linux/drivers/net/ethernet/natsemi/natsemi.c
<<
>>
Prefs
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3        Written/copyright 1999-2001 by Donald Becker.
   4        Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5        Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6        Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8        This software may be used and distributed according to the terms of
   9        the GNU General Public License (GPL), incorporated herein by reference.
  10        Drivers based on or derived from this code fall under the GPL and must
  11        retain the authorship, copyright and license notice.  This file is not
  12        a complete program and may only be used when the entire operating
  13        system is licensed under the GPL.  License for under other terms may be
  14        available.  Contact the original author for details.
  15
  16        The original author may be reached as becker@scyld.com, or at
  17        Scyld Computing Corporation
  18        410 Severn Ave., Suite 210
  19        Annapolis MD 21403
  20
  21        Support information and updates available at
  22        http://www.scyld.com/network/netsemi.html
  23        [link no longer provides useful info -jgarzik]
  24
  25
  26        TODO:
  27        * big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>      /* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <asm/uaccess.h>
  55
  56#define DRV_NAME        "natsemi"
  57#define DRV_VERSION     "2.1"
  58#define DRV_RELDATE     "Sept 11, 2006"
  59
  60#define RX_OFFSET       2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG         (NETIF_MSG_DRV          | \
  68                                 NETIF_MSG_LINK         | \
  69                                 NETIF_MSG_WOL          | \
  70                                 NETIF_MSG_RX_ERR       | \
  71                                 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8             /* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE    16
 103#define TX_QUEUE_LEN    10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE    32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT      400
 111#define NATSEMI_TIMER_FREQ      5*HZ
 112#define NATSEMI_PG0_NREGS       64
 113#define NATSEMI_RFDR_NREGS      8
 114#define NATSEMI_PG1_NREGS       4
 115#define NATSEMI_NREGS           (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116                                 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER        1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE       (NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS         22      /* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING         16      /* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT         1518    /* limit for normal packets */
 127#define NATSEMI_RX_LIMIT        2046    /* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 0);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149        "DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152        "DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156                                Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206receive and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874  0x0022561b
 229
 230enum {
 231        MII_MCTRL       = 0x15,         /* mode control register */
 232        MII_FX_SEL      = 0x0001,       /* 100BASE-FX (fiber) */
 233        MII_EN_SCRM     = 0x0004,       /* enable scrambler (tp) */
 234};
 235
 236enum {
 237        NATSEMI_FLAG_IGNORE_PHY         = 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242        const char *name;
 243        unsigned long flags;
 244        unsigned int eeprom_size;
 245} natsemi_pci_info[] = {
 246        { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247        { "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
 251        { PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252        { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253        { }     /* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263        ChipCmd                 = 0x00,
 264        ChipConfig              = 0x04,
 265        EECtrl                  = 0x08,
 266        PCIBusCfg               = 0x0C,
 267        IntrStatus              = 0x10,
 268        IntrMask                = 0x14,
 269        IntrEnable              = 0x18,
 270        IntrHoldoff             = 0x1C, /* DP83816 only */
 271        TxRingPtr               = 0x20,
 272        TxConfig                = 0x24,
 273        RxRingPtr               = 0x30,
 274        RxConfig                = 0x34,
 275        ClkRun                  = 0x3C,
 276        WOLCmd                  = 0x40,
 277        PauseCmd                = 0x44,
 278        RxFilterAddr            = 0x48,
 279        RxFilterData            = 0x4C,
 280        BootRomAddr             = 0x50,
 281        BootRomData             = 0x54,
 282        SiliconRev              = 0x58,
 283        StatsCtrl               = 0x5C,
 284        StatsData               = 0x60,
 285        RxPktErrs               = 0x60,
 286        RxMissed                = 0x68,
 287        RxCRCErrs               = 0x64,
 288        BasicControl            = 0x80,
 289        BasicStatus             = 0x84,
 290        AnegAdv                 = 0x90,
 291        AnegPeer                = 0x94,
 292        PhyStatus               = 0xC0,
 293        MIntrCtrl               = 0xC4,
 294        MIntrStatus             = 0xC8,
 295        PhyCtrl                 = 0xE4,
 296
 297        /* These are from the spec, around page 78... on a separate table.
 298         * The meaning of these registers depend on the value of PGSEL. */
 299        PGSEL                   = 0xCC,
 300        PMDCSR                  = 0xE4,
 301        TSTDAT                  = 0xFC,
 302        DSPCFG                  = 0xF4,
 303        SDCFG                   = 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL      0x189c  /* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL      0x0
 308#define DSPCFG_VAL      0x5040
 309#define SDCFG_VAL       0x008c  /* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK     0x20    /* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF     0x1000  /* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED    0xe8    /* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316        PCIPM                   = 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320        ChipReset               = 0x100,
 321        RxReset                 = 0x20,
 322        TxReset                 = 0x10,
 323        RxOff                   = 0x08,
 324        RxOn                    = 0x04,
 325        TxOff                   = 0x02,
 326        TxOn                    = 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330        CfgPhyDis               = 0x200,
 331        CfgPhyRst               = 0x400,
 332        CfgExtPhy               = 0x1000,
 333        CfgAnegEnable           = 0x2000,
 334        CfgAneg100              = 0x4000,
 335        CfgAnegFull             = 0x8000,
 336        CfgAnegDone             = 0x8000000,
 337        CfgFullDuplex           = 0x20000000,
 338        CfgSpeed100             = 0x40000000,
 339        CfgLink                 = 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343        EE_ShiftClk             = 0x04,
 344        EE_DataIn               = 0x01,
 345        EE_ChipSelect           = 0x08,
 346        EE_DataOut              = 0x02,
 347        MII_Data                = 0x10,
 348        MII_Write               = 0x20,
 349        MII_ShiftClk            = 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353        EepromReload            = 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358        IntrRxDone              = 0x0001,
 359        IntrRxIntr              = 0x0002,
 360        IntrRxErr               = 0x0004,
 361        IntrRxEarly             = 0x0008,
 362        IntrRxIdle              = 0x0010,
 363        IntrRxOverrun           = 0x0020,
 364        IntrTxDone              = 0x0040,
 365        IntrTxIntr              = 0x0080,
 366        IntrTxErr               = 0x0100,
 367        IntrTxIdle              = 0x0200,
 368        IntrTxUnderrun          = 0x0400,
 369        StatsMax                = 0x0800,
 370        SWInt                   = 0x1000,
 371        WOLPkt                  = 0x2000,
 372        LinkChange              = 0x4000,
 373        IntrHighBits            = 0x8000,
 374        RxStatusFIFOOver        = 0x10000,
 375        IntrPCIErr              = 0xf00000,
 376        RxResetDone             = 0x1000000,
 377        TxResetDone             = 0x2000000,
 378        IntrAbnormalSummary     = 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393        TxDrthMask              = 0x3f,
 394        TxFlthMask              = 0x3f00,
 395        TxMxdmaMask             = 0x700000,
 396        TxMxdma_512             = 0x0,
 397        TxMxdma_4               = 0x100000,
 398        TxMxdma_8               = 0x200000,
 399        TxMxdma_16              = 0x300000,
 400        TxMxdma_32              = 0x400000,
 401        TxMxdma_64              = 0x500000,
 402        TxMxdma_128             = 0x600000,
 403        TxMxdma_256             = 0x700000,
 404        TxCollRetry             = 0x800000,
 405        TxAutoPad               = 0x10000000,
 406        TxMacLoop               = 0x20000000,
 407        TxHeartIgn              = 0x40000000,
 408        TxCarrierIgn            = 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL             ((512/32) << 8)
 423#define TX_DRTH_VAL_START       (64/32)
 424#define TX_DRTH_VAL_INC         2
 425#define TX_DRTH_VAL_LIMIT       (1472/32)
 426
 427enum RxConfig_bits {
 428        RxDrthMask              = 0x3e,
 429        RxMxdmaMask             = 0x700000,
 430        RxMxdma_512             = 0x0,
 431        RxMxdma_4               = 0x100000,
 432        RxMxdma_8               = 0x200000,
 433        RxMxdma_16              = 0x300000,
 434        RxMxdma_32              = 0x400000,
 435        RxMxdma_64              = 0x500000,
 436        RxMxdma_128             = 0x600000,
 437        RxMxdma_256             = 0x700000,
 438        RxAcceptLong            = 0x8000000,
 439        RxAcceptTx              = 0x10000000,
 440        RxAcceptRunt            = 0x40000000,
 441        RxAcceptErr             = 0x80000000
 442};
 443#define RX_DRTH_VAL             (128/8)
 444
 445enum ClkRun_bits {
 446        PMEEnable               = 0x100,
 447        PMEStatus               = 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451        WakePhy                 = 0x1,
 452        WakeUnicast             = 0x2,
 453        WakeMulticast           = 0x4,
 454        WakeBroadcast           = 0x8,
 455        WakeArp                 = 0x10,
 456        WakePMatch0             = 0x20,
 457        WakePMatch1             = 0x40,
 458        WakePMatch2             = 0x80,
 459        WakePMatch3             = 0x100,
 460        WakeMagic               = 0x200,
 461        WakeMagicSecure         = 0x400,
 462        SecureHack              = 0x100000,
 463        WokePhy                 = 0x400000,
 464        WokeUnicast             = 0x800000,
 465        WokeMulticast           = 0x1000000,
 466        WokeBroadcast           = 0x2000000,
 467        WokeArp                 = 0x4000000,
 468        WokePMatch0             = 0x8000000,
 469        WokePMatch1             = 0x10000000,
 470        WokePMatch2             = 0x20000000,
 471        WokePMatch3             = 0x40000000,
 472        WokeMagic               = 0x80000000,
 473        WakeOptsSummary         = 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477        RFCRAddressMask         = 0x3ff,
 478        AcceptMulticast         = 0x00200000,
 479        AcceptMyPhys            = 0x08000000,
 480        AcceptAllPhys           = 0x10000000,
 481        AcceptAllMulticast      = 0x20000000,
 482        AcceptBroadcast         = 0x40000000,
 483        RxFilterEnable          = 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487        StatsWarn               = 0x1,
 488        StatsFreeze             = 0x2,
 489        StatsClear              = 0x4,
 490        StatsStrobe             = 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494        MICRIntEn               = 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498        PhyAddrMask             = 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE           32
 502#define PHY_ADDR_INTERNAL       1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C   0x0302
 506#define SRR_DP83815_D   0x0403
 507#define SRR_DP83816_A4  0x0504
 508#define SRR_DP83816_A5  0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514        __le32 next_desc;
 515        __le32 cmd_status;
 516        __le32 addr;
 517        __le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522        DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523        DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524        DescSizeMask=0xfff,
 525
 526        DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527        DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528        DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529        DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531        DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532        DescRxDest=0x01800000, DescRxLong=0x00400000,
 533        DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534        DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535        DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539        /* Descriptor rings first for alignment */
 540        dma_addr_t ring_dma;
 541        struct netdev_desc *rx_ring;
 542        struct netdev_desc *tx_ring;
 543        /* The addresses of receive-in-place skbuffs */
 544        struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545        dma_addr_t rx_dma[RX_RING_SIZE];
 546        /* address of a sent-in-place packet/buffer, for later free() */
 547        struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548        dma_addr_t tx_dma[TX_RING_SIZE];
 549        struct net_device *dev;
 550        void __iomem *ioaddr;
 551        struct napi_struct napi;
 552        /* Media monitoring timer */
 553        struct timer_list timer;
 554        /* Frequently used values: keep some adjacent for cache effect */
 555        struct pci_dev *pci_dev;
 556        struct netdev_desc *rx_head_desc;
 557        /* Producer/consumer ring indices */
 558        unsigned int cur_rx, dirty_rx;
 559        unsigned int cur_tx, dirty_tx;
 560        /* Based on MTU+slack. */
 561        unsigned int rx_buf_sz;
 562        int oom;
 563        /* Interrupt status */
 564        u32 intr_status;
 565        /* Do not touch the nic registers */
 566        int hands_off;
 567        /* Don't pay attention to the reported link state. */
 568        int ignore_phy;
 569        /* external phy that is used: only valid if dev->if_port != PORT_TP */
 570        int mii;
 571        int phy_addr_external;
 572        unsigned int full_duplex;
 573        /* Rx filter */
 574        u32 cur_rx_mode;
 575        u32 rx_filter[16];
 576        /* FIFO and PCI burst thresholds */
 577        u32 tx_config, rx_config;
 578        /* original contents of ClkRun register */
 579        u32 SavedClkRun;
 580        /* silicon revision */
 581        u32 srr;
 582        /* expected DSPCFG value */
 583        u16 dspcfg;
 584        int dspcfg_workaround;
 585        /* parms saved in ethtool format */
 586        u16     speed;          /* The forced speed, 10Mb, 100Mb, gigabit */
 587        u8      duplex;         /* Duplex, half or full */
 588        u8      autoneg;        /* Autonegotiation enabled */
 589        /* MII transceiver section */
 590        u16 advertising;
 591        unsigned int iosize;
 592        spinlock_t lock;
 593        u32 msg_enable;
 594        /* EEPROM data */
 595        int eeprom_size;
 596};
