linux/drivers/net/ethernet/sfc/falcon.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/pci.h>
  14#include <linux/module.h>
  15#include <linux/seq_file.h>
  16#include <linux/i2c.h>
  17#include <linux/mii.h>
  18#include <linux/slab.h>
  19#include "net_driver.h"
  20#include "bitfield.h"
  21#include "efx.h"
  22#include "nic.h"
  23#include "farch_regs.h"
  24#include "io.h"
  25#include "phy.h"
  26#include "workarounds.h"
  27#include "selftest.h"
  28#include "mdio_10g.h"
  29
  30/* Hardware control for SFC4000 (aka Falcon). */
  31
  32/**************************************************************************
  33 *
  34 * NIC stats
  35 *
  36 **************************************************************************
  37 */
  38
  39#define FALCON_MAC_STATS_SIZE 0x100
  40
  41#define XgRxOctets_offset 0x0
  42#define XgRxOctets_WIDTH 48
  43#define XgRxOctetsOK_offset 0x8
  44#define XgRxOctetsOK_WIDTH 48
  45#define XgRxPkts_offset 0x10
  46#define XgRxPkts_WIDTH 32
  47#define XgRxPktsOK_offset 0x14
  48#define XgRxPktsOK_WIDTH 32
  49#define XgRxBroadcastPkts_offset 0x18
  50#define XgRxBroadcastPkts_WIDTH 32
  51#define XgRxMulticastPkts_offset 0x1C
  52#define XgRxMulticastPkts_WIDTH 32
  53#define XgRxUnicastPkts_offset 0x20
  54#define XgRxUnicastPkts_WIDTH 32
  55#define XgRxUndersizePkts_offset 0x24
  56#define XgRxUndersizePkts_WIDTH 32
  57#define XgRxOversizePkts_offset 0x28
  58#define XgRxOversizePkts_WIDTH 32
  59#define XgRxJabberPkts_offset 0x2C
  60#define XgRxJabberPkts_WIDTH 32
  61#define XgRxUndersizeFCSerrorPkts_offset 0x30
  62#define XgRxUndersizeFCSerrorPkts_WIDTH 32
  63#define XgRxDropEvents_offset 0x34
  64#define XgRxDropEvents_WIDTH 32
  65#define XgRxFCSerrorPkts_offset 0x38
  66#define XgRxFCSerrorPkts_WIDTH 32
  67#define XgRxAlignError_offset 0x3C
  68#define XgRxAlignError_WIDTH 32
  69#define XgRxSymbolError_offset 0x40
  70#define XgRxSymbolError_WIDTH 32
  71#define XgRxInternalMACError_offset 0x44
  72#define XgRxInternalMACError_WIDTH 32
  73#define XgRxControlPkts_offset 0x48
  74#define XgRxControlPkts_WIDTH 32
  75#define XgRxPausePkts_offset 0x4C
  76#define XgRxPausePkts_WIDTH 32
  77#define XgRxPkts64Octets_offset 0x50
  78#define XgRxPkts64Octets_WIDTH 32
  79#define XgRxPkts65to127Octets_offset 0x54
  80#define XgRxPkts65to127Octets_WIDTH 32
  81#define XgRxPkts128to255Octets_offset 0x58
  82#define XgRxPkts128to255Octets_WIDTH 32
  83#define XgRxPkts256to511Octets_offset 0x5C
  84#define XgRxPkts256to511Octets_WIDTH 32
  85#define XgRxPkts512to1023Octets_offset 0x60
  86#define XgRxPkts512to1023Octets_WIDTH 32
  87#define XgRxPkts1024to15xxOctets_offset 0x64
  88#define XgRxPkts1024to15xxOctets_WIDTH 32
  89#define XgRxPkts15xxtoMaxOctets_offset 0x68
  90#define XgRxPkts15xxtoMaxOctets_WIDTH 32
  91#define XgRxLengthError_offset 0x6C
  92#define XgRxLengthError_WIDTH 32
  93#define XgTxPkts_offset 0x80
  94#define XgTxPkts_WIDTH 32
  95#define XgTxOctets_offset 0x88
  96#define XgTxOctets_WIDTH 48
  97#define XgTxMulticastPkts_offset 0x90
  98#define XgTxMulticastPkts_WIDTH 32
  99#define XgTxBroadcastPkts_offset 0x94
 100#define XgTxBroadcastPkts_WIDTH 32
 101#define XgTxUnicastPkts_offset 0x98
 102#define XgTxUnicastPkts_WIDTH 32
 103#define XgTxControlPkts_offset 0x9C
 104#define XgTxControlPkts_WIDTH 32
 105#define XgTxPausePkts_offset 0xA0
 106#define XgTxPausePkts_WIDTH 32
 107#define XgTxPkts64Octets_offset 0xA4
 108#define XgTxPkts64Octets_WIDTH 32
 109#define XgTxPkts65to127Octets_offset 0xA8
 110#define XgTxPkts65to127Octets_WIDTH 32
 111#define XgTxPkts128to255Octets_offset 0xAC
 112#define XgTxPkts128to255Octets_WIDTH 32
 113#define XgTxPkts256to511Octets_offset 0xB0
 114#define XgTxPkts256to511Octets_WIDTH 32
 115#define XgTxPkts512to1023Octets_offset 0xB4
 116#define XgTxPkts512to1023Octets_WIDTH 32
 117#define XgTxPkts1024to15xxOctets_offset 0xB8
 118#define XgTxPkts1024to15xxOctets_WIDTH 32
 119#define XgTxPkts1519toMaxOctets_offset 0xBC
 120#define XgTxPkts1519toMaxOctets_WIDTH 32
 121#define XgTxUndersizePkts_offset 0xC0
 122#define XgTxUndersizePkts_WIDTH 32
 123#define XgTxOversizePkts_offset 0xC4
 124#define XgTxOversizePkts_WIDTH 32
 125#define XgTxNonTcpUdpPkt_offset 0xC8
 126#define XgTxNonTcpUdpPkt_WIDTH 16
 127#define XgTxMacSrcErrPkt_offset 0xCC
 128#define XgTxMacSrcErrPkt_WIDTH 16
 129#define XgTxIpSrcErrPkt_offset 0xD0
 130#define XgTxIpSrcErrPkt_WIDTH 16
 131#define XgDmaDone_offset 0xD4
 132#define XgDmaDone_WIDTH 32
 133
 134#define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
 135        (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
 136
 137#define FALCON_DMA_STAT(ext_name, hw_name)                              \
 138        [FALCON_STAT_ ## ext_name] =                                    \
 139        { #ext_name,                                                    \
 140          /* 48-bit stats are zero-padded to 64 on DMA */               \
 141          hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
 142          hw_name ## _ ## offset }
 143#define FALCON_OTHER_STAT(ext_name)                                     \
 144        [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 145
 146static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
 147        FALCON_DMA_STAT(tx_bytes, XgTxOctets),
 148        FALCON_DMA_STAT(tx_packets, XgTxPkts),
 149        FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
 150        FALCON_DMA_STAT(tx_control, XgTxControlPkts),
 151        FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
 152        FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
 153        FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
 154        FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
 155        FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
 156        FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
 157        FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
 158        FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
 159        FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
 160        FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
 161        FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
 162        FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
 163        FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
 164        FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
 165        FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
 166        FALCON_DMA_STAT(rx_bytes, XgRxOctets),
 167        FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
 168        FALCON_OTHER_STAT(rx_bad_bytes),
 169        FALCON_DMA_STAT(rx_packets, XgRxPkts),
 170        FALCON_DMA_STAT(rx_good, XgRxPktsOK),
 171        FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
 172        FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
 173        FALCON_DMA_STAT(rx_control, XgRxControlPkts),
 174        FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
 175        FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
 176        FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
 177        FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
 178        FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
 179        FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
 180        FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
 181        FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
 182        FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
 183        FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
 184        FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
 185        FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
 186        FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
 187        FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
 188        FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
 189        FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
 190        FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
 191        FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
 192        FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
 193        FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
 194};
 195static const unsigned long falcon_stat_mask[] = {
 196        [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
 197};
 198
 199/**************************************************************************
 200 *
 201 * Basic SPI command set and bit definitions
 202 *
 203 *************************************************************************/
 204
 205#define SPI_WRSR 0x01           /* Write status register */
 206#define SPI_WRITE 0x02          /* Write data to memory array */
 207#define SPI_READ 0x03           /* Read data from memory array */
 208#define SPI_WRDI 0x04           /* Reset write enable latch */
 209#define SPI_RDSR 0x05           /* Read status register */
 210#define SPI_WREN 0x06           /* Set write enable latch */
 211#define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
 212
 213#define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
 214#define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
 215#define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
 216#define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
 217#define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
 218#define SPI_STATUS_NRDY 0x01    /* Device busy flag */
 219
 220/**************************************************************************
 221 *
 222 * Non-volatile memory layout
 223 *
 224 **************************************************************************
 225 */
 226
 227/* SFC4000 flash is partitioned into:
 228 *     0-0x400       chip and board config (see struct falcon_nvconfig)
 229 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
 230 *     0x8000-end    boot code (mapped to PCI expansion ROM)
 231 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
 232 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
 233 *     0-0x400       chip and board config
 234 *     configurable  VPD
 235 *     0x800-0x1800  boot config
 236 * Aside from the chip and board config, all of these are optional and may
 237 * be absent or truncated depending on the devices used.
