6156        regs->version = 0;
6157        for (len = 0; len < 0x40; len += 4) {
6158                pci_read_config_dword(hw_priv->pdev, len, buf);
6159                buf++;
6160        }
6161        while (range->end > range->start) {
6162                for (len = range->start; len < range->end; len += 4) {
6163                        *buf = readl(hw->io + len);
6164                        buf++;
6165                }
6166                range++;
6167        }
6168        mutex_unlock(&hw_priv->lock);
6169}
6170
6171#define WOL_SUPPORT                     \
6172        (WAKE_PHY | WAKE_MAGIC |        \
6173        WAKE_UCAST | WAKE_MCAST |       \
6174        WAKE_BCAST | WAKE_ARP)
6175
6176/**
6177 * netdev_get_wol - get Wake-on-LAN support
6178 * @dev:        Network device.
6179 * @wol:        Ethtool Wake-on-LAN data structure.
6180 *
6181 * This procedure returns Wake-on-LAN support.
6182 */
6183static void netdev_get_wol(struct net_device *dev,
6184        struct ethtool_wolinfo *wol)
6185{
6186        struct dev_priv *priv = netdev_priv(dev);
6187        struct dev_info *hw_priv = priv->adapter;
6188
6189        wol->supported = hw_priv->wol_support;
6190        wol->wolopts = hw_priv->wol_enable;
6191        memset(&wol->sopass, 0, sizeof(wol->sopass));
6192}
6193
6194/**
6195 * netdev_set_wol - set Wake-on-LAN support
6196 * @dev:        Network device.
6197 * @wol:        Ethtool Wake-on-LAN data structure.
6198 *
6199 * This function sets Wake-on-LAN support.
6200 *
6201 * Return 0 if successful; otherwise an error code.
6202 */
6203static int netdev_set_wol(struct net_device *dev,
6204        struct ethtool_wolinfo *wol)
6205{
6206        struct dev_priv *priv = netdev_priv(dev);
6207        struct dev_info *hw_priv = priv->adapter;
6208
6209        /* Need to find a way to retrieve the device IP address. */
6210        static const u8 net_addr[] = { 192, 168, 1, 1 };
6211
6212        if (wol->wolopts & ~hw_priv->wol_support)
6213                return -EINVAL;
6214
6215        hw_priv->wol_enable = wol->wolopts;
6216
6217        /* Link wakeup cannot really be disabled. */
6218        if (wol->wolopts)
6219                hw_priv->wol_enable |= WAKE_PHY;
6220        hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6221        return 0;
6222}
6223
6224/**
6225 * netdev_get_msglevel - get debug message level
6226 * @dev:        Network device.
6227 *
6228 * This function returns current debug message level.
6229 *
6230 * Return current debug message flags.
6231 */
6232static u32 netdev_get_msglevel(struct net_device *dev)
6233{
6234        struct dev_priv *priv = netdev_priv(dev);
6235
6236        return priv->msg_enable;
6237}
6238
6239/**
6240 * netdev_set_msglevel - set debug message level
6241 * @dev:        Network device.
6242 * @value:      Debug message flags.
6243 *
6244 * This procedure sets debug message level.
6245 */
6246static void netdev_set_msglevel(struct net_device *dev, u32 value)
6247{
6248        struct dev_priv *priv = netdev_priv(dev);
6249
6250        priv->msg_enable = value;
6251}
6252
6253/**
6254 * netdev_get_eeprom_len - get EEPROM length
6255 * @dev:        Network device.
6256 *
6257 * This function returns the length of the EEPROM.
6258 *
6259 * Return length of the EEPROM.
6260 */
6261static int netdev_get_eeprom_len(struct net_device *dev)
6262{
6263        return EEPROM_SIZE * 2;
6264}
6265
6266/**
6267 * netdev_get_eeprom - get EEPROM data
6268 * @dev:        Network device.
6269 * @eeprom:     Ethtool EEPROM data structure.
6270 * @data:       Buffer to store the EEPROM data.
6271 *
6272 * This function dumps the EEPROM data in the provided buffer.
6273 *
6274 * Return 0 if successful; otherwise an error code.
6275 */
6276#define EEPROM_MAGIC                    0x10A18842
6277
6278static int netdev_get_eeprom(struct net_device *dev,
6279        struct ethtool_eeprom *eeprom, u8 *data)
6280{
6281        struct dev_priv *priv = netdev_priv(dev);
6282        struct dev_info *hw_priv = priv->adapter;
6283        u8 *eeprom_byte = (u8 *) eeprom_data;
6284        int i;
6285        int len;
6286
6287        len = (eeprom->offset + eeprom->len + 1) / 2;
6288        for (i = eeprom->offset / 2; i < len; i++)
6289                eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6290        eeprom->magic = EEPROM_MAGIC;
6291        memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6292
6293        return 0;
6294}
6295
6296/**
6297 * netdev_set_eeprom - write EEPROM data
6298 * @dev:        Network device.