 597
 598static void move_int_phy(struct net_device *dev, int addr);
 599static int eeprom_read(void __iomem *ioaddr, int location);
 600static int mdio_read(struct net_device *dev, int reg);
 601static void mdio_write(struct net_device *dev, int reg, u16 data);
 602static void init_phy_fixup(struct net_device *dev);
 603static int miiport_read(struct net_device *dev, int phy_id, int reg);
 604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 605static int find_mii(struct net_device *dev);
 606static void natsemi_reset(struct net_device *dev);
 607static void natsemi_reload_eeprom(struct net_device *dev);
 608static void natsemi_stop_rxtx(struct net_device *dev);
 609static int netdev_open(struct net_device *dev);
 610static void do_cable_magic(struct net_device *dev);
 611static void undo_cable_magic(struct net_device *dev);
 612static void check_link(struct net_device *dev);
 613static void netdev_timer(unsigned long data);
 614static void dump_ring(struct net_device *dev);
 615static void ns_tx_timeout(struct net_device *dev);
 616static int alloc_ring(struct net_device *dev);
 617static void refill_rx(struct net_device *dev);
 618static void init_ring(struct net_device *dev);
 619static void drain_tx(struct net_device *dev);
 620static void drain_ring(struct net_device *dev);
 621static void free_ring(struct net_device *dev);
 622static void reinit_ring(struct net_device *dev);
 623static void init_registers(struct net_device *dev);
 624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 625static irqreturn_t intr_handler(int irq, void *dev_instance);
 626static void netdev_error(struct net_device *dev, int intr_status);
 627static int natsemi_poll(struct napi_struct *napi, int budget);
 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 629static void netdev_tx_done(struct net_device *dev);
 630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 631#ifdef CONFIG_NET_POLL_CONTROLLER
 632static void natsemi_poll_controller(struct net_device *dev);
 633#endif
 634static void __set_rx_mode(struct net_device *dev);
 635static void set_rx_mode(struct net_device *dev);
 636static void __get_stats(struct net_device *dev);
 637static struct net_device_stats *get_stats(struct net_device *dev);
 638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 639static int netdev_set_wol(struct net_device *dev, u32 newval);
 640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 642static int netdev_get_sopass(struct net_device *dev, u8 *data);
 643static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 644static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 645static void enable_wol_mode(struct net_device *dev, int enable_intr);
 646static int netdev_close(struct net_device *dev);
 647static int netdev_get_regs(struct net_device *dev, u8 *buf);
 648static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 649static const struct ethtool_ops ethtool_ops;
 650
 651#define NATSEMI_ATTR(_name) \
 652static ssize_t natsemi_show_##_name(struct device *dev, \
 653         struct device_attribute *attr, char *buf); \
 654         static ssize_t natsemi_set_##_name(struct device *dev, \
 655                struct device_attribute *attr, \
 656                const char *buf, size_t count); \
 657         static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 658
 659#define NATSEMI_CREATE_FILE(_dev, _name) \
 660         device_create_file(&_dev->dev, &dev_attr_##_name)
 661#define NATSEMI_REMOVE_FILE(_dev, _name) \
 662         device_remove_file(&_dev->dev, &dev_attr_##_name)
 663
 664NATSEMI_ATTR(dspcfg_workaround);
 665
 666static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 667                                              struct device_attribute *attr,
 668                                              char *buf)
 669{
 670        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 671
 672        return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 673}
 674
 675static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 676                                             struct device_attribute *attr,
 677                                             const char *buf, size_t count)
 678{
 679        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 680        int new_setting;
 681        unsigned long flags;
 682
 683        /* Find out the new setting */
 684        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 685                new_setting = 1;
 686        else if (!strncmp("off", buf, count - 1) ||
 687                 !strncmp("0", buf, count - 1))
 688                new_setting = 0;
 689        else
 690                 return count;
 691
 692        spin_lock_irqsave(&np->lock, flags);
 693
 694        np->dspcfg_workaround = new_setting;
 695
 696        spin_unlock_irqrestore(&np->lock, flags);
 697
 698        return count;
 699}
 700
 701static inline void __iomem *ns_ioaddr(struct net_device *dev)
 702{
 703        struct netdev_private *np = netdev_priv(dev);
 704
 705        return np->ioaddr;
 706}
 707
 708static inline void natsemi_irq_enable(struct net_device *dev)
 709{
 710        writel(1, ns_ioaddr(dev) + IntrEnable);
 711        readl(ns_ioaddr(dev) + IntrEnable);
 712}
 713
 714static inline void natsemi_irq_disable(struct net_device *dev)
 715{
 716        writel(0, ns_ioaddr(dev) + IntrEnable);
 717        readl(ns_ioaddr(dev) + IntrEnable);
 718}
 719
 720static void move_int_phy(struct net_device *dev, int addr)
 721{
 722        struct netdev_private *np = netdev_priv(dev);
 723        void __iomem *ioaddr = ns_ioaddr(dev);
 724        int target = 31;
 725
 726        /*
 727         * The internal phy is visible on the external mii bus. Therefore we must
 728         * move it away before we can send commands to an external phy.
 729         * There are two addresses we must avoid:
 730         * - the address on the external phy that is used for transmission.
 731         * - the address that we want to access. User space can access phys
 732         *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
 733         *   phy that is used for transmission.
 734         */
 735
 736        if (target == addr)
 737                target--;
 738        if (target == np->phy_addr_external)
 739                target--;
 740        writew(target, ioaddr + PhyCtrl);
 741        readw(ioaddr + PhyCtrl);
 742        udelay(1);
 743}
 744
 745static void natsemi_init_media(struct net_device *dev)
 746{
 747        struct netdev_private *np = netdev_priv(dev);
 748        u32 tmp;
 749
 750        if (np->ignore_phy)
 751                netif_carrier_on(dev);
 752        else
 753                netif_carrier_off(dev);
 754
 755        /* get the initial settings from hardware */
 756        tmp            = mdio_read(dev, MII_BMCR);
 757        np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 758        np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 759        np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 760        np->advertising= mdio_read(dev, MII_ADVERTISE);
 761
 762        if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 763            netif_msg_probe(np)) {
 764                printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 765                        "10%s %s duplex.\n",
 766                        pci_name(np->pci_dev),
 767                        (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 768                          "enabled, advertise" : "disabled, force",
 769                        (np->advertising &
 770                          (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 771                            "0" : "",
 772                        (np->advertising &
 773                          (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 774                            "full" : "half");
 775        }
 776        if (netif_msg_probe(np))
 777                printk(KERN_INFO
 778                        "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 779                        pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 780                        np->advertising);
 781
 782}
 783
 784static const struct net_device_ops natsemi_netdev_ops = {
 785        .ndo_open               = netdev_open,
 786        .ndo_stop               = netdev_close,
 787        .ndo_start_xmit         = start_tx,
 788        .ndo_get_stats          = get_stats,
 789        .ndo_set_rx_mode        = set_rx_mode,
 790        .ndo_change_mtu         = natsemi_change_mtu,
 791        .ndo_do_ioctl           = netdev_ioctl,
 792        .ndo_tx_timeout         = ns_tx_timeout,
 793        .ndo_set_mac_address    = eth_mac_addr,
 794        .ndo_validate_addr      = eth_validate_addr,
 795#ifdef CONFIG_NET_POLL_CONTROLLER
 796        .ndo_poll_controller    = natsemi_poll_controller,
 797#endif
 798};
 799
 800static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 801{
 802        struct net_device *dev;
 803        struct netdev_private *np;
 804        int i, option, irq, chip_idx = ent->driver_data;
 805        static int find_cnt = -1;
 806        resource_size_t iostart;
 807        unsigned long iosize;
 808        void __iomem *ioaddr;
 809        const int pcibar = 1; /* PCI base address register */
 810        int prev_eedata;
 811        u32 tmp;
 812
 813/* when built into the kernel, we only print version if device is found */
 814#ifndef MODULE
 815        static int printed_version;
 816        if (!printed_version++)
 817                printk(version);
 818#endif
 819
 820        i = pci_enable_device(pdev);
 821        if (i) return i;
 822
 823        /* natsemi has a non-standard PM control register
 824         * in PCI config space.  Some boards apparently need
 825         * to be brought to D0 in this manner.
 826         */
 827        pci_read_config_dword(pdev, PCIPM, &tmp);
 828        if (tmp & PCI_PM_CTRL_STATE_MASK) {
 829                /* D0 state, disable PME assertion */
 830                u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 831                pci_write_config_dword(pdev, PCIPM, newtmp);
 832        }
 833
 834        find_cnt++;
 835        iostart = pci_resource_start(pdev, pcibar);
 836        iosize = pci_resource_len(pdev, pcibar);
 837        irq = pdev->irq;
 838
 839        pci_set_master(pdev);
 840
 841        dev = alloc_etherdev(sizeof (struct netdev_private));
 842        if (!dev)
 843                return -ENOMEM;
 844        SET_NETDEV_DEV(dev, &pdev->dev);
 845
 846        i = pci_request_regions(pdev, DRV_NAME);
 847        if (i)
 848                goto err_pci_request_regions;
 849
 850        ioaddr = ioremap(iostart, iosize);
 851        if (!ioaddr) {
 852                i = -ENOMEM;
 853                goto err_ioremap;
 854        }
 855
 856        /* Work around the dropped serial bit. */
 857        prev_eedata = eeprom_read(ioaddr, 6);
 858        for (i = 0; i < 3; i++) {
 859                int eedata = eeprom_read(ioaddr, i + 7);
 860                dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 861                dev->dev_addr[i*2+1] = eedata >> 7;
 862                prev_eedata = eedata;
 863        }
 864
 865        np = netdev_priv(dev);
 866        np->ioaddr = ioaddr;
 867
 868        netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 869        np->dev = dev;
 870
 871        np->pci_dev = pdev;
 872        pci_set_drvdata(pdev, dev);
 873        np->iosize = iosize;
 874        spin_lock_init(&np->lock);
 875        np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 876        np->hands_off = 0;
 877        np->intr_status = 0;
 878        np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 879        if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 880                np->ignore_phy = 1;
 881        else
 882                np->ignore_phy = 0;
 883        np->dspcfg_workaround = dspcfg_workaround;
 884
 885        /* Initial port:
 886         * - If configured to ignore the PHY set up for external.
 887         * - If the nic was configured to use an external phy and if find_mii
 888         *   finds a phy: use external port, first phy that replies.
 889         * - Otherwise: internal port.
 890         * Note that the phy address for the internal phy doesn't matter:
 891         * The address would be used to access a phy over the mii bus, but
 892         * the internal phy is accessed through mapped registers.
 893         */
 894        if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 895                dev->if_port = PORT_MII;
 896        else
 897                dev->if_port = PORT_TP;
 898        /* Reset the chip to erase previous misconfiguration. */
 899        natsemi_reload_eeprom(dev);
 900        natsemi_reset(dev);
 901
 902        if (dev->if_port != PORT_TP) {
 903                np->phy_addr_external = find_mii(dev);
 904                /* If we're ignoring the PHY it doesn't matter if we can't
 905                 * find one. */
 906                if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 907                        dev->if_port = PORT_TP;
 908                        np->phy_addr_external = PHY_ADDR_INTERNAL;
 909                }
 910        } else {
 911                np->phy_addr_external = PHY_ADDR_INTERNAL;
 912        }
 913
 914        option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 915        /* The lower four bits are the media type. */
 916        if (option) {
 917                if (option & 0x200)
 918                        np->full_duplex = 1;
 919                if (option & 15)
 920                        printk(KERN_INFO
 921                                "natsemi %s: ignoring user supplied media type %d",
 922                                pci_name(np->pci_dev), option & 15);
 923        }
 924        if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 925                np->full_duplex = 1;
 926
 927        dev->netdev_ops = &natsemi_netdev_ops;
 928        dev->watchdog_timeo = TX_TIMEOUT;
 929
 930        SET_ETHTOOL_OPS(dev, &ethtool_ops);
 931
 932        if (mtu)
 933                dev->mtu = mtu;
 934
 935        natsemi_init_media(dev);
 936
 937        /* save the silicon revision for later querying */
 938        np->srr = readl(ioaddr + SiliconRev);
 939        if (netif_msg_hw(np))
 940                printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 941                                pci_name(np->pci_dev), np->srr);
 942
 943        i = register_netdev(dev);
 944        if (i)
 945                goto err_register_netdev;
 946        i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
 947        if (i)
 948                goto err_create_file;
 949
 950        if (netif_msg_drv(np)) {
 951                printk(KERN_INFO "natsemi %s: %s at %#08llx "
 952                       "(%s), %pM, IRQ %d",
 953                       dev->name, natsemi_pci_info[chip_idx].name,
 954                       (unsigned long long)iostart, pci_name(np->pci_dev),
 955                       dev->dev_addr, irq);
 956                if (dev->if_port == PORT_TP)
 957                        printk(", port TP.\n");
 958                else if (np->ignore_phy)
 959                        printk(", port MII, ignoring PHY\n");
 960                else
 961                        printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 962        }
 963        return 0;
 964
 965 err_create_file:
 966        unregister_netdev(dev);
 967
 968 err_register_netdev:
 969        iounmap(ioaddr);
 970
 971 err_ioremap:
 972        pci_release_regions(pdev);
 973        pci_set_drvdata(pdev, NULL);
 974
 975 err_pci_request_regions:
 976        free_netdev(dev);
 977        return i;
 978}
 979
 980
 981/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 982   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 983
 984/* Delay between EEPROM clock transitions.
 985   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 986   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 987   made udelay() unreliable.
 988   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 989   deprecated.