 238 */
 239#define FALCON_NVCONFIG_END 0x400U
 240#define FALCON_FLASH_BOOTCODE_START 0x8000U
 241#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
 242#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
 243
 244/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
 245struct falcon_nvconfig_board_v2 {
 246        __le16 nports;
 247        u8 port0_phy_addr;
 248        u8 port0_phy_type;
 249        u8 port1_phy_addr;
 250        u8 port1_phy_type;
 251        __le16 asic_sub_revision;
 252        __le16 board_revision;
 253} __packed;
 254
 255/* Board configuration v3 extra information */
 256struct falcon_nvconfig_board_v3 {
 257        __le32 spi_device_type[2];
 258} __packed;
 259
 260/* Bit numbers for spi_device_type */
 261#define SPI_DEV_TYPE_SIZE_LBN 0
 262#define SPI_DEV_TYPE_SIZE_WIDTH 5
 263#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
 264#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
 265#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
 266#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
 267#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
 268#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
 269#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
 270#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
 271#define SPI_DEV_TYPE_FIELD(type, field)                                 \
 272        (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
 273
 274#define FALCON_NVCONFIG_OFFSET 0x300
 275
 276#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
 277struct falcon_nvconfig {
 278        efx_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
 279        u8 mac_address[2][8];                   /* 0x310 */
 280        efx_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
 281        efx_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
 282        efx_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
 283        efx_oword_t hw_init_reg;                        /* 0x350 */
 284        efx_oword_t nic_stat_reg;                       /* 0x360 */
 285        efx_oword_t glb_ctl_reg;                        /* 0x370 */
 286        efx_oword_t srm_cfg_reg;                        /* 0x380 */
 287        efx_oword_t spare_reg;                          /* 0x390 */
 288        __le16 board_magic_num;                 /* 0x3A0 */
 289        __le16 board_struct_ver;
 290        __le16 board_checksum;
 291        struct falcon_nvconfig_board_v2 board_v2;
 292        efx_oword_t ee_base_page_reg;                   /* 0x3B0 */
 293        struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
 294} __packed;
 295
 296/*************************************************************************/
 297
 298static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
 299static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
 300
 301static const unsigned int
 302/* "Large" EEPROM device: Atmel AT25640 or similar
 303 * 8 KB, 16-bit address, 32 B write block */
 304large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 305                     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 306                     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 307/* Default flash device: Atmel AT25F1024
 308 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 309default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 310                      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 311                      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 312                      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 313                      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 314
 315/**************************************************************************
 316 *
 317 * I2C bus - this is a bit-bashing interface using GPIO pins
 318 * Note that it uses the output enables to tristate the outputs
 319 * SDA is the data pin and SCL is the clock
 320 *
 321 **************************************************************************
 322 */
 323static void falcon_setsda(void *data, int state)
 324{
 325        struct efx_nic *efx = (struct efx_nic *)data;
 326        efx_oword_t reg;
 327
 328        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 329        EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
 330        efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 331}
 332
 333static void falcon_setscl(void *data, int state)
 334{
 335        struct efx_nic *efx = (struct efx_nic *)data;
 336        efx_oword_t reg;
 337
 338        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 339        EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
 340        efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 341}
 342
 343static int falcon_getsda(void *data)
 344{
 345        struct efx_nic *efx = (struct efx_nic *)data;
 346        efx_oword_t reg;
 347
 348        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 349        return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
 350}
 351
 352static int falcon_getscl(void *data)
 353{
 354        struct efx_nic *efx = (struct efx_nic *)data;
 355        efx_oword_t reg;
 356
 357        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 358        return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
 359}
 360
 361static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 362        .setsda         = falcon_setsda,
 363        .setscl         = falcon_setscl,
 364        .getsda         = falcon_getsda,
 365        .getscl         = falcon_getscl,
 366        .udelay         = 5,
 367        /* Wait up to 50 ms for slave to let us pull SCL high */
 368        .timeout        = DIV_ROUND_UP(HZ, 20),
 369};
 370
 371static void falcon_push_irq_moderation(struct efx_channel *channel)
 372{
 373        efx_dword_t timer_cmd;
 374        struct efx_nic *efx = channel->efx;
 375
 376        /* Set timer register */
 377        if (channel->irq_moderation) {
 378                EFX_POPULATE_DWORD_2(timer_cmd,
 379                                     FRF_AB_TC_TIMER_MODE,
 380                                     FFE_BB_TIMER_MODE_INT_HLDOFF,
 381                                     FRF_AB_TC_TIMER_VAL,
 382                                     channel->irq_moderation - 1);
 383        } else {
 384                EFX_POPULATE_DWORD_2(timer_cmd,
 385                                     FRF_AB_TC_TIMER_MODE,
 386                                     FFE_BB_TIMER_MODE_DIS,
 387                                     FRF_AB_TC_TIMER_VAL, 0);
 388        }
 389        BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
 390        efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
 391                               channel->channel);
 392}
 393
 394static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
 395
 396static void falcon_prepare_flush(struct efx_nic *efx)
 397{
 398        falcon_deconfigure_mac_wrapper(efx);
 399
 400        /* Wait for the tx and rx fifo's to get to the next packet boundary
 401         * (~1ms without back-pressure), then to drain the remainder of the
 402         * fifo's at data path speeds (negligible), with a healthy margin. */
 403        msleep(10);
 404}
 405
 406/* Acknowledge a legacy interrupt from Falcon
 407 *
 408 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 409 *
 410 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 411 * BIU. Interrupt acknowledge is read sensitive so must write instead
 412 * (then read to ensure the BIU collector is flushed)
 413 *
 414 * NB most hardware supports MSI interrupts
 415 */
 416static inline void falcon_irq_ack_a1(struct efx_nic *efx)
 417{
 418        efx_dword_t reg;
 419
 420        EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
 421        efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
 422        efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
 423}
 424
 425
 426static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 427{
 428        struct efx_nic *efx = dev_id;
 429        efx_oword_t *int_ker = efx->irq_status.addr;
 430        int syserr;
 431        int queues;
 432
 433        /* Check to see if this is our interrupt.  If it isn't, we
 434         * exit without having touched the hardware.
 435         */
 436        if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
 437                netif_vdbg(efx, intr, efx->net_dev,
 438                           "IRQ %d on CPU %d not for me\n", irq,
 439                           raw_smp_processor_id());
 440                return IRQ_NONE;
 441        }
 442        efx->last_irq_cpu = raw_smp_processor_id();
 443        netif_vdbg(efx, intr, efx->net_dev,
 444                   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 445                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 446
 447        if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
 448                return IRQ_HANDLED;
 449
 450        /* Check to see if we have a serious error condition */
 451        syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 452        if (unlikely(syserr))
 453                return efx_farch_fatal_interrupt(efx);
 454
 455        /* Determine interrupting queues, clear interrupt status
 456         * register and acknowledge the device interrupt.
 457         */
 458        BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
 459        queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
 460        EFX_ZERO_OWORD(*int_ker);
 461        wmb(); /* Ensure the vector is cleared before interrupt ack */
 462        falcon_irq_ack_a1(efx);
 463
 464        if (queues & 1)
 465                efx_schedule_channel_irq(efx_get_channel(efx, 0));
 466        if (queues & 2)
 467                efx_schedule_channel_irq(efx_get_channel(efx, 1));
 468        return IRQ_HANDLED;
 469}
 470/**************************************************************************
 471 *
 472 * EEPROM/flash
 473 *
 474 **************************************************************************
 475 */
 476
 477#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
 478
 479static int falcon_spi_poll(struct efx_nic *efx)
 480{
 481        efx_oword_t reg;
 482        efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
 483        return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 484}
 485
 486/* Wait for SPI command completion */
 487static int falcon_spi_wait(struct efx_nic *efx)
 488{
 489        /* Most commands will finish quickly, so we start polling at
 490         * very short intervals.  Sometimes the command may have to
 491         * wait for VPD or expansion ROM access outside of our
 492         * control, so we allow up to 100 ms. */
 493        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 494        int i;
 495
 496        for (i = 0; i < 10; i++) {
 497                if (!falcon_spi_poll(efx))
 498                        return 0;
 499                udelay(10);
 500        }
 501
 502        for (;;) {
 503                if (!falcon_spi_poll(efx))
 504                        return 0;
 505                if (time_after_eq(jiffies, timeout)) {
 506                        netif_err(efx, hw, efx->net_dev,
 507                                  "timed out waiting for SPI\n");
 508                        return -ETIMEDOUT;
 509                }
 510                schedule_timeout_uninterruptible(1);
 511        }
 512}
 513
 514static int
 515falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
 516               unsigned int command, int address,
 517               const void *in, void *out, size_t len)
 518{
 519        bool addressed = (address >= 0);
 520        bool reading = (out != NULL);
 521        efx_oword_t reg;
 522        int rc;
 523
 524        /* Input validation */
 525        if (len > FALCON_SPI_MAX_LEN)
 526                return -EINVAL;
 527
 528        /* Check that previous command is not still running */
 529        rc = falcon_spi_poll(efx);
 530        if (rc)
 531                return rc;
 532
 533        /* Program address register, if we have an address */
 534        if (addressed) {
 535                EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
 536                efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
 537        }
 538
 539        /* Program data register, if we have data */
 540        if (in != NULL) {
 541                memcpy(&reg, in, len);
 542                efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
 543        }
 544
 545        /* Issue read/write command */
 546        EFX_POPULATE_OWORD_7(reg,
 547                             FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
 548                             FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
 549                             FRF_AB_EE_SPI_HCMD_DABCNT, len,
 550                             FRF_AB_EE_SPI_HCMD_READ, reading,
 551                             FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
 552                             FRF_AB_EE_SPI_HCMD_ADBCNT,
 553                             (addressed ? spi->addr_len : 0),
 554                             FRF_AB_EE_SPI_HCMD_ENC, command);
 555        efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
 556
 557        /* Wait for read/write to complete */
 558        rc = falcon_spi_wait(efx);
 559        if (rc)
 560                return rc;
 561
 562        /* Read data */
 563        if (out != NULL) {
 564                efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
 565                memcpy(out, &reg, len);
 566        }
 567
 568        return 0;
 569}
 570
 571static inline u8
 572falcon_spi_munge_command(const struct falcon_spi_device *spi,
 573                         const u8 command, const unsigned int address)
 574{
 575        return command | (((address >> 8) & spi->munge_address) << 3);
 576}
 577
 578static int
 579falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
 580                loff_t start, size_t len, size_t *retlen, u8 *buffer)
 581{
 582        size_t block_len, pos = 0;
 583        unsigned int command;
 584        int rc = 0;
 585
 586        while (pos < len) {
 587                block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 588
 589                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 590                rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
 591                                    buffer + pos, block_len);
 592                if (rc)
 593                        break;
 594                pos += block_len;
 595
 596                /* Avoid locking up the system */
 597                cond_resched();
 598                if (signal_pending(current)) {
 599                        rc = -EINTR;
 600                        break;
 601                }
 602        }
 603
 604        if (retlen)
 605                *retlen = pos;
 606        return rc;
 607}
 608
 609#ifdef CONFIG_SFC_MTD
 610
 611struct falcon_mtd_partition {
 612        struct efx_mtd_partition common;
 613        const struct falcon_spi_device *spi;
 614        size_t offset;
 615};
 616
 617#define to_falcon_mtd_partition(mtd)                            \
 618        container_of(mtd, struct falcon_mtd_partition, common.mtd)
 619
 620static size_t
 621falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
 622{
 623        return min(FALCON_SPI_MAX_LEN,
 624                   (spi->block_size - (start & (spi->block_size - 1))));
 625}
 626
 627/* Wait up to 10 ms for buffered write completion */
 628static int
 629falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
 630{
 631        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 632        u8 status;
 633        int rc;
 634
 635        for (;;) {
 636                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 637                                    &status, sizeof(status));
 638                if (rc)
 639                        return rc;
 640                if (!(status & SPI_STATUS_NRDY))
 641                        return 0;
 642                if (time_after_eq(jiffies, timeout)) {
 643                        netif_err(efx, hw, efx->net_dev,
 644                                  "SPI write timeout on device %d"
 645                                  " last status=0x%02x\n",
 646                                  spi->device_id, status);
 647                        return -ETIMEDOUT;
 648                }
 649                schedule_timeout_uninterruptible(1);
 650        }
 651}
 652
 653static int
 654falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
 655                 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
 656{
 657        u8 verify_buffer[FALCON_SPI_MAX_LEN];
 658        size_t block_len, pos = 0;
 659        unsigned int command;
 660        int rc = 0;
 661
 662        while (pos < len) {
 663                rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 664                if (rc)
 665                        break;
 666
 667                block_len = min(len - pos,
 668                                falcon_spi_write_limit(spi, start + pos));
 669                command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
 670                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 671                                    buffer + pos, NULL, block_len);
 672                if (rc)
 673                        break;
 674
 675                rc = falcon_spi_wait_write(efx, spi);
 676                if (rc)
 677                        break;
 678
 679                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 680                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 681                                    NULL, verify_buffer, block_len);
 682                if (memcmp(verify_buffer, buffer + pos, block_len)) {
 683                        rc = -EIO;
 684                        break;
 685                }
 686
 687                pos += block_len;
 688
 689                /* Avoid locking up the system */
 690                cond_resched();
 691                if (signal_pending(current)) {
 692                        rc = -EINTR;
 693                        break;
 694                }
 695        }
 696
 697        if (retlen)
 698                *retlen = pos;
 699        return rc;
 700}
 701
 702static int
 703falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
 704{
 705        const struct falcon_spi_device *spi = part->spi;
 706        struct efx_nic *efx = part->common.mtd.priv;
 707        u8 status;
 708        int rc, i;
 709
 710        /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
 711        for (i = 0; i < 40; i++) {
 712                __set_current_state(uninterruptible ?