6299 * @eeprom:     Ethtool EEPROM data structure.
6300 * @data:       Data buffer.
6301 *
6302 * This function modifies the EEPROM data one byte at a time.
6303 *
6304 * Return 0 if successful; otherwise an error code.
6305 */
6306static int netdev_set_eeprom(struct net_device *dev,
6307        struct ethtool_eeprom *eeprom, u8 *data)
6308{
6309        struct dev_priv *priv = netdev_priv(dev);
6310        struct dev_info *hw_priv = priv->adapter;
6311        u16 eeprom_word[EEPROM_SIZE];
6312        u8 *eeprom_byte = (u8 *) eeprom_word;
6313        int i;
6314        int len;
6315
6316        if (eeprom->magic != EEPROM_MAGIC)
6317                return -EINVAL;
6318
6319        len = (eeprom->offset + eeprom->len + 1) / 2;
6320        for (i = eeprom->offset / 2; i < len; i++)
6321                eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6322        memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6323        memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6324        for (i = 0; i < EEPROM_SIZE; i++)
6325                if (eeprom_word[i] != eeprom_data[i]) {
6326                        eeprom_data[i] = eeprom_word[i];
6327                        eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6328        }
6329
6330        return 0;
6331}
6332
6333/**
6334 * netdev_get_pauseparam - get flow control parameters
6335 * @dev:        Network device.
6336 * @pause:      Ethtool PAUSE settings data structure.
6337 *
6338 * This procedure returns the PAUSE control flow settings.
6339 */
6340static void netdev_get_pauseparam(struct net_device *dev,
6341        struct ethtool_pauseparam *pause)
6342{
6343        struct dev_priv *priv = netdev_priv(dev);
6344        struct dev_info *hw_priv = priv->adapter;
6345        struct ksz_hw *hw = &hw_priv->hw;
6346
6347        pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6348        if (!hw->ksz_switch) {
6349                pause->rx_pause =
6350                        (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6351                pause->tx_pause =
6352                        (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6353        } else {
6354                pause->rx_pause =
6355                        (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6356                                SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6357                pause->tx_pause =
6358                        (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6359                                SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6360        }
6361}
6362
6363/**
6364 * netdev_set_pauseparam - set flow control parameters
6365 * @dev:        Network device.
6366 * @pause:      Ethtool PAUSE settings data structure.
6367 *
6368 * This function sets the PAUSE control flow settings.
6369 * Not implemented yet.
6370 *
6371 * Return 0 if successful; otherwise an error code.
6372 */
6373static int netdev_set_pauseparam(struct net_device *dev,
6374        struct ethtool_pauseparam *pause)
6375{
6376        struct dev_priv *priv = netdev_priv(dev);
6377        struct dev_info *hw_priv = priv->adapter;
6378        struct ksz_hw *hw = &hw_priv->hw;
6379        struct ksz_port *port = &priv->port;
6380
6381        mutex_lock(&hw_priv->lock);
6382        if (pause->autoneg) {
6383                if (!pause->rx_pause && !pause->tx_pause)
6384                        port->flow_ctrl = PHY_NO_FLOW_CTRL;
6385                else
6386                        port->flow_ctrl = PHY_FLOW_CTRL;
6387                hw->overrides &= ~PAUSE_FLOW_CTRL;
6388                port->force_link = 0;
6389                if (hw->ksz_switch) {
6390                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6391                                SWITCH_RX_FLOW_CTRL, 1);
6392                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6393                                SWITCH_TX_FLOW_CTRL, 1);
6394                }
6395                port_set_link_speed(port);
6396        } else {
6397                hw->overrides |= PAUSE_FLOW_CTRL;
6398                if (hw->ksz_switch) {
6399                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6400                                SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6401                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6402                                SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6403                } else
6404                        set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6405        }
6406        mutex_unlock(&hw_priv->lock);
6407
6408        return 0;
6409}
6410
6411/**
6412 * netdev_get_ringparam - get tx/rx ring parameters
6413 * @dev:        Network device.
6414 * @pause:      Ethtool RING settings data structure.
6415 *
6416 * This procedure returns the TX/RX ring settings.