 990*/
 991#define eeprom_delay(ee_addr)   readl(ee_addr)
 992
 993#define EE_Write0 (EE_ChipSelect)
 994#define EE_Write1 (EE_ChipSelect | EE_DataIn)
 995
 996/* The EEPROM commands include the alway-set leading bit. */
 997enum EEPROM_Cmds {
 998        EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
 999};
1000
1001static int eeprom_read(void __iomem *addr, int location)
1002{
1003        int i;
1004        int retval = 0;
1005        void __iomem *ee_addr = addr + EECtrl;
1006        int read_cmd = location | EE_ReadCmd;
1007
1008        writel(EE_Write0, ee_addr);
1009
1010        /* Shift the read command bits out. */
1011        for (i = 10; i >= 0; i--) {
1012                short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1013                writel(dataval, ee_addr);
1014                eeprom_delay(ee_addr);
1015                writel(dataval | EE_ShiftClk, ee_addr);
1016                eeprom_delay(ee_addr);
1017        }
1018        writel(EE_ChipSelect, ee_addr);
1019        eeprom_delay(ee_addr);
1020
1021        for (i = 0; i < 16; i++) {
1022                writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1023                eeprom_delay(ee_addr);
1024                retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1025                writel(EE_ChipSelect, ee_addr);
1026                eeprom_delay(ee_addr);
1027        }
1028
1029        /* Terminate the EEPROM access. */
1030        writel(EE_Write0, ee_addr);
1031        writel(0, ee_addr);
1032        return retval;
1033}
1034
1035/* MII transceiver control section.
1036 * The 83815 series has an internal transceiver, and we present the
1037 * internal management registers as if they were MII connected.
1038 * External Phy registers are referenced through the MII interface.
1039 */
1040
1041/* clock transitions >= 20ns (25MHz)
1042 * One readl should be good to PCI @ 100MHz
1043 */
1044#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1045
1046static int mii_getbit (struct net_device *dev)
1047{
1048        int data;
1049        void __iomem *ioaddr = ns_ioaddr(dev);
1050
1051        writel(MII_ShiftClk, ioaddr + EECtrl);
1052        data = readl(ioaddr + EECtrl);
1053        writel(0, ioaddr + EECtrl);
1054        mii_delay(ioaddr);
1055        return (data & MII_Data)? 1 : 0;
1056}
1057
1058static void mii_send_bits (struct net_device *dev, u32 data, int len)
1059{
1060        u32 i;
1061        void __iomem *ioaddr = ns_ioaddr(dev);
1062
1063        for (i = (1 << (len-1)); i; i >>= 1)
1064        {
1065                u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1066                writel(mdio_val, ioaddr + EECtrl);
1067                mii_delay(ioaddr);
1068                writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1069                mii_delay(ioaddr);
1070        }
1071        writel(0, ioaddr + EECtrl);
1072        mii_delay(ioaddr);
1073}
1074
1075static int miiport_read(struct net_device *dev, int phy_id, int reg)
1076{
1077        u32 cmd;
1078        int i;
1079        u32 retval = 0;
1080
1081        /* Ensure sync */
1082        mii_send_bits (dev, 0xffffffff, 32);
1083        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1084        /* ST,OP = 0110'b for read operation */
1085        cmd = (0x06 << 10) | (phy_id << 5) | reg;
1086        mii_send_bits (dev, cmd, 14);
1087        /* Turnaround */
1088        if (mii_getbit (dev))
1089                return 0;
1090        /* Read data */
1091        for (i = 0; i < 16; i++) {
1092                retval <<= 1;
1093                retval |= mii_getbit (dev);
1094        }
1095        /* End cycle */
1096        mii_getbit (dev);
1097        return retval;
1098}
1099
1100static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1101{
1102        u32 cmd;
1103
1104        /* Ensure sync */
1105        mii_send_bits (dev, 0xffffffff, 32);
1106        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1107        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1108        cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1109        mii_send_bits (dev, cmd, 32);
1110        /* End cycle */
1111        mii_getbit (dev);
1112}
1113
1114static int mdio_read(struct net_device *dev, int reg)
1115{
1116        struct netdev_private *np = netdev_priv(dev);
1117        void __iomem *ioaddr = ns_ioaddr(dev);
1118
1119        /* The 83815 series has two ports:
1120         * - an internal transceiver
1121         * - an external mii bus
1122         */
1123        if (dev->if_port == PORT_TP)
1124                return readw(ioaddr+BasicControl+(reg<<2));
1125        else
1126                return miiport_read(dev, np->phy_addr_external, reg);
1127}
1128
1129static void mdio_write(struct net_device *dev, int reg, u16 data)
1130{
1131        struct netdev_private *np = netdev_priv(dev);
1132        void __iomem *ioaddr = ns_ioaddr(dev);
1133
1134        /* The 83815 series has an internal transceiver; handle separately */
1135        if (dev->if_port == PORT_TP)
1136                writew(data, ioaddr+BasicControl+(reg<<2));
1137        else
1138                miiport_write(dev, np->phy_addr_external, reg, data);
1139}
1140
1141static void init_phy_fixup(struct net_device *dev)
1142{
1143        struct netdev_private *np = netdev_priv(dev);
1144        void __iomem *ioaddr = ns_ioaddr(dev);
1145        int i;
1146        u32 cfg;
1147        u16 tmp;
1148
1149        /* restore stuff lost when power was out */
1150        tmp = mdio_read(dev, MII_BMCR);
1151        if (np->autoneg == AUTONEG_ENABLE) {
1152                /* renegotiate if something changed */
1153                if ((tmp & BMCR_ANENABLE) == 0 ||
1154                    np->advertising != mdio_read(dev, MII_ADVERTISE))
1155                {
1156                        /* turn on autonegotiation and force negotiation */
1157                        tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1158                        mdio_write(dev, MII_ADVERTISE, np->advertising);
1159                }
1160        } else {
1161                /* turn off auto negotiation, set speed and duplexity */
1162                tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1163                if (np->speed == SPEED_100)
1164                        tmp |= BMCR_SPEED100;
1165                if (np->duplex == DUPLEX_FULL)
1166                        tmp |= BMCR_FULLDPLX;
1167                /*
1168                 * Note: there is no good way to inform the link partner
1169                 * that our capabilities changed. The user has to unplug
1170                 * and replug the network cable after some changes, e.g.
1171                 * after switching from 10HD, autoneg off to 100 HD,
1172                 * autoneg off.
1173                 */
1174        }
1175        mdio_write(dev, MII_BMCR, tmp);
1176        readl(ioaddr + ChipConfig);
1177        udelay(1);
1178
1179        /* find out what phy this is */
1180        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1181                                + mdio_read(dev, MII_PHYSID2);
1182
1183        /* handle external phys here */
1184        switch (np->mii) {
1185        case PHYID_AM79C874:
1186                /* phy specific configuration for fibre/tp operation */
1187                tmp = mdio_read(dev, MII_MCTRL);
1188                tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1189                if (dev->if_port == PORT_FIBRE)
1190                        tmp |= MII_FX_SEL;
1191                else
1192                        tmp |= MII_EN_SCRM;
1193                mdio_write(dev, MII_MCTRL, tmp);
1194                break;
1195        default:
1196                break;
1197        }
1198        cfg = readl(ioaddr + ChipConfig);
1199        if (cfg & CfgExtPhy)
1200                return;
1201
1202        /* On page 78 of the spec, they recommend some settings for "optimum
1203           performance" to be done in sequence.  These settings optimize some
1204           of the 100Mbit autodetection circuitry.  They say we only want to
1205           do this for rev C of the chip, but engineers at NSC (Bradley
1206           Kennedy) recommends always setting them.  If you don't, you get
1207           errors on some autonegotiations that make the device unusable.
1208
1209           It seems that the DSP needs a few usec to reinitialize after
1210           the start of the phy. Just retry writing these values until they
1211           stick.
1212        */
1213        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1214
1215                int dspcfg;
1216                writew(1, ioaddr + PGSEL);
1217                writew(PMDCSR_VAL, ioaddr + PMDCSR);
1218                writew(TSTDAT_VAL, ioaddr + TSTDAT);
1219                np->dspcfg = (np->srr <= SRR_DP83815_C)?
1220                        DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1221                writew(np->dspcfg, ioaddr + DSPCFG);
1222                writew(SDCFG_VAL, ioaddr + SDCFG);
1223                writew(0, ioaddr + PGSEL);
1224                readl(ioaddr + ChipConfig);
1225                udelay(10);
1226
1227                writew(1, ioaddr + PGSEL);
1228                dspcfg = readw(ioaddr + DSPCFG);
1229                writew(0, ioaddr + PGSEL);
1230                if (np->dspcfg == dspcfg)
1231                        break;
1232        }
1233
1234        if (netif_msg_link(np)) {
1235                if (i==NATSEMI_HW_TIMEOUT) {
1236                        printk(KERN_INFO
1237                                "%s: DSPCFG mismatch after retrying for %d usec.\n",
1238                                dev->name, i*10);
1239                } else {
1240                        printk(KERN_INFO
1241                                "%s: DSPCFG accepted after %d usec.\n",
1242                                dev->name, i*10);
1243                }
1244        }
1245        /*
1246         * Enable PHY Specific event based interrupts.  Link state change
1247         * and Auto-Negotiation Completion are among the affected.
1248         * Read the intr status to clear it (needed for wake events).
1249         */
1250        readw(ioaddr + MIntrStatus);
1251        writew(MICRIntEn, ioaddr + MIntrCtrl);
1252}
1253
1254static int switch_port_external(struct net_device *dev)
1255{
1256        struct netdev_private *np = netdev_priv(dev);
1257        void __iomem *ioaddr = ns_ioaddr(dev);
1258        u32 cfg;
1259
1260        cfg = readl(ioaddr + ChipConfig);
1261        if (cfg & CfgExtPhy)
1262                return 0;
1263
1264        if (netif_msg_link(np)) {
1265                printk(KERN_INFO "%s: switching to external transceiver.\n",
1266                                dev->name);
1267        }
1268
1269        /* 1) switch back to external phy */
1270        writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1271        readl(ioaddr + ChipConfig);
1272        udelay(1);
1273
1274        /* 2) reset the external phy: */
1275        /* resetting the external PHY has been known to cause a hub supplying
1276         * power over Ethernet to kill the power.  We don't want to kill
1277         * power to this computer, so we avoid resetting the phy.
1278         */
1279
1280        /* 3) reinit the phy fixup, it got lost during power down. */
1281        move_int_phy(dev, np->phy_addr_external);
1282        init_phy_fixup(dev);
1283
1284        return 1;
1285}
1286
1287static int switch_port_internal(struct net_device *dev)
1288{
1289        struct netdev_private *np = netdev_priv(dev);
1290        void __iomem *ioaddr = ns_ioaddr(dev);
1291        int i;
1292        u32 cfg;
1293        u16 bmcr;
1294
1295        cfg = readl(ioaddr + ChipConfig);
1296        if (!(cfg &CfgExtPhy))
1297                return 0;
1298
1299        if (netif_msg_link(np)) {
1300                printk(KERN_INFO "%s: switching to internal transceiver.\n",
1301                                dev->name);
1302        }
1303        /* 1) switch back to internal phy: */
1304        cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1305        writel(cfg, ioaddr + ChipConfig);
1306        readl(ioaddr + ChipConfig);
1307        udelay(1);
1308
1309        /* 2) reset the internal phy: */
1310        bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1311        writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1312        readl(ioaddr + ChipConfig);
1313        udelay(10);
1314        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1315                bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316                if (!(bmcr & BMCR_RESET))
1317                        break;
1318                udelay(10);
1319        }
1320        if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1321                printk(KERN_INFO
1322                        "%s: phy reset did not complete in %d usec.\n",
1323                        dev->name, i*10);
1324        }
1325        /* 3) reinit the phy fixup, it got lost during power down. */
1326        init_phy_fixup(dev);
1327
1328        return 1;
1329}
1330
1331/* Scan for a PHY on the external mii bus.
1332 * There are two tricky points:
1333 * - Do not scan while the internal phy is enabled. The internal phy will
1334 *   crash: e.g. reads from the DSPCFG register will return odd values and
1335 *   the nasty random phy reset code will reset the nic every few seconds.
1336 * - The internal phy must be moved around, an external phy could
1337 *   have the same address as the internal phy.
1338 */
1339static int find_mii(struct net_device *dev)
1340{
1341        struct netdev_private *np = netdev_priv(dev);
1342        int tmp;
1343        int i;
1344        int did_switch;
1345
1346        /* Switch to external phy */
1347        did_switch = switch_port_external(dev);
1348
1349        /* Scan the possible phy addresses:
1350         *
1351         * PHY address 0 means that the phy is in isolate mode. Not yet
1352         * supported due to lack of test hardware. User space should
1353         * handle it through ethtool.
1354         */
1355        for (i = 1; i <= 31; i++) {
1356                move_int_phy(dev, i);
1357                tmp = miiport_read(dev, i, MII_BMSR);
1358                if (tmp != 0xffff && tmp != 0x0000) {
1359                        /* found something! */
1360                        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1361                                        + mdio_read(dev, MII_PHYSID2);
1362                        if (netif_msg_probe(np)) {
1363                                printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1364                                                pci_name(np->pci_dev), np->mii, i);
1365                        }
1366                        break;
1367                }
1368        }
1369        /* And switch back to internal phy: */
1370        if (did_switch)
1371                switch_port_internal(dev);
1372        return i;
1373}
1374
1375/* CFG bits [13:16] [18:23] */
1376#define CFG_RESET_SAVE 0xfde000
1377/* WCSR bits [0:4] [9:10] */
1378#define WCSR_RESET_SAVE 0x61f
1379/* RFCR bits [20] [22] [27:31] */
1380#define RFCR_RESET_SAVE 0xf8500000
1381
1382static void natsemi_reset(struct net_device *dev)
1383{
1384        int i;
1385        u32 cfg;
1386        u32 wcsr;
1387        u32 rfcr;
1388        u16 pmatch[3];
1389        u16 sopass[3];
1390        struct netdev_private *np = netdev_priv(dev);
1391        void __iomem *ioaddr = ns_ioaddr(dev);
1392
1393        /*
1394         * Resetting the chip causes some registers to be lost.