 713                                    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
 714                schedule_timeout(HZ / 10);
 715                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 716                                    &status, sizeof(status));
 717                if (rc)
 718                        return rc;
 719                if (!(status & SPI_STATUS_NRDY))
 720                        return 0;
 721                if (signal_pending(current))
 722                        return -EINTR;
 723        }
 724        pr_err("%s: timed out waiting for %s\n",
 725               part->common.name, part->common.dev_type_name);
 726        return -ETIMEDOUT;
 727}
 728
 729static int
 730falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
 731{
 732        const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
 733                                SPI_STATUS_BP0);
 734        u8 status;
 735        int rc;
 736
 737        rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 738                            &status, sizeof(status));
 739        if (rc)
 740                return rc;
 741
 742        if (!(status & unlock_mask))
 743                return 0; /* already unlocked */
 744
 745        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 746        if (rc)
 747                return rc;
 748        rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
 749        if (rc)
 750                return rc;
 751
 752        status &= ~unlock_mask;
 753        rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
 754                            NULL, sizeof(status));
 755        if (rc)
 756                return rc;
 757        rc = falcon_spi_wait_write(efx, spi);
 758        if (rc)
 759                return rc;
 760
 761        return 0;
 762}
 763
 764#define FALCON_SPI_VERIFY_BUF_LEN 16
 765
 766static int
 767falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
 768{
 769        const struct falcon_spi_device *spi = part->spi;
 770        struct efx_nic *efx = part->common.mtd.priv;
 771        unsigned pos, block_len;
 772        u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
 773        u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
 774        int rc;
 775
 776        if (len != spi->erase_size)
 777                return -EINVAL;
 778
 779        if (spi->erase_command == 0)
 780                return -EOPNOTSUPP;
 781
 782        rc = falcon_spi_unlock(efx, spi);
 783        if (rc)
 784                return rc;
 785        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 786        if (rc)
 787                return rc;
 788        rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
 789                            NULL, 0);
 790        if (rc)
 791                return rc;
 792        rc = falcon_spi_slow_wait(part, false);
 793
 794        /* Verify the entire region has been wiped */
 795        memset(empty, 0xff, sizeof(empty));
 796        for (pos = 0; pos < len; pos += block_len) {
 797                block_len = min(len - pos, sizeof(buffer));
 798                rc = falcon_spi_read(efx, spi, start + pos, block_len,
 799                                     NULL, buffer);
 800                if (rc)
 801                        return rc;
 802                if (memcmp(empty, buffer, block_len))
 803                        return -EIO;
 804
 805                /* Avoid locking up the system */
 806                cond_resched();
 807                if (signal_pending(current))
 808                        return -EINTR;
 809        }
 810
 811        return rc;
 812}
 813
 814static void falcon_mtd_rename(struct efx_mtd_partition *part)
 815{
 816        struct efx_nic *efx = part->mtd.priv;
 817
 818        snprintf(part->name, sizeof(part->name), "%s %s",
 819                 efx->name, part->type_name);
 820}
 821
 822static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
 823                           size_t len, size_t *retlen, u8 *buffer)
 824{
 825        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 826        struct efx_nic *efx = mtd->priv;
 827        struct falcon_nic_data *nic_data = efx->nic_data;
 828        int rc;
 829
 830        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 831        if (rc)
 832                return rc;
 833        rc = falcon_spi_read(efx, part->spi, part->offset + start,
 834                             len, retlen, buffer);
 835        mutex_unlock(&nic_data->spi_lock);
 836        return rc;
 837}
 838
 839static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
 840{
 841        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 842        struct efx_nic *efx = mtd->priv;
 843        struct falcon_nic_data *nic_data = efx->nic_data;
 844        int rc;
 845
 846        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 847        if (rc)
 848                return rc;
 849        rc = falcon_spi_erase(part, part->offset + start, len);
 850        mutex_unlock(&nic_data->spi_lock);
 851        return rc;
 852}
 853
 854static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
 855                            size_t len, size_t *retlen, const u8 *buffer)
 856{
 857        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 858        struct efx_nic *efx = mtd->priv;
 859        struct falcon_nic_data *nic_data = efx->nic_data;
 860        int rc;
 861
 862        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 863        if (rc)
 864                return rc;
 865        rc = falcon_spi_write(efx, part->spi, part->offset + start,
 866                              len, retlen, buffer);
 867        mutex_unlock(&nic_data->spi_lock);
 868        return rc;
 869}
 870
 871static int falcon_mtd_sync(struct mtd_info *mtd)
 872{
 873        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 874        struct efx_nic *efx = mtd->priv;
 875        struct falcon_nic_data *nic_data = efx->nic_data;
 876        int rc;
 877
 878        mutex_lock(&nic_data->spi_lock);
 879        rc = falcon_spi_slow_wait(part, true);
 880        mutex_unlock(&nic_data->spi_lock);
 881        return rc;
 882}
 883
 884static int falcon_mtd_probe(struct efx_nic *efx)
 885{
 886        struct falcon_nic_data *nic_data = efx->nic_data;
 887        struct falcon_mtd_partition *parts;
 888        struct falcon_spi_device *spi;
 889        size_t n_parts;
 890        int rc = -ENODEV;
 891
 892        ASSERT_RTNL();
 893
 894        /* Allocate space for maximum number of partitions */
 895        parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
 896        if (!parts)
 897                return -ENOMEM;
 898        n_parts = 0;
 899
 900        spi = &nic_data->spi_flash;
 901        if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
 902                parts[n_parts].spi = spi;
 903                parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
 904                parts[n_parts].common.dev_type_name = "flash";
 905                parts[n_parts].common.type_name = "sfc_flash_bootrom";
 906                parts[n_parts].common.mtd.type = MTD_NORFLASH;
 907                parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
 908                parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
 909                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 910                n_parts++;
 911        }
 912
 913        spi = &nic_data->spi_eeprom;
 914        if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
 915                parts[n_parts].spi = spi;
 916                parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
 917                parts[n_parts].common.dev_type_name = "EEPROM";
 918                parts[n_parts].common.type_name = "sfc_bootconfig";
 919                parts[n_parts].common.mtd.type = MTD_RAM;
 920                parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
 921                parts[n_parts].common.mtd.size =
 922                        min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
 923                        FALCON_EEPROM_BOOTCONFIG_START;
 924                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 925                n_parts++;
 926        }
 927
 928        rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
 929        if (rc)
 930                kfree(parts);
 931        return rc;
 932}
 933
 934#endif /* CONFIG_SFC_MTD */
 935
 936/**************************************************************************
 937 *
 938 * XMAC operations
 939 *
 940 **************************************************************************
 941 */
 942
 943/* Configure the XAUI driver that is an output from Falcon */
 944static void falcon_setup_xaui(struct efx_nic *efx)
 945{
 946        efx_oword_t sdctl, txdrv;
 947
 948        /* Move the XAUI into low power, unless there is no PHY, in
 949         * which case the XAUI will have to drive a cable. */
 950        if (efx->phy_type == PHY_TYPE_NONE)
 951                return;
 952
 953        efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
 954        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 955        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 956        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 957        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 958        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 959        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 960        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 961        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 962        efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
 963
 964        EFX_POPULATE_OWORD_8(txdrv,
 965                             FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
 966                             FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
 967                             FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
 968                             FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
 969                             FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
 970                             FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
 971                             FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
 972                             FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
 973        efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
 974}
 975
 976int falcon_reset_xaui(struct efx_nic *efx)
 977{
 978        struct falcon_nic_data *nic_data = efx->nic_data;
 979        efx_oword_t reg;
 980        int count;
 981
 982        /* Don't fetch MAC statistics over an XMAC reset */
 983        WARN_ON(nic_data->stats_disable_count == 0);
 984
 985        /* Start reset sequence */
 986        EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
 987        efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
 988
 989        /* Wait up to 10 ms for completion, then reinitialise */
 990        for (count = 0; count < 1000; count++) {
 991                efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
 992                if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
 993                    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
 994                        falcon_setup_xaui(efx);
 995                        return 0;
 996                }
 997                udelay(10);
 998        }
 999        netif_err(efx, hw, efx->net_dev,
1000                  "timed out waiting for XAUI/XGXS reset\n");
1001        return -ETIMEDOUT;
1002}
1003
1004static void falcon_ack_status_intr(struct efx_nic *efx)
1005{
1006        struct falcon_nic_data *nic_data = efx->nic_data;
1007        efx_oword_t reg;
1008
1009        if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1010                return;
1011
1012        /* We expect xgmii faults if the wireside link is down */
1013        if (!efx->link_state.up)
1014                return;
1015
1016        /* We can only use this interrupt to signal the negative edge of
1017         * xaui_align [we have to poll the positive edge]. */
1018        if (nic_data->xmac_poll_required)
1019                return;
1020
1021        efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1022}
1023
1024static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1025{
1026        efx_oword_t reg;
1027        bool align_done, link_ok = false;
1028        int sync_status;
1029
1030        /* Read link status */
1031        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1032
1033        align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1034        sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1035        if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1036                link_ok = true;
1037
1038        /* Clear link status ready for next read */
1039        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1040        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1041        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1042        efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1043
1044        return link_ok;
1045}
1046
1047static bool falcon_xmac_link_ok(struct efx_nic *efx)
1048{
1049        /*
1050         * Check MAC's XGXS link status except when using XGMII loopback
1051         * which bypasses the XGXS block.
1052         * If possible, check PHY's XGXS link status except when using
1053         * MAC loopback.