6417 */
6418static void netdev_get_ringparam(struct net_device *dev,
6419        struct ethtool_ringparam *ring)
6420{
6421        struct dev_priv *priv = netdev_priv(dev);
6422        struct dev_info *hw_priv = priv->adapter;
6423        struct ksz_hw *hw = &hw_priv->hw;
6424
6425        ring->tx_max_pending = (1 << 9);
6426        ring->tx_pending = hw->tx_desc_info.alloc;
6427        ring->rx_max_pending = (1 << 9);
6428        ring->rx_pending = hw->rx_desc_info.alloc;
6429}
6430
6431#define STATS_LEN                       (TOTAL_PORT_COUNTER_NUM)
6432
6433static struct {
6434        char string[ETH_GSTRING_LEN];
6435} ethtool_stats_keys[STATS_LEN] = {
6436        { "rx_lo_priority_octets" },
6437        { "rx_hi_priority_octets" },
6438        { "rx_undersize_packets" },
6439        { "rx_fragments" },
6440        { "rx_oversize_packets" },
6441        { "rx_jabbers" },
6442        { "rx_symbol_errors" },
6443        { "rx_crc_errors" },
6444        { "rx_align_errors" },
6445        { "rx_mac_ctrl_packets" },
6446        { "rx_pause_packets" },
6447        { "rx_bcast_packets" },
6448        { "rx_mcast_packets" },
6449        { "rx_ucast_packets" },
6450        { "rx_64_or_less_octet_packets" },
6451        { "rx_65_to_127_octet_packets" },
6452        { "rx_128_to_255_octet_packets" },
6453        { "rx_256_to_511_octet_packets" },
6454        { "rx_512_to_1023_octet_packets" },
6455        { "rx_1024_to_1522_octet_packets" },
6456
6457        { "tx_lo_priority_octets" },
6458        { "tx_hi_priority_octets" },
6459        { "tx_late_collisions" },
6460        { "tx_pause_packets" },
6461        { "tx_bcast_packets" },
6462        { "tx_mcast_packets" },
6463        { "tx_ucast_packets" },
6464        { "tx_deferred" },
6465        { "tx_total_collisions" },
6466        { "tx_excessive_collisions" },
6467        { "tx_single_collisions" },
6468        { "tx_mult_collisions" },
6469
6470        { "rx_discards" },
6471        { "tx_discards" },
6472};
6473
6474/**
6475 * netdev_get_strings - get statistics identity strings
6476 * @dev:        Network device.
6477 * @stringset:  String set identifier.
6478 * @buf:        Buffer to store the strings.
6479 *
6480 * This procedure returns the strings used to identify the statistics.
6481 */
6482static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6483{
6484        struct dev_priv *priv = netdev_priv(dev);
6485        struct dev_info *hw_priv = priv->adapter;
6486        struct ksz_hw *hw = &hw_priv->hw;
6487
6488        if (ETH_SS_STATS == stringset)
6489                memcpy(buf, &ethtool_stats_keys,
6490                        ETH_GSTRING_LEN * hw->mib_cnt);
6491}
6492
6493/**
6494 * netdev_get_sset_count - get statistics size
6495 * @dev:        Network device.
6496 * @sset:       The statistics set number.
6497 *
6498 * This function returns the size of the statistics to be reported.
6499 *
6500 * Return size of the statistics to be reported.
6501 */
6502static int netdev_get_sset_count(struct net_device *dev, int sset)
6503{
6504        struct dev_priv *priv = netdev_priv(dev);
6505        struct dev_info *hw_priv = priv->adapter;
6506        struct ksz_hw *hw = &hw_priv->hw;
6507
6508        switch (sset) {
6509        case ETH_SS_STATS:
6510                return hw->mib_cnt;
6511        default:
6512                return -EOPNOTSUPP;
6513        }
6514}
6515
6516/**
6517 * netdev_get_ethtool_stats - get network device statistics
6518 * @dev:        Network device.
6519 * @stats:      Ethtool statistics data structure.
6520 * @data:       Buffer to store the statistics.
6521 *
6522 * This procedure returns the statistics.
6523 */
6524static void netdev_get_ethtool_stats(struct net_device *dev,
6525        struct ethtool_stats *stats, u64 *data)
6526{
6527        struct dev_priv *priv = netdev_priv(dev);
6528        struct dev_info *hw_priv = priv->adapter;
6529        struct ksz_hw *hw = &hw_priv->hw;
6530        struct ksz_port *port = &priv->port;
6531        int n_stats = stats->n_stats;
6532        int i;
6533        int n;
6534        int p;
6535        int rc;
6536        u64 counter[TOTAL_PORT_COUNTER_NUM];
6537
6538        mutex_lock(&hw_priv->lock);
6539        n = SWITCH_PORT_NUM;
6540        for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6541                if (media_connected == hw->port_mib[p].state) {
6542                        hw_priv->counter[p].read = 1;
6543
6544                        /* Remember first port that requests read. */
6545                        if (n == SWITCH_PORT_NUM)
6546                                n = p;
6547                }
6548        }
6549        mutex_unlock(&hw_priv->lock);
6550
6551        if (n < SWITCH_PORT_NUM)
6552                schedule_work(&hw_priv->mib_read);
6553
6554        if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6555                p = n;
6556                rc = wait_event_interruptible_timeout(
6557                        hw_priv->counter[p].counter,
6558                        2 == hw_priv->counter[p].read,
6559                        HZ * 1);
6560        } else
6561                for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6562                        if (0 == i) {
6563                                rc = wait_event_interruptible_timeout(
6564                                        hw_priv->counter[p].counter,
6565                                        2 == hw_priv->counter[p].read,
6566                                        HZ * 2);
6567                        } else if (hw->port_mib[p].cnt_ptr) {
6568                                rc = wait_event_interruptible_timeout(
6569                                        hw_priv->counter[p].counter,
6570                                        2 == hw_priv->counter[p].read,
6571                                        HZ * 1);
6572                        }
6573                }
6574
6575        get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6576        n = hw->mib_cnt;
6577        if (n > n_stats)
6578                n = n_stats;
6579        n_stats -= n;
6580        for (i = 0; i < n; i++)
6581                *data++ = counter[i];
6582}
6583
6584/**
6585 * netdev_set_features - set receive checksum support
6586 * @dev:        Network device.