1395         * Natsemi suggests NOT reloading the EEPROM while live, so instead
1396         * we save the state that would have been loaded from EEPROM
1397         * on a normal power-up (see the spec EEPROM map).  This assumes
1398         * whoever calls this will follow up with init_registers() eventually.
1399         */
1400
1401        /* CFG */
1402        cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1403        /* WCSR */
1404        wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1405        /* RFCR */
1406        rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1407        /* PMATCH */
1408        for (i = 0; i < 3; i++) {
1409                writel(i*2, ioaddr + RxFilterAddr);
1410                pmatch[i] = readw(ioaddr + RxFilterData);
1411        }
1412        /* SOPAS */
1413        for (i = 0; i < 3; i++) {
1414                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1415                sopass[i] = readw(ioaddr + RxFilterData);
1416        }
1417
1418        /* now whack the chip */
1419        writel(ChipReset, ioaddr + ChipCmd);
1420        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1421                if (!(readl(ioaddr + ChipCmd) & ChipReset))
1422                        break;
1423                udelay(5);
1424        }
1425        if (i==NATSEMI_HW_TIMEOUT) {
1426                printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1427                        dev->name, i*5);
1428        } else if (netif_msg_hw(np)) {
1429                printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1430                        dev->name, i*5);
1431        }
1432
1433        /* restore CFG */
1434        cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1435        /* turn on external phy if it was selected */
1436        if (dev->if_port == PORT_TP)
1437                cfg &= ~(CfgExtPhy | CfgPhyDis);
1438        else
1439                cfg |= (CfgExtPhy | CfgPhyDis);
1440        writel(cfg, ioaddr + ChipConfig);
1441        /* restore WCSR */
1442        wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1443        writel(wcsr, ioaddr + WOLCmd);
1444        /* read RFCR */
1445        rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1446        /* restore PMATCH */
1447        for (i = 0; i < 3; i++) {
1448                writel(i*2, ioaddr + RxFilterAddr);
1449                writew(pmatch[i], ioaddr + RxFilterData);
1450        }
1451        for (i = 0; i < 3; i++) {
1452                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1453                writew(sopass[i], ioaddr + RxFilterData);
1454        }
1455        /* restore RFCR */
1456        writel(rfcr, ioaddr + RxFilterAddr);
1457}
1458
1459static void reset_rx(struct net_device *dev)
1460{
1461        int i;
1462        struct netdev_private *np = netdev_priv(dev);
1463        void __iomem *ioaddr = ns_ioaddr(dev);
1464
1465        np->intr_status &= ~RxResetDone;
1466
1467        writel(RxReset, ioaddr + ChipCmd);
1468
1469        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1470                np->intr_status |= readl(ioaddr + IntrStatus);
1471                if (np->intr_status & RxResetDone)
1472                        break;
1473                udelay(15);
1474        }
1475        if (i==NATSEMI_HW_TIMEOUT) {
1476                printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1477                       dev->name, i*15);
1478        } else if (netif_msg_hw(np)) {
1479                printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1480                       dev->name, i*15);
1481        }
1482}
1483
1484static void natsemi_reload_eeprom(struct net_device *dev)
1485{
1486        struct netdev_private *np = netdev_priv(dev);
1487        void __iomem *ioaddr = ns_ioaddr(dev);
1488        int i;
1489
1490        writel(EepromReload, ioaddr + PCIBusCfg);
1491        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1492                udelay(50);
1493                if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1494                        break;
1495        }
1496        if (i==NATSEMI_HW_TIMEOUT) {
1497                printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1498                        pci_name(np->pci_dev), i*50);
1499        } else if (netif_msg_hw(np)) {
1500                printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1501                        pci_name(np->pci_dev), i*50);
1502        }
1503}
1504
1505static void natsemi_stop_rxtx(struct net_device *dev)
1506{
1507        void __iomem * ioaddr = ns_ioaddr(dev);
1508        struct netdev_private *np = netdev_priv(dev);
1509        int i;
1510
1511        writel(RxOff | TxOff, ioaddr + ChipCmd);
1512        for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1513                if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1514                        break;
1515                udelay(5);
1516        }
1517        if (i==NATSEMI_HW_TIMEOUT) {
1518                printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1519                        dev->name, i*5);
1520        } else if (netif_msg_hw(np)) {
1521                printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1522                        dev->name, i*5);
1523        }
1524}
1525
1526static int netdev_open(struct net_device *dev)
1527{
1528        struct netdev_private *np = netdev_priv(dev);
1529        void __iomem * ioaddr = ns_ioaddr(dev);
1530        const int irq = np->pci_dev->irq;
1531        int i;
1532
1533        /* Reset the chip, just in case. */
1534        natsemi_reset(dev);
1535
1536        i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1537        if (i) return i;
1538
1539        if (netif_msg_ifup(np))
1540                printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1541                        dev->name, irq);
1542        i = alloc_ring(dev);
1543        if (i < 0) {
1544                free_irq(irq, dev);
1545                return i;
1546        }
1547        napi_enable(&np->napi);
1548
1549        init_ring(dev);
1550        spin_lock_irq(&np->lock);
1551        init_registers(dev);
1552        /* now set the MAC address according to dev->dev_addr */
1553        for (i = 0; i < 3; i++) {
1554                u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1555
1556                writel(i*2, ioaddr + RxFilterAddr);
1557                writew(mac, ioaddr + RxFilterData);
1558        }
1559        writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1560        spin_unlock_irq(&np->lock);
1561
1562        netif_start_queue(dev);
1563
1564        if (netif_msg_ifup(np))
1565                printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1566                        dev->name, (int)readl(ioaddr + ChipCmd));
1567
1568        /* Set the timer to check for link beat. */
1569        init_timer(&np->timer);
1570        np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1571        np->timer.data = (unsigned long)dev;
1572        np->timer.function = netdev_timer; /* timer handler */
1573        add_timer(&np->timer);
1574
1575        return 0;
1576}
1577
1578static void do_cable_magic(struct net_device *dev)
1579{
1580        struct netdev_private *np = netdev_priv(dev);
1581        void __iomem *ioaddr = ns_ioaddr(dev);
1582
1583        if (dev->if_port != PORT_TP)
1584                return;
1585
1586        if (np->srr >= SRR_DP83816_A5)
1587                return;
1588
1589        /*
1590         * 100 MBit links with short cables can trip an issue with the chip.
1591         * The problem manifests as lots of CRC errors and/or flickering
1592         * activity LED while idle.  This process is based on instructions
1593         * from engineers at National.
1594         */
1595        if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1596                u16 data;
1597
1598                writew(1, ioaddr + PGSEL);
1599                /*
1600                 * coefficient visibility should already be enabled via
1601                 * DSPCFG | 0x1000
1602                 */
1603                data = readw(ioaddr + TSTDAT) & 0xff;
1604                /*
1605                 * the value must be negative, and within certain values
1606                 * (these values all come from National)
1607                 */
1608                if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609                        np = netdev_priv(dev);
1610
1611                        /* the bug has been triggered - fix the coefficient */
1612                        writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1613                        /* lock the value */
1614                        data = readw(ioaddr + DSPCFG);
1615                        np->dspcfg = data | DSPCFG_LOCK;
1616                        writew(np->dspcfg, ioaddr + DSPCFG);
1617                }
1618                writew(0, ioaddr + PGSEL);
1619        }
1620}
1621
1622static void undo_cable_magic(struct net_device *dev)
1623{
1624        u16 data;
1625        struct netdev_private *np = netdev_priv(dev);
1626        void __iomem * ioaddr = ns_ioaddr(dev);
1627
1628        if (dev->if_port != PORT_TP)
1629                return;
1630
1631        if (np->srr >= SRR_DP83816_A5)
1632                return;
1633
1634        writew(1, ioaddr + PGSEL);
1635        /* make sure the lock bit is clear */
1636        data = readw(ioaddr + DSPCFG);
1637        np->dspcfg = data & ~DSPCFG_LOCK;
1638        writew(np->dspcfg, ioaddr + DSPCFG);
1639        writew(0, ioaddr + PGSEL);
1640}
1641
1642static void check_link(struct net_device *dev)
1643{
1644        struct netdev_private *np = netdev_priv(dev);
1645        void __iomem * ioaddr = ns_ioaddr(dev);
1646        int duplex = np->duplex;
1647        u16 bmsr;
1648
1649        /* If we are ignoring the PHY then don't try reading it. */
1650        if (np->ignore_phy)
1651                goto propagate_state;
1652
1653        /* The link status field is latched: it remains low after a temporary
1654         * link failure until it's read. We need the current link status,
1655         * thus read twice.
1656         */
1657        mdio_read(dev, MII_BMSR);
1658        bmsr = mdio_read(dev, MII_BMSR);
1659
1660        if (!(bmsr & BMSR_LSTATUS)) {
1661                if (netif_carrier_ok(dev)) {
1662                        if (netif_msg_link(np))
1663                                printk(KERN_NOTICE "%s: link down.\n",
1664                                       dev->name);
1665                        netif_carrier_off(dev);
1666                        undo_cable_magic(dev);
1667                }
1668                return;
1669        }
1670        if (!netif_carrier_ok(dev)) {
1671                if (netif_msg_link(np))
1672                        printk(KERN_NOTICE "%s: link up.\n", dev->name);
1673                netif_carrier_on(dev);
1674                do_cable_magic(dev);
1675        }
1676
1677        duplex = np->full_duplex;
1678        if (!duplex) {
1679                if (bmsr & BMSR_ANEGCOMPLETE) {
1680                        int tmp = mii_nway_result(
1681                                np->advertising & mdio_read(dev, MII_LPA));
1682                        if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1683                                duplex = 1;
1684                } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1685                        duplex = 1;
1686        }
1687
1688propagate_state:
1689        /* if duplex is set then bit 28 must be set, too */
1690        if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1691                if (netif_msg_link(np))
1692                        printk(KERN_INFO
1693                                "%s: Setting %s-duplex based on negotiated "
1694                                "link capability.\n", dev->name,
1695                                duplex ? "full" : "half");
1696                if (duplex) {
1697                        np->rx_config |= RxAcceptTx;
1698                        np->tx_config |= TxCarrierIgn | TxHeartIgn;
1699                } else {
1700                        np->rx_config &= ~RxAcceptTx;
1701                        np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1702                }
1703                writel(np->tx_config, ioaddr + TxConfig);
1704                writel(np->rx_config, ioaddr + RxConfig);
1705        }
1706}
1707
1708static void init_registers(struct net_device *dev)
1709{
1710        struct netdev_private *np = netdev_priv(dev);
1711        void __iomem * ioaddr = ns_ioaddr(dev);
1712
1713        init_phy_fixup(dev);
1714
1715        /* clear any interrupts that are pending, such as wake events */
1716        readl(ioaddr + IntrStatus);
1717
1718        writel(np->ring_dma, ioaddr + RxRingPtr);
1719        writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1720                ioaddr + TxRingPtr);
1721
1722        /* Initialize other registers.
1723         * Configure the PCI bus bursts and FIFO thresholds.
1724         * Configure for standard, in-spec Ethernet.
1725         * Start with half-duplex. check_link will update
1726         * to the correct settings.
1727         */
1728
1729        /* DRTH: 2: start tx if 64 bytes are in the fifo
1730         * FLTH: 0x10: refill with next packet if 512 bytes are free
1731         * MXDMA: 0: up to 256 byte bursts.
1732         *      MXDMA must be <= FLTH
1733         * ECRETRY=1
1734         * ATP=1
1735         */
1736        np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1737                                TX_FLTH_VAL | TX_DRTH_VAL_START;
1738        writel(np->tx_config, ioaddr + TxConfig);
1739
1740        /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1741         * MXDMA 0: up to 256 byte bursts
1742         */
1743        np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1744        /* if receive ring now has bigger buffers than normal, enable jumbo */
1745        if (np->rx_buf_sz > NATSEMI_LONGPKT)
1746                np->rx_config |= RxAcceptLong;
1747
1748        writel(np->rx_config, ioaddr + RxConfig);
1749
1750        /* Disable PME:
1751         * The PME bit is initialized from the EEPROM contents.
1752         * PCI cards probably have PME disabled, but motherboard
1753         * implementations may have PME set to enable WakeOnLan.
1754         * With PME set the chip will scan incoming packets but
1755         * nothing will be written to memory. */
1756        np->SavedClkRun = readl(ioaddr + ClkRun);
1757        writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1758        if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1759                printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1760                        dev->name, readl(ioaddr + WOLCmd));
1761        }
1762
1763        check_link(dev);
1764        __set_rx_mode(dev);
1765
1766        /* Enable interrupts by setting the interrupt mask. */
1767        writel(DEFAULT_INTR, ioaddr + IntrMask);
1768        natsemi_irq_enable(dev);
1769
1770        writel(RxOn | TxOn, ioaddr + ChipCmd);
1771        writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772}
1773
1774/*
1775 * netdev_timer:
1776 * Purpose:
1777 * 1) check for link changes. Usually they are handled by the MII interrupt
1778 *    but it doesn't hurt to check twice.
1779 * 2) check for sudden death of the NIC:
1780 *    It seems that a reference set for this chip went out with incorrect info,
1781 *    and there exist boards that aren't quite right.  An unexpected voltage
1782 *    drop can cause the PHY to get itself in a weird state (basically reset).
1783 *    NOTE: this only seems to affect revC chips.  The user can disable
1784 *    this check via dspcfg_workaround sysfs option.
1785 * 3) check of death of the RX path due to OOM
1786 */
1787static void netdev_timer(unsigned long data)
1788{
1789        struct net_device *dev = (struct net_device *)data;
1790        struct netdev_private *np = netdev_priv(dev);
1791        void __iomem * ioaddr = ns_ioaddr(dev);
1792        int next_tick = NATSEMI_TIMER_FREQ;
1793        const int irq = np->pci_dev->irq;
1794
1795        if (netif_msg_timer(np)) {
1796                /* DO NOT read the IntrStatus register,
1797                 * a read clears any pending interrupts.
