linux/drivers/net/ethernet/sfc/farch.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/crc32.h>
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "io.h"
  24#include "workarounds.h"
  25
  26/* Falcon-architecture (SFC4000 and SFC9000-family) support */
  27
  28/**************************************************************************
  29 *
  30 * Configurable values
  31 *
  32 **************************************************************************
  33 */
  34
  35/* This is set to 16 for a good reason.  In summary, if larger than
  36 * 16, the descriptor cache holds more than a default socket
  37 * buffer's worth of packets (for UDP we can only have at most one
  38 * socket buffer's worth outstanding).  This combined with the fact
  39 * that we only get 1 TX event per descriptor cache means the NIC
  40 * goes idle.
  41 */
  42#define TX_DC_ENTRIES 16
  43#define TX_DC_ENTRIES_ORDER 1
  44
  45#define RX_DC_ENTRIES 64
  46#define RX_DC_ENTRIES_ORDER 3
  47
  48/* If EFX_MAX_INT_ERRORS internal errors occur within
  49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  50 * disable it.
  51 */
  52#define EFX_INT_ERROR_EXPIRE 3600
  53#define EFX_MAX_INT_ERRORS 5
  54
  55/* Depth of RX flush request fifo */
  56#define EFX_RX_FLUSH_COUNT 4
  57
  58/* Driver generated events */
  59#define _EFX_CHANNEL_MAGIC_TEST         0x000101
  60#define _EFX_CHANNEL_MAGIC_FILL         0x000102
  61#define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
  62#define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
  63
  64#define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
  65#define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
  66
  67#define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
  68        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  69#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
  70        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
  71                           efx_rx_queue_index(_rx_queue))
  72#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
  73        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
  74                           efx_rx_queue_index(_rx_queue))
  75#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
  76        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
  77                           (_tx_queue)->queue)
  78
  79static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  80
  81/**************************************************************************
  82 *
  83 * Hardware access
  84 *
  85 **************************************************************************/
  86
  87static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  88                                     unsigned int index)
  89{
  90        efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  91                        value, index);
  92}
  93
  94static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  95                                     const efx_oword_t *mask)
  96{
  97        return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  98                ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  99}
 100
 101int efx_farch_test_registers(struct efx_nic *efx,
 102                             const struct efx_farch_register_test *regs,
 103                             size_t n_regs)
 104{
 105        unsigned address = 0, i, j;
 106        efx_oword_t mask, imask, original, reg, buf;
 107
 108        for (i = 0; i < n_regs; ++i) {
 109                address = regs[i].address;
 110                mask = imask = regs[i].mask;
 111                EFX_INVERT_OWORD(imask);
 112
 113                efx_reado(efx, &original, address);
 114
 115                /* bit sweep on and off */
 116                for (j = 0; j < 128; j++) {
 117                        if (!EFX_EXTRACT_OWORD32(mask, j, j))
 118                                continue;
 119
 120                        /* Test this testable bit can be set in isolation */
 121                        EFX_AND_OWORD(reg, original, mask);
 122                        EFX_SET_OWORD32(reg, j, j, 1);
 123
 124                        efx_writeo(efx, &reg, address);
 125                        efx_reado(efx, &buf, address);
 126
 127                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 128                                goto fail;
 129
 130                        /* Test this testable bit can be cleared in isolation */
 131                        EFX_OR_OWORD(reg, original, mask);
 132                        EFX_SET_OWORD32(reg, j, j, 0);
 133
 134                        efx_writeo(efx, &reg, address);
 135                        efx_reado(efx, &buf, address);
 136
 137                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 138                                goto fail;
 139                }
 140
 141                efx_writeo(efx, &original, address);
 142        }
 143
 144        return 0;
 145
 146fail:
 147        netif_err(efx, hw, efx->net_dev,
 148                  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 149                  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 150                  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 151        return -EIO;
 152}
 153
 154/**************************************************************************
 155 *
 156 * Special buffer handling
 157 * Special buffers are used for event queues and the TX and RX
 158 * descriptor rings.
 159 *
 160 *************************************************************************/
 161
 162/*
 163 * Initialise a special buffer
 164 *
 165 * This will define a buffer (previously allocated via
 166 * efx_alloc_special_buffer()) in the buffer table, allowing
 167 * it to be used for event queues, descriptor rings etc.
 168 */
 169static void
 170efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 171{
 172        efx_qword_t buf_desc;
 173        unsigned int index;
 174        dma_addr_t dma_addr;
 175        int i;
 176
 177        EFX_BUG_ON_PARANOID(!buffer->buf.addr);
 178
 179        /* Write buffer descriptors to NIC */
 180        for (i = 0; i < buffer->entries; i++) {
 181                index = buffer->index + i;
 182                dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 183                netif_dbg(efx, probe, efx->net_dev,
 184                          "mapping special buffer %d at %llx\n",
 185                          index, (unsigned long long)dma_addr);
 186                EFX_POPULATE_QWORD_3(buf_desc,
 187                                     FRF_AZ_BUF_ADR_REGION, 0,
 188                                     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 189                                     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 190                efx_write_buf_tbl(efx, &buf_desc, index);
 191        }
 192}
 193
 194/* Unmaps a buffer and clears the buffer table entries */
 195static void
 196efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 197{
 198        efx_oword_t buf_tbl_upd;
 199        unsigned int start = buffer->index;
 200        unsigned int end = (buffer->index + buffer->entries - 1);
 201
 202        if (!buffer->entries)
 203                return;
 204
 205        netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 206                  buffer->index, buffer->index + buffer->entries - 1);
 207
 208        EFX_POPULATE_OWORD_4(buf_tbl_upd,
 209                             FRF_AZ_BUF_UPD_CMD, 0,
 210                             FRF_AZ_BUF_CLR_CMD, 1,
 211                             FRF_AZ_BUF_CLR_END_ID, end,
 212                             FRF_AZ_BUF_CLR_START_ID, start);
 213        efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 214}
 215
 216/*
 217 * Allocate a new special buffer
 218 *
 219 * This allocates memory for a new buffer, clears it and allocates a
 220 * new buffer ID range.  It does not write into the buffer table.
 221 *
 222 * This call will allocate 4KB buffers, since 8KB buffers can't be
 223 * used for event queues and descriptor rings.
 224 */
 225static int efx_alloc_special_buffer(struct efx_nic *efx,
 226                                    struct efx_special_buffer *buffer,
 227                                    unsigned int len)
 228{
 229        len = ALIGN(len, EFX_BUF_SIZE);
 230
 231        if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 232                return -ENOMEM;
 233        buffer->entries = len / EFX_BUF_SIZE;
 234        BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 235
 236        /* Select new buffer ID */
 237        buffer->index = efx->next_buffer_table;
 238        efx->next_buffer_table += buffer->entries;
 239#ifdef CONFIG_SFC_SRIOV
 240        BUG_ON(efx_sriov_enabled(efx) &&
 241               efx->vf_buftbl_base < efx->next_buffer_table);
 242#endif
 243
 244        netif_dbg(efx, probe, efx->net_dev,
 245                  "allocating special buffers %d-%d at %llx+%x "
 246                  "(virt %p phys %llx)\n", buffer->index,
 247                  buffer->index + buffer->entries - 1,
 248                  (u64)buffer->buf.dma_addr, len,
 249                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 250
 251        return 0;
 252}
 253
 254static void
 255efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 256{
 257        if (!buffer->buf.addr)
 258                return;
 259
 260        netif_dbg(efx, hw, efx->net_dev,
 261                  "deallocating special buffers %d-%d at %llx+%x "
 262                  "(virt %p phys %llx)\n", buffer->index,
 263                  buffer->index + buffer->entries - 1,
 264                  (u64)buffer->buf.dma_addr, buffer->buf.len,
 265                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 266
 267        efx_nic_free_buffer(efx, &buffer->buf);
 268        buffer->entries = 0;
 269}
 270
 271/**************************************************************************
 272 *
 273 * TX path
 274 *
 275 **************************************************************************/
 276
 277/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 278static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 279{
 280        unsigned write_ptr;
 281        efx_dword_t reg;
 282
 283        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 284        EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 285        efx_writed_page(tx_queue->efx, &reg,
 286                        FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 287}
 288
 289/* Write pointer and first descriptor for TX descriptor ring */
 290static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 291                                          const efx_qword_t *txd)
 292{
 293        unsigned write_ptr;
 294        efx_oword_t reg;
 295
 296        BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 297        BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 298
 299        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 300        EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 301                             FRF_AZ_TX_DESC_WPTR, write_ptr);
 302        reg.qword[0] = *txd;
 303        efx_writeo_page(tx_queue->efx, &reg,
 304                        FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 305}
 306
 307
 308/* For each entry inserted into the software descriptor ring, create a
 309 * descriptor in the hardware TX descriptor ring (in host memory), and
 310 * write a doorbell.
 311 */
 312void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 313{
 314
 315        struct efx_tx_buffer *buffer;
 316        efx_qword_t *txd;
 317        unsigned write_ptr;
 318        unsigned old_write_count = tx_queue->write_count;
 319
 320        BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 321
 322        do {
 323                write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 324                buffer = &tx_queue->buffer[write_ptr];
 325                txd = efx_tx_desc(tx_queue, write_ptr);
 326                ++tx_queue->write_count;
 327
 328                EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 329
 330                /* Create TX descriptor ring entry */
 331                BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 332                EFX_POPULATE_QWORD_4(*txd,
 333                                     FSF_AZ_TX_KER_CONT,
 334                                     buffer->flags & EFX_TX_BUF_CONT,
 335                                     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 336                                     FSF_AZ_TX_KER_BUF_REGION, 0,
 337                                     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 338        } while (tx_queue->write_count != tx_queue->insert_count);
 339
 340        wmb(); /* Ensure descriptors are written before they are fetched */
 341
 342        if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 343                txd = efx_tx_desc(tx_queue,
 344                                  old_write_count & tx_queue->ptr_mask);
 345                efx_farch_push_tx_desc(tx_queue, txd);
 346                ++tx_queue->pushes;
 347        } else {
 348                efx_farch_notify_tx_desc(tx_queue);
 349        }
 350}
 351
 352/* Allocate hardware resources for a TX queue */
 353int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 354{
 355        struct efx_nic *efx = tx_queue->efx;
 356        unsigned entries;
 357
 358        entries = tx_queue->ptr_mask + 1;
 359        return efx_alloc_special_buffer(efx, &tx_queue->txd,
 360                                        entries * sizeof(efx_qword_t));
 361}
 362
 363void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 364{
 365        struct efx_nic *efx = tx_queue->efx;
 366        efx_oword_t reg;
 367
 368        /* Pin TX descriptor ring */
 369        efx_init_special_buffer(efx, &tx_queue->txd);
 370
 371        /* Push TX descriptor ring to card */
 372        EFX_POPULATE_OWORD_10(reg,
 373                              FRF_AZ_TX_DESCQ_EN, 1,
 374                              FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 375                              FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 376                              FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 377                              FRF_AZ_TX_DESCQ_EVQ_ID,
 378                              tx_queue->channel->channel,
 379                              FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 380                              FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 381                              FRF_AZ_TX_DESCQ_SIZE,
 382                              __ffs(tx_queue->txd.entries),
 383                              FRF_AZ_TX_DESCQ_TYPE, 0,
 384                              FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 385
 386        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 387                int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 388                EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 389                EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 390                                    !csum);
 391        }
 392
 393        efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 394                         tx_queue->queue);
 395
 396        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 397                /* Only 128 bits in this register */
 398                BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
 399
 400                efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 401                if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 402                        __clear_bit_le(tx_queue->queue, &reg);
 403                else
 404                        __set_bit_le(tx_queue->queue, &reg);
 405                efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 406        }
 407
 408        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 409                EFX_POPULATE_OWORD_1(reg,
 410                                     FRF_BZ_TX_PACE,
 411                                     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 412                                     FFE_BZ_TX_PACE_OFF :
 413                                     FFE_BZ_TX_PACE_RESERVED);
 414                efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 415                                 tx_queue->queue);
 416        }
 417}
 418
 419static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 420{
 421        struct efx_nic *efx = tx_queue->efx;
 422        efx_oword_t tx_flush_descq;
 423
 424        WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 425        atomic_set(&tx_queue->flush_outstanding, 1);
 426
 427        EFX_POPULATE_OWORD_2(tx_flush_descq,
 428                             FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 429                             FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 430        efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 431}
 432
 433void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 434{
 435        struct efx_nic *efx = tx_queue->efx;
 436        efx_oword_t tx_desc_ptr;
 437
 438        /* Remove TX descriptor ring from card */
 439        EFX_ZERO_OWORD(tx_desc_ptr);
 440        efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 441                         tx_queue->queue);
 442
 443        /* Unpin TX descriptor ring */
 444        efx_fini_special_buffer(efx, &tx_queue->txd);
 445}
 446
 447/* Free buffers backing TX queue */
 448void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 449{
 450        efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 451}
 452
 453/**************************************************************************
 454 *
 455 * RX path
 456 *
 457 **************************************************************************/
 458
 459/* This creates an entry in the RX descriptor queue */
 460static inline void
 461efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 462{
 463        struct efx_rx_buffer *rx_buf;
 464        efx_qword_t *rxd;
 465
 466        rxd = efx_rx_desc(rx_queue, index);
 467        rx_buf = efx_rx_buffer(rx_queue, index);
 468        EFX_POPULATE_QWORD_3(*rxd,
 469                             FSF_AZ_RX_KER_BUF_SIZE,
 470                             rx_buf->len -
 471                             rx_queue->efx->type->rx_buffer_padding,
 472                             FSF_AZ_RX_KER_BUF_REGION, 0,
 473                             FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 474}
 475
 476/* This writes to the RX_DESC_WPTR register for the specified receive
 477 * descriptor ring.