1054         */
1055        return (efx->loopback_mode == LOOPBACK_XGMII ||
1056                falcon_xgxs_link_ok(efx)) &&
1057                (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1058                 LOOPBACK_INTERNAL(efx) ||
1059                 efx_mdio_phyxgxs_lane_sync(efx));
1060}
1061
1062static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1063{
1064        unsigned int max_frame_len;
1065        efx_oword_t reg;
1066        bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1067        bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1068
1069        /* Configure MAC  - cut-thru mode is hard wired on */
1070        EFX_POPULATE_OWORD_3(reg,
1071                             FRF_AB_XM_RX_JUMBO_MODE, 1,
1072                             FRF_AB_XM_TX_STAT_EN, 1,
1073                             FRF_AB_XM_RX_STAT_EN, 1);
1074        efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1075
1076        /* Configure TX */
1077        EFX_POPULATE_OWORD_6(reg,
1078                             FRF_AB_XM_TXEN, 1,
1079                             FRF_AB_XM_TX_PRMBL, 1,
1080                             FRF_AB_XM_AUTO_PAD, 1,
1081                             FRF_AB_XM_TXCRC, 1,
1082                             FRF_AB_XM_FCNTL, tx_fc,
1083                             FRF_AB_XM_IPG, 0x3);
1084        efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1085
1086        /* Configure RX */
1087        EFX_POPULATE_OWORD_5(reg,
1088                             FRF_AB_XM_RXEN, 1,
1089                             FRF_AB_XM_AUTO_DEPAD, 0,
1090                             FRF_AB_XM_ACPT_ALL_MCAST, 1,
1091                             FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1092                             FRF_AB_XM_PASS_CRC_ERR, 1);
1093        efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1094
1095        /* Set frame length */
1096        max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1097        EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1098        efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1099        EFX_POPULATE_OWORD_2(reg,
1100                             FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1101                             FRF_AB_XM_TX_JUMBO_MODE, 1);
1102        efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1103
1104        EFX_POPULATE_OWORD_2(reg,
1105                             FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1106                             FRF_AB_XM_DIS_FCNTL, !rx_fc);
1107        efx_writeo(efx, &reg, FR_AB_XM_FC);
1108
1109        /* Set MAC address */
1110        memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1111        efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1112        memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1113        efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1114}
1115
1116static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1117{
1118        efx_oword_t reg;
1119        bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1120        bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1121        bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1122        bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1123
1124        /* XGXS block is flaky and will need to be reset if moving
1125         * into our out of XGMII, XGXS or XAUI loopbacks. */
1126        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1127        old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1128        old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1129
1130        efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1131        old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1132
1133        /* The PHY driver may have turned XAUI off */
1134        if ((xgxs_loopback != old_xgxs_loopback) ||
1135            (xaui_loopback != old_xaui_loopback) ||
1136            (xgmii_loopback != old_xgmii_loopback))
1137                falcon_reset_xaui(efx);
1138
1139        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1140        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1141                            (xgxs_loopback || xaui_loopback) ?
1142                            FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1143        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1144        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1145        efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1146
1147        efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1148        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1149        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1150        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1151        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1152        efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1153}
1154
1155
1156/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1157static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1158{
1159        bool mac_up = falcon_xmac_link_ok(efx);
1160
1161        if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1162            efx_phy_mode_disabled(efx->phy_mode))
1163                /* XAUI link is expected to be down */
1164                return mac_up;
1165
1166        falcon_stop_nic_stats(efx);
1167
1168        while (!mac_up && tries) {
1169                netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1170                falcon_reset_xaui(efx);
1171                udelay(200);
1172
1173                mac_up = falcon_xmac_link_ok(efx);
1174                --tries;
1175        }
1176
1177        falcon_start_nic_stats(efx);
1178
1179        return mac_up;
1180}
1181
1182static bool falcon_xmac_check_fault(struct efx_nic *efx)
1183{
1184        return !falcon_xmac_link_ok_retry(efx, 5);
1185}
1186
1187static int falcon_reconfigure_xmac(struct efx_nic *efx)
1188{
1189        struct falcon_nic_data *nic_data = efx->nic_data;
1190
1191        efx_farch_filter_sync_rx_mode(efx);
1192
1193        falcon_reconfigure_xgxs_core(efx);
1194        falcon_reconfigure_xmac_core(efx);
1195
1196        falcon_reconfigure_mac_wrapper(efx);
1197
1198        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1199        falcon_ack_status_intr(efx);
1200
1201        return 0;
1202}
1203
1204static void falcon_poll_xmac(struct efx_nic *efx)
1205{
1206        struct falcon_nic_data *nic_data = efx->nic_data;
1207
1208        /* We expect xgmii faults if the wireside link is down */
1209        if (!efx->link_state.up || !nic_data->xmac_poll_required)
1210                return;
1211
1212        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1213        falcon_ack_status_intr(efx);
1214}
1215
1216/**************************************************************************
1217 *
1218 * MAC wrapper
1219 *
1220 **************************************************************************
1221 */
1222
1223static void falcon_push_multicast_hash(struct efx_nic *efx)
1224{
1225        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1226
1227        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1228
1229        efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1230        efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1231}
1232
1233static void falcon_reset_macs(struct efx_nic *efx)
1234{
1235        struct falcon_nic_data *nic_data = efx->nic_data;
1236        efx_oword_t reg, mac_ctrl;
1237        int count;
1238
1239        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1240                /* It's not safe to use GLB_CTL_REG to reset the
1241                 * macs, so instead use the internal MAC resets
1242                 */
1243                EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1244                efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1245
1246                for (count = 0; count < 10000; count++) {
1247                        efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1248                        if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1249                            0)
1250                                return;
1251                        udelay(10);
1252                }
1253
1254                netif_err(efx, hw, efx->net_dev,
1255                          "timed out waiting for XMAC core reset\n");
1256        }
1257
1258        /* Mac stats will fail whist the TX fifo is draining */
1259        WARN_ON(nic_data->stats_disable_count == 0);
1260
1261        efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1262        EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1263        efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1264
1265        efx_reado(efx, &reg, FR_AB_GLB_CTL);
1266        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1267        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1268        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1269        efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1270
1271        count = 0;
1272        while (1) {
1273                efx_reado(efx, &reg, FR_AB_GLB_CTL);
1274                if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1275                    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1276                    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1277                        netif_dbg(efx, hw, efx->net_dev,
1278                                  "Completed MAC reset after %d loops\n",
1279                                  count);
1280                        break;
1281                }
1282                if (count > 20) {
1283                        netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1284                        break;
1285                }
1286                count++;
1287                udelay(10);
1288        }
1289
1290        /* Ensure the correct MAC is selected before statistics
1291         * are re-enabled by the caller */
1292        efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1293
1294        falcon_setup_xaui(efx);
1295}
1296
1297static void falcon_drain_tx_fifo(struct efx_nic *efx)
1298{
1299        efx_oword_t reg;
1300
1301        if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1302            (efx->loopback_mode != LOOPBACK_NONE))
1303                return;
1304
1305        efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1306        /* There is no point in draining more than once */
1307        if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1308                return;
1309
1310        falcon_reset_macs(efx);
1311}
1312
1313static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1314{
1315        efx_oword_t reg;
1316
1317        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1318                return;
1319
1320        /* Isolate the MAC -> RX */
1321        efx_reado(efx, &reg, FR_AZ_RX_CFG);
1322        EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1323        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1324
1325        /* Isolate TX -> MAC */
1326        falcon_drain_tx_fifo(efx);
1327}
1328
1329static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1330{
1331        struct efx_link_state *link_state = &efx->link_state;
1332        efx_oword_t reg;
1333        int link_speed, isolate;
1334
1335        isolate = !!ACCESS_ONCE(efx->reset_pending);
1336
1337        switch (link_state->speed) {
1338        case 10000: link_speed = 3; break;
1339        case 1000:  link_speed = 2; break;
1340        case 100:   link_speed = 1; break;
1341        default:    link_speed = 0; break;
1342        }
1343        /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1344         * as advertised.  Disable to ensure packets are not
1345         * indefinitely held and TX queue can be flushed at any point
1346         * while the link is down. */
1347        EFX_POPULATE_OWORD_5(reg,
1348                             FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1349                             FRF_AB_MAC_BCAD_ACPT, 1,
1350                             FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1351                             FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1352                             FRF_AB_MAC_SPEED, link_speed);
1353        /* On B0, MAC backpressure can be disabled and packets get
1354         * discarded. */
1355        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1356                EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1357                                    !link_state->up || isolate);
1358        }
1359
1360        efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1361
1362        /* Restore the multicast hash registers. */
1363        falcon_push_multicast_hash(efx);
1364
1365        efx_reado(efx, &reg, FR_AZ_RX_CFG);
1366        /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1367         * initialisation but it may read back as 0) */
1368        EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1369        /* Unisolate the MAC -> RX */
1370        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1371                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1372        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1373}
1374
1375static void falcon_stats_request(struct efx_nic *efx)
1376{
1377        struct falcon_nic_data *nic_data = efx->nic_data;
1378        efx_oword_t reg;
1379
1380        WARN_ON(nic_data->stats_pending);
1381        WARN_ON(nic_data->stats_disable_count);
1382
1383        FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1384        nic_data->stats_pending = true;
1385        wmb(); /* ensure done flag is clear */
1386
1387        /* Initiate DMA transfer of stats */
1388        EFX_POPULATE_OWORD_2(reg,
1389                             FRF_AB_MAC_STAT_DMA_CMD, 1,
1390                             FRF_AB_MAC_STAT_DMA_ADR,
1391                             efx->stats_buffer.dma_addr);
1392        efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1393
1394        mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1395}
1396
1397static void falcon_stats_complete(struct efx_nic *efx)
1398{
1399        struct falcon_nic_data *nic_data = efx->nic_data;
1400
1401        if (!nic_data->stats_pending)
1402                return;
1403
1404        nic_data->stats_pending = false;
1405        if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1406                rmb(); /* read the done flag before the stats */
1407                efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1408                                     falcon_stat_mask, nic_data->stats,
1409                                     efx->stats_buffer.addr, true);
1410        } else {
1411                netif_err(efx, hw, efx->net_dev,
1412                          "timed out waiting for statistics\n");
1413        }
1414}
1415
1416static void falcon_stats_timer_func(unsigned long context)
1417{
1418        struct efx_nic *efx = (struct efx_nic *)context;
1419        struct falcon_nic_data *nic_data = efx->nic_data;
1420
1421        spin_lock(&efx->stats_lock);
1422
1423        falcon_stats_complete(efx);
1424        if (nic_data->stats_disable_count == 0)
1425                falcon_stats_request(efx);
1426
1427        spin_unlock(&efx->stats_lock);
1428}
1429
1430static bool falcon_loopback_link_poll(struct efx_nic *efx)
1431{
1432        struct efx_link_state old_state = efx->link_state;
1433
1434        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1435        WARN_ON(!LOOPBACK_INTERNAL(efx));
1436
1437        efx->link_state.fd = true;
1438        efx->link_state.fc = efx->wanted_fc;
1439        efx->link_state.up = true;
1440        efx->link_state.speed = 10000;
1441
1442        return !efx_link_state_equal(&efx->link_state, &old_state);
1443}
1444
1445static int falcon_reconfigure_port(struct efx_nic *efx)
1446{
1447        int rc;
1448
1449        WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1450
1451        /* Poll the PHY link state *before* reconfiguring it. This means we
1452         * will pick up the correct speed (in loopback) to select the correct
1453         * MAC.
1454         */
1455        if (LOOPBACK_INTERNAL(efx))
1456                falcon_loopback_link_poll(efx);
1457        else
1458                efx->phy_op->poll(efx);
1459
1460        falcon_stop_nic_stats(efx);
1461        falcon_deconfigure_mac_wrapper(efx);
1462
1463        falcon_reset_macs(efx);
1464
1465        efx->phy_op->reconfigure(efx);
1466        rc = falcon_reconfigure_xmac(efx);
1467        BUG_ON(rc);
1468
1469        falcon_start_nic_stats(efx);
1470
1471        /* Synchronise efx->link_state with the kernel */
1472        efx_link_status_changed(efx);
1473
1474        return 0;
1475}
1476
1477/* TX flow control may automatically turn itself off if the link
1478 * partner (intermittently) stops responding to pause frames. There
1479 * isn't any indication that this has happened, so the best we do is
1480 * leave it up to the user to spot this and fix it by cycling transmit
1481 * flow control on this end.