6587 * @features:   New device features (offloads).
6588 *
6589 * This function sets receive checksum support setting.
6590 *
6591 * Return 0 if successful; otherwise an error code.
6592 */
6593static int netdev_set_features(struct net_device *dev,
6594        netdev_features_t features)
6595{
6596        struct dev_priv *priv = netdev_priv(dev);
6597        struct dev_info *hw_priv = priv->adapter;
6598        struct ksz_hw *hw = &hw_priv->hw;
6599
6600        mutex_lock(&hw_priv->lock);
6601
6602        /* see note in hw_setup() */
6603        if (features & NETIF_F_RXCSUM)
6604                hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6605        else
6606                hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6607
6608        if (hw->enabled)
6609                writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6610
6611        mutex_unlock(&hw_priv->lock);
6612
6613        return 0;
6614}
6615
6616static const struct ethtool_ops netdev_ethtool_ops = {
6617        .get_settings           = netdev_get_settings,
6618        .set_settings           = netdev_set_settings,
6619        .nway_reset             = netdev_nway_reset,
6620        .get_link               = netdev_get_link,
6621        .get_drvinfo            = netdev_get_drvinfo,
6622        .get_regs_len           = netdev_get_regs_len,
6623        .get_regs               = netdev_get_regs,
6624        .get_wol                = netdev_get_wol,
6625        .set_wol                = netdev_set_wol,
6626        .get_msglevel           = netdev_get_msglevel,
6627        .set_msglevel           = netdev_set_msglevel,
6628        .get_eeprom_len         = netdev_get_eeprom_len,
6629        .get_eeprom             = netdev_get_eeprom,
6630        .set_eeprom             = netdev_set_eeprom,
6631        .get_pauseparam         = netdev_get_pauseparam,
6632        .set_pauseparam         = netdev_set_pauseparam,
6633        .get_ringparam          = netdev_get_ringparam,
6634        .get_strings            = netdev_get_strings,
6635        .get_sset_count         = netdev_get_sset_count,
6636        .get_ethtool_stats      = netdev_get_ethtool_stats,
6637};
6638
6639/*
6640 * Hardware monitoring
6641 */
6642
6643static void update_link(struct net_device *dev, struct dev_priv *priv,
6644        struct ksz_port *port)
6645{
6646        if (priv->media_state != port->linked->state) {
6647                priv->media_state = port->linked->state;
6648                if (netif_running(dev))
6649                        set_media_state(dev, media_connected);
6650        }
6651}
6652
6653static void mib_read_work(struct work_struct *work)
6654{
6655        struct dev_info *hw_priv =
6656                container_of(work, struct dev_info, mib_read);
6657        struct ksz_hw *hw = &hw_priv->hw;
6658        struct ksz_port_mib *mib;
6659        int i;
6660
6661        next_jiffies = jiffies;
6662        for (i = 0; i < hw->mib_port_cnt; i++) {
6663                mib = &hw->port_mib[i];
6664
6665                /* Reading MIB counters or requested to read. */
6666                if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6667
6668                        /* Need to process receive interrupt. */
6669                        if (port_r_cnt(hw, i))
6670                                break;
6671                        hw_priv->counter[i].read = 0;
6672
6673                        /* Finish reading counters. */
6674                        if (0 == mib->cnt_ptr) {
6675                                hw_priv->counter[i].read = 2;
6676                                wake_up_interruptible(
6677                                        &hw_priv->counter[i].counter);
6678                        }
6679                } else if (jiffies >= hw_priv->counter[i].time) {
6680                        /* Only read MIB counters when the port is connected. */
6681                        if (media_connected == mib->state)
6682                                hw_priv->counter[i].read = 1;
6683                        next_jiffies += HZ * 1 * hw->mib_port_cnt;
6684                        hw_priv->counter[i].time = next_jiffies;
6685
6686                /* Port is just disconnected. */
6687                } else if (mib->link_down) {
6688                        mib->link_down = 0;
6689
6690                        /* Read counters one last time after link is lost. */
6691                        hw_priv->counter[i].read = 1;
6692                }
6693        }
6694}
6695
6696static void mib_monitor(unsigned long ptr)
6697{
6698        struct dev_info *hw_priv = (struct dev_info *) ptr;
6699
6700        mib_read_work(&hw_priv->mib_read);
6701
6702        /* This is used to verify Wake-on-LAN is working. */
6703        if (hw_priv->pme_wait) {
6704                if (hw_priv->pme_wait <= jiffies) {
6705                        hw_clr_wol_pme_status(&hw_priv->hw);
6706                        hw_priv->pme_wait = 0;
6707                }
6708        } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6709
6710                /* PME is asserted.  Wait 2 seconds to clear it. */
6711                hw_priv->pme_wait = jiffies + HZ * 2;
6712        }
6713
6714        ksz_update_timer(&hw_priv->mib_timer_info);
6715}
6716
6717/**
6718 * dev_monitor - periodic monitoring
6719 * @ptr:        Network device pointer.
