linux/drivers/net/ethernet/neterion/vxge/vxge-traffic.c
<<
>>
Prefs
   1/******************************************************************************
   2 * This software may be used and distributed according to the terms of
   3 * the GNU General Public License (GPL), incorporated herein by reference.
   4 * Drivers based on or derived from this code fall under the GPL and must
   5 * retain the authorship, copyright and license notice.  This file is not
   6 * a complete program and may only be used when the entire operating
   7 * system is licensed under the GPL.
   8 * See the file COPYING in this distribution for more information.
   9 *
  10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
  11 *                 Virtualized Server Adapter.
  12 * Copyright(c) 2002-2010 Exar Corp.
  13 ******************************************************************************/
  14#include <linux/etherdevice.h>
  15#include <linux/prefetch.h>
  16
  17#include "vxge-traffic.h"
  18#include "vxge-config.h"
  19#include "vxge-main.h"
  20
  21/*
  22 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
  23 * @vp: Virtual Path handle.
  24 *
  25 * Enable vpath interrupts. The function is to be executed the last in
  26 * vpath initialization sequence.
  27 *
  28 * See also: vxge_hw_vpath_intr_disable()
  29 */
  30enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
  31{
  32        u64 val64;
  33
  34        struct __vxge_hw_virtualpath *vpath;
  35        struct vxge_hw_vpath_reg __iomem *vp_reg;
  36        enum vxge_hw_status status = VXGE_HW_OK;
  37        if (vp == NULL) {
  38                status = VXGE_HW_ERR_INVALID_HANDLE;
  39                goto exit;
  40        }
  41
  42        vpath = vp->vpath;
  43
  44        if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  45                status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  46                goto exit;
  47        }
  48
  49        vp_reg = vpath->vp_reg;
  50
  51        writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
  52
  53        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  54                        &vp_reg->general_errors_reg);
  55
  56        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  57                        &vp_reg->pci_config_errors_reg);
  58
  59        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  60                        &vp_reg->mrpcim_to_vpath_alarm_reg);
  61
  62        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  63                        &vp_reg->srpcim_to_vpath_alarm_reg);
  64
  65        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  66                        &vp_reg->vpath_ppif_int_status);
  67
  68        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  69                        &vp_reg->srpcim_msg_to_vpath_reg);
  70
  71        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  72                        &vp_reg->vpath_pcipif_int_status);
  73
  74        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  75                        &vp_reg->prc_alarm_reg);
  76
  77        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  78                        &vp_reg->wrdma_alarm_status);
  79
  80        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  81                        &vp_reg->asic_ntwk_vp_err_reg);
  82
  83        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  84                        &vp_reg->xgmac_vp_int_status);
  85
  86        val64 = readq(&vp_reg->vpath_general_int_status);
  87
  88        /* Mask unwanted interrupts */
  89
  90        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  91                        &vp_reg->vpath_pcipif_int_mask);
  92
  93        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  94                        &vp_reg->srpcim_msg_to_vpath_mask);
  95
  96        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  97                        &vp_reg->srpcim_to_vpath_alarm_mask);
  98
  99        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 100                        &vp_reg->mrpcim_to_vpath_alarm_mask);
 101
 102        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 103                        &vp_reg->pci_config_errors_mask);
 104
 105        /* Unmask the individual interrupts */
 106
 107        writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
 108                VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
 109                VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
 110                VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
 111                &vp_reg->general_errors_mask);
 112
 113        __vxge_hw_pio_mem_write32_upper(
 114                (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
 115                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
 116                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
 117                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
 118                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
 119                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
 120                &vp_reg->kdfcctl_errors_mask);
 121
 122        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
 123
 124        __vxge_hw_pio_mem_write32_upper(
 125                (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
 126                &vp_reg->prc_alarm_mask);
 127
 128        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
 129        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
 130
 131        if (vpath->hldev->first_vp_id != vpath->vp_id)
 132                __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 133                        &vp_reg->asic_ntwk_vp_err_mask);
 134        else
 135                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
 136                VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
 137                VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
 138                &vp_reg->asic_ntwk_vp_err_mask);
 139
 140        __vxge_hw_pio_mem_write32_upper(0,
 141                &vp_reg->vpath_general_int_mask);
 142exit:
 143        return status;
 144
 145}
 146
 147/*
 148 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
 149 * @vp: Virtual Path handle.
 150 *
 151 * Disable vpath interrupts. The function is to be executed the last in
 152 * vpath initialization sequence.
 153 *
 154 * See also: vxge_hw_vpath_intr_enable()
 155 */
 156enum vxge_hw_status vxge_hw_vpath_intr_disable(
 157                        struct __vxge_hw_vpath_handle *vp)
 158{
 159        u64 val64;
 160
 161        struct __vxge_hw_virtualpath *vpath;
 162        enum vxge_hw_status status = VXGE_HW_OK;
 163        struct vxge_hw_vpath_reg __iomem *vp_reg;
 164        if (vp == NULL) {
 165                status = VXGE_HW_ERR_INVALID_HANDLE;
 166                goto exit;
 167        }
 168
 169        vpath = vp->vpath;
 170
 171        if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
 172                status = VXGE_HW_ERR_VPATH_NOT_OPEN;
 173                goto exit;
 174        }
 175        vp_reg = vpath->vp_reg;
 176
 177        __vxge_hw_pio_mem_write32_upper(
 178                (u32)VXGE_HW_INTR_MASK_ALL,
 179                &vp_reg->vpath_general_int_mask);
 180
 181        val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
 182
 183        writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
 184
 185        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 186                        &vp_reg->general_errors_mask);
 187
 188        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 189                        &vp_reg->pci_config_errors_mask);
 190
 191        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 192                        &vp_reg->mrpcim_to_vpath_alarm_mask);
 193
 194        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 195                        &vp_reg->srpcim_to_vpath_alarm_mask);
 196
 197        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 198                        &vp_reg->vpath_ppif_int_mask);
 199
 200        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 201                        &vp_reg->srpcim_msg_to_vpath_mask);
 202
 203        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 204                        &vp_reg->vpath_pcipif_int_mask);
 205
 206        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 207                        &vp_reg->wrdma_alarm_mask);
 208
 209        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 210                        &vp_reg->prc_alarm_mask);
 211
 212        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 213                        &vp_reg->xgmac_vp_int_mask);
 214
 215        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 216                        &vp_reg->asic_ntwk_vp_err_mask);
 217
 218exit:
 219        return status;
 220}
 221
 222void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
 223{
 224        struct vxge_hw_vpath_reg __iomem *vp_reg;
 225        struct vxge_hw_vp_config *config;
 226        u64 val64;
 227
 228        if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
 229                return;
 230
 231        vp_reg = fifo->vp_reg;
 232        config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
 233
 234        if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
 235                config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
 236                val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
 237                val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
 238                fifo->tim_tti_cfg1_saved = val64;
 239                writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
 240        }
 241}
 242
 243void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
 244{
 245        u64 val64 = ring->tim_rti_cfg1_saved;
 246
 247        val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
 248        ring->tim_rti_cfg1_saved = val64;
 249        writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
 250}
 251
 252void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
 253{
 254        u64 val64 = fifo->tim_tti_cfg3_saved;
 255        u64 timer = (fifo->rtimer * 1000) / 272;
 256
 257        val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
 258        if (timer)
 259                val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
 260                        VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
 261
 262        writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
 263        /* tti_cfg3_saved is not updated again because it is
 264         * initialized at one place only - init time.
 265         */
 266}
 267
 268void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
 269{
 270        u64 val64 = ring->tim_rti_cfg3_saved;
 271        u64 timer = (ring->rtimer * 1000) / 272;
 272
 273        val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
 274        if (timer)
 275                val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
 276                        VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
 277
 278        writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
 279        /* rti_cfg3_saved is not updated again because it is
 280         * initialized at one place only - init time.
 281         */
 282}
 283
 284/**
 285 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
 286 * @channeh: Channel for rx or tx handle
 287 * @msix_id:  MSIX ID
 288 *
 289 * The function masks the msix interrupt for the given msix_id
 290 *
 291 * Returns: 0
 292 */
 293void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
 294{
 295
 296        __vxge_hw_pio_mem_write32_upper(
 297                (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 298                &channel->common_reg->set_msix_mask_vect[msix_id%4]);
 299}
 300
 301/**
 302 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
 303 * @channeh: Channel for rx or tx handle
 304 * @msix_id:  MSI ID
 305 *
 306 * The function unmasks the msix interrupt for the given msix_id
 307 *
 308 * Returns: 0
 309 */
 310void
 311vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
 312{
 313
 314        __vxge_hw_pio_mem_write32_upper(
 315                (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 316                &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
 317}
 318
 319/**
 320 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
 321 * @channel: Channel for rx or tx handle
 322 * @msix_id:  MSI ID
 323 *
 324 * The function unmasks the msix interrupt for the given msix_id
 325 * if configured in MSIX oneshot mode
 326 *
 327 * Returns: 0
 328 */
 329void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
 330{
 331        __vxge_hw_pio_mem_write32_upper(
 332                (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 333                &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
 334}
 335
 336/**
 337 * vxge_hw_device_set_intr_type - Updates the configuration
 338 *              with new interrupt type.