 478 */
 479void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 480{
 481        struct efx_nic *efx = rx_queue->efx;
 482        efx_dword_t reg;
 483        unsigned write_ptr;
 484
 485        while (rx_queue->notified_count != rx_queue->added_count) {
 486                efx_farch_build_rx_desc(
 487                        rx_queue,
 488                        rx_queue->notified_count & rx_queue->ptr_mask);
 489                ++rx_queue->notified_count;
 490        }
 491
 492        wmb();
 493        write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 494        EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 495        efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 496                        efx_rx_queue_index(rx_queue));
 497}
 498
 499int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 500{
 501        struct efx_nic *efx = rx_queue->efx;
 502        unsigned entries;
 503
 504        entries = rx_queue->ptr_mask + 1;
 505        return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 506                                        entries * sizeof(efx_qword_t));
 507}
 508
 509void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 510{
 511        efx_oword_t rx_desc_ptr;
 512        struct efx_nic *efx = rx_queue->efx;
 513        bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
 514        bool iscsi_digest_en = is_b0;
 515        bool jumbo_en;
 516
 517        /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
 518         * DMA to continue after a PCIe page boundary (and scattering
 519         * is not possible).  In Falcon B0 and Siena, it enables
 520         * scatter.
 521         */
 522        jumbo_en = !is_b0 || efx->rx_scatter;
 523
 524        netif_dbg(efx, hw, efx->net_dev,
 525                  "RX queue %d ring in special buffers %d-%d\n",
 526                  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 527                  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 528
 529        rx_queue->scatter_n = 0;
 530
 531        /* Pin RX descriptor ring */
 532        efx_init_special_buffer(efx, &rx_queue->rxd);
 533
 534        /* Push RX descriptor ring to card */
 535        EFX_POPULATE_OWORD_10(rx_desc_ptr,
 536                              FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 537                              FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 538                              FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 539                              FRF_AZ_RX_DESCQ_EVQ_ID,
 540                              efx_rx_queue_channel(rx_queue)->channel,
 541                              FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 542                              FRF_AZ_RX_DESCQ_LABEL,
 543                              efx_rx_queue_index(rx_queue),
 544                              FRF_AZ_RX_DESCQ_SIZE,
 545                              __ffs(rx_queue->rxd.entries),
 546                              FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 547                              FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 548                              FRF_AZ_RX_DESCQ_EN, 1);
 549        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 550                         efx_rx_queue_index(rx_queue));
 551}
 552
 553static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 554{
 555        struct efx_nic *efx = rx_queue->efx;
 556        efx_oword_t rx_flush_descq;
 557
 558        EFX_POPULATE_OWORD_2(rx_flush_descq,
 559                             FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 560                             FRF_AZ_RX_FLUSH_DESCQ,
 561                             efx_rx_queue_index(rx_queue));
 562        efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 563}
 564
 565void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 566{
 567        efx_oword_t rx_desc_ptr;
 568        struct efx_nic *efx = rx_queue->efx;
 569
 570        /* Remove RX descriptor ring from card */
 571        EFX_ZERO_OWORD(rx_desc_ptr);
 572        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 573                         efx_rx_queue_index(rx_queue));
 574
 575        /* Unpin RX descriptor ring */
 576        efx_fini_special_buffer(efx, &rx_queue->rxd);
 577}
 578
 579/* Free buffers backing RX queue */
 580void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 581{
 582        efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 583}
 584
 585/**************************************************************************
 586 *
 587 * Flush handling
 588 *
 589 **************************************************************************/
 590
 591/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 592 * or more RX flushes can be kicked off.
 593 */
 594static bool efx_farch_flush_wake(struct efx_nic *efx)
 595{
 596        /* Ensure that all updates are visible to efx_farch_flush_queues() */
 597        smp_mb();
 598
 599        return (atomic_read(&efx->active_queues) == 0 ||
 600                (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 601                 && atomic_read(&efx->rxq_flush_pending) > 0));
 602}
 603
 604static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 605{
 606        bool i = true;
 607        efx_oword_t txd_ptr_tbl;
 608        struct efx_channel *channel;
 609        struct efx_tx_queue *tx_queue;
 610
 611        efx_for_each_channel(channel, efx) {
 612                efx_for_each_channel_tx_queue(tx_queue, channel) {
 613                        efx_reado_table(efx, &txd_ptr_tbl,
 614                                        FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 615                        if (EFX_OWORD_FIELD(txd_ptr_tbl,
 616                                            FRF_AZ_TX_DESCQ_FLUSH) ||
 617                            EFX_OWORD_FIELD(txd_ptr_tbl,
 618                                            FRF_AZ_TX_DESCQ_EN)) {
 619                                netif_dbg(efx, hw, efx->net_dev,
 620                                          "flush did not complete on TXQ %d\n",
 621                                          tx_queue->queue);
 622                                i = false;
 623                        } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 624                                                  1, 0)) {
 625                                /* The flush is complete, but we didn't
 626                                 * receive a flush completion event
 627                                 */
 628                                netif_dbg(efx, hw, efx->net_dev,
 629                                          "flush complete on TXQ %d, so drain "
 630                                          "the queue\n", tx_queue->queue);
 631                                /* Don't need to increment active_queues as it
 632                                 * has already been incremented for the queues
 633                                 * which did not drain
 634                                 */
 635                                efx_farch_magic_event(channel,
 636                                                      EFX_CHANNEL_MAGIC_TX_DRAIN(
 637                                                              tx_queue));
 638                        }
 639                }
 640        }
 641
 642        return i;
 643}
 644
 645/* Flush all the transmit queues, and continue flushing receive queues until
 646 * they're all flushed. Wait for the DRAIN events to be recieved so that there
 647 * are no more RX and TX events left on any channel. */
 648static int efx_farch_do_flush(struct efx_nic *efx)
 649{
 650        unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 651        struct efx_channel *channel;
 652        struct efx_rx_queue *rx_queue;
 653        struct efx_tx_queue *tx_queue;
 654        int rc = 0;
 655
 656        efx_for_each_channel(channel, efx) {
 657                efx_for_each_channel_tx_queue(tx_queue, channel) {
 658                        efx_farch_flush_tx_queue(tx_queue);
 659                }
 660                efx_for_each_channel_rx_queue(rx_queue, channel) {
 661                        rx_queue->flush_pending = true;
 662                        atomic_inc(&efx->rxq_flush_pending);
 663                }
 664        }
 665
 666        while (timeout && atomic_read(&efx->active_queues) > 0) {
 667                /* If SRIOV is enabled, then offload receive queue flushing to
 668                 * the firmware (though we will still have to poll for
 669                 * completion). If that fails, fall back to the old scheme.
 670                 */
 671                if (efx_sriov_enabled(efx)) {
 672                        rc = efx_mcdi_flush_rxqs(efx);
 673                        if (!rc)
 674                                goto wait;
 675                }
 676
 677                /* The hardware supports four concurrent rx flushes, each of
 678                 * which may need to be retried if there is an outstanding
 679                 * descriptor fetch
 680                 */
 681                efx_for_each_channel(channel, efx) {
 682                        efx_for_each_channel_rx_queue(rx_queue, channel) {
 683                                if (atomic_read(&efx->rxq_flush_outstanding) >=
 684                                    EFX_RX_FLUSH_COUNT)
 685                                        break;
 686
 687                                if (rx_queue->flush_pending) {
 688                                        rx_queue->flush_pending = false;
 689                                        atomic_dec(&efx->rxq_flush_pending);
 690                                        atomic_inc(&efx->rxq_flush_outstanding);
 691                                        efx_farch_flush_rx_queue(rx_queue);
 692                                }
 693                        }
 694                }
 695
 696        wait:
 697                timeout = wait_event_timeout(efx->flush_wq,
 698                                             efx_farch_flush_wake(efx),
 699                                             timeout);
 700        }
 701
 702        if (atomic_read(&efx->active_queues) &&
 703            !efx_check_tx_flush_complete(efx)) {
 704                netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 705                          "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 706                          atomic_read(&efx->rxq_flush_outstanding),
 707                          atomic_read(&efx->rxq_flush_pending));
 708                rc = -ETIMEDOUT;
 709
 710                atomic_set(&efx->active_queues, 0);
 711                atomic_set(&efx->rxq_flush_pending, 0);
 712                atomic_set(&efx->rxq_flush_outstanding, 0);
 713        }
 714
 715        return rc;
 716}
 717
 718int efx_farch_fini_dmaq(struct efx_nic *efx)
 719{
 720        struct efx_channel *channel;
 721        struct efx_tx_queue *tx_queue;
 722        struct efx_rx_queue *rx_queue;
 723        int rc = 0;
 724
 725        /* Do not attempt to write to the NIC during EEH recovery */
 726        if (efx->state != STATE_RECOVERY) {
 727                /* Only perform flush if DMA is enabled */
 728                if (efx->pci_dev->is_busmaster) {
 729                        efx->type->prepare_flush(efx);
 730                        rc = efx_farch_do_flush(efx);
 731                        efx->type->finish_flush(efx);
 732                }
 733
 734                efx_for_each_channel(channel, efx) {
 735                        efx_for_each_channel_rx_queue(rx_queue, channel)
 736                                efx_farch_rx_fini(rx_queue);
 737                        efx_for_each_channel_tx_queue(tx_queue, channel)
 738                                efx_farch_tx_fini(tx_queue);
 739                }
 740        }
 741
 742        return rc;
 743}
 744
 745/**************************************************************************
 746 *
 747 * Event queue processing
 748 * Event queues are processed by per-channel tasklets.