1798                 */
1799                printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1800                        dev->name);
1801        }
1802
1803        if (dev->if_port == PORT_TP) {
1804                u16 dspcfg;
1805
1806                spin_lock_irq(&np->lock);
1807                /* check for a nasty random phy-reset - use dspcfg as a flag */
1808                writew(1, ioaddr+PGSEL);
1809                dspcfg = readw(ioaddr+DSPCFG);
1810                writew(0, ioaddr+PGSEL);
1811                if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1812                        if (!netif_queue_stopped(dev)) {
1813                                spin_unlock_irq(&np->lock);
1814                                if (netif_msg_drv(np))
1815                                        printk(KERN_NOTICE "%s: possible phy reset: "
1816                                                "re-initializing\n", dev->name);
1817                                disable_irq(irq);
1818                                spin_lock_irq(&np->lock);
1819                                natsemi_stop_rxtx(dev);
1820                                dump_ring(dev);
1821                                reinit_ring(dev);
1822                                init_registers(dev);
1823                                spin_unlock_irq(&np->lock);
1824                                enable_irq(irq);
1825                        } else {
1826                                /* hurry back */
1827                                next_tick = HZ;
1828                                spin_unlock_irq(&np->lock);
1829                        }
1830                } else {
1831                        /* init_registers() calls check_link() for the above case */
1832                        check_link(dev);
1833                        spin_unlock_irq(&np->lock);
1834                }
1835        } else {
1836                spin_lock_irq(&np->lock);
1837                check_link(dev);
1838                spin_unlock_irq(&np->lock);
1839        }
1840        if (np->oom) {
1841                disable_irq(irq);
1842                np->oom = 0;
1843                refill_rx(dev);
1844                enable_irq(irq);
1845                if (!np->oom) {
1846                        writel(RxOn, ioaddr + ChipCmd);
1847                } else {
1848                        next_tick = 1;
1849                }
1850        }
1851
1852        if (next_tick > 1)
1853                mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1854        else
1855                mod_timer(&np->timer, jiffies + next_tick);
1856}
1857
1858static void dump_ring(struct net_device *dev)
1859{
1860        struct netdev_private *np = netdev_priv(dev);
1861
1862        if (netif_msg_pktdata(np)) {
1863                int i;
1864                printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1865                for (i = 0; i < TX_RING_SIZE; i++) {
1866                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1867                                i, np->tx_ring[i].next_desc,
1868                                np->tx_ring[i].cmd_status,
1869                                np->tx_ring[i].addr);
1870                }
1871                printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1872                for (i = 0; i < RX_RING_SIZE; i++) {
1873                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1874                                i, np->rx_ring[i].next_desc,
1875                                np->rx_ring[i].cmd_status,
1876                                np->rx_ring[i].addr);
1877                }
1878        }
1879}
1880
1881static void ns_tx_timeout(struct net_device *dev)
1882{
1883        struct netdev_private *np = netdev_priv(dev);
1884        void __iomem * ioaddr = ns_ioaddr(dev);
1885        const int irq = np->pci_dev->irq;
1886
1887        disable_irq(irq);
1888        spin_lock_irq(&np->lock);
1889        if (!np->hands_off) {
1890                if (netif_msg_tx_err(np))
1891                        printk(KERN_WARNING
1892                                "%s: Transmit timed out, status %#08x,"
1893                                " resetting...\n",
1894                                dev->name, readl(ioaddr + IntrStatus));
1895                dump_ring(dev);
1896
1897                natsemi_reset(dev);
1898                reinit_ring(dev);
1899                init_registers(dev);
1900        } else {
1901                printk(KERN_WARNING
1902                        "%s: tx_timeout while in hands_off state?\n",
1903                        dev->name);
1904        }
1905        spin_unlock_irq(&np->lock);
1906        enable_irq(irq);
1907
1908        dev->trans_start = jiffies; /* prevent tx timeout */
1909        dev->stats.tx_errors++;
1910        netif_wake_queue(dev);
1911}
1912
1913static int alloc_ring(struct net_device *dev)
1914{
1915        struct netdev_private *np = netdev_priv(dev);
1916        np->rx_ring = pci_alloc_consistent(np->pci_dev,
1917                sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1918                &np->ring_dma);
1919        if (!np->rx_ring)
1920                return -ENOMEM;
1921        np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922        return 0;
1923}
1924
1925static void refill_rx(struct net_device *dev)
1926{
1927        struct netdev_private *np = netdev_priv(dev);
1928
1929        /* Refill the Rx ring buffers. */
1930        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931                struct sk_buff *skb;
1932                int entry = np->dirty_rx % RX_RING_SIZE;
1933                if (np->rx_skbuff[entry] == NULL) {
1934                        unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935                        skb = netdev_alloc_skb(dev, buflen);
1936                        np->rx_skbuff[entry] = skb;
1937                        if (skb == NULL)
1938                                break; /* Better luck next round. */
1939                        np->rx_dma[entry] = pci_map_single(np->pci_dev,
1940                                skb->data, buflen, PCI_DMA_FROMDEVICE);
1941                        np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1942                }
1943                np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1944        }
1945        if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1946                if (netif_msg_rx_err(np))
1947                        printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1948                np->oom = 1;
1949        }
1950}
1951
1952static void set_bufsize(struct net_device *dev)
1953{
1954        struct netdev_private *np = netdev_priv(dev);
1955        if (dev->mtu <= ETH_DATA_LEN)
1956                np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1957        else
1958                np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1959}
1960
1961/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1962static void init_ring(struct net_device *dev)
1963{
1964        struct netdev_private *np = netdev_priv(dev);
1965        int i;
1966
1967        /* 1) TX ring */
1968        np->dirty_tx = np->cur_tx = 0;
1969        for (i = 0; i < TX_RING_SIZE; i++) {
1970                np->tx_skbuff[i] = NULL;
1971                np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1972                        +sizeof(struct netdev_desc)
1973                        *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1974                np->tx_ring[i].cmd_status = 0;
1975        }
1976
1977        /* 2) RX ring */
1978        np->dirty_rx = 0;
1979        np->cur_rx = RX_RING_SIZE;
1980        np->oom = 0;
1981        set_bufsize(dev);
1982
1983        np->rx_head_desc = &np->rx_ring[0];
1984
1985        /* Please be careful before changing this loop - at least gcc-2.95.1
1986         * miscompiles it otherwise.
1987         */
1988        /* Initialize all Rx descriptors. */
1989        for (i = 0; i < RX_RING_SIZE; i++) {
1990                np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1991                                +sizeof(struct netdev_desc)
1992                                *((i+1)%RX_RING_SIZE));
1993                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1994                np->rx_skbuff[i] = NULL;
1995        }
1996        refill_rx(dev);
1997        dump_ring(dev);
1998}
1999
2000static void drain_tx(struct net_device *dev)
2001{
2002        struct netdev_private *np = netdev_priv(dev);
2003        int i;
2004
2005        for (i = 0; i < TX_RING_SIZE; i++) {
2006                if (np->tx_skbuff[i]) {
2007                        pci_unmap_single(np->pci_dev,
2008                                np->tx_dma[i], np->tx_skbuff[i]->len,
2009                                PCI_DMA_TODEVICE);
2010                        dev_kfree_skb(np->tx_skbuff[i]);
2011                        dev->stats.tx_dropped++;
2012                }
2013                np->tx_skbuff[i] = NULL;
2014        }
2015}
2016
2017static void drain_rx(struct net_device *dev)
2018{
2019        struct netdev_private *np = netdev_priv(dev);
2020        unsigned int buflen = np->rx_buf_sz;
2021        int i;
2022
2023        /* Free all the skbuffs in the Rx queue. */
2024        for (i = 0; i < RX_RING_SIZE; i++) {
2025                np->rx_ring[i].cmd_status = 0;
2026                np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2027                if (np->rx_skbuff[i]) {
2028                        pci_unmap_single(np->pci_dev, np->rx_dma[i],
2029                                buflen + NATSEMI_PADDING,
2030                                PCI_DMA_FROMDEVICE);
2031                        dev_kfree_skb(np->rx_skbuff[i]);
2032                }
2033                np->rx_skbuff[i] = NULL;
2034        }
2035}
2036
2037static void drain_ring(struct net_device *dev)
2038{
2039        drain_rx(dev);
2040        drain_tx(dev);
2041}
2042
2043static void free_ring(struct net_device *dev)
2044{
2045        struct netdev_private *np = netdev_priv(dev);
2046        pci_free_consistent(np->pci_dev,
2047                sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2048                np->rx_ring, np->ring_dma);
2049}
2050
2051static void reinit_rx(struct net_device *dev)
2052{
2053        struct netdev_private *np = netdev_priv(dev);
2054        int i;
2055
2056        /* RX Ring */
2057        np->dirty_rx = 0;
2058        np->cur_rx = RX_RING_SIZE;
2059        np->rx_head_desc = &np->rx_ring[0];
2060        /* Initialize all Rx descriptors. */
2061        for (i = 0; i < RX_RING_SIZE; i++)
2062                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2063
2064        refill_rx(dev);
2065}
2066
2067static void reinit_ring(struct net_device *dev)
2068{
2069        struct netdev_private *np = netdev_priv(dev);
2070        int i;
2071
2072        /* drain TX ring */
2073        drain_tx(dev);
2074        np->dirty_tx = np->cur_tx = 0;
2075        for (i=0;i<TX_RING_SIZE;i++)
2076                np->tx_ring[i].cmd_status = 0;
2077
2078        reinit_rx(dev);
2079}
2080
2081static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2082{
2083        struct netdev_private *np = netdev_priv(dev);
2084        void __iomem * ioaddr = ns_ioaddr(dev);
2085        unsigned entry;
2086        unsigned long flags;
2087
2088        /* Note: Ordering is important here, set the field with the
2089           "ownership" bit last, and only then increment cur_tx. */
2090
2091        /* Calculate the next Tx descriptor entry. */
2092        entry = np->cur_tx % TX_RING_SIZE;
2093
2094        np->tx_skbuff[entry] = skb;
2095        np->tx_dma[entry] = pci_map_single(np->pci_dev,
2096                                skb->data,skb->len, PCI_DMA_TODEVICE);
2097
2098        np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2099
2100        spin_lock_irqsave(&np->lock, flags);
2101
2102        if (!np->hands_off) {
2103                np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2104                /* StrongARM: Explicitly cache flush np->tx_ring and
2105                 * skb->data,skb->len. */
2106                wmb();
2107                np->cur_tx++;
2108                if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2109                        netdev_tx_done(dev);
2110                        if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2111                                netif_stop_queue(dev);
2112                }
2113                /* Wake the potentially-idle transmit channel. */
2114                writel(TxOn, ioaddr + ChipCmd);
2115        } else {
2116                dev_kfree_skb_irq(skb);
2117                dev->stats.tx_dropped++;
2118        }
2119        spin_unlock_irqrestore(&np->lock, flags);
2120
2121        if (netif_msg_tx_queued(np)) {
2122                printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2123                        dev->name, np->cur_tx, entry);
2124        }
2125        return NETDEV_TX_OK;
2126}
2127
2128static void netdev_tx_done(struct net_device *dev)
2129{
2130        struct netdev_private *np = netdev_priv(dev);
2131
2132        for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2133                int entry = np->dirty_tx % TX_RING_SIZE;
2134                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2135                        break;
2136                if (netif_msg_tx_done(np))
2137                        printk(KERN_DEBUG
2138                                "%s: tx frame #%d finished, status %#08x.\n",
2139                                        dev->name, np->dirty_tx,
2140                                        le32_to_cpu(np->tx_ring[entry].cmd_status));
2141                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2142                        dev->stats.tx_packets++;
2143                        dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2144                } else { /* Various Tx errors */
2145                        int tx_status =
2146                                le32_to_cpu(np->tx_ring[entry].cmd_status);
2147                        if (tx_status & (DescTxAbort|DescTxExcColl))
2148                                dev->stats.tx_aborted_errors++;
2149                        if (tx_status & DescTxFIFO)
2150                                dev->stats.tx_fifo_errors++;
2151                        if (tx_status & DescTxCarrier)
2152                                dev->stats.tx_carrier_errors++;
2153                        if (tx_status & DescTxOOWCol)
2154                                dev->stats.tx_window_errors++;
2155                        dev->stats.tx_errors++;
2156                }
2157                pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2158                                        np->tx_skbuff[entry]->len,
2159                                        PCI_DMA_TODEVICE);
2160                /* Free the original skb. */
2161                dev_kfree_skb_irq(np->tx_skbuff[entry]);
2162                np->tx_skbuff[entry] = NULL;
2163        }
2164        if (netif_queue_stopped(dev) &&
2165            np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2166                /* The ring is no longer full, wake queue. */
2167                netif_wake_queue(dev);
2168        }
2169}
2170
2171/* The interrupt handler doesn't actually handle interrupts itself, it
2172 * schedules a NAPI poll if there is anything to do. */
2173static irqreturn_t intr_handler(int irq, void *dev_instance)
2174{
2175        struct net_device *dev = dev_instance;
2176        struct netdev_private *np = netdev_priv(dev);
2177        void __iomem * ioaddr = ns_ioaddr(dev);
2178
2179        /* Reading IntrStatus automatically acknowledges so don't do
2180         * that while interrupts are disabled, (for example, while a
2181         * poll is scheduled).  */
2182        if (np->hands_off || !readl(ioaddr + IntrEnable))
2183                return IRQ_NONE;
2184
2185        np->intr_status = readl(ioaddr + IntrStatus);
2186
2187        if (!np->intr_status)
2188                return IRQ_NONE;
2189
2190        if (netif_msg_intr(np))
2191                printk(KERN_DEBUG
2192                       "%s: Interrupt, status %#08x, mask %#08x.\n",
2193                       dev->name, np->intr_status,
2194                       readl(ioaddr + IntrMask));
2195
2196        prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2197
2198        if (napi_schedule_prep(&np->napi)) {
2199                /* Disable interrupts and register for poll */
2200                natsemi_irq_disable(dev);
2201                __napi_schedule(&np->napi);
2202        } else
2203                printk(KERN_WARNING
2204                       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2205                       dev->name, np->intr_status,
2206                       readl(ioaddr + IntrMask));
2207
2208        return IRQ_HANDLED;
2209}
2210
2211/* This is the NAPI poll routine.  As well as the standard RX handling
2212 * it also handles all other interrupts that the chip might raise.