 339 * @hldev: HW device handle.
 340 * @intr_mode: New interrupt type
 341 */
 342u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
 343{
 344
 345        if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
 346           (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
 347           (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
 348           (intr_mode != VXGE_HW_INTR_MODE_DEF))
 349                intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
 350
 351        hldev->config.intr_mode = intr_mode;
 352        return intr_mode;
 353}
 354
 355/**
 356 * vxge_hw_device_intr_enable - Enable interrupts.
 357 * @hldev: HW device handle.
 358 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
 359 *      the type(s) of interrupts to enable.
 360 *
 361 * Enable Titan interrupts. The function is to be executed the last in
 362 * Titan initialization sequence.
 363 *
 364 * See also: vxge_hw_device_intr_disable()
 365 */
 366void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
 367{
 368        u32 i;
 369        u64 val64;
 370        u32 val32;
 371
 372        vxge_hw_device_mask_all(hldev);
 373
 374        for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 375
 376                if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 377                        continue;
 378
 379                vxge_hw_vpath_intr_enable(
 380                        VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
 381        }
 382
 383        if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
 384                val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
 385                        hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
 386
 387                if (val64 != 0) {
 388                        writeq(val64, &hldev->common_reg->tim_int_status0);
 389
 390                        writeq(~val64, &hldev->common_reg->tim_int_mask0);
 391                }
 392
 393                val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
 394                        hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
 395
 396                if (val32 != 0) {
 397                        __vxge_hw_pio_mem_write32_upper(val32,
 398                                        &hldev->common_reg->tim_int_status1);
 399
 400                        __vxge_hw_pio_mem_write32_upper(~val32,
 401                                        &hldev->common_reg->tim_int_mask1);
 402                }
 403        }
 404
 405        val64 = readq(&hldev->common_reg->titan_general_int_status);
 406
 407        vxge_hw_device_unmask_all(hldev);
 408}
 409
 410/**
 411 * vxge_hw_device_intr_disable - Disable Titan interrupts.
 412 * @hldev: HW device handle.
 413 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
 414 *      the type(s) of interrupts to disable.
 415 *
 416 * Disable Titan interrupts.
 417 *
 418 * See also: vxge_hw_device_intr_enable()
 419 */
 420void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
 421{
 422        u32 i;
 423
 424        vxge_hw_device_mask_all(hldev);
 425
 426        /* mask all the tim interrupts */
 427        writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
 428        __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
 429                &hldev->common_reg->tim_int_mask1);
 430
 431        for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 432
 433                if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 434                        continue;
 435
 436                vxge_hw_vpath_intr_disable(
 437                        VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
 438        }
 439}
 440
 441/**
 442 * vxge_hw_device_mask_all - Mask all device interrupts.
 443 * @hldev: HW device handle.
 444 *
 445 * Mask all device interrupts.
 446 *
 447 * See also: vxge_hw_device_unmask_all()
 448 */
 449void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
 450{
 451        u64 val64;
 452
 453        val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
 454                VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
 455
 456        __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
 457                                &hldev->common_reg->titan_mask_all_int);
 458}
 459
 460/**
 461 * vxge_hw_device_unmask_all - Unmask all device interrupts.
 462 * @hldev: HW device handle.
 463 *
 464 * Unmask all device interrupts.
 465 *
 466 * See also: vxge_hw_device_mask_all()
 467 */
 468void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
 469{
 470        u64 val64 = 0;
 471
 472        if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
 473                val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
 474
 475        __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
 476                        &hldev->common_reg->titan_mask_all_int);
 477}
 478
 479/**
 480 * vxge_hw_device_flush_io - Flush io writes.
 481 * @hldev: HW device handle.
 482 *
 483 * The function performs a read operation to flush io writes.
 484 *
 485 * Returns: void
 486 */
 487void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
 488{
 489        u32 val32;
 490
 491        val32 = readl(&hldev->common_reg->titan_general_int_status);
 492}
 493
 494/**
 495 * __vxge_hw_device_handle_error - Handle error
 496 * @hldev: HW device
 497 * @vp_id: Vpath Id
 498 * @type: Error type. Please see enum vxge_hw_event{}
 499 *
 500 * Handle error.
 501 */
 502static enum vxge_hw_status
 503__vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
 504                              enum vxge_hw_event type)
 505{
 506        switch (type) {
 507        case VXGE_HW_EVENT_UNKNOWN:
 508                break;
 509        case VXGE_HW_EVENT_RESET_START:
 510        case VXGE_HW_EVENT_RESET_COMPLETE:
 511        case VXGE_HW_EVENT_LINK_DOWN:
 512        case VXGE_HW_EVENT_LINK_UP:
 513                goto out;
 514        case VXGE_HW_EVENT_ALARM_CLEARED:
 515                goto out;
 516        case VXGE_HW_EVENT_ECCERR:
 517        case VXGE_HW_EVENT_MRPCIM_ECCERR:
 518                goto out;
 519        case VXGE_HW_EVENT_FIFO_ERR:
 520        case VXGE_HW_EVENT_VPATH_ERR:
 521        case VXGE_HW_EVENT_CRITICAL_ERR:
 522        case VXGE_HW_EVENT_SERR:
 523                break;
 524        case VXGE_HW_EVENT_SRPCIM_SERR:
 525        case VXGE_HW_EVENT_MRPCIM_SERR:
 526                goto out;
 527        case VXGE_HW_EVENT_SLOT_FREEZE:
 528                break;
 529        default:
 530                vxge_assert(0);
 531                goto out;
 532        }
 533
 534        /* notify driver */
 535        if (hldev->uld_callbacks->crit_err)
 536                hldev->uld_callbacks->crit_err(hldev,
 537                        type, vp_id);
 538out:
 539
 540        return VXGE_HW_OK;
 541}
 542
 543/*
 544 * __vxge_hw_device_handle_link_down_ind
 545 * @hldev: HW device handle.
 546 *
 547 * Link down indication handler. The function is invoked by HW when
 548 * Titan indicates that the link is down.
 549 */
 550static enum vxge_hw_status
 551__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
 552{
 553        /*
 554         * If the previous link state is not down, return.
 555         */
 556        if (hldev->link_state == VXGE_HW_LINK_DOWN)
 557                goto exit;
 558
 559        hldev->link_state = VXGE_HW_LINK_DOWN;
 560
 561        /* notify driver */
 562        if (hldev->uld_callbacks->link_down)
 563                hldev->uld_callbacks->link_down(hldev);
 564exit:
 565        return VXGE_HW_OK;
 566}
 567
 568/*
 569 * __vxge_hw_device_handle_link_up_ind
 570 * @hldev: HW device handle.
 571 *
 572 * Link up indication handler. The function is invoked by HW when
 573 * Titan indicates that the link is up for programmable amount of time.
 574 */
 575static enum vxge_hw_status
 576__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
 577{
 578        /*
 579         * If the previous link state is not down, return.
 580         */
 581        if (hldev->link_state == VXGE_HW_LINK_UP)
 582                goto exit;
 583
 584        hldev->link_state = VXGE_HW_LINK_UP;
 585
 586        /* notify driver */
 587        if (hldev->uld_callbacks->link_up)
 588                hldev->uld_callbacks->link_up(hldev);
 589exit:
 590        return VXGE_HW_OK;
 591}
 592
 593/*
 594 * __vxge_hw_vpath_alarm_process - Process Alarms.
 595 * @vpath: Virtual Path.
 596 * @skip_alarms: Do not clear the alarms
 597 *
 598 * Process vpath alarms.