 749 *
 750 **************************************************************************/
 751
 752/* Update a channel's event queue's read pointer (RPTR) register
 753 *
 754 * This writes the EVQ_RPTR_REG register for the specified channel's
 755 * event queue.
 756 */
 757void efx_farch_ev_read_ack(struct efx_channel *channel)
 758{
 759        efx_dword_t reg;
 760        struct efx_nic *efx = channel->efx;
 761
 762        EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 763                             channel->eventq_read_ptr & channel->eventq_mask);
 764
 765        /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 766         * of 4 bytes, but it is really 16 bytes just like later revisions.
 767         */
 768        efx_writed(efx, &reg,
 769                   efx->type->evq_rptr_tbl_base +
 770                   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 771}
 772
 773/* Use HW to insert a SW defined event */
 774void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 775                              efx_qword_t *event)
 776{
 777        efx_oword_t drv_ev_reg;
 778
 779        BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 780                     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 781        drv_ev_reg.u32[0] = event->u32[0];
 782        drv_ev_reg.u32[1] = event->u32[1];
 783        drv_ev_reg.u32[2] = 0;
 784        drv_ev_reg.u32[3] = 0;
 785        EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 786        efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 787}
 788
 789static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 790{
 791        efx_qword_t event;
 792
 793        EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 794                             FSE_AZ_EV_CODE_DRV_GEN_EV,
 795                             FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 796        efx_farch_generate_event(channel->efx, channel->channel, &event);
 797}
 798
 799/* Handle a transmit completion event
 800 *
 801 * The NIC batches TX completion events; the message we receive is of
 802 * the form "complete all TX events up to this index".
 803 */
 804static int
 805efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 806{
 807        unsigned int tx_ev_desc_ptr;
 808        unsigned int tx_ev_q_label;
 809        struct efx_tx_queue *tx_queue;
 810        struct efx_nic *efx = channel->efx;
 811        int tx_packets = 0;
 812
 813        if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 814                return 0;
 815
 816        if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 817                /* Transmit completion */
 818                tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 819                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 820                tx_queue = efx_channel_get_tx_queue(
 821                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 822                tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 823                              tx_queue->ptr_mask);
 824                efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 825        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 826                /* Rewrite the FIFO write pointer */
 827                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 828                tx_queue = efx_channel_get_tx_queue(
 829                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 830
 831                netif_tx_lock(efx->net_dev);
 832                efx_farch_notify_tx_desc(tx_queue);
 833                netif_tx_unlock(efx->net_dev);
 834        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 835                efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 836        } else {
 837                netif_err(efx, tx_err, efx->net_dev,
 838                          "channel %d unexpected TX event "
 839                          EFX_QWORD_FMT"\n", channel->channel,
 840                          EFX_QWORD_VAL(*event));
 841        }
 842
 843        return tx_packets;
 844}
 845
 846/* Detect errors included in the rx_evt_pkt_ok bit. */
 847static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 848                                      const efx_qword_t *event)
 849{
 850        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 851        struct efx_nic *efx = rx_queue->efx;
 852        bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 853        bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 854        bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 855        bool rx_ev_other_err, rx_ev_pause_frm;
 856        bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 857        unsigned rx_ev_pkt_type;
 858
 859        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 860        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 861        rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 862        rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 863        rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 864                                                 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 865        rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 866                                                  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 867        rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 868                                                   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 869        rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 870        rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 871        rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
 872                          0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 873        rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 874
 875        /* Every error apart from tobe_disc and pause_frm */
 876        rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 877                           rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 878                           rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 879
 880        /* Count errors that are not in MAC stats.  Ignore expected
 881         * checksum errors during self-test. */
 882        if (rx_ev_frm_trunc)
 883                ++channel->n_rx_frm_trunc;
 884        else if (rx_ev_tobe_disc)
 885                ++channel->n_rx_tobe_disc;
 886        else if (!efx->loopback_selftest) {
 887                if (rx_ev_ip_hdr_chksum_err)
 888                        ++channel->n_rx_ip_hdr_chksum_err;
 889                else if (rx_ev_tcp_udp_chksum_err)
 890                        ++channel->n_rx_tcp_udp_chksum_err;
 891        }
 892
 893        /* TOBE_DISC is expected on unicast mismatches; don't print out an
 894         * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 895         * to a FIFO overflow.
 896         */
 897#ifdef DEBUG
 898        if (rx_ev_other_err && net_ratelimit()) {
 899                netif_dbg(efx, rx_err, efx->net_dev,
 900                          " RX queue %d unexpected RX event "
 901                          EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 902                          efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 903                          rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 904                          rx_ev_ip_hdr_chksum_err ?
 905                          " [IP_HDR_CHKSUM_ERR]" : "",
 906                          rx_ev_tcp_udp_chksum_err ?
 907                          " [TCP_UDP_CHKSUM_ERR]" : "",
 908                          rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 909                          rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 910                          rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 911                          rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 912                          rx_ev_pause_frm ? " [PAUSE]" : "");
 913        }
 914#endif
 915
 916        /* The frame must be discarded if any of these are true. */
 917        return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 918                rx_ev_tobe_disc | rx_ev_pause_frm) ?
 919                EFX_RX_PKT_DISCARD : 0;
 920}
 921
 922/* Handle receive events that are not in-order. Return true if this
 923 * can be handled as a partial packet discard, false if it's more
 924 * serious.
 925 */
 926static bool
 927efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 928{
 929        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 930        struct efx_nic *efx = rx_queue->efx;
 931        unsigned expected, dropped;
 932
 933        if (rx_queue->scatter_n &&
 934            index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 935                      rx_queue->ptr_mask)) {
 936                ++channel->n_rx_nodesc_trunc;
 937                return true;
 938        }
 939
 940        expected = rx_queue->removed_count & rx_queue->ptr_mask;
 941        dropped = (index - expected) & rx_queue->ptr_mask;
 942        netif_info(efx, rx_err, efx->net_dev,
 943                   "dropped %d events (index=%d expected=%d)\n",
 944                   dropped, index, expected);
 945
 946        efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 947                           RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 948        return false;
 949}
 950
 951/* Handle a packet received event
 952 *
 953 * The NIC gives a "discard" flag if it's a unicast packet with the
 954 * wrong destination address
 955 * Also "is multicast" and "matches multicast filter" flags can be used to
 956 * discard non-matching multicast packets.
 957 */
 958static void
 959efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 960{
 961        unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 962        unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 963        unsigned expected_ptr;
 964        bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 965        u16 flags;
 966        struct efx_rx_queue *rx_queue;
 967        struct efx_nic *efx = channel->efx;
 968
 969        if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 970                return;
 971
 972        rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 973        rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 974        WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 975                channel->channel);
 976
 977        rx_queue = efx_channel_get_rx_queue(channel);
 978
 979        rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 980        expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 981                        rx_queue->ptr_mask);
 982
 983        /* Check for partial drops and other errors */
 984        if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 985            unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 986                if (rx_ev_desc_ptr != expected_ptr &&
 987                    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
 988                        return;
 989
 990                /* Discard all pending fragments */
 991                if (rx_queue->scatter_n) {
 992                        efx_rx_packet(
 993                                rx_queue,
 994                                rx_queue->removed_count & rx_queue->ptr_mask,
 995                                rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
 996                        rx_queue->removed_count += rx_queue->scatter_n;
 997                        rx_queue->scatter_n = 0;
 998                }
 999
1000                /* Return if there is no new fragment */
1001                if (rx_ev_desc_ptr != expected_ptr)
1002                        return;
1003
1004                /* Discard new fragment if not SOP */
1005                if (!rx_ev_sop) {
1006                        efx_rx_packet(
1007                                rx_queue,
1008                                rx_queue->removed_count & rx_queue->ptr_mask,
1009                                1, 0, EFX_RX_PKT_DISCARD);
1010                        ++rx_queue->removed_count;
1011                        return;
1012                }
1013        }
1014
1015        ++rx_queue->scatter_n;
1016        if (rx_ev_cont)
1017                return;
1018
1019        rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1020        rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1021        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1022
1023        if (likely(rx_ev_pkt_ok)) {
1024                /* If packet is marked as OK then we can rely on the
1025                 * hardware checksum and classification.
1026                 */
1027                flags = 0;
1028                switch (rx_ev_hdr_type) {
1029                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1030                        flags |= EFX_RX_PKT_TCP;
1031                        /* fall through */
1032                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1033                        flags |= EFX_RX_PKT_CSUMMED;
1034                        /* fall through */
1035                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1036                case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1037                        break;
1038                }
1039        } else {
1040                flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1041        }
1042
1043        /* Detect multicast packets that didn't match the filter */
1044        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1045        if (rx_ev_mcast_pkt) {
1046                unsigned int rx_ev_mcast_hash_match =
1047                        EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1048
1049                if (unlikely(!rx_ev_mcast_hash_match)) {
1050                        ++channel->n_rx_mcast_mismatch;
1051                        flags |= EFX_RX_PKT_DISCARD;
1052                }
1053        }
1054
1055        channel->irq_mod_score += 2;
1056
1057        /* Handle received packet */
1058        efx_rx_packet(rx_queue,
1059                      rx_queue->removed_count & rx_queue->ptr_mask,
1060                      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1061        rx_queue->removed_count += rx_queue->scatter_n;
1062        rx_queue->scatter_n = 0;
1063}
1064
1065/* If this flush done event corresponds to a &struct efx_tx_queue, then
1066 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1067 * of all transmit completions.
1068 */
1069static void
1070efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1071{
1072        struct efx_tx_queue *tx_queue;
1073        int qid;
1074
1075        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1076        if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1077                tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1078                                            qid % EFX_TXQ_TYPES);
1079                if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1080                        efx_farch_magic_event(tx_queue->channel,
1081                                              EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1082                }
1083        }
1084}
1085
1086/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1087 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1088 * the RX queue back to the mask of RX queues in need of flushing.