2213 */
2214static int natsemi_poll(struct napi_struct *napi, int budget)
2215{
2216        struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2217        struct net_device *dev = np->dev;
2218        void __iomem * ioaddr = ns_ioaddr(dev);
2219        int work_done = 0;
2220
2221        do {
2222                if (netif_msg_intr(np))
2223                        printk(KERN_DEBUG
2224                               "%s: Poll, status %#08x, mask %#08x.\n",
2225                               dev->name, np->intr_status,
2226                               readl(ioaddr + IntrMask));
2227
2228                /* netdev_rx() may read IntrStatus again if the RX state
2229                 * machine falls over so do it first. */
2230                if (np->intr_status &
2231                    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2232                     IntrRxErr | IntrRxOverrun)) {
2233                        netdev_rx(dev, &work_done, budget);
2234                }
2235
2236                if (np->intr_status &
2237                    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2238                        spin_lock(&np->lock);
2239                        netdev_tx_done(dev);
2240                        spin_unlock(&np->lock);
2241                }
2242
2243                /* Abnormal error summary/uncommon events handlers. */
2244                if (np->intr_status & IntrAbnormalSummary)
2245                        netdev_error(dev, np->intr_status);
2246
2247                if (work_done >= budget)
2248                        return work_done;
2249
2250                np->intr_status = readl(ioaddr + IntrStatus);
2251        } while (np->intr_status);
2252
2253        napi_complete(napi);
2254
2255        /* Reenable interrupts providing nothing is trying to shut
2256         * the chip down. */
2257        spin_lock(&np->lock);
2258        if (!np->hands_off)
2259                natsemi_irq_enable(dev);
2260        spin_unlock(&np->lock);
2261
2262        return work_done;
2263}
2264
2265/* This routine is logically part of the interrupt handler, but separated
2266   for clarity and better register allocation. */
2267static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2268{
2269        struct netdev_private *np = netdev_priv(dev);
2270        int entry = np->cur_rx % RX_RING_SIZE;
2271        int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2272        s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2273        unsigned int buflen = np->rx_buf_sz;
2274        void __iomem * ioaddr = ns_ioaddr(dev);
2275
2276        /* If the driver owns the next entry it's a new packet. Send it up. */
2277        while (desc_status < 0) { /* e.g. & DescOwn */
2278                int pkt_len;
2279                if (netif_msg_rx_status(np))
2280                        printk(KERN_DEBUG
2281                                "  netdev_rx() entry %d status was %#08x.\n",
2282                                entry, desc_status);
2283                if (--boguscnt < 0)
2284                        break;
2285
2286                if (*work_done >= work_to_do)
2287                        break;
2288
2289                (*work_done)++;
2290
2291                pkt_len = (desc_status & DescSizeMask) - 4;
2292                if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2293                        if (desc_status & DescMore) {
2294                                unsigned long flags;
2295
2296                                if (netif_msg_rx_err(np))
2297                                        printk(KERN_WARNING
2298                                                "%s: Oversized(?) Ethernet "
2299                                                "frame spanned multiple "
2300                                                "buffers, entry %#08x "
2301                                                "status %#08x.\n", dev->name,
2302                                                np->cur_rx, desc_status);
2303                                dev->stats.rx_length_errors++;
2304
2305                                /* The RX state machine has probably
2306                                 * locked up beneath us.  Follow the
2307                                 * reset procedure documented in
2308                                 * AN-1287. */
2309
2310                                spin_lock_irqsave(&np->lock, flags);
2311                                reset_rx(dev);
2312                                reinit_rx(dev);
2313                                writel(np->ring_dma, ioaddr + RxRingPtr);
2314                                check_link(dev);
2315                                spin_unlock_irqrestore(&np->lock, flags);
2316
2317                                /* We'll enable RX on exit from this
2318                                 * function. */
2319                                break;
2320
2321                        } else {
2322                                /* There was an error. */
2323                                dev->stats.rx_errors++;
2324                                if (desc_status & (DescRxAbort|DescRxOver))
2325                                        dev->stats.rx_over_errors++;
2326                                if (desc_status & (DescRxLong|DescRxRunt))
2327                                        dev->stats.rx_length_errors++;
2328                                if (desc_status & (DescRxInvalid|DescRxAlign))
2329                                        dev->stats.rx_frame_errors++;
2330                                if (desc_status & DescRxCRC)
2331                                        dev->stats.rx_crc_errors++;
2332                        }
2333                } else if (pkt_len > np->rx_buf_sz) {
2334                        /* if this is the tail of a double buffer
2335                         * packet, we've already counted the error
2336                         * on the first part.  Ignore the second half.
2337                         */
2338                } else {
2339                        struct sk_buff *skb;
2340                        /* Omit CRC size. */
2341                        /* Check if the packet is long enough to accept
2342                         * without copying to a minimally-sized skbuff. */
2343                        if (pkt_len < rx_copybreak &&
2344                            (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2345                                /* 16 byte align the IP header */
2346                                skb_reserve(skb, RX_OFFSET);
2347                                pci_dma_sync_single_for_cpu(np->pci_dev,
2348                                        np->rx_dma[entry],
2349                                        buflen,
2350                                        PCI_DMA_FROMDEVICE);
2351                                skb_copy_to_linear_data(skb,
2352                                        np->rx_skbuff[entry]->data, pkt_len);
2353                                skb_put(skb, pkt_len);
2354                                pci_dma_sync_single_for_device(np->pci_dev,
2355                                        np->rx_dma[entry],
2356                                        buflen,
2357                                        PCI_DMA_FROMDEVICE);
2358                        } else {
2359                                pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2360                                                 buflen + NATSEMI_PADDING,
2361                                                 PCI_DMA_FROMDEVICE);
2362                                skb_put(skb = np->rx_skbuff[entry], pkt_len);
2363                                np->rx_skbuff[entry] = NULL;
2364                        }
2365                        skb->protocol = eth_type_trans(skb, dev);
2366                        netif_receive_skb(skb);
2367                        dev->stats.rx_packets++;
2368                        dev->stats.rx_bytes += pkt_len;
2369                }
2370                entry = (++np->cur_rx) % RX_RING_SIZE;
2371                np->rx_head_desc = &np->rx_ring[entry];
2372                desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2373        }
2374        refill_rx(dev);
2375
2376        /* Restart Rx engine if stopped. */
2377        if (np->oom)
2378                mod_timer(&np->timer, jiffies + 1);
2379        else
2380                writel(RxOn, ioaddr + ChipCmd);
2381}
2382
2383static void netdev_error(struct net_device *dev, int intr_status)
2384{
2385        struct netdev_private *np = netdev_priv(dev);
2386        void __iomem * ioaddr = ns_ioaddr(dev);
2387
2388        spin_lock(&np->lock);
2389        if (intr_status & LinkChange) {
2390                u16 lpa = mdio_read(dev, MII_LPA);
2391                if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2392                    netif_msg_link(np)) {
2393                        printk(KERN_INFO
2394                                "%s: Autonegotiation advertising"
2395                                " %#04x  partner %#04x.\n", dev->name,
2396                                np->advertising, lpa);
2397                }
2398
2399                /* read MII int status to clear the flag */
2400                readw(ioaddr + MIntrStatus);
2401                check_link(dev);
2402        }
2403        if (intr_status & StatsMax) {
2404                __get_stats(dev);
2405        }
2406        if (intr_status & IntrTxUnderrun) {
2407                if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2408                        np->tx_config += TX_DRTH_VAL_INC;
2409                        if (netif_msg_tx_err(np))
2410                                printk(KERN_NOTICE
2411                                        "%s: increased tx threshold, txcfg %#08x.\n",
2412                                        dev->name, np->tx_config);
2413                } else {
2414                        if (netif_msg_tx_err(np))
2415                                printk(KERN_NOTICE
2416                                        "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2417                                        dev->name, np->tx_config);
2418                }
2419                writel(np->tx_config, ioaddr + TxConfig);
2420        }
2421        if (intr_status & WOLPkt && netif_msg_wol(np)) {
2422                int wol_status = readl(ioaddr + WOLCmd);
2423                printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2424                        dev->name, wol_status);
2425        }
2426        if (intr_status & RxStatusFIFOOver) {
2427                if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2428                        printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2429                                dev->name);
2430                }
2431                dev->stats.rx_fifo_errors++;
2432                dev->stats.rx_errors++;
2433        }
2434        /* Hmmmmm, it's not clear how to recover from PCI faults. */
2435        if (intr_status & IntrPCIErr) {
2436                printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2437                        intr_status & IntrPCIErr);
2438                dev->stats.tx_fifo_errors++;
2439                dev->stats.tx_errors++;
2440                dev->stats.rx_fifo_errors++;
2441                dev->stats.rx_errors++;
2442        }
2443        spin_unlock(&np->lock);
2444}
2445
2446static void __get_stats(struct net_device *dev)
2447{
2448        void __iomem * ioaddr = ns_ioaddr(dev);
2449
2450        /* The chip only need report frame silently dropped. */
2451        dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2452        dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2453}
2454
2455static struct net_device_stats *get_stats(struct net_device *dev)
2456{
2457        struct netdev_private *np = netdev_priv(dev);
2458
2459        /* The chip only need report frame silently dropped. */
2460        spin_lock_irq(&np->lock);
2461        if (netif_running(dev) && !np->hands_off)
2462                __get_stats(dev);
2463        spin_unlock_irq(&np->lock);
2464
2465        return &dev->stats;
2466}
2467
2468#ifdef CONFIG_NET_POLL_CONTROLLER
2469static void natsemi_poll_controller(struct net_device *dev)
2470{
2471        struct netdev_private *np = netdev_priv(dev);
2472        const int irq = np->pci_dev->irq;
2473
2474        disable_irq(irq);
2475        intr_handler(irq, dev);
2476        enable_irq(irq);
2477}
2478#endif
2479
2480#define HASH_TABLE      0x200
2481static void __set_rx_mode(struct net_device *dev)
2482{
2483        void __iomem * ioaddr = ns_ioaddr(dev);
2484        struct netdev_private *np = netdev_priv(dev);
2485        u8 mc_filter[64]; /* Multicast hash filter */
2486        u32 rx_mode;
2487
2488        if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2489                rx_mode = RxFilterEnable | AcceptBroadcast
2490                        | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2491        } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2492                   (dev->flags & IFF_ALLMULTI)) {
2493                rx_mode = RxFilterEnable | AcceptBroadcast
2494                        | AcceptAllMulticast | AcceptMyPhys;
2495        } else {
2496                struct netdev_hw_addr *ha;
2497                int i;
2498
2499                memset(mc_filter, 0, sizeof(mc_filter));
2500                netdev_for_each_mc_addr(ha, dev) {
2501                        int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2502                        mc_filter[b/8] |= (1 << (b & 0x07));
2503                }
2504                rx_mode = RxFilterEnable | AcceptBroadcast
2505                        | AcceptMulticast | AcceptMyPhys;
2506                for (i = 0; i < 64; i += 2) {
2507                        writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2508                        writel((mc_filter[i + 1] << 8) + mc_filter[i],
2509                               ioaddr + RxFilterData);
2510                }
2511        }
2512        writel(rx_mode, ioaddr + RxFilterAddr);
2513        np->cur_rx_mode = rx_mode;
2514}
2515
2516static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2517{
2518        if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2519                return -EINVAL;
2520
2521        dev->mtu = new_mtu;
2522
2523        /* synchronized against open : rtnl_lock() held by caller */
2524        if (netif_running(dev)) {
2525                struct netdev_private *np = netdev_priv(dev);
2526                void __iomem * ioaddr = ns_ioaddr(dev);
2527                const int irq = np->pci_dev->irq;
2528
2529                disable_irq(irq);
2530                spin_lock(&np->lock);
2531                /* stop engines */
2532                natsemi_stop_rxtx(dev);
2533                /* drain rx queue */
2534                drain_rx(dev);
2535                /* change buffers */