 599 *
 600 */
 601static enum vxge_hw_status
 602__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
 603                              u32 skip_alarms)
 604{
 605        u64 val64;
 606        u64 alarm_status;
 607        u64 pic_status;
 608        struct __vxge_hw_device *hldev = NULL;
 609        enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
 610        u64 mask64;
 611        struct vxge_hw_vpath_stats_sw_info *sw_stats;
 612        struct vxge_hw_vpath_reg __iomem *vp_reg;
 613
 614        if (vpath == NULL) {
 615                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
 616                        alarm_event);
 617                goto out2;
 618        }
 619
 620        hldev = vpath->hldev;
 621        vp_reg = vpath->vp_reg;
 622        alarm_status = readq(&vp_reg->vpath_general_int_status);
 623
 624        if (alarm_status == VXGE_HW_ALL_FOXES) {
 625                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
 626                        alarm_event);
 627                goto out;
 628        }
 629
 630        sw_stats = vpath->sw_stats;
 631
 632        if (alarm_status & ~(
 633                VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
 634                VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
 635                VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
 636                VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
 637                sw_stats->error_stats.unknown_alarms++;
 638
 639                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
 640                        alarm_event);
 641                goto out;
 642        }
 643
 644        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
 645
 646                val64 = readq(&vp_reg->xgmac_vp_int_status);
 647
 648                if (val64 &
 649                VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
 650
 651                        val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
 652
 653                        if (((val64 &
 654                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
 655                             (!(val64 &
 656                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
 657                            ((val64 &
 658                             VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
 659                             (!(val64 &
 660                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
 661                                     ))) {
 662                                sw_stats->error_stats.network_sustained_fault++;
 663
 664                                writeq(
 665                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
 666                                        &vp_reg->asic_ntwk_vp_err_mask);
 667
 668                                __vxge_hw_device_handle_link_down_ind(hldev);
 669                                alarm_event = VXGE_HW_SET_LEVEL(
 670                                        VXGE_HW_EVENT_LINK_DOWN, alarm_event);
 671                        }
 672
 673                        if (((val64 &
 674                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
 675                             (!(val64 &
 676                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
 677                            ((val64 &
 678                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
 679                             (!(val64 &
 680                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
 681                                     ))) {
 682
 683                                sw_stats->error_stats.network_sustained_ok++;
 684
 685                                writeq(
 686                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
 687                                        &vp_reg->asic_ntwk_vp_err_mask);
 688
 689                                __vxge_hw_device_handle_link_up_ind(hldev);
 690                                alarm_event = VXGE_HW_SET_LEVEL(
 691                                        VXGE_HW_EVENT_LINK_UP, alarm_event);
 692                        }
 693
 694                        writeq(VXGE_HW_INTR_MASK_ALL,
 695                                &vp_reg->asic_ntwk_vp_err_reg);
 696
 697                        alarm_event = VXGE_HW_SET_LEVEL(
 698                                VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
 699
 700                        if (skip_alarms)
 701                                return VXGE_HW_OK;
 702                }
 703        }
 704
 705        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
 706
 707                pic_status = readq(&vp_reg->vpath_ppif_int_status);
 708
 709                if (pic_status &
 710                    VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
 711
 712                        val64 = readq(&vp_reg->general_errors_reg);
 713                        mask64 = readq(&vp_reg->general_errors_mask);
 714
 715                        if ((val64 &
 716                                VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
 717                                ~mask64) {
 718                                sw_stats->error_stats.ini_serr_det++;
 719
 720                                alarm_event = VXGE_HW_SET_LEVEL(
 721                                        VXGE_HW_EVENT_SERR, alarm_event);
 722                        }
 723
 724                        if ((val64 &
 725                            VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
 726                                ~mask64) {
 727                                sw_stats->error_stats.dblgen_fifo0_overflow++;
 728
 729                                alarm_event = VXGE_HW_SET_LEVEL(
 730                                        VXGE_HW_EVENT_FIFO_ERR, alarm_event);
 731                        }
 732
 733                        if ((val64 &
 734                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
 735                                ~mask64)
 736                                sw_stats->error_stats.statsb_pif_chain_error++;
 737
 738                        if ((val64 &
 739                           VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
 740                                ~mask64)
 741                                sw_stats->error_stats.statsb_drop_timeout++;
 742
 743                        if ((val64 &
 744                                VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
 745                                ~mask64)
 746                                sw_stats->error_stats.target_illegal_access++;
 747
 748                        if (!skip_alarms) {
 749                                writeq(VXGE_HW_INTR_MASK_ALL,
 750                                        &vp_reg->general_errors_reg);
 751                                alarm_event = VXGE_HW_SET_LEVEL(
 752                                        VXGE_HW_EVENT_ALARM_CLEARED,
 753                                        alarm_event);
 754                        }
 755                }
 756
 757                if (pic_status &
 758                    VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
 759
 760                        val64 = readq(&vp_reg->kdfcctl_errors_reg);
 761                        mask64 = readq(&vp_reg->kdfcctl_errors_mask);
 762
 763                        if ((val64 &
 764                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
 765                                ~mask64) {
 766                                sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
 767
 768                                alarm_event = VXGE_HW_SET_LEVEL(
 769                                        VXGE_HW_EVENT_FIFO_ERR,
 770                                        alarm_event);
 771                        }
 772
 773                        if ((val64 &
 774                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
 775                                ~mask64) {
 776                                sw_stats->error_stats.kdfcctl_fifo0_poison++;
 777
 778                                alarm_event = VXGE_HW_SET_LEVEL(
 779                                        VXGE_HW_EVENT_FIFO_ERR,
 780                                        alarm_event);
 781                        }
 782
 783                        if ((val64 &
 784                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
 785                                ~mask64) {
 786                                sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
 787
 788                                alarm_event = VXGE_HW_SET_LEVEL(
 789                                        VXGE_HW_EVENT_FIFO_ERR,
 790                                        alarm_event);
 791                        }
 792
 793                        if (!skip_alarms) {
 794                                writeq(VXGE_HW_INTR_MASK_ALL,
 795                                        &vp_reg->kdfcctl_errors_reg);
 796                                alarm_event = VXGE_HW_SET_LEVEL(
 797                                        VXGE_HW_EVENT_ALARM_CLEARED,
 798                                        alarm_event);
 799                        }
 800                }
 801
 802        }
 803
 804        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
 805
 806                val64 = readq(&vp_reg->wrdma_alarm_status);
 807
 808                if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
 809
 810                        val64 = readq(&vp_reg->prc_alarm_reg);
 811                        mask64 = readq(&vp_reg->prc_alarm_mask);
 812
 813                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
 814                                ~mask64)
 815                                sw_stats->error_stats.prc_ring_bumps++;
 816
 817                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
 818                                ~mask64) {
 819                                sw_stats->error_stats.prc_rxdcm_sc_err++;
 820
 821                                alarm_event = VXGE_HW_SET_LEVEL(
 822                                        VXGE_HW_EVENT_VPATH_ERR,
 823                                        alarm_event);
 824                        }
 825
 826                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
 827                                & ~mask64) {
 828                                sw_stats->error_stats.prc_rxdcm_sc_abort++;
 829
 830                                alarm_event = VXGE_HW_SET_LEVEL(
 831                                                VXGE_HW_EVENT_VPATH_ERR,
 832                                                alarm_event);
 833                        }
 834
 835                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
 836                                 & ~mask64) {
 837                                sw_stats->error_stats.prc_quanta_size_err++;
 838
 839                                alarm_event = VXGE_HW_SET_LEVEL(
 840                                        VXGE_HW_EVENT_VPATH_ERR,
 841                                        alarm_event);
 842                        }
 843
 844                        if (!skip_alarms) {
 845                                writeq(VXGE_HW_INTR_MASK_ALL,
 846                                        &vp_reg->prc_alarm_reg);
 847                                alarm_event = VXGE_HW_SET_LEVEL(
 848                                                VXGE_HW_EVENT_ALARM_CLEARED,
 849                                                alarm_event);
 850                        }
 851                }
 852        }
 853out:
 854        hldev->stats.sw_dev_err_stats.vpath_alarms++;
 855out2:
 856        if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
 857                (alarm_event == VXGE_HW_EVENT_UNKNOWN))
 858                return VXGE_HW_OK;
 859
 860        __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
 861
 862        if (alarm_event == VXGE_HW_EVENT_SERR)
 863                return VXGE_HW_ERR_CRITICAL;
 864
 865        return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
 866                VXGE_HW_ERR_SLOT_FREEZE :
 867                (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
 868                VXGE_HW_ERR_VPATH;
 869}
 870
 871/**
 872 * vxge_hw_device_begin_irq - Begin IRQ processing.
 873 * @hldev: HW device handle.
 874 * @skip_alarms: Do not clear the alarms
 875 * @reason: "Reason" for the interrupt, the value of Titan's
 876 *      general_int_status register.
 877 *
 878 * The function performs two actions, It first checks whether (shared IRQ) the
 879 * interrupt was raised by the device. Next, it masks the device interrupts.
 880 *
 881 * Note:
 882 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
 883 * bridge. Therefore, two back-to-back interrupts are potentially possible.
 884 *
 885 * Returns: 0, if the interrupt is not "ours" (note that in this case the
 886 * device remain enabled).
 887 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
 888 * status.