1482 */
1483
1484static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1485{
1486        /* Schedule a reset to recover */
1487        efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1488}
1489
1490static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1491{
1492        /* Recover by resetting the EM block */
1493        falcon_stop_nic_stats(efx);
1494        falcon_drain_tx_fifo(efx);
1495        falcon_reconfigure_xmac(efx);
1496        falcon_start_nic_stats(efx);
1497}
1498
1499/**************************************************************************
1500 *
1501 * PHY access via GMII
1502 *
1503 **************************************************************************
1504 */
1505
1506/* Wait for GMII access to complete */
1507static int falcon_gmii_wait(struct efx_nic *efx)
1508{
1509        efx_oword_t md_stat;
1510        int count;
1511
1512        /* wait up to 50ms - taken max from datasheet */
1513        for (count = 0; count < 5000; count++) {
1514                efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1515                if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1516                        if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1517                            EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1518                                netif_err(efx, hw, efx->net_dev,
1519                                          "error from GMII access "
1520                                          EFX_OWORD_FMT"\n",
1521                                          EFX_OWORD_VAL(md_stat));
1522                                return -EIO;
1523                        }
1524                        return 0;
1525                }
1526                udelay(10);
1527        }
1528        netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1529        return -ETIMEDOUT;
1530}
1531
1532/* Write an MDIO register of a PHY connected to Falcon. */
1533static int falcon_mdio_write(struct net_device *net_dev,
1534                             int prtad, int devad, u16 addr, u16 value)
1535{
1536        struct efx_nic *efx = netdev_priv(net_dev);
1537        struct falcon_nic_data *nic_data = efx->nic_data;
1538        efx_oword_t reg;
1539        int rc;
1540
1541        netif_vdbg(efx, hw, efx->net_dev,
1542                   "writing MDIO %d register %d.%d with 0x%04x\n",
1543                    prtad, devad, addr, value);
1544
1545        mutex_lock(&nic_data->mdio_lock);
1546
1547        /* Check MDIO not currently being accessed */
1548        rc = falcon_gmii_wait(efx);
1549        if (rc)
1550                goto out;
1551
1552        /* Write the address/ID register */
1553        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1554        efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1555
1556        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1557                             FRF_AB_MD_DEV_ADR, devad);
1558        efx_writeo(efx, &reg, FR_AB_MD_ID);
1559
1560        /* Write data */
1561        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1562        efx_writeo(efx, &reg, FR_AB_MD_TXD);
1563
1564        EFX_POPULATE_OWORD_2(reg,
1565                             FRF_AB_MD_WRC, 1,
1566                             FRF_AB_MD_GC, 0);
1567        efx_writeo(efx, &reg, FR_AB_MD_CS);
1568
1569        /* Wait for data to be written */
1570        rc = falcon_gmii_wait(efx);
1571        if (rc) {
1572                /* Abort the write operation */
1573                EFX_POPULATE_OWORD_2(reg,
1574                                     FRF_AB_MD_WRC, 0,
1575                                     FRF_AB_MD_GC, 1);
1576                efx_writeo(efx, &reg, FR_AB_MD_CS);
1577                udelay(10);
1578        }
1579
1580out:
1581        mutex_unlock(&nic_data->mdio_lock);
1582        return rc;
1583}
1584
1585/* Read an MDIO register of a PHY connected to Falcon. */
1586static int falcon_mdio_read(struct net_device *net_dev,
1587                            int prtad, int devad, u16 addr)
1588{
1589        struct efx_nic *efx = netdev_priv(net_dev);
1590        struct falcon_nic_data *nic_data = efx->nic_data;
1591        efx_oword_t reg;
1592        int rc;
1593
1594        mutex_lock(&nic_data->mdio_lock);
1595
1596        /* Check MDIO not currently being accessed */
1597        rc = falcon_gmii_wait(efx);
1598        if (rc)
1599                goto out;
1600
1601        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1602        efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1603
1604        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1605                             FRF_AB_MD_DEV_ADR, devad);
1606        efx_writeo(efx, &reg, FR_AB_MD_ID);
1607
1608        /* Request data to be read */
1609        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1610        efx_writeo(efx, &reg, FR_AB_MD_CS);
1611
1612        /* Wait for data to become available */
1613        rc = falcon_gmii_wait(efx);
1614        if (rc == 0) {
1615                efx_reado(efx, &reg, FR_AB_MD_RXD);
1616                rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1617                netif_vdbg(efx, hw, efx->net_dev,
1618                           "read from MDIO %d register %d.%d, got %04x\n",
1619                           prtad, devad, addr, rc);
1620        } else {
1621                /* Abort the read operation */
1622                EFX_POPULATE_OWORD_2(reg,
1623                                     FRF_AB_MD_RIC, 0,
1624                                     FRF_AB_MD_GC, 1);
1625                efx_writeo(efx, &reg, FR_AB_MD_CS);
1626
1627                netif_dbg(efx, hw, efx->net_dev,
1628                          "read from MDIO %d register %d.%d, got error %d\n",
1629                          prtad, devad, addr, rc);
1630        }
1631
1632out:
1633        mutex_unlock(&nic_data->mdio_lock);
1634        return rc;
1635}
1636
1637/* This call is responsible for hooking in the MAC and PHY operations */
1638static int falcon_probe_port(struct efx_nic *efx)
1639{
1640        struct falcon_nic_data *nic_data = efx->nic_data;
1641        int rc;
1642
1643        switch (efx->phy_type) {
1644        case PHY_TYPE_SFX7101:
1645                efx->phy_op = &falcon_sfx7101_phy_ops;
1646                break;
1647        case PHY_TYPE_QT2022C2:
1648        case PHY_TYPE_QT2025C:
1649                efx->phy_op = &falcon_qt202x_phy_ops;
1650                break;
1651        case PHY_TYPE_TXC43128:
1652                efx->phy_op = &falcon_txc_phy_ops;
1653                break;
1654        default:
1655                netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1656                          efx->phy_type);
1657                return -ENODEV;
1658        }
1659
1660        /* Fill out MDIO structure and loopback modes */
1661        mutex_init(&nic_data->mdio_lock);
1662        efx->mdio.mdio_read = falcon_mdio_read;
1663        efx->mdio.mdio_write = falcon_mdio_write;
1664        rc = efx->phy_op->probe(efx);
1665        if (rc != 0)
1666                return rc;
1667
1668        /* Initial assumption */
1669        efx->link_state.speed = 10000;
1670        efx->link_state.fd = true;
1671
1672        /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1673        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1674                efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1675        else
1676                efx->wanted_fc = EFX_FC_RX;
1677        if (efx->mdio.mmds & MDIO_DEVS_AN)
1678                efx->wanted_fc |= EFX_FC_AUTO;
1679
1680        /* Allocate buffer for stats */
1681        rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1682                                  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1683        if (rc)
1684                return rc;
1685        netif_dbg(efx, probe, efx->net_dev,
1686                  "stats buffer at %llx (virt %p phys %llx)\n",
1687                  (u64)efx->stats_buffer.dma_addr,
1688                  efx->stats_buffer.addr,
1689                  (u64)virt_to_phys(efx->stats_buffer.addr));
1690
1691        return 0;
1692}
1693
1694static void falcon_remove_port(struct efx_nic *efx)
1695{
1696        efx->phy_op->remove(efx);
1697        efx_nic_free_buffer(efx, &efx->stats_buffer);
1698}
1699
1700/* Global events are basically PHY events */
1701static bool
1702falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1703{
1704        struct efx_nic *efx = channel->efx;
1705        struct falcon_nic_data *nic_data = efx->nic_data;
1706
1707        if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1708            EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1709            EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1710                /* Ignored */
1711                return true;
1712
1713        if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1714            EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1715                nic_data->xmac_poll_required = true;
1716                return true;
1717        }
1718
1719        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1720            EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1721            EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1722                netif_err(efx, rx_err, efx->net_dev,
1723                          "channel %d seen global RX_RESET event. Resetting.\n",
1724                          channel->channel);
1725
1726                atomic_inc(&efx->rx_reset);
1727                efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1728                                   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1729                return true;
1730        }
1731
1732        return false;
1733}
1734
1735/**************************************************************************
1736 *
1737 * Falcon test code
1738 *
1739 **************************************************************************/
1740
1741static int
1742falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1743{
1744        struct falcon_nic_data *nic_data = efx->nic_data;
1745        struct falcon_nvconfig *nvconfig;
1746        struct falcon_spi_device *spi;
1747        void *region;
1748        int rc, magic_num, struct_ver;
1749        __le16 *word, *limit;
1750        u32 csum;
1751
1752        if (falcon_spi_present(&nic_data->spi_flash))
1753                spi = &nic_data->spi_flash;
1754        else if (falcon_spi_present(&nic_data->spi_eeprom))
1755                spi = &nic_data->spi_eeprom;
1756        else
1757                return -EINVAL;
1758
1759        region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1760        if (!region)
1761                return -ENOMEM;
1762        nvconfig = region + FALCON_NVCONFIG_OFFSET;
1763
1764        mutex_lock(&nic_data->spi_lock);
1765        rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1766        mutex_unlock(&nic_data->spi_lock);
1767        if (rc) {
1768                netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1769                          falcon_spi_present(&nic_data->spi_flash) ?
1770                          "flash" : "EEPROM");
1771                rc = -EIO;
1772                goto out;
1773        }
1774
1775        magic_num = le16_to_cpu(nvconfig->board_magic_num);
1776        struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1777
1778        rc = -EINVAL;
1779        if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1780                netif_err(efx, hw, efx->net_dev,
1781                          "NVRAM bad magic 0x%x\n", magic_num);
1782                goto out;
1783        }
1784        if (struct_ver < 2) {
1785                netif_err(efx, hw, efx->net_dev,
1786                          "NVRAM has ancient version 0x%x\n", struct_ver);
1787                goto out;
1788        } else if (struct_ver < 4) {
1789                word = &nvconfig->board_magic_num;
1790                limit = (__le16 *) (nvconfig + 1);
1791        } else {
1792                word = region;
1793                limit = region + FALCON_NVCONFIG_END;
1794        }
1795        for (csum = 0; word < limit; ++word)
1796                csum += le16_to_cpu(*word);
1797
1798        if (~csum & 0xffff) {
1799                netif_err(efx, hw, efx->net_dev,
1800                          "NVRAM has incorrect checksum\n");
1801                goto out;
1802        }
1803
1804        rc = 0;
1805        if (nvconfig_out)
1806                memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1807
1808 out:
1809        kfree(region);
1810        return rc;
1811}
1812
1813static int falcon_test_nvram(struct efx_nic *efx)
1814{
1815        return falcon_read_nvram(efx, NULL);
1816}
1817
1818static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1819        { FR_AZ_ADR_REGION,
1820          EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1821        { FR_AZ_RX_CFG,
1822          EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1823        { FR_AZ_TX_CFG,
1824          EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1825        { FR_AZ_TX_RESERVED,
1826          EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1827        { FR_AB_MAC_CTRL,
1828          EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1829        { FR_AZ_SRM_TX_DC_CFG,
1830          EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1831        { FR_AZ_RX_DC_CFG,
1832          EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1833        { FR_AZ_RX_DC_PF_WM,
1834          EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1835        { FR_BZ_DP_CTRL,
1836          EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1837        { FR_AB_GM_CFG2,
1838          EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1839        { FR_AB_GMF_CFG0,
1840          EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1841        { FR_AB_XM_GLB_CFG,
1842          EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1843        { FR_AB_XM_TX_CFG,
1844          EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1845        { FR_AB_XM_RX_CFG,
1846          EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1847        { FR_AB_XM_RX_PARAM,
1848          EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1849        { FR_AB_XM_FC,
1850          EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1851        { FR_AB_XM_ADR_LO,
1852          EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1853        { FR_AB_XX_SD_CTL,
1854          EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1855};
1856
1857static int
1858falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1859{
1860        enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1861        int rc, rc2;
1862
1863        mutex_lock(&efx->mac_lock);
1864        if (efx->loopback_modes) {
1865                /* We need the 312 clock from the PHY to test the XMAC
1866                 * registers, so move into XGMII loopback if available */
1867                if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1868                        efx->loopback_mode = LOOPBACK_XGMII;
1869                else
1870                        efx->loopback_mode = __ffs(efx->loopback_modes);
1871        }
1872        __efx_reconfigure_port(efx);
1873        mutex_unlock(&efx->mac_lock);
1874
1875        efx_reset_down(efx, reset_method);
1876
1877        tests->registers =
1878                efx_farch_test_registers(efx, falcon_b0_register_tests,
1879                                         ARRAY_SIZE(falcon_b0_register_tests))
1880                ? -1 : 1;
1881
1882        rc = falcon_reset_hw(efx, reset_method);
1883        rc2 = efx_reset_up(efx, reset_method, rc == 0);
1884        return rc ? rc : rc2;
1885}
1886
1887/**************************************************************************
1888 *
1889 * Device reset
1890 *
1891 **************************************************************************
1892 */
1893
1894static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1895{
1896        switch (reason) {
1897        case RESET_TYPE_RX_RECOVERY:
1898        case RESET_TYPE_DMA_ERROR:
1899        case RESET_TYPE_TX_SKIP:
1900                /* These can occasionally occur due to hardware bugs.