2536                set_bufsize(dev);
2537                reinit_rx(dev);
2538                writel(np->ring_dma, ioaddr + RxRingPtr);
2539                /* restart engines */
2540                writel(RxOn | TxOn, ioaddr + ChipCmd);
2541                spin_unlock(&np->lock);
2542                enable_irq(irq);
2543        }
2544        return 0;
2545}
2546
2547static void set_rx_mode(struct net_device *dev)
2548{
2549        struct netdev_private *np = netdev_priv(dev);
2550        spin_lock_irq(&np->lock);
2551        if (!np->hands_off)
2552                __set_rx_mode(dev);
2553        spin_unlock_irq(&np->lock);
2554}
2555
2556static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2557{
2558        struct netdev_private *np = netdev_priv(dev);
2559        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2560        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2561        strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2562}
2563
2564static int get_regs_len(struct net_device *dev)
2565{
2566        return NATSEMI_REGS_SIZE;
2567}
2568
2569static int get_eeprom_len(struct net_device *dev)
2570{
2571        struct netdev_private *np = netdev_priv(dev);
2572        return np->eeprom_size;
2573}
2574
2575static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2576{
2577        struct netdev_private *np = netdev_priv(dev);
2578        spin_lock_irq(&np->lock);
2579        netdev_get_ecmd(dev, ecmd);
2580        spin_unlock_irq(&np->lock);
2581        return 0;
2582}
2583
2584static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2585{
2586        struct netdev_private *np = netdev_priv(dev);
2587        int res;
2588        spin_lock_irq(&np->lock);
2589        res = netdev_set_ecmd(dev, ecmd);
2590        spin_unlock_irq(&np->lock);
2591        return res;
2592}
2593
2594static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2595{
2596        struct netdev_private *np = netdev_priv(dev);
2597        spin_lock_irq(&np->lock);
2598        netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2599        netdev_get_sopass(dev, wol->sopass);
2600        spin_unlock_irq(&np->lock);
2601}
2602
2603static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2604{
2605        struct netdev_private *np = netdev_priv(dev);
2606        int res;
2607        spin_lock_irq(&np->lock);
2608        netdev_set_wol(dev, wol->wolopts);
2609        res = netdev_set_sopass(dev, wol->sopass);
2610        spin_unlock_irq(&np->lock);
2611        return res;
2612}
2613
2614static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2615{
2616        struct netdev_private *np = netdev_priv(dev);
2617        regs->version = NATSEMI_REGS_VER;
2618        spin_lock_irq(&np->lock);
2619        netdev_get_regs(dev, buf);
2620        spin_unlock_irq(&np->lock);
2621}
2622
2623static u32 get_msglevel(struct net_device *dev)
2624{
2625        struct netdev_private *np = netdev_priv(dev);
2626        return np->msg_enable;
2627}
2628
2629static void set_msglevel(struct net_device *dev, u32 val)
2630{
2631        struct netdev_private *np = netdev_priv(dev);
2632        np->msg_enable = val;
2633}
2634
2635static int nway_reset(struct net_device *dev)
2636{
2637        int tmp;
2638        int r = -EINVAL;
2639        /* if autoneg is off, it's an error */
2640        tmp = mdio_read(dev, MII_BMCR);
2641        if (tmp & BMCR_ANENABLE) {
2642                tmp |= (BMCR_ANRESTART);
2643                mdio_write(dev, MII_BMCR, tmp);
2644                r = 0;
2645        }
2646        return r;
2647}
2648
2649static u32 get_link(struct net_device *dev)
2650{
2651        /* LSTATUS is latched low until a read - so read twice */
2652        mdio_read(dev, MII_BMSR);
2653        return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2654}
2655
2656static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2657{
2658        struct netdev_private *np = netdev_priv(dev);
2659        u8 *eebuf;
2660        int res;
2661
2662        eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2663        if (!eebuf)
2664                return -ENOMEM;
2665
2666        eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2667        spin_lock_irq(&np->lock);
2668        res = netdev_get_eeprom(dev, eebuf);
2669        spin_unlock_irq(&np->lock);
2670        if (!res)
2671                memcpy(data, eebuf+eeprom->offset, eeprom->len);
2672        kfree(eebuf);
2673        return res;
2674}
2675
2676static const struct ethtool_ops ethtool_ops = {
2677        .get_drvinfo = get_drvinfo,
2678        .get_regs_len = get_regs_len,
2679        .get_eeprom_len = get_eeprom_len,
2680        .get_settings = get_settings,
2681        .set_settings = set_settings,
2682        .get_wol = get_wol,
2683        .set_wol = set_wol,
2684        .get_regs = get_regs,
2685        .get_msglevel = get_msglevel,
2686        .set_msglevel = set_msglevel,
2687        .nway_reset = nway_reset,
2688        .get_link = get_link,
2689        .get_eeprom = get_eeprom,
2690};
2691
2692static int netdev_set_wol(struct net_device *dev, u32 newval)
2693{
2694        struct netdev_private *np = netdev_priv(dev);
2695        void __iomem * ioaddr = ns_ioaddr(dev);
2696        u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2697
2698        /* translate to bitmasks this chip understands */
2699        if (newval & WAKE_PHY)
2700                data |= WakePhy;
2701        if (newval & WAKE_UCAST)
2702                data |= WakeUnicast;
2703        if (newval & WAKE_MCAST)
2704                data |= WakeMulticast;
2705        if (newval & WAKE_BCAST)
2706                data |= WakeBroadcast;
2707        if (newval & WAKE_ARP)
2708                data |= WakeArp;
2709        if (newval & WAKE_MAGIC)
2710                data |= WakeMagic;
2711        if (np->srr >= SRR_DP83815_D) {
2712                if (newval & WAKE_MAGICSECURE) {
2713                        data |= WakeMagicSecure;
2714                }
2715        }
2716
2717        writel(data, ioaddr + WOLCmd);
2718
2719        return 0;
2720}
2721
2722static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2723{
2724        struct netdev_private *np = netdev_priv(dev);
2725        void __iomem * ioaddr = ns_ioaddr(dev);
2726        u32 regval = readl(ioaddr + WOLCmd);
2727
2728        *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2729                        | WAKE_ARP | WAKE_MAGIC);
2730
2731        if (np->srr >= SRR_DP83815_D) {
2732                /* SOPASS works on revD and higher */
2733                *supported |= WAKE_MAGICSECURE;
2734        }
2735        *cur = 0;
2736
2737        /* translate from chip bitmasks */
2738        if (regval & WakePhy)
2739                *cur |= WAKE_PHY;
2740        if (regval & WakeUnicast)
2741                *cur |= WAKE_UCAST;
2742        if (regval & WakeMulticast)
2743                *cur |= WAKE_MCAST;
2744        if (regval & WakeBroadcast)
2745                *cur |= WAKE_BCAST;
2746        if (regval & WakeArp)
2747                *cur |= WAKE_ARP;
2748        if (regval & WakeMagic)
2749                *cur |= WAKE_MAGIC;
2750        if (regval & WakeMagicSecure) {
2751                /* this can be on in revC, but it's broken */
2752                *cur |= WAKE_MAGICSECURE;
2753        }
2754
2755        return 0;
2756}
2757
2758static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2759{
2760        struct netdev_private *np = netdev_priv(dev);
2761        void __iomem * ioaddr = ns_ioaddr(dev);
2762        u16 *sval = (u16 *)newval;
2763        u32 addr;
2764
2765        if (np->srr < SRR_DP83815_D) {
2766                return 0;
2767        }
2768
2769        /* enable writing to these registers by disabling the RX filter */
2770        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2771        addr &= ~RxFilterEnable;
2772        writel(addr, ioaddr + RxFilterAddr);
2773
2774        /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2775        writel(addr | 0xa, ioaddr + RxFilterAddr);
2776        writew(sval[0], ioaddr + RxFilterData);
2777
2778        writel(addr | 0xc, ioaddr + RxFilterAddr);
2779        writew(sval[1], ioaddr + RxFilterData);
2780
2781        writel(addr | 0xe, ioaddr + RxFilterAddr);
2782        writew(sval[2], ioaddr + RxFilterData);
2783
2784        /* re-enable the RX filter */
2785        writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2786
2787        return 0;
2788}
2789
2790static int netdev_get_sopass(struct net_device *dev, u8 *data)
2791{
2792        struct netdev_private *np = netdev_priv(dev);
2793        void __iomem * ioaddr = ns_ioaddr(dev);
2794        u16 *sval = (u16 *)data;
2795        u32 addr;
2796
2797        if (np->srr < SRR_DP83815_D) {
2798                sval[0] = sval[1] = sval[2] = 0;
2799                return 0;
2800        }
2801
2802        /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2803        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2804
2805        writel(addr | 0xa, ioaddr + RxFilterAddr);
2806        sval[0] = readw(ioaddr + RxFilterData);
2807
2808        writel(addr | 0xc, ioaddr + RxFilterAddr);
2809        sval[1] = readw(ioaddr + RxFilterData);
2810
2811        writel(addr | 0xe, ioaddr + RxFilterAddr);
2812        sval[2] = readw(ioaddr + RxFilterData);
2813
2814        writel(addr, ioaddr + RxFilterAddr);
2815
2816        return 0;
2817}
2818
2819static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2820{
2821        struct netdev_private *np = netdev_priv(dev);
2822        u32 tmp;
2823
2824        ecmd->port        = dev->if_port;
2825        ethtool_cmd_speed_set(ecmd, np->speed);
2826        ecmd->duplex      = np->duplex;
2827        ecmd->autoneg     = np->autoneg;
2828        ecmd->advertising = 0;
2829        if (np->advertising & ADVERTISE_10HALF)
2830                ecmd->advertising |= ADVERTISED_10baseT_Half;
2831        if (np->advertising & ADVERTISE_10FULL)
2832                ecmd->advertising |= ADVERTISED_10baseT_Full;
2833        if (np->advertising & ADVERTISE_100HALF)
2834                ecmd->advertising |= ADVERTISED_100baseT_Half;
2835        if (np->advertising & ADVERTISE_100FULL)
2836                ecmd->advertising |= ADVERTISED_100baseT_Full;
2837        ecmd->supported   = (SUPPORTED_Autoneg |
2838                SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2839                SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2840                SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2841        ecmd->phy_address = np->phy_addr_external;
2842        /*
2843         * We intentionally report the phy address of the external
2844         * phy, even if the internal phy is used. This is necessary
2845         * to work around a deficiency of the ethtool interface:
2846         * It's only possible to query the settings of the active
2847         * port. Therefore
2848         * # ethtool -s ethX port mii
2849         * actually sends an ioctl to switch to port mii with the
2850         * settings that are used for the current active port.
2851         * If we would report a different phy address in this
2852         * command, then
2853         * # ethtool -s ethX port tp;ethtool -s ethX port mii
2854         * would unintentionally change the phy address.
2855         *
2856         * Fortunately the phy address doesn't matter with the
2857         * internal phy...
2858         */
2859
2860        /* set information based on active port type */
2861        switch (ecmd->port) {
2862        default:
2863        case PORT_TP:
2864                ecmd->advertising |= ADVERTISED_TP;
2865                ecmd->transceiver = XCVR_INTERNAL;
2866                break;
2867        case PORT_MII:
2868                ecmd->advertising |= ADVERTISED_MII;
2869                ecmd->transceiver = XCVR_EXTERNAL;
2870                break;
2871        case PORT_FIBRE:
2872                ecmd->advertising |= ADVERTISED_FIBRE;
2873                ecmd->transceiver = XCVR_EXTERNAL;
2874                break;
2875        }
2876
2877        /* if autonegotiation is on, try to return the active speed/duplex */
2878        if (ecmd->autoneg == AUTONEG_ENABLE) {
2879                ecmd->advertising |= ADVERTISED_Autoneg;
2880                tmp = mii_nway_result(
2881                        np->advertising & mdio_read(dev, MII_LPA));
2882                if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2883                        ethtool_cmd_speed_set(ecmd, SPEED_100);
2884                else
2885                        ethtool_cmd_speed_set(ecmd, SPEED_10);
2886                if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2887                        ecmd->duplex = DUPLEX_FULL;
2888                else
2889                        ecmd->duplex = DUPLEX_HALF;
2890        }
2891
2892        /* ignore maxtxpkt, maxrxpkt for now */
2893
2894        return 0;
2895}
2896
2897static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2898{
2899        struct netdev_private *np = netdev_priv(dev);
2900
2901        if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2902                return -EINVAL;
2903        if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2904                return -EINVAL;
2905        if (ecmd->autoneg == AUTONEG_ENABLE) {
2906                if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2907                                          ADVERTISED_10baseT_Full |
2908                                          ADVERTISED_100baseT_Half |
2909                                          ADVERTISED_100baseT_Full)) == 0) {
2910                        return -EINVAL;
2911                }
2912        } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2913                u32 speed = ethtool_cmd_speed(ecmd);
2914                if (speed != SPEED_10 && speed != SPEED_100)
2915                        return -EINVAL;
2916                if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2917                        return -EINVAL;
2918        } else {
2919                return -EINVAL;
2920        }
2921
2922        /*
2923         * If we're ignoring the PHY then autoneg and the internal
2924         * transceiver are really not going to work so don't let the
2925         * user select them.
2926         */
2927        if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2928                               ecmd->port == PORT_TP))
2929                return -EINVAL;
2930
2931        /*
2932         * maxtxpkt, maxrxpkt: ignored for now.
2933         *
2934         * transceiver:
2935         * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2936         * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2937         * selects based on ecmd->port.
2938         *
2939         * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2940         * phys that are connected to the mii bus. It's used to apply fibre
2941         * specific updates.