 889 */
 890enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
 891                                             u32 skip_alarms, u64 *reason)
 892{
 893        u32 i;
 894        u64 val64;
 895        u64 adapter_status;
 896        u64 vpath_mask;
 897        enum vxge_hw_status ret = VXGE_HW_OK;
 898
 899        val64 = readq(&hldev->common_reg->titan_general_int_status);
 900
 901        if (unlikely(!val64)) {
 902                /* not Titan interrupt  */
 903                *reason = 0;
 904                ret = VXGE_HW_ERR_WRONG_IRQ;
 905                goto exit;
 906        }
 907
 908        if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
 909
 910                adapter_status = readq(&hldev->common_reg->adapter_status);
 911
 912                if (adapter_status == VXGE_HW_ALL_FOXES) {
 913
 914                        __vxge_hw_device_handle_error(hldev,
 915                                NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
 916                        *reason = 0;
 917                        ret = VXGE_HW_ERR_SLOT_FREEZE;
 918                        goto exit;
 919                }
 920        }
 921
 922        hldev->stats.sw_dev_info_stats.total_intr_cnt++;
 923
 924        *reason = val64;
 925
 926        vpath_mask = hldev->vpaths_deployed >>
 927                                (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
 928
 929        if (val64 &
 930            VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
 931                hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
 932
 933                return VXGE_HW_OK;
 934        }
 935
 936        hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
 937
 938        if (unlikely(val64 &
 939                        VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
 940
 941                enum vxge_hw_status error_level = VXGE_HW_OK;
 942
 943                hldev->stats.sw_dev_err_stats.vpath_alarms++;
 944
 945                for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 946
 947                        if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 948                                continue;
 949
 950                        ret = __vxge_hw_vpath_alarm_process(
 951                                &hldev->virtual_paths[i], skip_alarms);
 952
 953                        error_level = VXGE_HW_SET_LEVEL(ret, error_level);
 954
 955                        if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
 956                                (ret == VXGE_HW_ERR_SLOT_FREEZE)))
 957                                break;
 958                }
 959
 960                ret = error_level;
 961        }
 962exit:
 963        return ret;
 964}
 965
 966/**
 967 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
 968 * condition that has caused the Tx and RX interrupt.
 969 * @hldev: HW device.
 970 *
 971 * Acknowledge (that is, clear) the condition that has caused
 972 * the Tx and Rx interrupt.
 973 * See also: vxge_hw_device_begin_irq(),
 974 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
 975 */
 976void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
 977{
 978
 979        if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
 980           (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
 981                writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
 982                                 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
 983                                &hldev->common_reg->tim_int_status0);
 984        }
 985
 986        if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
 987           (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
 988                __vxge_hw_pio_mem_write32_upper(
 989                                (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
 990                                 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
 991                                &hldev->common_reg->tim_int_status1);
 992        }
 993}
 994
 995/*
 996 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
 997 * @channel: Channel
 998 * @dtrh: Buffer to return the DTR pointer
 999 *
1000 * Allocates a dtr from the reserve array. If the reserve array is empty,
1001 * it swaps the reserve and free arrays.
1002 *
1003 */
1004static enum vxge_hw_status
1005vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1006{
1007        void **tmp_arr;
1008
1009        if (channel->reserve_ptr - channel->reserve_top > 0) {
1010_alloc_after_swap:
1011                *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1012
1013                return VXGE_HW_OK;
1014        }
1015
1016        /* switch between empty and full arrays */
1017
1018        /* the idea behind such a design is that by having free and reserved
1019         * arrays separated we basically separated irq and non-irq parts.
1020         * i.e. no additional lock need to be done when we free a resource */
1021
1022        if (channel->length - channel->free_ptr > 0) {
1023
1024                tmp_arr = channel->reserve_arr;
1025                channel->reserve_arr = channel->free_arr;
1026                channel->free_arr = tmp_arr;
1027                channel->reserve_ptr = channel->length;
1028                channel->reserve_top = channel->free_ptr;
1029                channel->free_ptr = channel->length;
1030
1031                channel->stats->reserve_free_swaps_cnt++;
1032
1033                goto _alloc_after_swap;
1034        }
1035
1036        channel->stats->full_cnt++;
1037
1038        *dtrh = NULL;
1039        return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1040}
1041
1042/*
1043 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1044 * @channelh: Channel
1045 * @dtrh: DTR pointer
1046 *
1047 * Posts a dtr to work array.
1048 *
1049 */
1050static void
1051vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1052{
1053        vxge_assert(channel->work_arr[channel->post_index] == NULL);
1054
1055        channel->work_arr[channel->post_index++] = dtrh;
1056
1057        /* wrap-around */
1058        if (channel->post_index == channel->length)
1059                channel->post_index = 0;
1060}
1061
1062/*
1063 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1064 * @channel: Channel
1065 * @dtr: Buffer to return the next completed DTR pointer
1066 *
1067 * Returns the next completed dtr with out removing it from work array
1068 *
1069 */
1070void
1071vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1072{
1073        vxge_assert(channel->compl_index < channel->length);
1074
1075        *dtrh = channel->work_arr[channel->compl_index];
1076        prefetch(*dtrh);
1077}
1078
1079/*
1080 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1081 * @channel: Channel handle
1082 *
1083 * Removes the next completed dtr from work array
1084 *
1085 */
1086void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1087{
1088        channel->work_arr[channel->compl_index] = NULL;
1089
1090        /* wrap-around */
1091        if (++channel->compl_index == channel->length)
1092                channel->compl_index = 0;
1093
1094        channel->stats->total_compl_cnt++;
1095}
1096
1097/*
1098 * vxge_hw_channel_dtr_free - Frees a dtr
1099 * @channel: Channel handle
1100 * @dtr:  DTR pointer
1101 *
1102 * Returns the dtr to free array
1103 *
1104 */
1105void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1106{
1107        channel->free_arr[--channel->free_ptr] = dtrh;
1108}
1109
1110/*
1111 * vxge_hw_channel_dtr_count
1112 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1113 *
1114 * Retrieve number of DTRs available. This function can not be called
1115 * from data path. ring_initial_replenishi() is the only user.
1116 */
1117int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1118{
1119        return (channel->reserve_ptr - channel->reserve_top) +
1120                (channel->length - channel->free_ptr);
1121}
1122
1123/**
1124 * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
1125 * @ring: Handle to the ring object used for receive
1126 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1127 * with a valid handle.
1128 *
1129 * Reserve Rx descriptor for the subsequent filling-in driver
1130 * and posting on the corresponding channel (@channelh)
1131 * via vxge_hw_ring_rxd_post().
1132 *
1133 * Returns: VXGE_HW_OK - success.
1134 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1135 *
1136 */
1137enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1138        void **rxdh)
1139{
1140        enum vxge_hw_status status;
1141        struct __vxge_hw_channel *channel;
1142
1143        channel = &ring->channel;
1144
1145        status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1146
1147        if (status == VXGE_HW_OK) {
1148                struct vxge_hw_ring_rxd_1 *rxdp =
1149                        (struct vxge_hw_ring_rxd_1 *)*rxdh;
1150
1151                rxdp->control_0 = rxdp->control_1 = 0;
1152        }
1153
1154        return status;
1155}
1156
1157/**
1158 * vxge_hw_ring_rxd_free - Free descriptor.
1159 * @ring: Handle to the ring object used for receive
1160 * @rxdh: Descriptor handle.
1161 *
1162 * Free the reserved descriptor. This operation is "symmetrical" to
1163 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1164 * lifecycle.
1165 *
1166 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1167 * be:
1168 *
1169 * - reserved (vxge_hw_ring_rxd_reserve);
1170 *
1171 * - posted     (vxge_hw_ring_rxd_post);
1172 *
1173 * - completed (vxge_hw_ring_rxd_next_completed);
1174 *
1175 * - and recycled again (vxge_hw_ring_rxd_free).
1176 *
1177 * For alternative state transitions and more details please refer to
1178 * the design doc.
1179 *
1180 */
1181void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1182{
1183        struct __vxge_hw_channel *channel;
1184
1185        channel = &ring->channel;
1186
1187        vxge_hw_channel_dtr_free(channel, rxdh);
1188
1189}
1190
1191/**
1192 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1193 * @ring: Handle to the ring object used for receive
1194 * @rxdh: Descriptor handle.
1195 *
1196 * This routine prepares a rxd and posts
1197 */
1198void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1199{
1200        struct __vxge_hw_channel *channel;
1201
1202        channel = &ring->channel;
1203
1204        vxge_hw_channel_dtr_post(channel, rxdh);
1205}
1206
1207/**
1208 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1209 * @ring: Handle to the ring object used for receive
1210 * @rxdh: Descriptor handle.
1211 *
1212 * Processes rxd after post
1213 */
1214void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1215{
1216        struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1217        struct __vxge_hw_channel *channel;
1218
1219        channel = &ring->channel;
1220
1221        rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1222
1223        if (ring->stats->common_stats.usage_cnt > 0)
1224                ring->stats->common_stats.usage_cnt--;
1225}
1226
1227/**
1228 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1229 * @ring: Handle to the ring object used for receive
1230 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1231 *
1232 * Post descriptor on the ring.
1233 * Prior to posting the descriptor should be filled in accordance with
1234 * Host/Titan interface specification for a given service (LL, etc.).
1235 *
1236 */
1237void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1238{
1239        struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1240        struct __vxge_hw_channel *channel;
1241
1242        channel = &ring->channel;
1243
1244        wmb();
1245        rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1246
1247        vxge_hw_channel_dtr_post(channel, rxdh);
1248
1249        if (ring->stats->common_stats.usage_cnt > 0)
1250                ring->stats->common_stats.usage_cnt--;
1251}
1252
1253/**
1254 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1255 * @ring: Handle to the ring object used for receive
1256 * @rxdh: Descriptor handle.