1901                 * We try to reset without disrupting the link.
1902                 */
1903                return RESET_TYPE_INVISIBLE;
1904        default:
1905                return RESET_TYPE_ALL;
1906        }
1907}
1908
1909static int falcon_map_reset_flags(u32 *flags)
1910{
1911        enum {
1912                FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1913                                          ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1914                FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1915                FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1916        };
1917
1918        if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1919                *flags &= ~FALCON_RESET_WORLD;
1920                return RESET_TYPE_WORLD;
1921        }
1922
1923        if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1924                *flags &= ~FALCON_RESET_ALL;
1925                return RESET_TYPE_ALL;
1926        }
1927
1928        if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1929                *flags &= ~FALCON_RESET_INVISIBLE;
1930                return RESET_TYPE_INVISIBLE;
1931        }
1932
1933        return -EINVAL;
1934}
1935
1936/* Resets NIC to known state.  This routine must be called in process
1937 * context and is allowed to sleep. */
1938static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1939{
1940        struct falcon_nic_data *nic_data = efx->nic_data;
1941        efx_oword_t glb_ctl_reg_ker;
1942        int rc;
1943
1944        netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1945                  RESET_TYPE(method));
1946
1947        /* Initiate device reset */
1948        if (method == RESET_TYPE_WORLD) {
1949                rc = pci_save_state(efx->pci_dev);
1950                if (rc) {
1951                        netif_err(efx, drv, efx->net_dev,
1952                                  "failed to backup PCI state of primary "
1953                                  "function prior to hardware reset\n");
1954                        goto fail1;
1955                }
1956                if (efx_nic_is_dual_func(efx)) {
1957                        rc = pci_save_state(nic_data->pci_dev2);
1958                        if (rc) {
1959                                netif_err(efx, drv, efx->net_dev,
1960                                          "failed to backup PCI state of "
1961                                          "secondary function prior to "
1962                                          "hardware reset\n");
1963                                goto fail2;
1964                        }
1965                }
1966
1967                EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1968                                     FRF_AB_EXT_PHY_RST_DUR,
1969                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
1970                                     FRF_AB_SWRST, 1);
1971        } else {
1972                EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1973                                     /* exclude PHY from "invisible" reset */
1974                                     FRF_AB_EXT_PHY_RST_CTL,
1975                                     method == RESET_TYPE_INVISIBLE,
1976                                     /* exclude EEPROM/flash and PCIe */
1977                                     FRF_AB_PCIE_CORE_RST_CTL, 1,
1978                                     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1979                                     FRF_AB_PCIE_SD_RST_CTL, 1,
1980                                     FRF_AB_EE_RST_CTL, 1,
1981                                     FRF_AB_EXT_PHY_RST_DUR,
1982                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
1983                                     FRF_AB_SWRST, 1);
1984        }
1985        efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1986
1987        netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1988        schedule_timeout_uninterruptible(HZ / 20);
1989
1990        /* Restore PCI configuration if needed */
1991        if (method == RESET_TYPE_WORLD) {
1992                if (efx_nic_is_dual_func(efx))
1993                        pci_restore_state(nic_data->pci_dev2);
1994                pci_restore_state(efx->pci_dev);
1995                netif_dbg(efx, drv, efx->net_dev,
1996                          "successfully restored PCI config\n");
1997        }
1998
1999        /* Assert that reset complete */
2000        efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2001        if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2002                rc = -ETIMEDOUT;
2003                netif_err(efx, hw, efx->net_dev,
2004                          "timed out waiting for hardware reset\n");
2005                goto fail3;
2006        }
2007        netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2008
2009        return 0;
2010
2011        /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2012fail2:
2013        pci_restore_state(efx->pci_dev);
2014fail1:
2015fail3:
2016        return rc;
2017}
2018
2019static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2020{
2021        struct falcon_nic_data *nic_data = efx->nic_data;
2022        int rc;
2023
2024        mutex_lock(&nic_data->spi_lock);
2025        rc = __falcon_reset_hw(efx, method);
2026        mutex_unlock(&nic_data->spi_lock);
2027
2028        return rc;
2029}
2030
2031static void falcon_monitor(struct efx_nic *efx)
2032{
2033        bool link_changed;
2034        int rc;
2035
2036        BUG_ON(!mutex_is_locked(&efx->mac_lock));
2037
2038        rc = falcon_board(efx)->type->monitor(efx);
2039        if (rc) {
2040                netif_err(efx, hw, efx->net_dev,
2041                          "Board sensor %s; shutting down PHY\n",
2042                          (rc == -ERANGE) ? "reported fault" : "failed");
2043                efx->phy_mode |= PHY_MODE_LOW_POWER;
2044                rc = __efx_reconfigure_port(efx);
2045                WARN_ON(rc);
2046        }
2047
2048        if (LOOPBACK_INTERNAL(efx))
2049                link_changed = falcon_loopback_link_poll(efx);
2050        else
2051                link_changed = efx->phy_op->poll(efx);
2052
2053        if (link_changed) {
2054                falcon_stop_nic_stats(efx);
2055                falcon_deconfigure_mac_wrapper(efx);
2056
2057                falcon_reset_macs(efx);
2058                rc = falcon_reconfigure_xmac(efx);
2059                BUG_ON(rc);
2060
2061                falcon_start_nic_stats(efx);
2062
2063                efx_link_status_changed(efx);
2064        }
2065
2066        falcon_poll_xmac(efx);
2067}
2068
2069/* Zeroes out the SRAM contents.  This routine must be called in
2070 * process context and is allowed to sleep.
2071 */
2072static int falcon_reset_sram(struct efx_nic *efx)
2073{
2074        efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2075        int count;
2076
2077        /* Set the SRAM wake/sleep GPIO appropriately. */
2078        efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2079        EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2080        EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2081        efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2082
2083        /* Initiate SRAM reset */
2084        EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2085                             FRF_AZ_SRM_INIT_EN, 1,
2086                             FRF_AZ_SRM_NB_SZ, 0);
2087        efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2088
2089        /* Wait for SRAM reset to complete */
2090        count = 0;
2091        do {
2092                netif_dbg(efx, hw, efx->net_dev,
2093                          "waiting for SRAM reset (attempt %d)...\n", count);
2094
2095                /* SRAM reset is slow; expect around 16ms */
2096                schedule_timeout_uninterruptible(HZ / 50);
2097
2098                /* Check for reset complete */
2099                efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2100                if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2101                        netif_dbg(efx, hw, efx->net_dev,
2102                                  "SRAM reset complete\n");
2103
2104                        return 0;
2105                }
2106        } while (++count < 20); /* wait up to 0.4 sec */
2107
2108        netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2109        return -ETIMEDOUT;
2110}
2111
2112static void falcon_spi_device_init(struct efx_nic *efx,
2113                                  struct falcon_spi_device *spi_device,
2114                                  unsigned int device_id, u32 device_type)
2115{
2116        if (device_type != 0) {
2117                spi_device->device_id = device_id;
2118                spi_device->size =
2119                        1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2120                spi_device->addr_len =
2121                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2122                spi_device->munge_address = (spi_device->size == 1 << 9 &&
2123                                             spi_device->addr_len == 1);
2124                spi_device->erase_command =
2125                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2126                spi_device->erase_size =
2127                        1 << SPI_DEV_TYPE_FIELD(device_type,
2128                                                SPI_DEV_TYPE_ERASE_SIZE);
2129                spi_device->block_size =
2130                        1 << SPI_DEV_TYPE_FIELD(device_type,
2131                                                SPI_DEV_TYPE_BLOCK_SIZE);
2132        } else {
2133                spi_device->size = 0;
2134        }
2135}
2136
2137/* Extract non-volatile configuration */
2138static int falcon_probe_nvconfig(struct efx_nic *efx)
2139{
2140        struct falcon_nic_data *nic_data = efx->nic_data;
2141        struct falcon_nvconfig *nvconfig;
2142        int rc;
2143
2144        nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2145        if (!nvconfig)
2146                return -ENOMEM;
2147
2148        rc = falcon_read_nvram(efx, nvconfig);
2149        if (rc)
2150                goto out;
2151
2152        efx->phy_type = nvconfig->board_v2.port0_phy_type;
2153        efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2154
2155        if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2156                falcon_spi_device_init(
2157                        efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2158                        le32_to_cpu(nvconfig->board_v3
2159                                    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2160                falcon_spi_device_init(
2161                        efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2162                        le32_to_cpu(nvconfig->board_v3
2163                                    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2164        }
2165
2166        /* Read the MAC addresses */
2167        memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
2168
2169        netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2170                  efx->phy_type, efx->mdio.prtad);
2171
2172        rc = falcon_probe_board(efx,
2173                                le16_to_cpu(nvconfig->board_v2.board_revision));
2174out:
2175        kfree(nvconfig);
2176        return rc;
2177}
2178
2179static int falcon_dimension_resources(struct efx_nic *efx)
2180{
2181        efx->rx_dc_base = 0x20000;
2182        efx->tx_dc_base = 0x26000;
2183        return 0;
2184}
2185
2186/* Probe all SPI devices on the NIC */
2187static void falcon_probe_spi_devices(struct efx_nic *efx)
2188{
2189        struct falcon_nic_data *nic_data = efx->nic_data;
2190        efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2191        int boot_dev;
2192
2193        efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2194        efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2195        efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2196
2197        if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2198                boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2199                            FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2200                netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2201                          boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2202                          "flash" : "EEPROM");
2203        } else {
2204                /* Disable VPD and set clock dividers to safe
2205                 * values for initial programming. */
2206                boot_dev = -1;
2207                netif_dbg(efx, probe, efx->net_dev,
2208                          "Booted from internal ASIC settings;"
2209                          " setting SPI config\n");
2210                EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2211                                     /* 125 MHz / 7 ~= 20 MHz */
2212                                     FRF_AB_EE_SF_CLOCK_DIV, 7,
2213                                     /* 125 MHz / 63 ~= 2 MHz */
2214                                     FRF_AB_EE_EE_CLOCK_DIV, 63);
2215                efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2216        }
2217
2218        mutex_init(&nic_data->spi_lock);
2219
2220        if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2221                falcon_spi_device_init(efx, &nic_data->spi_flash,
2222                                       FFE_AB_SPI_DEVICE_FLASH,
2223                                       default_flash_type);
2224        if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2225                falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2226                                       FFE_AB_SPI_DEVICE_EEPROM,
2227                                       large_eeprom_type);
2228}
2229
2230static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2231{
2232        return 0x20000;
2233}
2234
2235static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2236{
2237        /* Map everything up to and including the RSS indirection table.