1089 */
1090static void
1091efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1092{
1093        struct efx_channel *channel;
1094        struct efx_rx_queue *rx_queue;
1095        int qid;
1096        bool failed;
1097
1098        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1099        failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1100        if (qid >= efx->n_channels)
1101                return;
1102        channel = efx_get_channel(efx, qid);
1103        if (!efx_channel_has_rx_queue(channel))
1104                return;
1105        rx_queue = efx_channel_get_rx_queue(channel);
1106
1107        if (failed) {
1108                netif_info(efx, hw, efx->net_dev,
1109                           "RXQ %d flush retry\n", qid);
1110                rx_queue->flush_pending = true;
1111                atomic_inc(&efx->rxq_flush_pending);
1112        } else {
1113                efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1114                                      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1115        }
1116        atomic_dec(&efx->rxq_flush_outstanding);
1117        if (efx_farch_flush_wake(efx))
1118                wake_up(&efx->flush_wq);
1119}
1120
1121static void
1122efx_farch_handle_drain_event(struct efx_channel *channel)
1123{
1124        struct efx_nic *efx = channel->efx;
1125
1126        WARN_ON(atomic_read(&efx->active_queues) == 0);
1127        atomic_dec(&efx->active_queues);
1128        if (efx_farch_flush_wake(efx))
1129                wake_up(&efx->flush_wq);
1130}
1131
1132static void efx_farch_handle_generated_event(struct efx_channel *channel,
1133                                             efx_qword_t *event)
1134{
1135        struct efx_nic *efx = channel->efx;
1136        struct efx_rx_queue *rx_queue =
1137                efx_channel_has_rx_queue(channel) ?
1138                efx_channel_get_rx_queue(channel) : NULL;
1139        unsigned magic, code;
1140
1141        magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1142        code = _EFX_CHANNEL_MAGIC_CODE(magic);
1143
1144        if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1145                channel->event_test_cpu = raw_smp_processor_id();
1146        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1147                /* The queue must be empty, so we won't receive any rx
1148                 * events, so efx_process_channel() won't refill the
1149                 * queue. Refill it here */
1150                efx_fast_push_rx_descriptors(rx_queue);
1151        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1152                efx_farch_handle_drain_event(channel);
1153        } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1154                efx_farch_handle_drain_event(channel);
1155        } else {
1156                netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1157                          "generated event "EFX_QWORD_FMT"\n",
1158                          channel->channel, EFX_QWORD_VAL(*event));
1159        }
1160}
1161
1162static void
1163efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1164{
1165        struct efx_nic *efx = channel->efx;
1166        unsigned int ev_sub_code;
1167        unsigned int ev_sub_data;
1168
1169        ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1170        ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1171
1172        switch (ev_sub_code) {
1173        case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1174                netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1175                           channel->channel, ev_sub_data);
1176                efx_farch_handle_tx_flush_done(efx, event);
1177                efx_sriov_tx_flush_done(efx, event);
1178                break;
1179        case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1180                netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1181                           channel->channel, ev_sub_data);
1182                efx_farch_handle_rx_flush_done(efx, event);
1183                efx_sriov_rx_flush_done(efx, event);
1184                break;
1185        case FSE_AZ_EVQ_INIT_DONE_EV:
1186                netif_dbg(efx, hw, efx->net_dev,
1187                          "channel %d EVQ %d initialised\n",
1188                          channel->channel, ev_sub_data);
1189                break;
1190        case FSE_AZ_SRM_UPD_DONE_EV:
1191                netif_vdbg(efx, hw, efx->net_dev,
1192                           "channel %d SRAM update done\n", channel->channel);
1193                break;
1194        case FSE_AZ_WAKE_UP_EV:
1195                netif_vdbg(efx, hw, efx->net_dev,
1196                           "channel %d RXQ %d wakeup event\n",
1197                           channel->channel, ev_sub_data);
1198                break;
1199        case FSE_AZ_TIMER_EV:
1200                netif_vdbg(efx, hw, efx->net_dev,
1201                           "channel %d RX queue %d timer expired\n",
1202                           channel->channel, ev_sub_data);
1203                break;
1204        case FSE_AA_RX_RECOVER_EV:
1205                netif_err(efx, rx_err, efx->net_dev,
1206                          "channel %d seen DRIVER RX_RESET event. "
1207                        "Resetting.\n", channel->channel);
1208                atomic_inc(&efx->rx_reset);
1209                efx_schedule_reset(efx,
1210                                   EFX_WORKAROUND_6555(efx) ?
1211                                   RESET_TYPE_RX_RECOVERY :
1212                                   RESET_TYPE_DISABLE);
1213                break;
1214        case FSE_BZ_RX_DSC_ERROR_EV:
1215                if (ev_sub_data < EFX_VI_BASE) {
1216                        netif_err(efx, rx_err, efx->net_dev,
1217                                  "RX DMA Q %d reports descriptor fetch error."
1218                                  " RX Q %d is disabled.\n", ev_sub_data,
1219                                  ev_sub_data);
1220                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1221                } else
1222                        efx_sriov_desc_fetch_err(efx, ev_sub_data);
1223                break;
1224        case FSE_BZ_TX_DSC_ERROR_EV:
1225                if (ev_sub_data < EFX_VI_BASE) {
1226                        netif_err(efx, tx_err, efx->net_dev,
1227                                  "TX DMA Q %d reports descriptor fetch error."
1228                                  " TX Q %d is disabled.\n", ev_sub_data,
1229                                  ev_sub_data);
1230                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1231                } else
1232                        efx_sriov_desc_fetch_err(efx, ev_sub_data);
1233                break;
1234        default:
1235                netif_vdbg(efx, hw, efx->net_dev,
1236                           "channel %d unknown driver event code %d "
1237                           "data %04x\n", channel->channel, ev_sub_code,
1238                           ev_sub_data);
1239                break;
1240        }
1241}
1242
1243int efx_farch_ev_process(struct efx_channel *channel, int budget)
1244{
1245        struct efx_nic *efx = channel->efx;
1246        unsigned int read_ptr;
1247        efx_qword_t event, *p_event;
1248        int ev_code;
1249        int tx_packets = 0;
1250        int spent = 0;
1251
1252        read_ptr = channel->eventq_read_ptr;
1253
1254        for (;;) {
1255                p_event = efx_event(channel, read_ptr);
1256                event = *p_event;
1257
1258                if (!efx_event_present(&event))
1259                        /* End of events */
1260                        break;
1261
1262                netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1263                           "channel %d event is "EFX_QWORD_FMT"\n",
1264                           channel->channel, EFX_QWORD_VAL(event));
1265
1266                /* Clear this event by marking it all ones */
1267                EFX_SET_QWORD(*p_event);
1268
1269                ++read_ptr;
1270
1271                ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1272
1273                switch (ev_code) {
1274                case FSE_AZ_EV_CODE_RX_EV:
1275                        efx_farch_handle_rx_event(channel, &event);
1276                        if (++spent == budget)
1277                                goto out;
1278                        break;
1279                case FSE_AZ_EV_CODE_TX_EV:
1280                        tx_packets += efx_farch_handle_tx_event(channel,
1281                                                                &event);
1282                        if (tx_packets > efx->txq_entries) {
1283                                spent = budget;
1284                                goto out;
1285                        }
1286                        break;
1287                case FSE_AZ_EV_CODE_DRV_GEN_EV:
1288                        efx_farch_handle_generated_event(channel, &event);
1289                        break;
1290                case FSE_AZ_EV_CODE_DRIVER_EV:
1291                        efx_farch_handle_driver_event(channel, &event);
1292                        break;
1293                case FSE_CZ_EV_CODE_USER_EV:
1294                        efx_sriov_event(channel, &event);
1295                        break;
1296                case FSE_CZ_EV_CODE_MCDI_EV:
1297                        efx_mcdi_process_event(channel, &event);
1298                        break;
1299                case FSE_AZ_EV_CODE_GLOBAL_EV:
1300                        if (efx->type->handle_global_event &&
1301                            efx->type->handle_global_event(channel, &event))
1302                                break;
1303                        /* else fall through */
1304                default:
1305                        netif_err(channel->efx, hw, channel->efx->net_dev,
1306                                  "channel %d unknown event type %d (data "
1307                                  EFX_QWORD_FMT ")\n", channel->channel,
1308                                  ev_code, EFX_QWORD_VAL(event));
1309                }
1310        }
1311
1312out:
1313        channel->eventq_read_ptr = read_ptr;
1314        return spent;
1315}
1316
1317/* Allocate buffer table entries for event queue */
1318int efx_farch_ev_probe(struct efx_channel *channel)
1319{
1320        struct efx_nic *efx = channel->efx;
1321        unsigned entries;
1322
1323        entries = channel->eventq_mask + 1;
1324        return efx_alloc_special_buffer(efx, &channel->eventq,
1325                                        entries * sizeof(efx_qword_t));
1326}
1327
1328int efx_farch_ev_init(struct efx_channel *channel)
1329{
1330        efx_oword_t reg;
1331        struct efx_nic *efx = channel->efx;
1332
1333        netif_dbg(efx, hw, efx->net_dev,
1334                  "channel %d event queue in special buffers %d-%d\n",
1335                  channel->channel, channel->eventq.index,
1336                  channel->eventq.index + channel->eventq.entries - 1);
1337
1338        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1339                EFX_POPULATE_OWORD_3(reg,
1340                                     FRF_CZ_TIMER_Q_EN, 1,
1341                                     FRF_CZ_HOST_NOTIFY_MODE, 0,
1342                                     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1343                efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1344        }
1345
1346        /* Pin event queue buffer */
1347        efx_init_special_buffer(efx, &channel->eventq);
1348
1349        /* Fill event queue with all ones (i.e. empty events) */
1350        memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1351
1352        /* Push event queue to card */
1353        EFX_POPULATE_OWORD_3(reg,
1354                             FRF_AZ_EVQ_EN, 1,
1355                             FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1356                             FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1357        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1358                         channel->channel);
1359
1360        return 0;
1361}
1362
1363void efx_farch_ev_fini(struct efx_channel *channel)
1364{
1365        efx_oword_t reg;
1366        struct efx_nic *efx = channel->efx;
1367
1368        /* Remove event queue from card */
1369        EFX_ZERO_OWORD(reg);
1370        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371                         channel->channel);
1372        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1373                efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1374
1375        /* Unpin event queue */
1376        efx_fini_special_buffer(efx, &channel->eventq);
1377}
1378
1379/* Free buffers backing event queue */
1380void efx_farch_ev_remove(struct efx_channel *channel)
1381{
1382        efx_free_special_buffer(channel->efx, &channel->eventq);
1383}
1384
1385
1386void efx_farch_ev_test_generate(struct efx_channel *channel)
1387{
1388        efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1389}
1390
1391void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1392{
1393        efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1394                              EFX_CHANNEL_MAGIC_FILL(rx_queue));
1395}
1396
1397/**************************************************************************
1398 *
1399 * Hardware interrupts
1400 * The hardware interrupt handler does very little work; all the event
1401 * queue processing is carried out by per-channel tasklets.
1402 *
1403 **************************************************************************/
1404
1405/* Enable/disable/generate interrupts */
1406static inline void efx_farch_interrupts(struct efx_nic *efx,
1407                                      bool enabled, bool force)
1408{
1409        efx_oword_t int_en_reg_ker;
1410
1411        EFX_POPULATE_OWORD_3(int_en_reg_ker,
1412                             FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413                             FRF_AZ_KER_INT_KER, force,
1414                             FRF_AZ_DRV_INT_EN_KER, enabled);
1415        efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416}
1417
1418void efx_farch_irq_enable_master(struct efx_nic *efx)
1419{
1420        EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1421        wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422
1423        efx_farch_interrupts(efx, true, false);
1424}
1425
1426void efx_farch_irq_disable_master(struct efx_nic *efx)
1427{
1428        /* Disable interrupts */
1429        efx_farch_interrupts(efx, false, false);
1430}
1431
1432/* Generate a test interrupt
1433 * Interrupt must already have been enabled, otherwise nasty things
1434 * may happen.