1257 *
1258 * Processes rxd after post with memory barrier.
1259 */
1260void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1261{
1262        wmb();
1263        vxge_hw_ring_rxd_post_post(ring, rxdh);
1264}
1265
1266/**
1267 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1268 * @ring: Handle to the ring object used for receive
1269 * @rxdh: Descriptor handle. Returned by HW.
1270 * @t_code:     Transfer code, as per Titan User Guide,
1271 *       Receive Descriptor Format. Returned by HW.
1272 *
1273 * Retrieve the _next_ completed descriptor.
1274 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1275 * driver of new completed descriptors. After that
1276 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1277 * completions (the very first completion is passed by HW via
1278 * vxge_hw_ring_callback_f).
1279 *
1280 * Implementation-wise, the driver is free to call
1281 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1282 * ring callback, or in a deferred fashion and separate (from HW)
1283 * context.
1284 *
1285 * Non-zero @t_code means failure to fill-in receive buffer(s)
1286 * of the descriptor.
1287 * For instance, parity error detected during the data transfer.
1288 * In this case Titan will complete the descriptor and indicate
1289 * for the host that the received data is not to be used.
1290 * For details please refer to Titan User Guide.
1291 *
1292 * Returns: VXGE_HW_OK - success.
1293 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1294 * are currently available for processing.
1295 *
1296 * See also: vxge_hw_ring_callback_f{},
1297 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1298 */
1299enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1300        struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1301{
1302        struct __vxge_hw_channel *channel;
1303        struct vxge_hw_ring_rxd_1 *rxdp;
1304        enum vxge_hw_status status = VXGE_HW_OK;
1305        u64 control_0, own;
1306
1307        channel = &ring->channel;
1308
1309        vxge_hw_channel_dtr_try_complete(channel, rxdh);
1310
1311        rxdp = *rxdh;
1312        if (rxdp == NULL) {
1313                status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1314                goto exit;
1315        }
1316
1317        control_0 = rxdp->control_0;
1318        own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1319        *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1320
1321        /* check whether it is not the end */
1322        if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1323
1324                vxge_assert((rxdp)->host_control !=
1325                                0);
1326
1327                ++ring->cmpl_cnt;
1328                vxge_hw_channel_dtr_complete(channel);
1329
1330                vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1331
1332                ring->stats->common_stats.usage_cnt++;
1333                if (ring->stats->common_stats.usage_max <
1334                                ring->stats->common_stats.usage_cnt)
1335                        ring->stats->common_stats.usage_max =
1336                                ring->stats->common_stats.usage_cnt;
1337
1338                status = VXGE_HW_OK;
1339                goto exit;
1340        }
1341
1342        /* reset it. since we don't want to return
1343         * garbage to the driver */
1344        *rxdh = NULL;
1345        status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1346exit:
1347        return status;
1348}
1349
1350/**
1351 * vxge_hw_ring_handle_tcode - Handle transfer code.
1352 * @ring: Handle to the ring object used for receive
1353 * @rxdh: Descriptor handle.
1354 * @t_code: One of the enumerated (and documented in the Titan user guide)
1355 * "transfer codes".
1356 *
1357 * Handle descriptor's transfer code. The latter comes with each completed
1358 * descriptor.
1359 *
1360 * Returns: one of the enum vxge_hw_status{} enumerated types.
1361 * VXGE_HW_OK                   - for success.
1362 * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1363 */
1364enum vxge_hw_status vxge_hw_ring_handle_tcode(
1365        struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1366{
1367        struct __vxge_hw_channel *channel;
1368        enum vxge_hw_status status = VXGE_HW_OK;
1369
1370        channel = &ring->channel;
1371
1372        /* If the t_code is not supported and if the
1373         * t_code is other than 0x5 (unparseable packet
1374         * such as unknown UPV6 header), Drop it !!!
1375         */
1376
1377        if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1378                t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1379                status = VXGE_HW_OK;
1380                goto exit;
1381        }
1382
1383        if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1384                status = VXGE_HW_ERR_INVALID_TCODE;
1385                goto exit;
1386        }
1387
1388        ring->stats->rxd_t_code_err_cnt[t_code]++;
1389exit:
1390        return status;
1391}
1392
1393/**
1394 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1395 *
1396 * @fifo: fifohandle
1397 * @txdl_ptr: The starting location of the TxDL in host memory
1398 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1399 * @no_snoop: No snoop flags
1400 *
1401 * This function posts a non-offload doorbell to doorbell FIFO
1402 *
1403 */
1404static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1405        u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1406{
1407        struct __vxge_hw_channel *channel;
1408
1409        channel = &fifo->channel;
1410
1411        writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1412                VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1413                VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1414                &fifo->nofl_db->control_0);
1415
1416        mmiowb();
1417
1418        writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1419
1420        mmiowb();
1421}
1422
1423/**
1424 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1425 * the fifo
1426 * @fifoh: Handle to the fifo object used for non offload send
1427 */
1428u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1429{
1430        return vxge_hw_channel_dtr_count(&fifoh->channel);
1431}
1432
1433/**
1434 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1435 * @fifoh: Handle to the fifo object used for non offload send
1436 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1437 *        with a valid handle.
1438 * @txdl_priv: Buffer to return the pointer to per txdl space
1439 *
1440 * Reserve a single TxDL (that is, fifo descriptor)
1441 * for the subsequent filling-in by driver)
1442 * and posting on the corresponding channel (@channelh)
1443 * via vxge_hw_fifo_txdl_post().
1444 *
1445 * Note: it is the responsibility of driver to reserve multiple descriptors
1446 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1447 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1448 *
1449 * Returns: VXGE_HW_OK - success;
1450 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1451 *
1452 */
1453enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1454        struct __vxge_hw_fifo *fifo,
1455        void **txdlh, void **txdl_priv)
1456{
1457        struct __vxge_hw_channel *channel;
1458        enum vxge_hw_status status;
1459        int i;
1460
1461        channel = &fifo->channel;
1462
1463        status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1464
1465        if (status == VXGE_HW_OK) {
1466                struct vxge_hw_fifo_txd *txdp =
1467                        (struct vxge_hw_fifo_txd *)*txdlh;
1468                struct __vxge_hw_fifo_txdl_priv *priv;
1469
1470                priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1471
1472                /* reset the TxDL's private */
1473                priv->align_dma_offset = 0;
1474                priv->align_vaddr_start = priv->align_vaddr;
1475                priv->align_used_frags = 0;
1476                priv->frags = 0;
1477                priv->alloc_frags = fifo->config->max_frags;
1478                priv->next_txdl_priv = NULL;
1479
1480                *txdl_priv = (void *)(size_t)txdp->host_control;
1481
1482                for (i = 0; i < fifo->config->max_frags; i++) {
1483                        txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1484                        txdp->control_0 = txdp->control_1 = 0;
1485                }
1486        }
1487
1488        return status;
1489}
1490
1491/**
1492 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1493 * descriptor.
1494 * @fifo: Handle to the fifo object used for non offload send
1495 * @txdlh: Descriptor handle.
1496 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1497 *            (of buffers).
1498 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1499 * @size: Size of the data buffer (in bytes).
1500 *
1501 * This API is part of the preparation of the transmit descriptor for posting
1502 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1503 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1504 * All three APIs fill in the fields of the fifo descriptor,
1505 * in accordance with the Titan specification.
1506 *
1507 */
1508void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1509                                  void *txdlh, u32 frag_idx,
1510                                  dma_addr_t dma_pointer, u32 size)
1511{
1512        struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1513        struct vxge_hw_fifo_txd *txdp, *txdp_last;
1514        struct __vxge_hw_channel *channel;
1515
1516        channel = &fifo->channel;
1517
1518        txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1519        txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1520
1521        if (frag_idx != 0)
1522                txdp->control_0 = txdp->control_1 = 0;
1523        else {
1524                txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1525                        VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1526                txdp->control_1 |= fifo->interrupt_type;
1527                txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1528                        fifo->tx_intr_num);
1529                if (txdl_priv->frags) {
1530                        txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1531                        (txdl_priv->frags - 1);
1532                        txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1533                                VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1534                }
1535        }
1536
1537        vxge_assert(frag_idx < txdl_priv->alloc_frags);
1538
1539        txdp->buffer_pointer = (u64)dma_pointer;
1540        txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1541        fifo->stats->total_buffers++;
1542        txdl_priv->frags++;
1543}
1544
1545/**
1546 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1547 * @fifo: Handle to the fifo object used for non offload send
1548 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1549 * @frags: Number of contiguous buffers that are part of a single
1550 *         transmit operation.
1551 *
1552 * Post descriptor on the 'fifo' type channel for transmission.