2942         */
2943
2944        /* WHEW! now lets bang some bits */
2945
2946        /* save the parms */
2947        dev->if_port          = ecmd->port;
2948        np->autoneg           = ecmd->autoneg;
2949        np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2950        if (np->autoneg == AUTONEG_ENABLE) {
2951                /* advertise only what has been requested */
2952                np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2953                if (ecmd->advertising & ADVERTISED_10baseT_Half)
2954                        np->advertising |= ADVERTISE_10HALF;
2955                if (ecmd->advertising & ADVERTISED_10baseT_Full)
2956                        np->advertising |= ADVERTISE_10FULL;
2957                if (ecmd->advertising & ADVERTISED_100baseT_Half)
2958                        np->advertising |= ADVERTISE_100HALF;
2959                if (ecmd->advertising & ADVERTISED_100baseT_Full)
2960                        np->advertising |= ADVERTISE_100FULL;
2961        } else {
2962                np->speed  = ethtool_cmd_speed(ecmd);
2963                np->duplex = ecmd->duplex;
2964                /* user overriding the initial full duplex parm? */
2965                if (np->duplex == DUPLEX_HALF)
2966                        np->full_duplex = 0;
2967        }
2968
2969        /* get the right phy enabled */
2970        if (ecmd->port == PORT_TP)
2971                switch_port_internal(dev);
2972        else
2973                switch_port_external(dev);
2974
2975        /* set parms and see how this affected our link status */
2976        init_phy_fixup(dev);
2977        check_link(dev);
2978        return 0;
2979}
2980
2981static int netdev_get_regs(struct net_device *dev, u8 *buf)
2982{
2983        int i;
2984        int j;
2985        u32 rfcr;
2986        u32 *rbuf = (u32 *)buf;
2987        void __iomem * ioaddr = ns_ioaddr(dev);
2988
2989        /* read non-mii page 0 of registers */
2990        for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2991                rbuf[i] = readl(ioaddr + i*4);
2992        }
2993
2994        /* read current mii registers */
2995        for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2996                rbuf[i] = mdio_read(dev, i & 0x1f);
2997
2998        /* read only the 'magic' registers from page 1 */
2999        writew(1, ioaddr + PGSEL);
3000        rbuf[i++] = readw(ioaddr + PMDCSR);
3001        rbuf[i++] = readw(ioaddr + TSTDAT);
3002        rbuf[i++] = readw(ioaddr + DSPCFG);
3003        rbuf[i++] = readw(ioaddr + SDCFG);
3004        writew(0, ioaddr + PGSEL);
3005
3006        /* read RFCR indexed registers */
3007        rfcr = readl(ioaddr + RxFilterAddr);
3008        for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3009                writel(j*2, ioaddr + RxFilterAddr);
3010                rbuf[i++] = readw(ioaddr + RxFilterData);
3011        }
3012        writel(rfcr, ioaddr + RxFilterAddr);
3013
3014        /* the interrupt status is clear-on-read - see if we missed any */
3015        if (rbuf[4] & rbuf[5]) {
3016                printk(KERN_WARNING
3017                        "%s: shoot, we dropped an interrupt (%#08x)\n",
3018                        dev->name, rbuf[4] & rbuf[5]);
3019        }
3020
3021        return 0;
3022}
3023
3024#define SWAP_BITS(x)    ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3025                        | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3026                        | (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3027                        | (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3028                        | (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3029                        | (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3030                        | (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3031                        | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3032
3033static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3034{
3035        int i;
3036        u16 *ebuf = (u16 *)buf;
3037        void __iomem * ioaddr = ns_ioaddr(dev);
3038        struct netdev_private *np = netdev_priv(dev);
3039
3040        /* eeprom_read reads 16 bits, and indexes by 16 bits */
3041        for (i = 0; i < np->eeprom_size/2; i++) {
3042                ebuf[i] = eeprom_read(ioaddr, i);
3043                /* The EEPROM itself stores data bit-swapped, but eeprom_read
3044                 * reads it back "sanely". So we swap it back here in order to
3045                 * present it to userland as it is stored. */
3046                ebuf[i] = SWAP_BITS(ebuf[i]);
3047        }
3048        return 0;
3049}
3050
3051static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3052{
3053        struct mii_ioctl_data *data = if_mii(rq);
3054        struct netdev_private *np = netdev_priv(dev);
3055
3056        switch(cmd) {
3057        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
3058                data->phy_id = np->phy_addr_external;
3059                /* Fall Through */
3060
3061        case SIOCGMIIREG:               /* Read MII PHY register. */
3062                /* The phy_id is not enough to uniquely identify
3063                 * the intended target. Therefore the command is sent to
3064                 * the given mii on the current port.
3065                 */
3066                if (dev->if_port == PORT_TP) {
3067                        if ((data->phy_id & 0x1f) == np->phy_addr_external)
3068                                data->val_out = mdio_read(dev,
3069                                                        data->reg_num & 0x1f);
3070                        else
3071                                data->val_out = 0;
3072                } else {
3073                        move_int_phy(dev, data->phy_id & 0x1f);
3074                        data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3075                                                        data->reg_num & 0x1f);
3076                }
3077                return 0;
3078
3079        case SIOCSMIIREG:               /* Write MII PHY register. */
3080                if (dev->if_port == PORT_TP) {
3081                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3082                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3083                                        np->advertising = data->val_in;
3084                                mdio_write(dev, data->reg_num & 0x1f,
3085                                                        data->val_in);
3086                        }
3087                } else {
3088                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3089                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3090                                        np->advertising = data->val_in;
3091                        }
3092                        move_int_phy(dev, data->phy_id & 0x1f);
3093                        miiport_write(dev, data->phy_id & 0x1f,
3094                                                data->reg_num & 0x1f,
3095                                                data->val_in);
3096                }
3097                return 0;
3098        default:
3099                return -EOPNOTSUPP;
3100        }
3101}
3102
3103static void enable_wol_mode(struct net_device *dev, int enable_intr)
3104{
3105        void __iomem * ioaddr = ns_ioaddr(dev);
3106        struct netdev_private *np = netdev_priv(dev);
3107
3108        if (netif_msg_wol(np))
3109                printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3110                        dev->name);
3111
3112        /* For WOL we must restart the rx process in silent mode.
3113         * Write NULL to the RxRingPtr. Only possible if
3114         * rx process is stopped
3115         */
3116        writel(0, ioaddr + RxRingPtr);
3117
3118        /* read WoL status to clear */
3119        readl(ioaddr + WOLCmd);
3120
3121        /* PME on, clear status */
3122        writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3123
3124        /* and restart the rx process */
3125        writel(RxOn, ioaddr + ChipCmd);
3126
3127        if (enable_intr) {
3128                /* enable the WOL interrupt.
3129                 * Could be used to send a netlink message.
3130                 */
3131                writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3132                natsemi_irq_enable(dev);
3133        }
3134}
3135
3136static int netdev_close(struct net_device *dev)
3137{
3138        void __iomem * ioaddr = ns_ioaddr(dev);
3139        struct netdev_private *np = netdev_priv(dev);
3140        const int irq = np->pci_dev->irq;
3141
3142        if (netif_msg_ifdown(np))
3143                printk(KERN_DEBUG
3144                        "%s: Shutting down ethercard, status was %#04x.\n",
3145                        dev->name, (int)readl(ioaddr + ChipCmd));
3146        if (netif_msg_pktdata(np))
3147                printk(KERN_DEBUG
3148                        "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3149                        dev->name, np->cur_tx, np->dirty_tx,
3150                        np->cur_rx, np->dirty_rx);
3151
3152        napi_disable(&np->napi);
3153
3154        /*
3155         * FIXME: what if someone tries to close a device
3156         * that is suspended?
3157         * Should we reenable the nic to switch to
3158         * the final WOL settings?
3159         */
3160
3161        del_timer_sync(&np->timer);
3162        disable_irq(irq);
3163        spin_lock_irq(&np->lock);
3164        natsemi_irq_disable(dev);
3165        np->hands_off = 1;
3166        spin_unlock_irq(&np->lock);
3167        enable_irq(irq);
3168
3169        free_irq(irq, dev);
3170
3171        /* Interrupt disabled, interrupt handler released,
3172         * queue stopped, timer deleted, rtnl_lock held
3173         * All async codepaths that access the driver are disabled.
3174         */
3175        spin_lock_irq(&np->lock);
3176        np->hands_off = 0;
3177        readl(ioaddr + IntrMask);
3178        readw(ioaddr + MIntrStatus);
3179
3180        /* Freeze Stats */
3181        writel(StatsFreeze, ioaddr + StatsCtrl);
3182
3183        /* Stop the chip's Tx and Rx processes. */
3184        natsemi_stop_rxtx(dev);
3185
3186        __get_stats(dev);
3187        spin_unlock_irq(&np->lock);
3188
3189        /* clear the carrier last - an interrupt could reenable it otherwise */
3190        netif_carrier_off(dev);
3191        netif_stop_queue(dev);
3192
3193        dump_ring(dev);
3194        drain_ring(dev);
3195        free_ring(dev);
3196
3197        {
3198                u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3199                if (wol) {
3200                        /* restart the NIC in WOL mode.
3201                         * The nic must be stopped for this.
3202                         */
3203                        enable_wol_mode(dev, 0);
3204                } else {
3205                        /* Restore PME enable bit unmolested */
3206                        writel(np->SavedClkRun, ioaddr + ClkRun);
3207                }
3208        }
3209        return 0;
3210}
3211
3212
3213static void natsemi_remove1(struct pci_dev *pdev)
3214{
3215        struct net_device *dev = pci_get_drvdata(pdev);
3216        void __iomem * ioaddr = ns_ioaddr(dev);
3217
3218        NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3219        unregister_netdev (dev);
3220        pci_release_regions (pdev);
3221        iounmap(ioaddr);
3222        free_netdev (dev);
3223        pci_set_drvdata(pdev, NULL);
3224}
3225
3226#ifdef CONFIG_PM
3227
3228/*
3229 * The ns83815 chip doesn't have explicit RxStop bits.
3230 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3231 * of the nic, thus this function must be very careful:
3232 *
3233 * suspend/resume synchronization:
3234 * entry points:
3235 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3236 *   start_tx, ns_tx_timeout
3237 *
3238 * No function accesses the hardware without checking np->hands_off.
3239 *      the check occurs under spin_lock_irq(&np->lock);
3240 * exceptions:
3241 *      * netdev_ioctl: noncritical access.
3242 *      * netdev_open: cannot happen due to the device_detach
3243 *      * netdev_close: doesn't hurt.
3244 *      * netdev_timer: timer stopped by natsemi_suspend.
3245 *      * intr_handler: doesn't acquire the spinlock. suspend calls
3246 *              disable_irq() to enforce synchronization.
3247 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3248 *              sets hands_off, disables interrupts and then waits with
3249 *              napi_disable().
3250 *
3251 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3252 */
3253
3254static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3255{
3256        struct net_device *dev = pci_get_drvdata (pdev);
3257        struct netdev_private *np = netdev_priv(dev);
3258        void __iomem * ioaddr = ns_ioaddr(dev);
3259
3260        rtnl_lock();
3261        if (netif_running (dev)) {
3262                const int irq = np->pci_dev->irq;
3263
3264                del_timer_sync(&np->timer);
3265
3266                disable_irq(irq);
3267                spin_lock_irq(&np->lock);
3268
3269                natsemi_irq_disable(dev);
3270                np->hands_off = 1;
3271                natsemi_stop_rxtx(dev);
3272                netif_stop_queue(dev);
3273
3274                spin_unlock_irq(&np->lock);
3275                enable_irq(irq);
3276
3277                napi_disable(&np->napi);
3278
3279                /* Update the error counts. */
3280                __get_stats(dev);
3281
3282                /* pci_power_off(pdev, -1); */
3283                drain_ring(dev);
3284                {
3285                        u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3286                        /* Restore PME enable bit */
3287                        if (wol) {
3288                                /* restart the NIC in WOL mode.
3289                                 * The nic must be stopped for this.
3290                                 * FIXME: use the WOL interrupt
3291                                 */
3292                                enable_wol_mode(dev, 0);
3293                        } else {
3294                                /* Restore PME enable bit unmolested */
3295                                writel(np->SavedClkRun, ioaddr + ClkRun);
3296                        }
3297                }
3298        }
3299        netif_device_detach(dev);
3300        rtnl_unlock();
3301        return 0;
3302}
3303
3304
3305static int natsemi_resume (struct pci_dev *pdev)
3306{
3307        struct net_device *dev = pci_get_drvdata (pdev);
3308        struct netdev_private *np = netdev_priv(dev);
3309        int ret = 0;
3310
3311        rtnl_lock();
3312        if (netif_device_present(dev))
3313                goto out;
3314        if (netif_running(dev)) {
3315                const int irq = np->pci_dev->irq;
3316
3317                BUG_ON(!np->hands_off);
3318                ret = pci_enable_device(pdev);
3319                if (ret < 0) {
3320                        dev_err(&pdev->dev,
3321                                "pci_enable_device() failed: %d\n", ret);
3322                        goto out;
3323                }
3324        /*      pci_power_on(pdev); */
3325
3326                napi_enable(&np->napi);
3327
3328                natsemi_reset(dev);
3329                init_ring(dev);
3330                disable_irq(irq);
3331                spin_lock_irq(&np->lock);
3332                np->hands_off = 0;
3333                init_registers(dev);
3334                netif_device_attach(dev);
3335                spin_unlock_irq(&np->lock);
3336                enable_irq(irq);
3337
3338                mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3339        }
3340        netif_device_attach(dev);
3341out:
3342        rtnl_unlock();
3343        return ret;
3344}
3345
3346#endif /* CONFIG_PM */
3347
3348static struct pci_driver natsemi_driver = {
3349        .name           = DRV_NAME,
3350        .id_table       = natsemi_pci_tbl,
3351        .probe          = natsemi_probe1,
3352        .remove         = natsemi_remove1,
3353#ifdef CONFIG_PM
3354        .suspend        = natsemi_suspend,
3355        .resume         = natsemi_resume,
3356#endif
3357};
3358
3359static int __init natsemi_init_mod (void)
3360{
3361/* when a module, this is printed whether or not devices are found in probe */
3362#ifdef MODULE
3363        printk(version);
3364#endif
3365
3366        return pci_register_driver(&natsemi_driver);
3367}
3368
3369static void __exit natsemi_exit_mod (void)
3370{
3371        pci_unregister_driver (&natsemi_driver);
3372}
3373
3374module_init(natsemi_init_mod);
3375module_exit(natsemi_exit_mod);
3376
3377