1435 */
1436void efx_farch_irq_test_generate(struct efx_nic *efx)
1437{
1438        efx_farch_interrupts(efx, true, true);
1439}
1440
1441/* Process a fatal interrupt
1442 * Disable bus mastering ASAP and schedule a reset
1443 */
1444irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1445{
1446        struct falcon_nic_data *nic_data = efx->nic_data;
1447        efx_oword_t *int_ker = efx->irq_status.addr;
1448        efx_oword_t fatal_intr;
1449        int error, mem_perr;
1450
1451        efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1452        error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1453
1454        netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1455                  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1456                  EFX_OWORD_VAL(fatal_intr),
1457                  error ? "disabling bus mastering" : "no recognised error");
1458
1459        /* If this is a memory parity error dump which blocks are offending */
1460        mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1461                    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1462        if (mem_perr) {
1463                efx_oword_t reg;
1464                efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1465                netif_err(efx, hw, efx->net_dev,
1466                          "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1467                          EFX_OWORD_VAL(reg));
1468        }
1469
1470        /* Disable both devices */
1471        pci_clear_master(efx->pci_dev);
1472        if (efx_nic_is_dual_func(efx))
1473                pci_clear_master(nic_data->pci_dev2);
1474        efx_farch_irq_disable_master(efx);
1475
1476        /* Count errors and reset or disable the NIC accordingly */
1477        if (efx->int_error_count == 0 ||
1478            time_after(jiffies, efx->int_error_expire)) {
1479                efx->int_error_count = 0;
1480                efx->int_error_expire =
1481                        jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1482        }
1483        if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1484                netif_err(efx, hw, efx->net_dev,
1485                          "SYSTEM ERROR - reset scheduled\n");
1486                efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1487        } else {
1488                netif_err(efx, hw, efx->net_dev,
1489                          "SYSTEM ERROR - max number of errors seen."
1490                          "NIC will be disabled\n");
1491                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1492        }
1493
1494        return IRQ_HANDLED;
1495}
1496
1497/* Handle a legacy interrupt
1498 * Acknowledges the interrupt and schedule event queue processing.
1499 */
1500irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1501{
1502        struct efx_nic *efx = dev_id;
1503        bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1504        efx_oword_t *int_ker = efx->irq_status.addr;
1505        irqreturn_t result = IRQ_NONE;
1506        struct efx_channel *channel;
1507        efx_dword_t reg;
1508        u32 queues;
1509        int syserr;
1510
1511        /* Read the ISR which also ACKs the interrupts */
1512        efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1513        queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1514
1515        /* Legacy interrupts are disabled too late by the EEH kernel
1516         * code. Disable them earlier.
1517         * If an EEH error occurred, the read will have returned all ones.
1518         */
1519        if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1520            !efx->eeh_disabled_legacy_irq) {
1521                disable_irq_nosync(efx->legacy_irq);
1522                efx->eeh_disabled_legacy_irq = true;
1523        }
1524
1525        /* Handle non-event-queue sources */
1526        if (queues & (1U << efx->irq_level) && soft_enabled) {
1527                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1528                if (unlikely(syserr))
1529                        return efx_farch_fatal_interrupt(efx);
1530                efx->last_irq_cpu = raw_smp_processor_id();
1531        }
1532
1533        if (queues != 0) {
1534                efx->irq_zero_count = 0;
1535
1536                /* Schedule processing of any interrupting queues */
1537                if (likely(soft_enabled)) {
1538                        efx_for_each_channel(channel, efx) {
1539                                if (queues & 1)
1540                                        efx_schedule_channel_irq(channel);
1541                                queues >>= 1;
1542                        }
1543                }
1544                result = IRQ_HANDLED;
1545
1546        } else {
1547                efx_qword_t *event;
1548
1549                /* Legacy ISR read can return zero once (SF bug 15783) */
1550
1551                /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1552                 * because this might be a shared interrupt. */
1553                if (efx->irq_zero_count++ == 0)
1554                        result = IRQ_HANDLED;
1555
1556                /* Ensure we schedule or rearm all event queues */
1557                if (likely(soft_enabled)) {
1558                        efx_for_each_channel(channel, efx) {
1559                                event = efx_event(channel,
1560                                                  channel->eventq_read_ptr);
1561                                if (efx_event_present(event))
1562                                        efx_schedule_channel_irq(channel);
1563                                else
1564                                        efx_farch_ev_read_ack(channel);
1565                        }
1566                }
1567        }
1568
1569        if (result == IRQ_HANDLED)
1570                netif_vdbg(efx, intr, efx->net_dev,
1571                           "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1572                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1573
1574        return result;
1575}
1576
1577/* Handle an MSI interrupt
1578 *
1579 * Handle an MSI hardware interrupt.  This routine schedules event
1580 * queue processing.  No interrupt acknowledgement cycle is necessary.
1581 * Also, we never need to check that the interrupt is for us, since
1582 * MSI interrupts cannot be shared.
1583 */
1584irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1585{
1586        struct efx_msi_context *context = dev_id;
1587        struct efx_nic *efx = context->efx;
1588        efx_oword_t *int_ker = efx->irq_status.addr;
1589        int syserr;
1590
1591        netif_vdbg(efx, intr, efx->net_dev,
1592                   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1593                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1594
1595        if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1596                return IRQ_HANDLED;
1597
1598        /* Handle non-event-queue sources */
1599        if (context->index == efx->irq_level) {
1600                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1601                if (unlikely(syserr))
1602                        return efx_farch_fatal_interrupt(efx);
1603                efx->last_irq_cpu = raw_smp_processor_id();
1604        }
1605
1606        /* Schedule processing of the channel */
1607        efx_schedule_channel_irq(efx->channel[context->index]);
1608
1609        return IRQ_HANDLED;
1610}
1611
1612
1613/* Setup RSS indirection table.
1614 * This maps from the hash value of the packet to RXQ
1615 */
1616void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1617{
1618        size_t i = 0;
1619        efx_dword_t dword;
1620
1621        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1622                return;
1623
1624        BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1625                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1626
1627        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1628                EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1629                                     efx->rx_indir_table[i]);
1630                efx_writed(efx, &dword,
1631                           FR_BZ_RX_INDIRECTION_TBL +
1632                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1633        }
1634}
1635
1636/* Looks at available SRAM resources and works out how many queues we
1637 * can support, and where things like descriptor caches should live.
1638 *
1639 * SRAM is split up as follows:
1640 * 0                          buftbl entries for channels
1641 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1642 * efx->rx_dc_base            RX descriptor caches
1643 * efx->tx_dc_base            TX descriptor caches
1644 */
1645void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1646{
1647        unsigned vi_count, buftbl_min;
1648
1649        /* Account for the buffer table entries backing the datapath channels
1650         * and the descriptor caches for those channels.
1651         */
1652        buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1653                       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1654                       efx->n_channels * EFX_MAX_EVQ_SIZE)
1655                      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1656        vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1657
1658#ifdef CONFIG_SFC_SRIOV
1659        if (efx_sriov_wanted(efx)) {
1660                unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1661
1662                efx->vf_buftbl_base = buftbl_min;
1663
1664                vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1665                vi_count = max(vi_count, EFX_VI_BASE);
1666                buftbl_free = (sram_lim_qw - buftbl_min -
1667                               vi_count * vi_dc_entries);
1668
1669                entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1670                                  efx_vf_size(efx));
1671                vf_limit = min(buftbl_free / entries_per_vf,
1672                               (1024U - EFX_VI_BASE) >> efx->vi_scale);
1673
1674                if (efx->vf_count > vf_limit) {
1675                        netif_err(efx, probe, efx->net_dev,
1676                                  "Reducing VF count from from %d to %d\n",
1677                                  efx->vf_count, vf_limit);
1678                        efx->vf_count = vf_limit;
1679                }
1680                vi_count += efx->vf_count * efx_vf_size(efx);
1681        }
1682#endif
1683
1684        efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1685        efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1686}
1687
1688u32 efx_farch_fpga_ver(struct efx_nic *efx)
1689{
1690        efx_oword_t altera_build;
1691        efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1692        return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1693}
1694
1695void efx_farch_init_common(struct efx_nic *efx)
1696{
1697        efx_oword_t temp;
1698
1699        /* Set positions of descriptor caches in SRAM. */
1700        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1701        efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1702        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1703        efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1704
1705        /* Set TX descriptor cache size. */
1706        BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1707        EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1708        efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1709
1710        /* Set RX descriptor cache size.  Set low watermark to size-8, as
1711         * this allows most efficient prefetching.
1712         */
1713        BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1714        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1715        efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1716        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1717        efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1718
1719        /* Program INT_KER address */
1720        EFX_POPULATE_OWORD_2(temp,
1721                             FRF_AZ_NORM_INT_VEC_DIS_KER,
1722                             EFX_INT_MODE_USE_MSI(efx),
1723                             FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1724        efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1725
1726        if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1727                /* Use an interrupt level unused by event queues */
1728                efx->irq_level = 0x1f;
1729        else
1730                /* Use a valid MSI-X vector */
1731                efx->irq_level = 0;
1732
1733        /* Enable all the genuinely fatal interrupts.  (They are still
1734         * masked by the overall interrupt mask, controlled by
1735         * falcon_interrupts()).
1736         *
1737         * Note: All other fatal interrupts are enabled
1738         */
1739        EFX_POPULATE_OWORD_3(temp,
1740                             FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1741                             FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1742                             FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1743        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1744                EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1745        EFX_INVERT_OWORD(temp);
1746        efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1747
1748        efx_farch_rx_push_indir_table(efx);
1749
1750        /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1751         * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1752         */
1753        efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1754        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1755        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1756        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1757        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1758        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1759        /* Enable SW_EV to inherit in char driver - assume harmless here */
1760        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1761        /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1762        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1763        /* Disable hardware watchdog which can misfire */
1764        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1765        /* Squash TX of packets of 16 bytes or less */
1766        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1767                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1768        efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1769
1770        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1771                EFX_POPULATE_OWORD_4(temp,
1772                                     /* Default values */
1773                                     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1774                                     FRF_BZ_TX_PACE_SB_AF, 0xb,
1775                                     FRF_BZ_TX_PACE_FB_BASE, 0,
1776                                     /* Allow large pace values in the
1777                                      * fast bin. */
1778                                     FRF_BZ_TX_PACE_BIN_TH,
1779                                     FFE_BZ_TX_PACE_RESERVED);
1780                efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1781        }
1782}
1783
1784/**************************************************************************
1785 *
1786 * Filter tables
1787 *
1788 **************************************************************************
1789 */
1790
1791/* "Fudge factors" - difference between programmed value and actual depth.
1792 * Due to pipelined implementation we need to program H/W with a value that
1793 * is larger than the hop limit we want.
1794 */
1795#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1796#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1797
1798/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1799 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1800 * table is full.