6720 *
6721 * This routine is run in a kernel timer to monitor the network device.
6722 */
6723static void dev_monitor(unsigned long ptr)
6724{
6725        struct net_device *dev = (struct net_device *) ptr;
6726        struct dev_priv *priv = netdev_priv(dev);
6727        struct dev_info *hw_priv = priv->adapter;
6728        struct ksz_hw *hw = &hw_priv->hw;
6729        struct ksz_port *port = &priv->port;
6730
6731        if (!(hw->features & LINK_INT_WORKING))
6732                port_get_link_speed(port);
6733        update_link(dev, priv, port);
6734
6735        ksz_update_timer(&priv->monitor_timer_info);
6736}
6737
6738/*
6739 * Linux network device interface functions
6740 */
6741
6742/* Driver exported variables */
6743
6744static int msg_enable;
6745
6746static char *macaddr = ":";
6747static char *mac1addr = ":";
6748
6749/*
6750 * This enables multiple network device mode for KSZ8842, which contains a
6751 * switch with two physical ports.  Some users like to take control of the
6752 * ports for running Spanning Tree Protocol.  The driver will create an
6753 * additional eth? device for the other port.
6754 *
6755 * Some limitations are the network devices cannot have different MTU and
6756 * multicast hash tables.
6757 */
6758static int multi_dev;
6759
6760/*
6761 * As most users select multiple network device mode to use Spanning Tree
6762 * Protocol, this enables a feature in which most unicast and multicast packets
6763 * are forwarded inside the switch and not passed to the host.  Only packets
6764 * that need the host's attention are passed to it.  This prevents the host
6765 * wasting CPU time to examine each and every incoming packets and do the
6766 * forwarding itself.
6767 *
6768 * As the hack requires the private bridge header, the driver cannot compile
6769 * with just the kernel headers.
6770 *
6771 * Enabling STP support also turns on multiple network device mode.
6772 */
6773static int stp;
6774
6775/*
6776 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6777 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6778 * STP support is enabled.
6779 */
6780static int fast_aging;
6781
6782/**
6783 * netdev_init - initialize network device.
6784 * @dev:        Network device.
6785 *
6786 * This function initializes the network device.
6787 *
6788 * Return 0 if successful; otherwise an error code indicating failure.
6789 */
6790static int __init netdev_init(struct net_device *dev)
6791{
6792        struct dev_priv *priv = netdev_priv(dev);
6793
6794        /* 500 ms timeout */
6795        ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6796                dev_monitor, dev);
6797
6798        /* 500 ms timeout */
6799        dev->watchdog_timeo = HZ / 2;
6800
6801        dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6802
6803        /*
6804         * Hardware does not really support IPv6 checksum generation, but
6805         * driver actually runs faster with this on.