1553 * Prior to posting the descriptor should be filled in accordance with
1554 * Host/Titan interface specification for a given service (LL, etc.).
1555 *
1556 */
1557void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1558{
1559        struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1560        struct vxge_hw_fifo_txd *txdp_last;
1561        struct vxge_hw_fifo_txd *txdp_first;
1562        struct __vxge_hw_channel *channel;
1563
1564        channel = &fifo->channel;
1565
1566        txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1567        txdp_first = txdlh;
1568
1569        txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1570        txdp_last->control_0 |=
1571              VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1572        txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1573
1574        vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1575
1576        __vxge_hw_non_offload_db_post(fifo,
1577                (u64)txdl_priv->dma_addr,
1578                txdl_priv->frags - 1,
1579                fifo->no_snoop_bits);
1580
1581        fifo->stats->total_posts++;
1582        fifo->stats->common_stats.usage_cnt++;
1583        if (fifo->stats->common_stats.usage_max <
1584                fifo->stats->common_stats.usage_cnt)
1585                fifo->stats->common_stats.usage_max =
1586                        fifo->stats->common_stats.usage_cnt;
1587}
1588
1589/**
1590 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1591 * @fifo: Handle to the fifo object used for non offload send
1592 * @txdlh: Descriptor handle. Returned by HW.
1593 * @t_code: Transfer code, as per Titan User Guide,
1594 *          Transmit Descriptor Format.
1595 *          Returned by HW.
1596 *
1597 * Retrieve the _next_ completed descriptor.
1598 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1599 * driver of new completed descriptors. After that
1600 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1601 * completions (the very first completion is passed by HW via
1602 * vxge_hw_channel_callback_f).
1603 *
1604 * Implementation-wise, the driver is free to call
1605 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1606 * channel callback, or in a deferred fashion and separate (from HW)
1607 * context.
1608 *
1609 * Non-zero @t_code means failure to process the descriptor.
1610 * The failure could happen, for instance, when the link is
1611 * down, in which case Titan completes the descriptor because it
1612 * is not able to send the data out.
1613 *
1614 * For details please refer to Titan User Guide.
1615 *
1616 * Returns: VXGE_HW_OK - success.
1617 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1618 * are currently available for processing.
1619 *
1620 */
1621enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1622        struct __vxge_hw_fifo *fifo, void **txdlh,
1623        enum vxge_hw_fifo_tcode *t_code)
1624{
1625        struct __vxge_hw_channel *channel;
1626        struct vxge_hw_fifo_txd *txdp;
1627        enum vxge_hw_status status = VXGE_HW_OK;
1628
1629        channel = &fifo->channel;
1630
1631        vxge_hw_channel_dtr_try_complete(channel, txdlh);
1632
1633        txdp = *txdlh;
1634        if (txdp == NULL) {
1635                status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1636                goto exit;
1637        }
1638
1639        /* check whether host owns it */
1640        if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1641
1642                vxge_assert(txdp->host_control != 0);
1643
1644                vxge_hw_channel_dtr_complete(channel);
1645
1646                *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1647
1648                if (fifo->stats->common_stats.usage_cnt > 0)
1649                        fifo->stats->common_stats.usage_cnt--;
1650
1651                status = VXGE_HW_OK;
1652                goto exit;
1653        }
1654
1655        /* no more completions */
1656        *txdlh = NULL;
1657        status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1658exit:
1659        return status;
1660}
1661
1662/**
1663 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1664 * @fifo: Handle to the fifo object used for non offload send
1665 * @txdlh: Descriptor handle.
1666 * @t_code: One of the enumerated (and documented in the Titan user guide)
1667 *          "transfer codes".
1668 *
1669 * Handle descriptor's transfer code. The latter comes with each completed
1670 * descriptor.
1671 *
1672 * Returns: one of the enum vxge_hw_status{} enumerated types.
1673 * VXGE_HW_OK - for success.
1674 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1675 */
1676enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1677                                              void *txdlh,
1678                                              enum vxge_hw_fifo_tcode t_code)
1679{
1680        struct __vxge_hw_channel *channel;
1681
1682        enum vxge_hw_status status = VXGE_HW_OK;
1683        channel = &fifo->channel;
1684
1685        if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1686                status = VXGE_HW_ERR_INVALID_TCODE;
1687                goto exit;
1688        }
1689
1690        fifo->stats->txd_t_code_err_cnt[t_code]++;
1691exit:
1692        return status;
1693}
1694
1695/**
1696 * vxge_hw_fifo_txdl_free - Free descriptor.
1697 * @fifo: Handle to the fifo object used for non offload send
1698 * @txdlh: Descriptor handle.
1699 *
1700 * Free the reserved descriptor. This operation is "symmetrical" to
1701 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1702 * lifecycle.
1703 *
1704 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1705 * be:
1706 *
1707 * - reserved (vxge_hw_fifo_txdl_reserve);
1708 *
1709 * - posted (vxge_hw_fifo_txdl_post);
1710 *
1711 * - completed (vxge_hw_fifo_txdl_next_completed);
1712 *
1713 * - and recycled again (vxge_hw_fifo_txdl_free).
1714 *
1715 * For alternative state transitions and more details please refer to
1716 * the design doc.
1717 *
1718 */
1719void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1720{
1721        struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1722        u32 max_frags;
1723        struct __vxge_hw_channel *channel;
1724
1725        channel = &fifo->channel;
1726
1727        txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1728                        (struct vxge_hw_fifo_txd *)txdlh);
1729
1730        max_frags = fifo->config->max_frags;
1731
1732        vxge_hw_channel_dtr_free(channel, txdlh);
1733}
1734
1735/**
1736 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1737 *               to MAC address table.
1738 * @vp: Vpath handle.
1739 * @macaddr: MAC address to be added for this vpath into the list
1740 * @macaddr_mask: MAC address mask for macaddr
1741 * @duplicate_mode: Duplicate MAC address add mode. Please see
1742 *             enum vxge_hw_vpath_mac_addr_add_mode{}
1743 *
1744 * Adds the given mac address and mac address mask into the list for this
1745 * vpath.
1746 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1747 * vxge_hw_vpath_mac_addr_get_next
1748 *
1749 */
1750enum vxge_hw_status
1751vxge_hw_vpath_mac_addr_add(
1752        struct __vxge_hw_vpath_handle *vp,
1753        u8 (macaddr)[ETH_ALEN],
1754        u8 (macaddr_mask)[ETH_ALEN],
1755        enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1756{
1757        u32 i;
1758        u64 data1 = 0ULL;
1759        u64 data2 = 0ULL;
1760        enum vxge_hw_status status = VXGE_HW_OK;
1761
1762        if (vp == NULL) {
1763                status = VXGE_HW_ERR_INVALID_HANDLE;
1764                goto exit;
1765        }
1766
1767        for (i = 0; i < ETH_ALEN; i++) {
1768                data1 <<= 8;
1769                data1 |= (u8)macaddr[i];
1770
1771                data2 <<= 8;
1772                data2 |= (u8)macaddr_mask[i];
1773        }
1774
1775        switch (duplicate_mode) {
1776        case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1777                i = 0;
1778                break;
1779        case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1780                i = 1;
1781                break;
1782        case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1783                i = 2;
1784                break;
1785        default:
1786                i = 0;
1787                break;
1788        }
1789
1790        status = __vxge_hw_vpath_rts_table_set(vp,
1791                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1792                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1793                        0,
1794                        VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1795                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1796                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1797exit:
1798        return status;
1799}
1800
1801/**
1802 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1803 *               from MAC address table.
1804 * @vp: Vpath handle.
1805 * @macaddr: First MAC address entry for this vpath in the list
1806 * @macaddr_mask: MAC address mask for macaddr
1807 *
1808 * Returns the first mac address and mac address mask in the list for this
1809 * vpath.
1810 * see also: vxge_hw_vpath_mac_addr_get_next
1811 *
1812 */
1813enum vxge_hw_status
1814vxge_hw_vpath_mac_addr_get(
1815        struct __vxge_hw_vpath_handle *vp,
1816        u8 (macaddr)[ETH_ALEN],
1817        u8 (macaddr_mask)[ETH_ALEN])
1818{
1819        u32 i;
1820        u64 data1 = 0ULL;
1821        u64 data2 = 0ULL;
1822        enum vxge_hw_status status = VXGE_HW_OK;
1823
1824        if (vp == NULL) {
1825                status = VXGE_HW_ERR_INVALID_HANDLE;
1826                goto exit;
1827        }
1828
1829        status = __vxge_hw_vpath_rts_table_get(vp,
1830                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1831                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1832                        0, &data1, &data2);
1833
1834        if (status != VXGE_HW_OK)
1835                goto exit;
1836
1837        data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1838
1839        data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1840
1841        for (i = ETH_ALEN; i > 0; i--) {
1842                macaddr[i-1] = (u8)(data1 & 0xFF);
1843                data1 >>= 8;
1844
1845                macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1846                data2 >>= 8;
1847        }
1848exit:
1849        return status;
1850}
1851
1852/**
1853 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1854 * vpath
1855 *               from MAC address table.