1801 */
1802#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1803
1804/* Don't try very hard to find space for performance hints, as this is
1805 * counter-productive. */
1806#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1807
1808enum efx_farch_filter_type {
1809        EFX_FARCH_FILTER_TCP_FULL = 0,
1810        EFX_FARCH_FILTER_TCP_WILD,
1811        EFX_FARCH_FILTER_UDP_FULL,
1812        EFX_FARCH_FILTER_UDP_WILD,
1813        EFX_FARCH_FILTER_MAC_FULL = 4,
1814        EFX_FARCH_FILTER_MAC_WILD,
1815        EFX_FARCH_FILTER_UC_DEF = 8,
1816        EFX_FARCH_FILTER_MC_DEF,
1817        EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1818};
1819
1820enum efx_farch_filter_table_id {
1821        EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1822        EFX_FARCH_FILTER_TABLE_RX_MAC,
1823        EFX_FARCH_FILTER_TABLE_RX_DEF,
1824        EFX_FARCH_FILTER_TABLE_TX_MAC,
1825        EFX_FARCH_FILTER_TABLE_COUNT,
1826};
1827
1828enum efx_farch_filter_index {
1829        EFX_FARCH_FILTER_INDEX_UC_DEF,
1830        EFX_FARCH_FILTER_INDEX_MC_DEF,
1831        EFX_FARCH_FILTER_SIZE_RX_DEF,
1832};
1833
1834struct efx_farch_filter_spec {
1835        u8      type:4;
1836        u8      priority:4;
1837        u8      flags;
1838        u16     dmaq_id;
1839        u32     data[3];
1840};
1841
1842struct efx_farch_filter_table {
1843        enum efx_farch_filter_table_id id;
1844        u32             offset;         /* address of table relative to BAR */
1845        unsigned        size;           /* number of entries */
1846        unsigned        step;           /* step between entries */
1847        unsigned        used;           /* number currently used */
1848        unsigned long   *used_bitmap;
1849        struct efx_farch_filter_spec *spec;
1850        unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1851};
1852
1853struct efx_farch_filter_state {
1854        struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1855};
1856
1857static void
1858efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1859                                   struct efx_farch_filter_table *table,
1860                                   unsigned int filter_idx);
1861
1862/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1863 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1864static u16 efx_farch_filter_hash(u32 key)
1865{
1866        u16 tmp;
1867
1868        /* First 16 rounds */
1869        tmp = 0x1fff ^ key >> 16;
1870        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1871        tmp = tmp ^ tmp >> 9;
1872        /* Last 16 rounds */
1873        tmp = tmp ^ tmp << 13 ^ key;
1874        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1875        return tmp ^ tmp >> 9;
1876}
1877
1878/* To allow for hash collisions, filter search continues at these
1879 * increments from the first possible entry selected by the hash. */
1880static u16 efx_farch_filter_increment(u32 key)
1881{
1882        return key * 2 - 1;
1883}
1884
1885static enum efx_farch_filter_table_id
1886efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1887{
1888        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1889                     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1890        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1891                     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1892        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1893                     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1894        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1895                     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1896        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1897                     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1898        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1899                     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1900        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1901                     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1902        return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1903}
1904
1905static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1906{
1907        struct efx_farch_filter_state *state = efx->filter_state;
1908        struct efx_farch_filter_table *table;
1909        efx_oword_t filter_ctl;
1910
1911        efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1912
1913        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1914        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1915                            table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1916                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1917        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1918                            table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1919                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1920        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1921                            table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1922                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1923        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1924                            table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1925                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1926
1927        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1928        if (table->size) {
1929                EFX_SET_OWORD_FIELD(
1930                        filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1931                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1932                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1933                EFX_SET_OWORD_FIELD(
1934                        filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1935                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1936                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1937        }
1938
1939        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1940        if (table->size) {
1941                EFX_SET_OWORD_FIELD(
1942                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1943                        table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1944                EFX_SET_OWORD_FIELD(
1945                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1946                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1947                           EFX_FILTER_FLAG_RX_RSS));
1948                EFX_SET_OWORD_FIELD(
1949                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1950                        table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1951                EFX_SET_OWORD_FIELD(
1952                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1953                        !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1954                           EFX_FILTER_FLAG_RX_RSS));
1955
1956                /* There is a single bit to enable RX scatter for all
1957                 * unmatched packets.  Only set it if scatter is
1958                 * enabled in both filter specs.
1959                 */
1960                EFX_SET_OWORD_FIELD(
1961                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1962                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1963                           table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1964                           EFX_FILTER_FLAG_RX_SCATTER));
1965        } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1966                /* We don't expose 'default' filters because unmatched
1967                 * packets always go to the queue number found in the
1968                 * RSS table.  But we still need to set the RX scatter
1969                 * bit here.
1970                 */
1971                EFX_SET_OWORD_FIELD(
1972                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1973                        efx->rx_scatter);
1974        }
1975
1976        efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1977}
1978
1979static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
1980{
1981        struct efx_farch_filter_state *state = efx->filter_state;
1982        struct efx_farch_filter_table *table;
1983        efx_oword_t tx_cfg;
1984
1985        efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1986
1987        table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
1988        if (table->size) {
1989                EFX_SET_OWORD_FIELD(
1990                        tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1991                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1992                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1993                EFX_SET_OWORD_FIELD(
1994                        tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1995                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1996                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1997        }
1998
1999        efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2000}
2001
2002static int
2003efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2004                               const struct efx_filter_spec *gen_spec)
2005{
2006        bool is_full = false;
2007
2008        if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2009            gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2010                return -EINVAL;
2011
2012        spec->priority = gen_spec->priority;
2013        spec->flags = gen_spec->flags;
2014        spec->dmaq_id = gen_spec->dmaq_id;
2015
2016        switch (gen_spec->match_flags) {
2017        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2018              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2019              EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2020                is_full = true;
2021                /* fall through */
2022        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2023              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2024                __be32 rhost, host1, host2;
2025                __be16 rport, port1, port2;
2026
2027                EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2028
2029                if (gen_spec->ether_type != htons(ETH_P_IP))
2030                        return -EPROTONOSUPPORT;
2031                if (gen_spec->loc_port == 0 ||
2032                    (is_full && gen_spec->rem_port == 0))
2033                        return -EADDRNOTAVAIL;
2034                switch (gen_spec->ip_proto) {
2035                case IPPROTO_TCP:
2036                        spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2037                                      EFX_FARCH_FILTER_TCP_WILD);
2038                        break;
2039                case IPPROTO_UDP:
2040                        spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2041                                      EFX_FARCH_FILTER_UDP_WILD);
2042                        break;
2043                default:
2044                        return -EPROTONOSUPPORT;
2045                }
2046
2047                /* Filter is constructed in terms of source and destination,
2048                 * with the odd wrinkle that the ports are swapped in a UDP
2049                 * wildcard filter.  We need to convert from local and remote
2050                 * (= zero for wildcard) addresses.
2051                 */
2052                rhost = is_full ? gen_spec->rem_host[0] : 0;
2053                rport = is_full ? gen_spec->rem_port : 0;
2054                host1 = rhost;
2055                host2 = gen_spec->loc_host[0];
2056                if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2057                        port1 = gen_spec->loc_port;
2058                        port2 = rport;
2059                } else {
2060                        port1 = rport;
2061                        port2 = gen_spec->loc_port;
2062                }
2063                spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2064                spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2065                spec->data[2] = ntohl(host2);
2066
2067                break;
2068        }
2069
2070        case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2071                is_full = true;
2072                /* fall through */
2073        case EFX_FILTER_MATCH_LOC_MAC:
2074                spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2075                              EFX_FARCH_FILTER_MAC_WILD);
2076                spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2077                spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2078                                 gen_spec->loc_mac[3] << 16 |
2079                                 gen_spec->loc_mac[4] << 8 |
2080                                 gen_spec->loc_mac[5]);
2081                spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2082                                 gen_spec->loc_mac[1]);
2083                break;
2084
2085        case EFX_FILTER_MATCH_LOC_MAC_IG:
2086                spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2087                              EFX_FARCH_FILTER_MC_DEF :
2088                              EFX_FARCH_FILTER_UC_DEF);
2089                memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2090                break;
2091
2092        default:
2093                return -EPROTONOSUPPORT;
2094        }
2095
2096        return 0;
2097}
2098
2099static void
2100efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2101                             const struct efx_farch_filter_spec *spec)
2102{
2103        bool is_full = false;
2104
2105        /* *gen_spec should be completely initialised, to be consistent
2106         * with efx_filter_init_{rx,tx}() and in case we want to copy
2107         * it back to userland.
2108         */
2109        memset(gen_spec, 0, sizeof(*gen_spec));
2110
2111        gen_spec->priority = spec->priority;
2112        gen_spec->flags = spec->flags;
2113        gen_spec->dmaq_id = spec->dmaq_id;
2114
2115        switch (spec->type) {
2116        case EFX_FARCH_FILTER_TCP_FULL:
2117        case EFX_FARCH_FILTER_UDP_FULL:
2118                is_full = true;
2119                /* fall through */
2120        case EFX_FARCH_FILTER_TCP_WILD:
2121        case EFX_FARCH_FILTER_UDP_WILD: {
2122                __be32 host1, host2;
2123                __be16 port1, port2;
2124
2125                gen_spec->match_flags =
2126                        EFX_FILTER_MATCH_ETHER_TYPE |
2127                        EFX_FILTER_MATCH_IP_PROTO |
2128                        EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2129                if (is_full)
2130                        gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2131                                                  EFX_FILTER_MATCH_REM_PORT);
2132                gen_spec->ether_type = htons(ETH_P_IP);
2133                gen_spec->ip_proto =
2134                        (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2135                         spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2136                        IPPROTO_TCP : IPPROTO_UDP;
2137
2138                host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2139                port1 = htons(spec->data[0]);
2140                host2 = htonl(spec->data[2]);
2141                port2 = htons(spec->data[1] >> 16);
2142                if (spec->flags & EFX_FILTER_FLAG_TX) {
2143                        gen_spec->loc_host[0] = host1;
2144                        gen_spec->rem_host[0] = host2;
2145                } else {
2146                        gen_spec->loc_host[0] = host2;
2147                        gen_spec->rem_host[0] = host1;
2148                }
2149                if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2150                    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2151                        gen_spec->loc_port = port1;
2152                        gen_spec->rem_port = port2;
2153                } else {
2154                        gen_spec->loc_port = port2;
2155                        gen_spec->rem_port = port1;
2156                }
2157
2158                break;
2159        }
2160
2161        case EFX_FARCH_FILTER_MAC_FULL:
2162                is_full = true;
2163                /* fall through */
2164        case EFX_FARCH_FILTER_MAC_WILD:
2165                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2166                if (is_full)
2167                        gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2168                gen_spec->loc_mac[0] = spec->data[2] >> 8;
2169                gen_spec->loc_mac[1] = spec->data[2];
2170                gen_spec->loc_mac[2] = spec->data[1] >> 24;
2171                gen_spec->loc_mac[3] = spec->data[1] >> 16;
2172                gen_spec->loc_mac[4] = spec->data[1] >> 8;
2173                gen_spec->loc_mac[5] = spec->data[1];
2174                gen_spec->outer_vid = htons(spec->data[0]);
2175                break;
2176
2177        case EFX_FARCH_FILTER_UC_DEF:
2178        case EFX_FARCH_FILTER_MC_DEF:
2179                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2180                gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2181                break;
2182
2183        default:
2184                WARN_ON(1);
2185                break;
2186        }
2187}
2188
2189static void
2190efx_farch_filter_init_rx_for_stack(struct efx_nic *efx,
2191                                   struct efx_farch_filter_spec *spec)
2192{
2193        /* If there's only one channel then disable RSS for non VF
2194         * traffic, thereby allowing VFs to use RSS when the PF can't.