6806         */
6807        dev->hw_features |= NETIF_F_IPV6_CSUM;
6808
6809        dev->features |= dev->hw_features;
6810
6811        sema_init(&priv->proc_sem, 1);
6812
6813        priv->mii_if.phy_id_mask = 0x1;
6814        priv->mii_if.reg_num_mask = 0x7;
6815        priv->mii_if.dev = dev;
6816        priv->mii_if.mdio_read = mdio_read;
6817        priv->mii_if.mdio_write = mdio_write;
6818        priv->mii_if.phy_id = priv->port.first_port + 1;
6819
6820        priv->msg_enable = netif_msg_init(msg_enable,
6821                (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6822
6823        return 0;
6824}
6825
6826static const struct net_device_ops netdev_ops = {
6827        .ndo_init               = netdev_init,
6828        .ndo_open               = netdev_open,
6829        .ndo_stop               = netdev_close,
6830        .ndo_get_stats          = netdev_query_statistics,
6831        .ndo_start_xmit         = netdev_tx,
6832        .ndo_tx_timeout         = netdev_tx_timeout,
6833        .ndo_change_mtu         = netdev_change_mtu,
6834        .ndo_set_features       = netdev_set_features,
6835        .ndo_set_mac_address    = netdev_set_mac_address,
6836        .ndo_validate_addr      = eth_validate_addr,
6837        .ndo_do_ioctl           = netdev_ioctl,
6838        .ndo_set_rx_mode        = netdev_set_rx_mode,
6839#ifdef CONFIG_NET_POLL_CONTROLLER
6840        .ndo_poll_controller    = netdev_netpoll,
6841#endif
6842};
6843
6844static void netdev_free(struct net_device *dev)
6845{
6846        if (dev->watchdog_timeo)
6847                unregister_netdev(dev);
6848
6849        free_netdev(dev);
6850}
6851
6852struct platform_info {
6853        struct dev_info dev_info;
6854        struct net_device *netdev[SWITCH_PORT_NUM];
6855};
6856
6857static int net_device_present;
6858
6859static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6860{
6861        int i;
6862        int j;
6863        int got_num;
6864        int num;
6865
6866        i = j = num = got_num = 0;
6867        while (j < ETH_ALEN) {
6868                if (macaddr[i]) {
6869                        int digit;
6870
6871                        got_num = 1;
6872                        digit = hex_to_bin(macaddr[i]);
6873                        if (digit >= 0)
6874                                num = num * 16 + digit;
6875                        else if (':' == macaddr[i])
6876                                got_num = 2;
6877                        else
6878                                break;
6879                } else if (got_num)
6880                        got_num = 2;
6881                else
6882                        break;
6883                if (2 == got_num) {
6884                        if (MAIN_PORT == port) {
6885                                hw_priv->hw.override_addr[j++] = (u8) num;
6886                                hw_priv->hw.override_addr[5] +=
6887                                        hw_priv->hw.id;
6888                        } else {
6889                                hw_priv->hw.ksz_switch->other_addr[j++] =
6890                                        (u8) num;
6891                                hw_priv->hw.ksz_switch->other_addr[5] +=
6892                                        hw_priv->hw.id;
6893                        }
6894                        num = got_num = 0;
6895                }
6896                i++;
6897        }
6898        if (ETH_ALEN == j) {
6899                if (MAIN_PORT == port)
6900                        hw_priv->hw.mac_override = 1;
6901        }
6902}
6903
6904#define KS884X_DMA_MASK                 (~0x0UL)
6905
6906static void read_other_addr(struct ksz_hw *hw)
6907{
6908        int i;
6909        u16 data[3];
6910        struct ksz_switch *sw = hw->ksz_switch;
6911
6912        for (i = 0; i < 3; i++)
6913                data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6914        if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6915                sw->other_addr[5] = (u8) data[0];
6916                sw->other_addr[4] = (u8)(data[0] >> 8);
6917                sw->other_addr[3] = (u8) data[1];
6918                sw->other_addr[2] = (u8)(data[1] >> 8);
6919                sw->other_addr[1] = (u8) data[2];
6920                sw->other_addr[0] = (u8)(data[2] >> 8);
6921        }
6922}
6923
6924#ifndef PCI_VENDOR_ID_MICREL_KS
6925#define PCI_VENDOR_ID_MICREL_KS         0x16c6
6926#endif
6927
6928static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6929{
6930        struct net_device *dev;
6931        struct dev_priv *priv;
6932        struct dev_info *hw_priv;
6933        struct ksz_hw *hw;
6934        struct platform_info *info;
6935        struct ksz_port *port;
6936        unsigned long reg_base;
6937        unsigned long reg_len;
6938        int cnt;
6939        int i;
6940        int mib_port_count;
6941        int pi;
6942        int port_count;
6943        int result;
6944        char banner[sizeof(version)];
6945        struct ksz_switch *sw = NULL;
6946
6947        result = pci_enable_device(pdev);
6948        if (result)
6949                return result;
6950
6951        result = -ENODEV;
6952
6953        if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6954                        pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6955                return result;
6956
6957        reg_base = pci_resource_start(pdev, 0);
6958        reg_len = pci_resource_len(pdev, 0);
6959        if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6960                return result;
6961