1856 * @vp: Vpath handle.
1857 * @macaddr: Next MAC address entry for this vpath in the list
1858 * @macaddr_mask: MAC address mask for macaddr
1859 *
1860 * Returns the next mac address and mac address mask in the list for this
1861 * vpath.
1862 * see also: vxge_hw_vpath_mac_addr_get
1863 *
1864 */
1865enum vxge_hw_status
1866vxge_hw_vpath_mac_addr_get_next(
1867        struct __vxge_hw_vpath_handle *vp,
1868        u8 (macaddr)[ETH_ALEN],
1869        u8 (macaddr_mask)[ETH_ALEN])
1870{
1871        u32 i;
1872        u64 data1 = 0ULL;
1873        u64 data2 = 0ULL;
1874        enum vxge_hw_status status = VXGE_HW_OK;
1875
1876        if (vp == NULL) {
1877                status = VXGE_HW_ERR_INVALID_HANDLE;
1878                goto exit;
1879        }
1880
1881        status = __vxge_hw_vpath_rts_table_get(vp,
1882                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1883                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1884                        0, &data1, &data2);
1885
1886        if (status != VXGE_HW_OK)
1887                goto exit;
1888
1889        data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1890
1891        data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1892
1893        for (i = ETH_ALEN; i > 0; i--) {
1894                macaddr[i-1] = (u8)(data1 & 0xFF);
1895                data1 >>= 8;
1896
1897                macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1898                data2 >>= 8;
1899        }
1900
1901exit:
1902        return status;
1903}
1904
1905/**
1906 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1907 *               to MAC address table.
1908 * @vp: Vpath handle.
1909 * @macaddr: MAC address to be added for this vpath into the list
1910 * @macaddr_mask: MAC address mask for macaddr
1911 *
1912 * Delete the given mac address and mac address mask into the list for this
1913 * vpath.
1914 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1915 * vxge_hw_vpath_mac_addr_get_next
1916 *
1917 */
1918enum vxge_hw_status
1919vxge_hw_vpath_mac_addr_delete(
1920        struct __vxge_hw_vpath_handle *vp,
1921        u8 (macaddr)[ETH_ALEN],
1922        u8 (macaddr_mask)[ETH_ALEN])
1923{
1924        u32 i;
1925        u64 data1 = 0ULL;
1926        u64 data2 = 0ULL;
1927        enum vxge_hw_status status = VXGE_HW_OK;
1928
1929        if (vp == NULL) {
1930                status = VXGE_HW_ERR_INVALID_HANDLE;
1931                goto exit;
1932        }
1933
1934        for (i = 0; i < ETH_ALEN; i++) {
1935                data1 <<= 8;
1936                data1 |= (u8)macaddr[i];
1937
1938                data2 <<= 8;
1939                data2 |= (u8)macaddr_mask[i];
1940        }
1941
1942        status = __vxge_hw_vpath_rts_table_set(vp,
1943                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1944                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1945                        0,
1946                        VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1947                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1948exit:
1949        return status;
1950}
1951
1952/**
1953 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1954 *               to vlan id table.
1955 * @vp: Vpath handle.
1956 * @vid: vlan id to be added for this vpath into the list
1957 *
1958 * Adds the given vlan id into the list for this  vpath.
1959 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1960 * vxge_hw_vpath_vid_get_next
1961 *
1962 */
1963enum vxge_hw_status
1964vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1965{
1966        enum vxge_hw_status status = VXGE_HW_OK;
1967
1968        if (vp == NULL) {
1969                status = VXGE_HW_ERR_INVALID_HANDLE;
1970                goto exit;
1971        }
1972
1973        status = __vxge_hw_vpath_rts_table_set(vp,
1974                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1975                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1976                        0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1977exit:
1978        return status;
1979}
1980
1981/**
1982 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1983 *               from vlan id table.
1984 * @vp: Vpath handle.
1985 * @vid: Buffer to return vlan id
1986 *
1987 * Returns the first vlan id in the list for this vpath.
1988 * see also: vxge_hw_vpath_vid_get_next
1989 *
1990 */
1991enum vxge_hw_status
1992vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1993{
1994        u64 data;
1995        enum vxge_hw_status status = VXGE_HW_OK;
1996
1997        if (vp == NULL) {
1998                status = VXGE_HW_ERR_INVALID_HANDLE;
1999                goto exit;
2000        }
2001
2002        status = __vxge_hw_vpath_rts_table_get(vp,
2003                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
2004                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2005                        0, vid, &data);
2006
2007        *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
2008exit:
2009        return status;
2010}
2011
2012/**
2013 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
2014 *               to vlan id table.
2015 * @vp: Vpath handle.
2016 * @vid: vlan id to be added for this vpath into the list
2017 *
2018 * Adds the given vlan id into the list for this  vpath.
2019 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
2020 * vxge_hw_vpath_vid_get_next
2021 *
2022 */
2023enum vxge_hw_status
2024vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
2025{
2026        enum vxge_hw_status status = VXGE_HW_OK;
2027
2028        if (vp == NULL) {
2029                status = VXGE_HW_ERR_INVALID_HANDLE;
2030                goto exit;
2031        }
2032
2033        status = __vxge_hw_vpath_rts_table_set(vp,
2034                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
2035                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2036                        0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
2037exit:
2038        return status;
2039}
2040
2041/**
2042 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
2043 * @vp: Vpath handle.
2044 *
2045 * Enable promiscuous mode of Titan-e operation.
2046 *
2047 * See also: vxge_hw_vpath_promisc_disable().
2048 */
2049enum vxge_hw_status vxge_hw_vpath_promisc_enable(
2050                        struct __vxge_hw_vpath_handle *vp)
2051{
2052        u64 val64;
2053        struct __vxge_hw_virtualpath *vpath;
2054        enum vxge_hw_status status = VXGE_HW_OK;
2055
2056        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2057                status = VXGE_HW_ERR_INVALID_HANDLE;
2058                goto exit;
2059        }
2060
2061        vpath = vp->vpath;
2062
2063        /* Enable promiscuous mode for function 0 only */
2064        if (!(vpath->hldev->access_rights &
2065                VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2066                return VXGE_HW_OK;
2067
2068        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2069
2070        if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2071
2072                val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2073                         VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2074                         VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2075                         VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2076
2077                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2078        }
2079exit:
2080        return status;
2081}
2082
2083/**
2084 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2085 * @vp: Vpath handle.
2086 *
2087 * Disable promiscuous mode of Titan-e operation.
2088 *
2089 * See also: vxge_hw_vpath_promisc_enable().
2090 */
2091enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2092                        struct __vxge_hw_vpath_handle *vp)
2093{
2094        u64 val64;
2095        struct __vxge_hw_virtualpath *vpath;
2096        enum vxge_hw_status status = VXGE_HW_OK;
2097
2098        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2099                status = VXGE_HW_ERR_INVALID_HANDLE;
2100                goto exit;
2101        }
2102
2103        vpath = vp->vpath;
2104
2105        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2106
2107        if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2108
2109                val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2110                           VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2111                           VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2112
2113                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2114        }
2115exit:
2116        return status;
2117}
2118
2119/*
2120 * vxge_hw_vpath_bcast_enable - Enable broadcast
2121 * @vp: Vpath handle.
2122 *
2123 * Enable receiving broadcasts.
2124 */
2125enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2126                        struct __vxge_hw_vpath_handle *vp)
2127{
2128        u64 val64;
2129        struct __vxge_hw_virtualpath *vpath;
2130        enum vxge_hw_status status = VXGE_HW_OK;
2131
2132        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2133                status = VXGE_HW_ERR_INVALID_HANDLE;
2134                goto exit;
2135        }
2136
2137        vpath = vp->vpath;
2138
2139        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2140
2141        if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2142                val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2143                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2144        }
2145exit:
2146        return status;
2147}
2148
2149/**
2150 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2151 * @vp: Vpath handle.
2152 *
2153 * Enable Titan-e multicast addresses.
2154 * Returns: VXGE_HW_OK on success.
2155 *
2156 */
2157enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2158                        struct __vxge_hw_vpath_handle *vp)
2159{
2160        u64 val64;
2161        struct __vxge_hw_virtualpath *vpath;
2162        enum vxge_hw_status status = VXGE_HW_OK;
2163
2164        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2165                status = VXGE_HW_ERR_INVALID_HANDLE;
2166                goto exit;
2167        }
2168
2169        vpath = vp->vpath;
2170
2171        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2172
2173        if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2174                val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2175                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2176        }
2177exit:
2178        return status;
2179}
2180
2181/**
2182 * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2183 * @vp: Vpath handle.
2184 *
2185 * Disable Titan-e multicast addresses.
2186 * Returns: VXGE_HW_OK - success.