2195         */
2196        spec->priority = EFX_FILTER_PRI_REQUIRED;
2197        spec->flags = (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_STACK |
2198                       (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2199                       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2200        spec->dmaq_id = 0;
2201}
2202
2203/* Build a filter entry and return its n-tuple key. */
2204static u32 efx_farch_filter_build(efx_oword_t *filter,
2205                                  struct efx_farch_filter_spec *spec)
2206{
2207        u32 data3;
2208
2209        switch (efx_farch_filter_spec_table_id(spec)) {
2210        case EFX_FARCH_FILTER_TABLE_RX_IP: {
2211                bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2212                               spec->type == EFX_FARCH_FILTER_UDP_WILD);
2213                EFX_POPULATE_OWORD_7(
2214                        *filter,
2215                        FRF_BZ_RSS_EN,
2216                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2217                        FRF_BZ_SCATTER_EN,
2218                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2219                        FRF_BZ_TCP_UDP, is_udp,
2220                        FRF_BZ_RXQ_ID, spec->dmaq_id,
2221                        EFX_DWORD_2, spec->data[2],
2222                        EFX_DWORD_1, spec->data[1],
2223                        EFX_DWORD_0, spec->data[0]);
2224                data3 = is_udp;
2225                break;
2226        }
2227
2228        case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2229                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2230                EFX_POPULATE_OWORD_7(
2231                        *filter,
2232                        FRF_CZ_RMFT_RSS_EN,
2233                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2234                        FRF_CZ_RMFT_SCATTER_EN,
2235                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2236                        FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2237                        FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2238                        FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2239                        FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2240                        FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2241                data3 = is_wild;
2242                break;
2243        }
2244
2245        case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2246                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2247                EFX_POPULATE_OWORD_5(*filter,
2248                                     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2249                                     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2250                                     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2251                                     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2252                                     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2253                data3 = is_wild | spec->dmaq_id << 1;
2254                break;
2255        }
2256
2257        default:
2258                BUG();
2259        }
2260
2261        return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2262}
2263
2264static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2265                                   const struct efx_farch_filter_spec *right)
2266{
2267        if (left->type != right->type ||
2268            memcmp(left->data, right->data, sizeof(left->data)))
2269                return false;
2270
2271        if (left->flags & EFX_FILTER_FLAG_TX &&
2272            left->dmaq_id != right->dmaq_id)
2273                return false;
2274
2275        return true;
2276}
2277
2278/*
2279 * Construct/deconstruct external filter IDs.  At least the RX filter
2280 * IDs must be ordered by matching priority, for RX NFC semantics.
2281 *
2282 * Deconstruction needs to be robust against invalid IDs so that
2283 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2284 * accept user-provided IDs.
2285 */
2286
2287#define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2288
2289static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2290        [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2291        [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2292        [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2293        [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2294        [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2295        [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2296        [EFX_FARCH_FILTER_UC_DEF]       = 4,
2297        [EFX_FARCH_FILTER_MC_DEF]       = 4,
2298};
2299
2300static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2301        EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2302        EFX_FARCH_FILTER_TABLE_RX_IP,
2303        EFX_FARCH_FILTER_TABLE_RX_MAC,
2304        EFX_FARCH_FILTER_TABLE_RX_MAC,
2305        EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2306        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2307        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2308};
2309
2310#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2311#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2312
2313static inline u32
2314efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2315                         unsigned int index)
2316{
2317        unsigned int range;
2318
2319        range = efx_farch_filter_type_match_pri[spec->type];
2320        if (!(spec->flags & EFX_FILTER_FLAG_RX))
2321                range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2322
2323        return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2324}
2325
2326static inline enum efx_farch_filter_table_id
2327efx_farch_filter_id_table_id(u32 id)
2328{
2329        unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2330
2331        if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2332                return efx_farch_filter_range_table[range];
2333        else
2334                return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2335}
2336
2337static inline unsigned int efx_farch_filter_id_index(u32 id)
2338{
2339        return id & EFX_FARCH_FILTER_INDEX_MASK;
2340}
2341
2342u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2343{
2344        struct efx_farch_filter_state *state = efx->filter_state;
2345        unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2346        enum efx_farch_filter_table_id table_id;
2347
2348        do {
2349                table_id = efx_farch_filter_range_table[range];
2350                if (state->table[table_id].size != 0)
2351                        return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2352                                state->table[table_id].size;
2353        } while (range--);
2354
2355        return 0;
2356}
2357
2358s32 efx_farch_filter_insert(struct efx_nic *efx,
2359                            struct efx_filter_spec *gen_spec,
2360                            bool replace_equal)
2361{
2362        struct efx_farch_filter_state *state = efx->filter_state;
2363        struct efx_farch_filter_table *table;
2364        struct efx_farch_filter_spec spec;
2365        efx_oword_t filter;
2366        int rep_index, ins_index;
2367        unsigned int depth = 0;
2368        int rc;
2369
2370        rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2371        if (rc)
2372                return rc;
2373
2374        table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2375        if (table->size == 0)
2376                return -EINVAL;
2377
2378        netif_vdbg(efx, hw, efx->net_dev,
2379                   "%s: type %d search_limit=%d", __func__, spec.type,
2380                   table->search_limit[spec.type]);
2381
2382        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2383                /* One filter spec per type */
2384                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2385                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2386                             EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2387                rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2388                ins_index = rep_index;
2389
2390                spin_lock_bh(&efx->filter_lock);
2391        } else {
2392                /* Search concurrently for
2393                 * (1) a filter to be replaced (rep_index): any filter
2394                 *     with the same match values, up to the current
2395                 *     search depth for this type, and
2396                 * (2) the insertion point (ins_index): (1) or any
2397                 *     free slot before it or up to the maximum search
2398                 *     depth for this priority
2399                 * We fail if we cannot find (2).
2400                 *
2401                 * We can stop once either
2402                 * (a) we find (1), in which case we have definitely
2403                 *     found (2) as well; or
2404                 * (b) we have searched exhaustively for (1), and have
2405                 *     either found (2) or searched exhaustively for it
2406                 */
2407                u32 key = efx_farch_filter_build(&filter, &spec);
2408                unsigned int hash = efx_farch_filter_hash(key);
2409                unsigned int incr = efx_farch_filter_increment(key);
2410                unsigned int max_rep_depth = table->search_limit[spec.type];
2411                unsigned int max_ins_depth =
2412                        spec.priority <= EFX_FILTER_PRI_HINT ?
2413                        EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2414                        EFX_FARCH_FILTER_CTL_SRCH_MAX;
2415                unsigned int i = hash & (table->size - 1);
2416
2417                ins_index = -1;
2418                depth = 1;
2419
2420                spin_lock_bh(&efx->filter_lock);
2421
2422                for (;;) {
2423                        if (!test_bit(i, table->used_bitmap)) {
2424                                if (ins_index < 0)
2425                                        ins_index = i;
2426                        } else if (efx_farch_filter_equal(&spec,
2427                                                          &table->spec[i])) {
2428                                /* Case (a) */
2429                                if (ins_index < 0)
2430                                        ins_index = i;
2431                                rep_index = i;
2432                                break;
2433                        }
2434
2435                        if (depth >= max_rep_depth &&
2436                            (ins_index >= 0 || depth >= max_ins_depth)) {
2437                                /* Case (b) */
2438                                if (ins_index < 0) {
2439                                        rc = -EBUSY;
2440                                        goto out;
2441                                }
2442                                rep_index = -1;
2443                                break;
2444                        }
2445
2446                        i = (i + incr) & (table->size - 1);
2447                        ++depth;
2448                }
2449        }
2450
2451        /* If we found a filter to be replaced, check whether we
2452         * should do so
2453         */
2454        if (rep_index >= 0) {
2455                struct efx_farch_filter_spec *saved_spec =
2456                        &table->spec[rep_index];
2457
2458                if (spec.priority == saved_spec->priority && !replace_equal) {
2459                        rc = -EEXIST;
2460                        goto out;
2461                }
2462                if (spec.priority < saved_spec->priority &&
2463                    !(saved_spec->priority == EFX_FILTER_PRI_REQUIRED &&
2464                      saved_spec->flags & EFX_FILTER_FLAG_RX_STACK)) {
2465                        rc = -EPERM;
2466                        goto out;
2467                }
2468                if (spec.flags & EFX_FILTER_FLAG_RX_STACK) {
2469                        /* Just make sure it won't be removed */
2470                        saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
2471                        rc = 0;
2472                        goto out;
2473                }
2474                /* Retain the RX_STACK flag */
2475                spec.flags |= saved_spec->flags & EFX_FILTER_FLAG_RX_STACK;
2476        }
2477
2478        /* Insert the filter */
2479        if (ins_index != rep_index) {
2480                __set_bit(ins_index, table->used_bitmap);
2481                ++table->used;
2482        }
2483        table->spec[ins_index] = spec;
2484
2485        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2486                efx_farch_filter_push_rx_config(efx);
2487        } else {
2488                if (table->search_limit[spec.type] < depth) {
2489                        table->search_limit[spec.type] = depth;
2490                        if (spec.flags & EFX_FILTER_FLAG_TX)
2491                                efx_farch_filter_push_tx_limits(efx);
2492                        else
2493                                efx_farch_filter_push_rx_config(efx);
2494                }
2495
2496                efx_writeo(efx, &filter,
2497                           table->offset + table->step * ins_index);
2498
2499                /* If we were able to replace a filter by inserting
2500                 * at a lower depth, clear the replaced filter
2501                 */
2502                if (ins_index != rep_index && rep_index >= 0)
2503                        efx_farch_filter_table_clear_entry(efx, table,
2504                                                           rep_index);
2505        }
2506
2507        netif_vdbg(efx, hw, efx->net_dev,
2508                   "%s: filter type %d index %d rxq %u set",
2509                   __func__, spec.type, ins_index, spec.dmaq_id);
2510        rc = efx_farch_filter_make_id(&spec, ins_index);
2511
2512out:
2513        spin_unlock_bh(&efx->filter_lock);
2514        return rc;
2515}
2516
2517static void
2518efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2519                                   struct efx_farch_filter_table *table,
2520                                   unsigned int filter_idx)
2521{
2522        static efx_oword_t filter;
2523
2524        EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2525        BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2526
2527        __clear_bit(filter_idx, table->used_bitmap);
2528        --table->used;
2529        memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2530
2531        efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2532
2533        /* If this filter required a greater search depth than
2534         * any other, the search limit for its type can now be
2535         * decreased.  However, it is hard to determine that
2536         * unless the table has become completely empty - in
2537         * which case, all its search limits can be set to 0.
