linux/drivers/net/ethernet/sfc/rx.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/socket.h>
  12#include <linux/in.h>
  13#include <linux/slab.h>
  14#include <linux/ip.h>
  15#include <linux/tcp.h>
  16#include <linux/udp.h>
  17#include <linux/prefetch.h>
  18#include <linux/moduleparam.h>
  19#include <linux/iommu.h>
  20#include <net/ip.h>
  21#include <net/checksum.h>
  22#include "net_driver.h"
  23#include "efx.h"
  24#include "filter.h"
  25#include "nic.h"
  26#include "selftest.h"
  27#include "workarounds.h"
  28
  29/* Preferred number of descriptors to fill at once */
  30#define EFX_RX_PREFERRED_BATCH 8U
  31
  32/* Number of RX buffers to recycle pages for.  When creating the RX page recycle
  33 * ring, this number is divided by the number of buffers per page to calculate
  34 * the number of pages to store in the RX page recycle ring.
  35 */
  36#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
  37#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
  38
  39/* Size of buffer allocated for skb header area. */
  40#define EFX_SKB_HEADERS  128u
  41
  42/* This is the percentage fill level below which new RX descriptors
  43 * will be added to the RX descriptor ring.
  44 */
  45static unsigned int rx_refill_threshold;
  46
  47/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
  48#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
  49                                      EFX_RX_USR_BUF_SIZE)
  50
  51/*
  52 * RX maximum head room required.
  53 *
  54 * This must be at least 1 to prevent overflow, plus one packet-worth
  55 * to allow pipelined receives.
  56 */
  57#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
  58
  59static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
  60{
  61        return page_address(buf->page) + buf->page_offset;
  62}
  63
  64static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
  65{
  66#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
  67        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
  68#else
  69        const u8 *data = eh + efx->rx_packet_hash_offset;
  70        return (u32)data[0]       |
  71               (u32)data[1] << 8  |
  72               (u32)data[2] << 16 |
  73               (u32)data[3] << 24;
  74#endif
  75}
  76
  77static inline struct efx_rx_buffer *
  78efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
  79{
  80        if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
  81                return efx_rx_buffer(rx_queue, 0);
  82        else
  83                return rx_buf + 1;
  84}
  85
  86static inline void efx_sync_rx_buffer(struct efx_nic *efx,
  87                                      struct efx_rx_buffer *rx_buf,
  88                                      unsigned int len)
  89{
  90        dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
  91                                DMA_FROM_DEVICE);
  92}
  93
  94void efx_rx_config_page_split(struct efx_nic *efx)
  95{
  96        efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
  97                                      EFX_RX_BUF_ALIGNMENT);
  98        efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
  99                ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
 100                 efx->rx_page_buf_step);
 101        efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
 102                efx->rx_bufs_per_page;
 103        efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
 104                                               efx->rx_bufs_per_page);
 105}
 106
 107/* Check the RX page recycle ring for a page that can be reused. */
 108static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
 109{
 110        struct efx_nic *efx = rx_queue->efx;
 111        struct page *page;
 112        struct efx_rx_page_state *state;
 113        unsigned index;
 114
 115        index = rx_queue->page_remove & rx_queue->page_ptr_mask;
 116        page = rx_queue->page_ring[index];
 117        if (page == NULL)
 118                return NULL;
 119
 120        rx_queue->page_ring[index] = NULL;
 121        /* page_remove cannot exceed page_add. */
 122        if (rx_queue->page_remove != rx_queue->page_add)
 123                ++rx_queue->page_remove;
 124
 125        /* If page_count is 1 then we hold the only reference to this page. */
 126        if (page_count(page) == 1) {
 127                ++rx_queue->page_recycle_count;
 128                return page;
 129        } else {
 130                state = page_address(page);
 131                dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
 132                               PAGE_SIZE << efx->rx_buffer_order,
 133                               DMA_FROM_DEVICE);
 134                put_page(page);
 135                ++rx_queue->page_recycle_failed;
 136        }
 137
 138        return NULL;
 139}
 140
 141/**
 142 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
 143 *
 144 * @rx_queue:           Efx RX queue
 145 *
 146 * This allocates a batch of pages, maps them for DMA, and populates
 147 * struct efx_rx_buffers for each one. Return a negative error code or
 148 * 0 on success. If a single page can be used for multiple buffers,
 149 * then the page will either be inserted fully, or not at all.