2187 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2188 *
2189 */
2190enum vxge_hw_status
2191vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2192{
2193        u64 val64;
2194        struct __vxge_hw_virtualpath *vpath;
2195        enum vxge_hw_status status = VXGE_HW_OK;
2196
2197        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2198                status = VXGE_HW_ERR_INVALID_HANDLE;
2199                goto exit;
2200        }
2201
2202        vpath = vp->vpath;
2203
2204        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2205
2206        if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2207                val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2208                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2209        }
2210exit:
2211        return status;
2212}
2213
2214/*
2215 * vxge_hw_vpath_alarm_process - Process Alarms.
2216 * @vpath: Virtual Path.
2217 * @skip_alarms: Do not clear the alarms
2218 *
2219 * Process vpath alarms.
2220 *
2221 */
2222enum vxge_hw_status vxge_hw_vpath_alarm_process(
2223                        struct __vxge_hw_vpath_handle *vp,
2224                        u32 skip_alarms)
2225{
2226        enum vxge_hw_status status = VXGE_HW_OK;
2227
2228        if (vp == NULL) {
2229                status = VXGE_HW_ERR_INVALID_HANDLE;
2230                goto exit;
2231        }
2232
2233        status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2234exit:
2235        return status;
2236}
2237
2238/**
2239 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2240 *                            alrms
2241 * @vp: Virtual Path handle.
2242 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2243 *             interrupts(Can be repeated). If fifo or ring are not enabled
2244 *             the MSIX vector for that should be set to 0
2245 * @alarm_msix_id: MSIX vector for alarm.
2246 *
2247 * This API will associate a given MSIX vector numbers with the four TIM
2248 * interrupts and alarm interrupt.
2249 */
2250void
2251vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2252                       int alarm_msix_id)
2253{
2254        u64 val64;
2255        struct __vxge_hw_virtualpath *vpath = vp->vpath;
2256        struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2257        u32 vp_id = vp->vpath->vp_id;
2258
2259        val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2260                  (vp_id * 4) + tim_msix_id[0]) |
2261                 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2262                  (vp_id * 4) + tim_msix_id[1]);
2263
2264        writeq(val64, &vp_reg->interrupt_cfg0);
2265
2266        writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2267                        (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2268                        &vp_reg->interrupt_cfg2);
2269
2270        if (vpath->hldev->config.intr_mode ==
2271                                        VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2272                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2273                                VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2274                                0, 32), &vp_reg->one_shot_vect0_en);
2275                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2276                                VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2277                                0, 32), &vp_reg->one_shot_vect1_en);
2278                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2279                                VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2280                                0, 32), &vp_reg->one_shot_vect2_en);
2281        }
2282}
2283
2284/**
2285 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2286 * @vp: Virtual Path handle.
2287 * @msix_id:  MSIX ID
2288 *
2289 * The function masks the msix interrupt for the given msix_id
2290 *
2291 * Returns: 0,
2292 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2293 * status.
2294 * See also:
2295 */
2296void
2297vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2298{
2299        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2300        __vxge_hw_pio_mem_write32_upper(
2301                (u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2302                &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2303}
2304
2305/**
2306 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2307 * @vp: Virtual Path handle.
2308 * @msix_id:  MSI ID
2309 *
2310 * The function clears the msix interrupt for the given msix_id
2311 *
2312 * Returns: 0,
2313 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2314 * status.
2315 * See also:
2316 */
2317void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2318{
2319        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2320
2321        if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2322                __vxge_hw_pio_mem_write32_upper(
2323                        (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2324                        &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2325        else
2326                __vxge_hw_pio_mem_write32_upper(
2327                        (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2328                        &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2329}
2330
2331/**
2332 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2333 * @vp: Virtual Path handle.
2334 * @msix_id:  MSI ID
2335 *
2336 * The function unmasks the msix interrupt for the given msix_id
2337 *
2338 * Returns: 0,
2339 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2340 * status.
2341 * See also:
2342 */
2343void
2344vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2345{
2346        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2347        __vxge_hw_pio_mem_write32_upper(
2348                        (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2349                        &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2350}
2351
2352/**
2353 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2354 * @vp: Virtual Path handle.
2355 *
2356 * Mask Tx and Rx vpath interrupts.
2357 *
2358 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2359 */
2360void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2361{
2362        u64     tim_int_mask0[4] = {[0 ...3] = 0};
2363        u32     tim_int_mask1[4] = {[0 ...3] = 0};
2364        u64     val64;
2365        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2366
2367        VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2368                tim_int_mask1, vp->vpath->vp_id);
2369
2370        val64 = readq(&hldev->common_reg->tim_int_mask0);
2371
2372        if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2373                (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2374                writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2375                        tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2376                        &hldev->common_reg->tim_int_mask0);
2377        }
2378
2379        val64 = readl(&hldev->common_reg->tim_int_mask1);
2380
2381        if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2382                (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2383                __vxge_hw_pio_mem_write32_upper(
2384                        (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2385                        tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2386                        &hldev->common_reg->tim_int_mask1);
2387        }
2388}
2389
2390/**
2391 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2392 * @vp: Virtual Path handle.
2393 *
2394 * Unmask Tx and Rx vpath interrupts.
2395 *
2396 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2397 */
2398void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2399{
2400        u64     tim_int_mask0[4] = {[0 ...3] = 0};
2401        u32     tim_int_mask1[4] = {[0 ...3] = 0};
2402        u64     val64;
2403        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2404
2405        VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2406                tim_int_mask1, vp->vpath->vp_id);
2407
2408        val64 = readq(&hldev->common_reg->tim_int_mask0);
2409
2410        if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2411           (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2412                writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2413                        tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2414                        &hldev->common_reg->tim_int_mask0);
2415        }
2416
2417        if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2418           (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2419                __vxge_hw_pio_mem_write32_upper(
2420                        (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2421                          tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2422                        &hldev->common_reg->tim_int_mask1);
2423        }
2424}
2425
2426/**
2427 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2428 * descriptors and process the same.
2429 * @ring: Handle to the ring object used for receive
2430 *
2431 * The function polls the Rx for the completed  descriptors and calls
2432 * the driver via supplied completion   callback.
2433 *
2434 * Returns: VXGE_HW_OK, if the polling is completed successful.
2435 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2436 * descriptors available which are yet to be processed.
2437 *
2438 * See also: vxge_hw_vpath_poll_rx()
2439 */
2440enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2441{
2442        u8 t_code;
2443        enum vxge_hw_status status = VXGE_HW_OK;
2444        void *first_rxdh;
2445        u64 val64 = 0;
2446        int new_count = 0;
2447
2448        ring->cmpl_cnt = 0;
2449
2450        status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2451        if (status == VXGE_HW_OK)
2452                ring->callback(ring, first_rxdh,
2453                        t_code, ring->channel.userdata);
2454
2455        if (ring->cmpl_cnt != 0) {
2456                ring->doorbell_cnt += ring->cmpl_cnt;
2457                if (ring->doorbell_cnt >= ring->rxds_limit) {
2458                        /*
2459                         * Each RxD is of 4 qwords, update the number of
2460                         * qwords replenished
2461                         */
2462                        new_count = (ring->doorbell_cnt * 4);
2463
2464                        /* For each block add 4 more qwords */
2465                        ring->total_db_cnt += ring->doorbell_cnt;
2466                        if (ring->total_db_cnt >= ring->rxds_per_block) {
2467                                new_count += 4;
2468                                /* Reset total count */
2469                                ring->total_db_cnt %= ring->rxds_per_block;
2470                        }
2471                        writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2472                                &ring->vp_reg->prc_rxd_doorbell);
2473                        val64 =
2474                          readl(&ring->common_reg->titan_general_int_status);
2475                        ring->doorbell_cnt = 0;
2476                }
2477        }
2478
2479        return status;
2480}
2481
2482/**
2483 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2484 * the same.
2485 * @fifo: Handle to the fifo object used for non offload send
2486 *
2487 * The function polls the Tx for the completed descriptors and calls
2488 * the driver via supplied completion callback.
2489 *
2490 * Returns: VXGE_HW_OK, if the polling is completed successful.
2491 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2492 * descriptors available which are yet to be processed.
2493 */
2494enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2495                                        struct sk_buff ***skb_ptr, int nr_skb,
2496                                        int *more)
2497{
2498        enum vxge_hw_fifo_tcode t_code;
2499        void *first_txdlh;
2500        enum vxge_hw_status status = VXGE_HW_OK;
2501        struct __vxge_hw_channel *channel;
2502
2503        channel = &fifo->channel;
2504
2505        status = vxge_hw_fifo_txdl_next_completed(fifo,
2506                                &first_txdlh, &t_code);
2507        if (status == VXGE_HW_OK)
2508                if (fifo->callback(fifo, first_txdlh, t_code,
2509                        channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2510                        status = VXGE_HW_COMPLETIONS_REMAIN;
2511
2512        return status;
2513}
2514