6962        if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6963                return result;
6964        pci_set_master(pdev);
6965
6966        result = -ENOMEM;
6967
6968        info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6969        if (!info)
6970                goto pcidev_init_dev_err;
6971
6972        hw_priv = &info->dev_info;
6973        hw_priv->pdev = pdev;
6974
6975        hw = &hw_priv->hw;
6976
6977        hw->io = ioremap(reg_base, reg_len);
6978        if (!hw->io)
6979                goto pcidev_init_io_err;
6980
6981        cnt = hw_init(hw);
6982        if (!cnt) {
6983                if (msg_enable & NETIF_MSG_PROBE)
6984                        pr_alert("chip not detected\n");
6985                result = -ENODEV;
6986                goto pcidev_init_alloc_err;
6987        }
6988
6989        snprintf(banner, sizeof(banner), "%s", version);
6990        banner[13] = cnt + '0';         /* Replace x in "Micrel KSZ884x" */
6991        dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6992        dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6993
6994        /* Assume device is KSZ8841. */
6995        hw->dev_count = 1;
6996        port_count = 1;
6997        mib_port_count = 1;
6998        hw->addr_list_size = 0;
6999        hw->mib_cnt = PORT_COUNTER_NUM;
7000        hw->mib_port_cnt = 1;
7001
7002        /* KSZ8842 has a switch with multiple ports. */
7003        if (2 == cnt) {
7004                if (fast_aging)
7005                        hw->overrides |= FAST_AGING;
7006
7007                hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7008
7009                /* Multiple network device interfaces are required. */
7010                if (multi_dev) {
7011                        hw->dev_count = SWITCH_PORT_NUM;
7012                        hw->addr_list_size = SWITCH_PORT_NUM - 1;
7013                }
7014
7015                /* Single network device has multiple ports. */
7016                if (1 == hw->dev_count) {
7017                        port_count = SWITCH_PORT_NUM;
7018                        mib_port_count = SWITCH_PORT_NUM;
7019                }
7020                hw->mib_port_cnt = TOTAL_PORT_NUM;
7021                hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7022                if (!hw->ksz_switch)
7023                        goto pcidev_init_alloc_err;
7024
7025                sw = hw->ksz_switch;
7026        }
7027        for (i = 0; i < hw->mib_port_cnt; i++)
7028                hw->port_mib[i].mib_start = 0;
7029
7030        hw->parent = hw_priv;
7031
7032        /* Default MTU is 1500. */
7033        hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7034
7035        if (ksz_alloc_mem(hw_priv))
7036                goto pcidev_init_mem_err;
7037
7038        hw_priv->hw.id = net_device_present;
7039
7040        spin_lock_init(&hw_priv->hwlock);
7041        mutex_init(&hw_priv->lock);
7042
7043        for (i = 0; i < TOTAL_PORT_NUM; i++)
7044                init_waitqueue_head(&hw_priv->counter[i].counter);
7045
7046        if (macaddr[0] != ':')
7047                get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7048
7049        /* Read MAC address and initialize override address if not overrided. */
7050        hw_read_addr(hw);
7051
7052        /* Multiple device interfaces mode requires a second MAC address. */
7053        if (hw->dev_count > 1) {
7054                memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7055                read_other_addr(hw);
7056                if (mac1addr[0] != ':')
7057                        get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7058        }
7059
7060        hw_setup(hw);
7061        if (hw->ksz_switch)
7062                sw_setup(hw);
7063        else {
7064                hw_priv->wol_support = WOL_SUPPORT;
7065                hw_priv->wol_enable = 0;
7066        }
7067
7068        INIT_WORK(&hw_priv->mib_read, mib_read_work);
7069
7070        /* 500 ms timeout */
7071        ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7072                mib_monitor, hw_priv);
7073
7074        for (i = 0; i < hw->dev_count; i++) {
7075                dev = alloc_etherdev(sizeof(struct dev_priv));
7076                if (!dev)
7077                        goto pcidev_init_reg_err;
7078                info->netdev[i] = dev;
7079
7080                priv = netdev_priv(dev);
7081                priv->adapter = hw_priv;
7082                priv->id = net_device_present++;
7083
7084                port = &priv->port;
7085                port->port_cnt = port_count;
7086                port->mib_port_cnt = mib_port_count;
7087                port->first_port = i;
7088                port->flow_ctrl = PHY_FLOW_CTRL;
7089
7090                port->hw = hw;
7091                port->linked = &hw->port_info[port->first_port];
7092
7093                for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7094                        hw->port_info[pi].port_id = pi;
7095                        hw->port_info[pi].pdev = dev;
7096                        hw->port_info[pi].state = media_disconnected;
7097                }
7098
7099                dev->mem_start = (unsigned long) hw->io;
7100                dev->mem_end = dev->mem_start + reg_len - 1;
7101                dev->irq = pdev->irq;
7102                if (MAIN_PORT == i)
7103                        memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7104                               ETH_ALEN);
7105                else {
7106                        memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7107                        if (!memcmp(sw->other_addr, hw->override_addr,