2538         */
2539        if (unlikely(table->used == 0)) {
2540                memset(table->search_limit, 0, sizeof(table->search_limit));
2541                if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2542                        efx_farch_filter_push_tx_limits(efx);
2543                else
2544                        efx_farch_filter_push_rx_config(efx);
2545        }
2546}
2547
2548static int efx_farch_filter_remove(struct efx_nic *efx,
2549                                   struct efx_farch_filter_table *table,
2550                                   unsigned int filter_idx,
2551                                   enum efx_filter_priority priority)
2552{
2553        struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2554
2555        if (!test_bit(filter_idx, table->used_bitmap) ||
2556            spec->priority > priority)
2557                return -ENOENT;
2558
2559        if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
2560                efx_farch_filter_init_rx_for_stack(efx, spec);
2561                efx_farch_filter_push_rx_config(efx);
2562        } else {
2563                efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2564        }
2565
2566        return 0;
2567}
2568
2569int efx_farch_filter_remove_safe(struct efx_nic *efx,
2570                                 enum efx_filter_priority priority,
2571                                 u32 filter_id)
2572{
2573        struct efx_farch_filter_state *state = efx->filter_state;
2574        enum efx_farch_filter_table_id table_id;
2575        struct efx_farch_filter_table *table;
2576        unsigned int filter_idx;
2577        struct efx_farch_filter_spec *spec;
2578        int rc;
2579
2580        table_id = efx_farch_filter_id_table_id(filter_id);
2581        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2582                return -ENOENT;
2583        table = &state->table[table_id];
2584
2585        filter_idx = efx_farch_filter_id_index(filter_id);
2586        if (filter_idx >= table->size)
2587                return -ENOENT;
2588        spec = &table->spec[filter_idx];
2589
2590        spin_lock_bh(&efx->filter_lock);
2591        rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2592        spin_unlock_bh(&efx->filter_lock);
2593
2594        return rc;
2595}
2596
2597int efx_farch_filter_get_safe(struct efx_nic *efx,
2598                              enum efx_filter_priority priority,
2599                              u32 filter_id, struct efx_filter_spec *spec_buf)
2600{
2601        struct efx_farch_filter_state *state = efx->filter_state;
2602        enum efx_farch_filter_table_id table_id;
2603        struct efx_farch_filter_table *table;
2604        struct efx_farch_filter_spec *spec;
2605        unsigned int filter_idx;
2606        int rc;
2607
2608        table_id = efx_farch_filter_id_table_id(filter_id);
2609        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2610                return -ENOENT;
2611        table = &state->table[table_id];
2612
2613        filter_idx = efx_farch_filter_id_index(filter_id);
2614        if (filter_idx >= table->size)
2615                return -ENOENT;
2616        spec = &table->spec[filter_idx];
2617
2618        spin_lock_bh(&efx->filter_lock);
2619
2620        if (test_bit(filter_idx, table->used_bitmap) &&
2621            spec->priority == priority) {
2622                efx_farch_filter_to_gen_spec(spec_buf, spec);
2623                rc = 0;
2624        } else {
2625                rc = -ENOENT;
2626        }
2627
2628        spin_unlock_bh(&efx->filter_lock);
2629
2630        return rc;
2631}
2632
2633static void
2634efx_farch_filter_table_clear(struct efx_nic *efx,
2635                             enum efx_farch_filter_table_id table_id,
2636                             enum efx_filter_priority priority)
2637{
2638        struct efx_farch_filter_state *state = efx->filter_state;
2639        struct efx_farch_filter_table *table = &state->table[table_id];
2640        unsigned int filter_idx;
2641
2642        spin_lock_bh(&efx->filter_lock);
2643        for (filter_idx = 0; filter_idx < table->size; ++filter_idx)
2644                efx_farch_filter_remove(efx, table, filter_idx, priority);
2645        spin_unlock_bh(&efx->filter_lock);
2646}
2647
2648void efx_farch_filter_clear_rx(struct efx_nic *efx,
2649                               enum efx_filter_priority priority)
2650{
2651        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2652                                     priority);
2653        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2654                                     priority);
2655        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2656                                     priority);
2657}
2658
2659u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2660                                   enum efx_filter_priority priority)
2661{
2662        struct efx_farch_filter_state *state = efx->filter_state;
2663        enum efx_farch_filter_table_id table_id;
2664        struct efx_farch_filter_table *table;
2665        unsigned int filter_idx;
2666        u32 count = 0;
2667
2668        spin_lock_bh(&efx->filter_lock);
2669
2670        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2671             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2672             table_id++) {
2673                table = &state->table[table_id];
2674                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2675                        if (test_bit(filter_idx, table->used_bitmap) &&
2676                            table->spec[filter_idx].priority == priority)
2677                                ++count;
2678                }
2679        }
2680
2681        spin_unlock_bh(&efx->filter_lock);
2682
2683        return count;
2684}
2685
2686s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2687                                enum efx_filter_priority priority,
2688                                u32 *buf, u32 size)
2689{
2690        struct efx_farch_filter_state *state = efx->filter_state;
2691        enum efx_farch_filter_table_id table_id;
2692        struct efx_farch_filter_table *table;
2693        unsigned int filter_idx;
2694        s32 count = 0;
2695
2696        spin_lock_bh(&efx->filter_lock);
2697
2698        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2699             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2700             table_id++) {
2701                table = &state->table[table_id];
2702                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2703                        if (test_bit(filter_idx, table->used_bitmap) &&
2704                            table->spec[filter_idx].priority == priority) {
2705                                if (count == size) {
2706                                        count = -EMSGSIZE;
2707                                        goto out;
2708                                }
2709                                buf[count++] = efx_farch_filter_make_id(
2710                                        &table->spec[filter_idx], filter_idx);
2711                        }
2712                }
2713        }
2714out:
2715        spin_unlock_bh(&efx->filter_lock);
2716
2717        return count;
2718}
2719
2720/* Restore filter stater after reset */
2721void efx_farch_filter_table_restore(struct efx_nic *efx)
2722{
2723        struct efx_farch_filter_state *state = efx->filter_state;
2724        enum efx_farch_filter_table_id table_id;
2725        struct efx_farch_filter_table *table;
2726        efx_oword_t filter;
2727        unsigned int filter_idx;
2728
2729        spin_lock_bh(&efx->filter_lock);
2730
2731        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2732                table = &state->table[table_id];
2733
2734                /* Check whether this is a regular register table */
2735                if (table->step == 0)
2736                        continue;
2737
2738                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2739                        if (!test_bit(filter_idx, table->used_bitmap))
2740                                continue;
2741                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2742                        efx_writeo(efx, &filter,
2743                                   table->offset + table->step * filter_idx);
2744                }
2745        }
2746
2747        efx_farch_filter_push_rx_config(efx);
2748        efx_farch_filter_push_tx_limits(efx);
2749
2750        spin_unlock_bh(&efx->filter_lock);
2751}
2752
2753void efx_farch_filter_table_remove(struct efx_nic *efx)
2754{
2755        struct efx_farch_filter_state *state = efx->filter_state;
2756        enum efx_farch_filter_table_id table_id;
2757
2758        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2759                kfree(state->table[table_id].used_bitmap);
2760                vfree(state->table[table_id].spec);
2761        }
2762        kfree(state);
2763}
2764
2765int efx_farch_filter_table_probe(struct efx_nic *efx)
2766{
2767        struct efx_farch_filter_state *state;
2768        struct efx_farch_filter_table *table;
2769        unsigned table_id;
2770
2771        state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2772        if (!state)
2773                return -ENOMEM;
2774        efx->filter_state = state;
2775
2776        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2777                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2778                table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2779                table->offset = FR_BZ_RX_FILTER_TBL0;
2780                table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2781                table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2782        }
2783
2784        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2785                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2786                table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2787                table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2788                table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2789                table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2790
2791                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2792                table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2793                table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2794
2795                table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2796                table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2797                table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2798                table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2799                table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2800        }
2801
2802        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2803                table = &state->table[table_id];
2804                if (table->size == 0)
2805                        continue;
2806                table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2807                                             sizeof(unsigned long),
2808                                             GFP_KERNEL);
2809                if (!table->used_bitmap)
2810                        goto fail;
2811                table->spec = vzalloc(table->size * sizeof(*table->spec));
2812                if (!table->spec)
2813                        goto fail;
2814        }
2815
2816        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2817        if (table->size) {
2818                /* RX default filters must always exist */
2819                struct efx_farch_filter_spec *spec;
2820                unsigned i;
2821
2822                for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2823                        spec = &table->spec[i];
2824                        spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2825                        efx_farch_filter_init_rx_for_stack(efx, spec);
2826                        __set_bit(i, table->used_bitmap);
2827                }
2828        }
2829
2830        efx_farch_filter_push_rx_config(efx);
2831
2832        return 0;
2833
2834fail:
2835        efx_farch_filter_table_remove(efx);
2836        return -ENOMEM;
2837}
2838
2839/* Update scatter enable flags for filters pointing to our own RX queues */
2840void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2841{
2842        struct efx_farch_filter_state *state = efx->filter_state;
2843        enum efx_farch_filter_table_id table_id;
2844        struct efx_farch_filter_table *table;
2845        efx_oword_t filter;
2846        unsigned int filter_idx;
2847
2848        spin_lock_bh(&efx->filter_lock);
2849
2850        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2851             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2852             table_id++) {
2853                table = &state->table[table_id];
2854
2855                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2856                        if (!test_bit(filter_idx, table->used_bitmap) ||
2857                            table->spec[filter_idx].dmaq_id >=
2858                            efx->n_rx_channels)
2859                                continue;
2860
2861                        if (efx->rx_scatter)
2862                                table->spec[filter_idx].flags |=
2863                                        EFX_FILTER_FLAG_RX_SCATTER;
2864                        else
2865                                table->spec[filter_idx].flags &=
2866                                        ~EFX_FILTER_FLAG_RX_SCATTER;
2867
2868                        if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2869                                /* Pushed by efx_farch_filter_push_rx_config() */
2870                                continue;
2871
2872                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2873                        efx_writeo(efx, &filter,
2874                                   table->offset + table->step * filter_idx);
2875                }
2876        }
2877
2878        efx_farch_filter_push_rx_config(efx);
2879
2880        spin_unlock_bh(&efx->filter_lock);
2881}
2882
2883#ifdef CONFIG_RFS_ACCEL
2884
2885s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2886                                struct efx_filter_spec *gen_spec)
2887{
2888        return efx_farch_filter_insert(efx, gen_spec, true);
2889}
2890
2891bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2892                                     unsigned int index)
2893{
2894        struct efx_farch_filter_state *state = efx->filter_state;
2895        struct efx_farch_filter_table *table =
2896                &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2897
2898        if (test_bit(index, table->used_bitmap) &&
2899            table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2900            rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2901                                flow_id, index)) {
2902                efx_farch_filter_table_clear_entry(efx, table, index);
2903                return true;
2904        }
2905
2906        return false;
2907}
2908
2909#endif /* CONFIG_RFS_ACCEL */
2910
2911void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2912{
2913        struct net_device *net_dev = efx->net_dev;
2914        struct netdev_hw_addr *ha;
2915        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2916        u32 crc;
2917        int bit;
2918
2919        netif_addr_lock_bh(net_dev);
2920
2921        efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2922
2923        /* Build multicast hash table */
2924        if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2925                memset(mc_hash, 0xff, sizeof(*mc_hash));
2926        } else {
2927                memset(mc_hash, 0x00, sizeof(*mc_hash));
2928                netdev_for_each_mc_addr(ha, net_dev) {
2929                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2930                        bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2931                        __set_bit_le(bit, mc_hash);
2932                }
2933
2934                /* Broadcast packets go through the multicast hash filter.
2935                 * ether_crc_le() of the broadcast address is 0xbe2612ff
2936                 * so we always add bit 0xff to the mask.
2937                 */
2938                __set_bit_le(0xff, mc_hash);
2939        }
2940
2941        netif_addr_unlock_bh(net_dev);
2942}
2943