2238         * The PCI core takes care of mapping the MSI-X tables.
2239         */
2240        return FR_BZ_RX_INDIRECTION_TBL +
2241                FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2242}
2243
2244static int falcon_probe_nic(struct efx_nic *efx)
2245{
2246        struct falcon_nic_data *nic_data;
2247        struct falcon_board *board;
2248        int rc;
2249
2250        /* Allocate storage for hardware specific data */
2251        nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2252        if (!nic_data)
2253                return -ENOMEM;
2254        efx->nic_data = nic_data;
2255
2256        rc = -ENODEV;
2257
2258        if (efx_farch_fpga_ver(efx) != 0) {
2259                netif_err(efx, probe, efx->net_dev,
2260                          "Falcon FPGA not supported\n");
2261                goto fail1;
2262        }
2263
2264        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2265                efx_oword_t nic_stat;
2266                struct pci_dev *dev;
2267                u8 pci_rev = efx->pci_dev->revision;
2268
2269                if ((pci_rev == 0xff) || (pci_rev == 0)) {
2270                        netif_err(efx, probe, efx->net_dev,
2271                                  "Falcon rev A0 not supported\n");
2272                        goto fail1;
2273                }
2274                efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2275                if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2276                        netif_err(efx, probe, efx->net_dev,
2277                                  "Falcon rev A1 1G not supported\n");
2278                        goto fail1;
2279                }
2280                if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2281                        netif_err(efx, probe, efx->net_dev,
2282                                  "Falcon rev A1 PCI-X not supported\n");
2283                        goto fail1;
2284                }
2285
2286                dev = pci_dev_get(efx->pci_dev);
2287                while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2288                                             PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2289                                             dev))) {
2290                        if (dev->bus == efx->pci_dev->bus &&
2291                            dev->devfn == efx->pci_dev->devfn + 1) {
2292                                nic_data->pci_dev2 = dev;
2293                                break;
2294                        }
2295                }
2296                if (!nic_data->pci_dev2) {
2297                        netif_err(efx, probe, efx->net_dev,
2298                                  "failed to find secondary function\n");
2299                        rc = -ENODEV;
2300                        goto fail2;
2301                }
2302        }
2303
2304        /* Now we can reset the NIC */
2305        rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2306        if (rc) {
2307                netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2308                goto fail3;
2309        }
2310
2311        /* Allocate memory for INT_KER */
2312        rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2313                                  GFP_KERNEL);
2314        if (rc)
2315                goto fail4;
2316        BUG_ON(efx->irq_status.dma_addr & 0x0f);
2317
2318        netif_dbg(efx, probe, efx->net_dev,
2319                  "INT_KER at %llx (virt %p phys %llx)\n",
2320                  (u64)efx->irq_status.dma_addr,
2321                  efx->irq_status.addr,
2322                  (u64)virt_to_phys(efx->irq_status.addr));
2323
2324        falcon_probe_spi_devices(efx);
2325
2326        /* Read in the non-volatile configuration */
2327        rc = falcon_probe_nvconfig(efx);
2328        if (rc) {
2329                if (rc == -EINVAL)
2330                        netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2331                goto fail5;
2332        }
2333
2334        efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2335                             EFX_MAX_CHANNELS);
2336        efx->timer_quantum_ns = 4968; /* 621 cycles */
2337
2338        /* Initialise I2C adapter */
2339        board = falcon_board(efx);
2340        board->i2c_adap.owner = THIS_MODULE;
2341        board->i2c_data = falcon_i2c_bit_operations;
2342        board->i2c_data.data = efx;
2343        board->i2c_adap.algo_data = &board->i2c_data;
2344        board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2345        strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2346                sizeof(board->i2c_adap.name));
2347        rc = i2c_bit_add_bus(&board->i2c_adap);
2348        if (rc)
2349                goto fail5;
2350
2351        rc = falcon_board(efx)->type->init(efx);
2352        if (rc) {
2353                netif_err(efx, probe, efx->net_dev,
2354                          "failed to initialise board\n");
2355                goto fail6;
2356        }
2357
2358        nic_data->stats_disable_count = 1;
2359        setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2360                    (unsigned long)efx);
2361
2362        return 0;
2363
2364 fail6:
2365        i2c_del_adapter(&board->i2c_adap);
2366        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2367 fail5:
2368        efx_nic_free_buffer(efx, &efx->irq_status);
2369 fail4:
2370 fail3:
2371        if (nic_data->pci_dev2) {
2372                pci_dev_put(nic_data->pci_dev2);
2373                nic_data->pci_dev2 = NULL;
2374        }
2375 fail2:
2376 fail1:
2377        kfree(efx->nic_data);
2378        return rc;
2379}
2380
2381static void falcon_init_rx_cfg(struct efx_nic *efx)
2382{
2383        /* RX control FIFO thresholds (32 entries) */
2384        const unsigned ctrl_xon_thr = 20;
2385        const unsigned ctrl_xoff_thr = 25;
2386        efx_oword_t reg;
2387
2388        efx_reado(efx, &reg, FR_AZ_RX_CFG);
2389        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2390                /* Data FIFO size is 5.5K.  The RX DMA engine only
2391                 * supports scattering for user-mode queues, but will
2392                 * split DMA writes at intervals of RX_USR_BUF_SIZE
2393                 * (32-byte units) even for kernel-mode queues.  We
2394                 * set it to be so large that that never happens.
2395                 */
2396                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2397                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2398                                    (3 * 4096) >> 5);
2399                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2400                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2401                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2402                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2403        } else {
2404                /* Data FIFO size is 80K; register fields moved */
2405                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2406                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2407                                    EFX_RX_USR_BUF_SIZE >> 5);
2408                /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2409                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2410                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2411                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2412                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2413                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2414
2415                /* Enable hash insertion. This is broken for the
2416                 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2417                 * IPv4 hashes. */
2418                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2419                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2420                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2421        }
2422        /* Always enable XOFF signal from RX FIFO.  We enable
2423         * or disable transmission of pause frames at the MAC. */
2424        EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2425        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2426}
2427
2428/* This call performs hardware-specific global initialisation, such as
2429 * defining the descriptor cache sizes and number of RSS channels.
2430 * It does not set up any buffers, descriptor rings or event queues.
2431 */
2432static int falcon_init_nic(struct efx_nic *efx)
2433{
2434        efx_oword_t temp;
2435        int rc;
2436
2437        /* Use on-chip SRAM */
2438        efx_reado(efx, &temp, FR_AB_NIC_STAT);
2439        EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2440        efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2441
2442        rc = falcon_reset_sram(efx);
2443        if (rc)
2444                return rc;
2445
2446        /* Clear the parity enables on the TX data fifos as
2447         * they produce false parity errors because of timing issues
2448         */
2449        if (EFX_WORKAROUND_5129(efx)) {
2450                efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2451                EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2452                efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2453        }
2454
2455        if (EFX_WORKAROUND_7244(efx)) {
2456                efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2457                EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2458                EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2459                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2460                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2461                efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2462        }
2463
2464        /* XXX This is documented only for Falcon A0/A1 */
2465        /* Setup RX.  Wait for descriptor is broken and must
2466         * be disabled.  RXDP recovery shouldn't be needed, but is.
2467         */
2468        efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2469        EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2470        EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2471        if (EFX_WORKAROUND_5583(efx))
2472                EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2473        efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2474
2475        /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2476         * descriptors (which is bad).