7108                                    ETH_ALEN))
7109                                dev->dev_addr[5] += port->first_port;
7110                }
7111
7112                dev->netdev_ops = &netdev_ops;
7113                SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7114                if (register_netdev(dev))
7115                        goto pcidev_init_reg_err;
7116                port_set_power_saving(port, true);
7117        }
7118
7119        pci_dev_get(hw_priv->pdev);
7120        pci_set_drvdata(pdev, info);
7121        return 0;
7122
7123pcidev_init_reg_err:
7124        for (i = 0; i < hw->dev_count; i++) {
7125                if (info->netdev[i]) {
7126                        netdev_free(info->netdev[i]);
7127                        info->netdev[i] = NULL;
7128                }
7129        }
7130
7131pcidev_init_mem_err:
7132        ksz_free_mem(hw_priv);
7133        kfree(hw->ksz_switch);
7134
7135pcidev_init_alloc_err:
7136        iounmap(hw->io);
7137
7138pcidev_init_io_err:
7139        kfree(info);
7140
7141pcidev_init_dev_err:
7142        release_mem_region(reg_base, reg_len);
7143
7144        return result;
7145}
7146
7147static void pcidev_exit(struct pci_dev *pdev)
7148{
7149        int i;
7150        struct platform_info *info = pci_get_drvdata(pdev);
7151        struct dev_info *hw_priv = &info->dev_info;
7152
7153        pci_set_drvdata(pdev, NULL);
7154
7155        release_mem_region(pci_resource_start(pdev, 0),
7156                pci_resource_len(pdev, 0));
7157        for (i = 0; i < hw_priv->hw.dev_count; i++) {
7158                if (info->netdev[i])
7159                        netdev_free(info->netdev[i]);
7160        }
7161        if (hw_priv->hw.io)
7162                iounmap(hw_priv->hw.io);
7163        ksz_free_mem(hw_priv);
7164        kfree(hw_priv->hw.ksz_switch);
7165        pci_dev_put(hw_priv->pdev);
7166        kfree(info);
7167}
7168
7169#ifdef CONFIG_PM
7170static int pcidev_resume(struct pci_dev *pdev)
7171{
7172        int i;
7173        struct platform_info *info = pci_get_drvdata(pdev);
7174        struct dev_info *hw_priv = &info->dev_info;
7175        struct ksz_hw *hw = &hw_priv->hw;
7176
7177        pci_set_power_state(pdev, PCI_D0);
7178        pci_restore_state(pdev);
7179        pci_enable_wake(pdev, PCI_D0, 0);
7180
7181        if (hw_priv->wol_enable)
7182                hw_cfg_wol_pme(hw, 0);
7183        for (i = 0; i < hw->dev_count; i++) {
7184                if (info->netdev[i]) {
7185                        struct net_device *dev = info->netdev[i];
7186
7187                        if (netif_running(dev)) {
7188                                netdev_open(dev);
7189                                netif_device_attach(dev);
7190                        }
7191                }
7192        }
7193        return 0;
7194}
7195
7196static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7197{
7198        int i;
7199        struct platform_info *info = pci_get_drvdata(pdev);
7200        struct dev_info *hw_priv = &info->dev_info;
7201        struct ksz_hw *hw = &hw_priv->hw;
7202
7203        /* Need to find a way to retrieve the device IP address. */
7204        static const u8 net_addr[] = { 192, 168, 1, 1 };
7205
7206        for (i = 0; i < hw->dev_count; i++) {
7207                if (info->netdev[i]) {
7208                        struct net_device *dev = info->netdev[i];
7209
7210                        if (netif_running(dev)) {
7211                                netif_device_detach(dev);
7212                                netdev_close(dev);
7213                        }
7214                }
7215        }
7216        if (hw_priv->wol_enable) {
7217                hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7218                hw_cfg_wol_pme(hw, 1);
7219        }
7220
7221        pci_save_state(pdev);
7222        pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7223        pci_set_power_state(pdev, pci_choose_state(pdev, state));
7224        return 0;
7225}
7226#endif
7227
7228static char pcidev_name[] = "ksz884xp";
7229
7230static struct pci_device_id pcidev_table[] = {
7231        { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7232                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7233        { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7234                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7235        { 0 }
7236};
7237
7238MODULE_DEVICE_TABLE(pci, pcidev_table);
7239
7240static struct pci_driver pci_device_driver = {
7241#ifdef CONFIG_PM
7242        .suspend        = pcidev_suspend,
7243        .resume         = pcidev_resume,
7244#endif
7245        .name           = pcidev_name,
7246        .id_table       = pcidev_table,
7247        .probe          = pcidev_init,
7248        .remove         = pcidev_exit
7249};
7250
7251module_pci_driver(pci_device_driver);
7252
7253MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7254MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7255MODULE_LICENSE("GPL");
7256
7257module_param_named(message, msg_enable, int, 0);
7258MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7259
7260module_param(macaddr, charp, 0);
7261module_param(mac1addr, charp, 0);
7262module_param(fast_aging, int, 0);
7263module_param(multi_dev, int, 0);
7264module_param(stp, int, 0);
7265MODULE_PARM_DESC(macaddr, "MAC address");
7266MODULE_PARM_DESC(mac1addr, "Second MAC address");
7267MODULE_PARM_DESC(fast_aging, "Fast aging");
7268MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7269MODULE_PARM_DESC(stp, "STP support");
7270