2477         */
2478        efx_reado(efx, &temp, FR_AZ_TX_CFG);
2479        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2480        efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2481
2482        falcon_init_rx_cfg(efx);
2483
2484        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2485                /* Set hash key for IPv4 */
2486                memcpy(&temp, efx->rx_hash_key, sizeof(temp));
2487                efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
2488
2489                /* Set destination of both TX and RX Flush events */
2490                EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2491                efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2492        }
2493
2494        efx_farch_init_common(efx);
2495
2496        return 0;
2497}
2498
2499static void falcon_remove_nic(struct efx_nic *efx)
2500{
2501        struct falcon_nic_data *nic_data = efx->nic_data;
2502        struct falcon_board *board = falcon_board(efx);
2503
2504        board->type->fini(efx);
2505
2506        /* Remove I2C adapter and clear it in preparation for a retry */
2507        i2c_del_adapter(&board->i2c_adap);
2508        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2509
2510        efx_nic_free_buffer(efx, &efx->irq_status);
2511
2512        __falcon_reset_hw(efx, RESET_TYPE_ALL);
2513
2514        /* Release the second function after the reset */
2515        if (nic_data->pci_dev2) {
2516                pci_dev_put(nic_data->pci_dev2);
2517                nic_data->pci_dev2 = NULL;
2518        }
2519
2520        /* Tear down the private nic state */
2521        kfree(efx->nic_data);
2522        efx->nic_data = NULL;
2523}
2524
2525static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2526{
2527        return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2528                                      falcon_stat_mask, names);
2529}
2530
2531static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2532                                      struct rtnl_link_stats64 *core_stats)
2533{
2534        struct falcon_nic_data *nic_data = efx->nic_data;
2535        u64 *stats = nic_data->stats;
2536        efx_oword_t cnt;
2537
2538        if (!nic_data->stats_disable_count) {
2539                efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2540                stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2541                        EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2542
2543                if (nic_data->stats_pending &&
2544                    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2545                        nic_data->stats_pending = false;
2546                        rmb(); /* read the done flag before the stats */
2547                        efx_nic_update_stats(
2548                                falcon_stat_desc, FALCON_STAT_COUNT,
2549                                falcon_stat_mask,
2550                                stats, efx->stats_buffer.addr, true);
2551                }
2552
2553                /* Update derived statistic */
2554                efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2555                                     stats[FALCON_STAT_rx_bytes] -
2556                                     stats[FALCON_STAT_rx_good_bytes] -
2557                                     stats[FALCON_STAT_rx_control] * 64);
2558        }
2559
2560        if (full_stats)
2561                memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2562
2563        if (core_stats) {
2564                core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2565                core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2566                core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2567                core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2568                core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt];
2569                core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2570                core_stats->rx_length_errors =
2571                        stats[FALCON_STAT_rx_gtjumbo] +
2572                        stats[FALCON_STAT_rx_length_error];
2573                core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2574                core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2575                core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2576
2577                core_stats->rx_errors = (core_stats->rx_length_errors +
2578                                         core_stats->rx_crc_errors +
2579                                         core_stats->rx_frame_errors +
2580                                         stats[FALCON_STAT_rx_symbol_error]);
2581        }
2582
2583        return FALCON_STAT_COUNT;
2584}
2585
2586void falcon_start_nic_stats(struct efx_nic *efx)
2587{
2588        struct falcon_nic_data *nic_data = efx->nic_data;
2589
2590        spin_lock_bh(&efx->stats_lock);
2591        if (--nic_data->stats_disable_count == 0)
2592                falcon_stats_request(efx);
2593        spin_unlock_bh(&efx->stats_lock);
2594}
2595
2596void falcon_stop_nic_stats(struct efx_nic *efx)
2597{
2598        struct falcon_nic_data *nic_data = efx->nic_data;
2599        int i;
2600
2601        might_sleep();
2602
2603        spin_lock_bh(&efx->stats_lock);
2604        ++nic_data->stats_disable_count;
2605        spin_unlock_bh(&efx->stats_lock);
2606
2607        del_timer_sync(&nic_data->stats_timer);
2608
2609        /* Wait enough time for the most recent transfer to
2610         * complete. */
2611        for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2612                if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2613                        break;
2614                msleep(1);
2615        }
2616
2617        spin_lock_bh(&efx->stats_lock);
2618        falcon_stats_complete(efx);
2619        spin_unlock_bh(&efx->stats_lock);
2620}
2621
2622static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2623{
2624        falcon_board(efx)->type->set_id_led(efx, mode);
2625}
2626
2627/**************************************************************************
2628 *
2629 * Wake on LAN
2630 *
2631 **************************************************************************
2632 */
2633
2634static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2635{
2636        wol->supported = 0;
2637        wol->wolopts = 0;
2638        memset(&wol->sopass, 0, sizeof(wol->sopass));
2639}
2640
2641static int falcon_set_wol(struct efx_nic *efx, u32 type)
2642{
2643        if (type != 0)
2644                return -EINVAL;
2645        return 0;
2646}
2647
2648/**************************************************************************
2649 *
2650 * Revision-dependent attributes used by efx.c and nic.c
2651 *
2652 **************************************************************************
2653 */
2654
2655const struct efx_nic_type falcon_a1_nic_type = {
2656        .mem_map_size = falcon_a1_mem_map_size,
2657        .probe = falcon_probe_nic,
2658        .remove = falcon_remove_nic,
2659        .init = falcon_init_nic,
2660        .dimension_resources = falcon_dimension_resources,
2661        .fini = falcon_irq_ack_a1,
2662        .monitor = falcon_monitor,
2663        .map_reset_reason = falcon_map_reset_reason,
2664        .map_reset_flags = falcon_map_reset_flags,
2665        .reset = falcon_reset_hw,
2666        .probe_port = falcon_probe_port,
2667        .remove_port = falcon_remove_port,
2668        .handle_global_event = falcon_handle_global_event,
2669        .fini_dmaq = efx_farch_fini_dmaq,
2670        .prepare_flush = falcon_prepare_flush,
2671        .finish_flush = efx_port_dummy_op_void,
2672        .describe_stats = falcon_describe_nic_stats,
2673        .update_stats = falcon_update_nic_stats,
2674        .start_stats = falcon_start_nic_stats,
2675        .stop_stats = falcon_stop_nic_stats,
2676        .set_id_led = falcon_set_id_led,
2677        .push_irq_moderation = falcon_push_irq_moderation,
2678        .reconfigure_port = falcon_reconfigure_port,
2679        .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2680        .reconfigure_mac = falcon_reconfigure_xmac,
2681        .check_mac_fault = falcon_xmac_check_fault,
2682        .get_wol = falcon_get_wol,
2683        .set_wol = falcon_set_wol,
2684        .resume_wol = efx_port_dummy_op_void,
2685        .test_nvram = falcon_test_nvram,
2686        .irq_enable_master = efx_farch_irq_enable_master,
2687        .irq_test_generate = efx_farch_irq_test_generate,
2688        .irq_disable_non_ev = efx_farch_irq_disable_master,
2689        .irq_handle_msi = efx_farch_msi_interrupt,
2690        .irq_handle_legacy = falcon_legacy_interrupt_a1,
2691        .tx_probe = efx_farch_tx_probe,
2692        .tx_init = efx_farch_tx_init,
2693        .tx_remove = efx_farch_tx_remove,
2694        .tx_write = efx_farch_tx_write,
2695        .rx_push_indir_table = efx_farch_rx_push_indir_table,
2696        .rx_probe = efx_farch_rx_probe,
2697        .rx_init = efx_farch_rx_init,
2698        .rx_remove = efx_farch_rx_remove,
2699        .rx_write = efx_farch_rx_write,
2700        .rx_defer_refill = efx_farch_rx_defer_refill,
2701        .ev_probe = efx_farch_ev_probe,
2702        .ev_init = efx_farch_ev_init,
2703        .ev_fini = efx_farch_ev_fini,
2704        .ev_remove = efx_farch_ev_remove,
2705        .ev_process = efx_farch_ev_process,
2706        .ev_read_ack = efx_farch_ev_read_ack,
2707        .ev_test_generate = efx_farch_ev_test_generate,
2708
2709        /* We don't expose the filter table on Falcon A1 as it is not
2710         * mapped into function 0, but these implementations still
2711         * work with a degenerate case of all tables set to size 0.
2712         */
2713        .filter_table_probe = efx_farch_filter_table_probe,
2714        .filter_table_restore = efx_farch_filter_table_restore,
2715        .filter_table_remove = efx_farch_filter_table_remove,
2716        .filter_insert = efx_farch_filter_insert,
2717        .filter_remove_safe = efx_farch_filter_remove_safe,
2718        .filter_get_safe = efx_farch_filter_get_safe,
2719        .filter_clear_rx = efx_farch_filter_clear_rx,
2720        .filter_count_rx_used = efx_farch_filter_count_rx_used,
2721        .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2722        .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2723
2724#ifdef CONFIG_SFC_MTD
2725        .mtd_probe = falcon_mtd_probe,
2726        .mtd_rename = falcon_mtd_rename,
2727        .mtd_read = falcon_mtd_read,
2728        .mtd_erase = falcon_mtd_erase,
2729        .mtd_write = falcon_mtd_write,
2730        .mtd_sync = falcon_mtd_sync,
2731#endif
2732
2733        .revision = EFX_REV_FALCON_A1,
2734        .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2735        .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2736        .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2737        .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2738        .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2739        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2740        .rx_buffer_padding = 0x24,
2741        .can_rx_scatter = false,
2742        .max_interrupt_mode = EFX_INT_MODE_MSI,
2743        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2744        .offload_features = NETIF_F_IP_CSUM,
2745        .mcdi_max_ver = -1,
2746};
2747
2748const struct efx_nic_type falcon_b0_nic_type = {
2749        .mem_map_size = falcon_b0_mem_map_size,
2750        .probe = falcon_probe_nic,
2751        .remove = falcon_remove_nic,
2752        .init = falcon_init_nic,
2753        .dimension_resources = falcon_dimension_resources,
2754        .fini = efx_port_dummy_op_void,
2755        .monitor = falcon_monitor,
2756        .map_reset_reason = falcon_map_reset_reason,
2757        .map_reset_flags = falcon_map_reset_flags,
2758        .reset = falcon_reset_hw,
2759        .probe_port = falcon_probe_port,
2760        .remove_port = falcon_remove_port,
2761        .handle_global_event = falcon_handle_global_event,
2762        .fini_dmaq = efx_farch_fini_dmaq,
2763        .prepare_flush = falcon_prepare_flush,
2764        .finish_flush = efx_port_dummy_op_void,
2765        .describe_stats = falcon_describe_nic_stats,
2766        .update_stats = falcon_update_nic_stats,
2767        .start_stats = falcon_start_nic_stats,
2768        .stop_stats = falcon_stop_nic_stats,
2769        .set_id_led = falcon_set_id_led,
2770        .push_irq_moderation = falcon_push_irq_moderation,
2771        .reconfigure_port = falcon_reconfigure_port,
2772        .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2773        .reconfigure_mac = falcon_reconfigure_xmac,
2774        .check_mac_fault = falcon_xmac_check_fault,
2775        .get_wol = falcon_get_wol,
2776        .set_wol = falcon_set_wol,
2777        .resume_wol = efx_port_dummy_op_void,
2778        .test_chip = falcon_b0_test_chip,
2779        .test_nvram = falcon_test_nvram,
2780        .irq_enable_master = efx_farch_irq_enable_master,
2781        .irq_test_generate = efx_farch_irq_test_generate,
2782        .irq_disable_non_ev = efx_farch_irq_disable_master,
2783        .irq_handle_msi = efx_farch_msi_interrupt,
2784        .irq_handle_legacy = efx_farch_legacy_interrupt,
2785        .tx_probe = efx_farch_tx_probe,
2786        .tx_init = efx_farch_tx_init,
2787        .tx_remove = efx_farch_tx_remove,
2788        .tx_write = efx_farch_tx_write,
2789        .rx_push_indir_table = efx_farch_rx_push_indir_table,
2790        .rx_probe = efx_farch_rx_probe,
2791        .rx_init = efx_farch_rx_init,
2792        .rx_remove = efx_farch_rx_remove,
2793        .rx_write = efx_farch_rx_write,
2794        .rx_defer_refill = efx_farch_rx_defer_refill,
2795        .ev_probe = efx_farch_ev_probe,
2796        .ev_init = efx_farch_ev_init,
2797        .ev_fini = efx_farch_ev_fini,
2798        .ev_remove = efx_farch_ev_remove,
2799        .ev_process = efx_farch_ev_process,
2800        .ev_read_ack = efx_farch_ev_read_ack,
2801        .ev_test_generate = efx_farch_ev_test_generate,
2802        .filter_table_probe = efx_farch_filter_table_probe,
2803        .filter_table_restore = efx_farch_filter_table_restore,
2804        .filter_table_remove = efx_farch_filter_table_remove,
2805        .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2806        .filter_insert = efx_farch_filter_insert,
2807        .filter_remove_safe = efx_farch_filter_remove_safe,
2808        .filter_get_safe = efx_farch_filter_get_safe,
2809        .filter_clear_rx = efx_farch_filter_clear_rx,
2810        .filter_count_rx_used = efx_farch_filter_count_rx_used,
2811        .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2812        .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2813#ifdef CONFIG_RFS_ACCEL
2814        .filter_rfs_insert = efx_farch_filter_rfs_insert,
2815        .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2816#endif
2817#ifdef CONFIG_SFC_MTD
2818        .mtd_probe = falcon_mtd_probe,
2819        .mtd_rename = falcon_mtd_rename,
2820        .mtd_read = falcon_mtd_read,
2821        .mtd_erase = falcon_mtd_erase,
2822        .mtd_write = falcon_mtd_write,
2823        .mtd_sync = falcon_mtd_sync,
2824#endif
2825
2826        .revision = EFX_REV_FALCON_B0,
2827        .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2828        .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2829        .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2830        .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2831        .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2832        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2833        .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2834        .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2835        .rx_buffer_padding = 0,
2836        .can_rx_scatter = true,
2837        .max_interrupt_mode = EFX_INT_MODE_MSIX,
2838        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2839        .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2840        .mcdi_max_ver = -1,
2841        .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2842};
2843
2844