 150 */
 151static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
 152{
 153        struct efx_nic *efx = rx_queue->efx;
 154        struct efx_rx_buffer *rx_buf;
 155        struct page *page;
 156        unsigned int page_offset;
 157        struct efx_rx_page_state *state;
 158        dma_addr_t dma_addr;
 159        unsigned index, count;
 160
 161        count = 0;
 162        do {
 163                page = efx_reuse_page(rx_queue);
 164                if (page == NULL) {
 165                        page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
 166                                           efx->rx_buffer_order);
 167                        if (unlikely(page == NULL))
 168                                return -ENOMEM;
 169                        dma_addr =
 170                                dma_map_page(&efx->pci_dev->dev, page, 0,
 171                                             PAGE_SIZE << efx->rx_buffer_order,
 172                                             DMA_FROM_DEVICE);
 173                        if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
 174                                                       dma_addr))) {
 175                                __free_pages(page, efx->rx_buffer_order);
 176                                return -EIO;
 177                        }
 178                        state = page_address(page);
 179                        state->dma_addr = dma_addr;
 180                } else {
 181                        state = page_address(page);
 182                        dma_addr = state->dma_addr;
 183                }
 184
 185                dma_addr += sizeof(struct efx_rx_page_state);
 186                page_offset = sizeof(struct efx_rx_page_state);
 187
 188                do {
 189                        index = rx_queue->added_count & rx_queue->ptr_mask;
 190                        rx_buf = efx_rx_buffer(rx_queue, index);
 191                        rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
 192                        rx_buf->page = page;
 193                        rx_buf->page_offset = page_offset + NET_IP_ALIGN;
 194                        rx_buf->len = efx->rx_dma_len;
 195                        rx_buf->flags = 0;
 196                        ++rx_queue->added_count;
 197                        get_page(page);
 198                        dma_addr += efx->rx_page_buf_step;
 199                        page_offset += efx->rx_page_buf_step;
 200                } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
 201
 202                rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
 203        } while (++count < efx->rx_pages_per_batch);
 204
 205        return 0;
 206}
 207
 208/* Unmap a DMA-mapped page.  This function is only called for the final RX
 209 * buffer in a page.
 210 */
 211static void efx_unmap_rx_buffer(struct efx_nic *efx,
 212                                struct efx_rx_buffer *rx_buf)
 213{
 214        struct page *page = rx_buf->page;
 215
 216        if (page) {
 217                struct efx_rx_page_state *state = page_address(page);
 218                dma_unmap_page(&efx->pci_dev->dev,
 219                               state->dma_addr,
 220                               PAGE_SIZE << efx->rx_buffer_order,
 221                               DMA_FROM_DEVICE);
 222        }
 223}
 224
 225static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
 226{
 227        if (rx_buf->page) {
 228                put_page(rx_buf->page);
 229                rx_buf->page = NULL;
 230        }
 231}
 232
 233/* Attempt to recycle the page if there is an RX recycle ring; the page can
 234 * only be added if this is the final RX buffer, to prevent pages being used in
 235 * the descriptor ring and appearing in the recycle ring simultaneously.
 236 */
 237static void efx_recycle_rx_page(struct efx_channel *channel,
 238                                struct efx_rx_buffer *rx_buf)
 239{
 240        struct page *page = rx_buf->page;
 241        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 242        struct efx_nic *efx = rx_queue->efx;
 243        unsigned index;
 244
 245        /* Only recycle the page after processing the final buffer. */
 246        if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
 247                return;
 248
 249        index = rx_queue->page_add & rx_queue->page_ptr_mask;
 250        if (rx_queue->page_ring[index] == NULL) {
 251                unsigned read_index = rx_queue->page_remove &
 252                        rx_queue->page_ptr_mask;
 253
 254                /* The next slot in the recycle ring is available, but
 255                 * increment page_remove if the read pointer currently
 256                 * points here.
 257                 */
 258                if (read_index == index)
 259                        ++rx_queue->page_remove;
 260                rx_queue->page_ring[index] = page;
 261                ++rx_queue->page_add;
 262                return;
 263        }
 264        ++rx_queue->page_recycle_full;
 265        efx_unmap_rx_buffer(efx, rx_buf);
 266        put_page(rx_buf->page);
 267}
 268
 269static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
 270                               struct efx_rx_buffer *rx_buf)
 271{
 272        /* Release the page reference we hold for the buffer. */
 273        if (rx_buf->page)
 274                put_page(rx_buf->page);
 275
 276        /* If this is the last buffer in a page, unmap and free it. */
 277        if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
 278                efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
 279                efx_free_rx_buffer(rx_buf);
 280        }
 281        rx_buf->page = NULL;
 282}
 283
 284/* Recycle the pages that are used by buffers that have just been received. */
 285static void efx_recycle_rx_pages(struct efx_channel *channel,
 286                                 struct efx_rx_buffer *rx_buf,
 287                                 unsigned int n_frags)
 288{
 289        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 290
 291        do {
 292                efx_recycle_rx_page(channel, rx_buf);
 293                rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 294        } while (--n_frags);
 295}
 296
 297static void efx_discard_rx_packet(struct efx_channel *channel,
 298                                  struct efx_rx_buffer *rx_buf,
 299                                  unsigned int n_frags)
 300{
 301        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 302
 303        efx_recycle_rx_pages(channel, rx_buf, n_frags);
 304
 305        do {
 306                efx_free_rx_buffer(rx_buf);
 307                rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 308        } while (--n_frags);
 309}
 310
 311/**
 312 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
 313 * @rx_queue:           RX descriptor queue
 314 *
 315 * This will aim to fill the RX descriptor queue up to
 316 * @rx_queue->@max_fill. If there is insufficient atomic
 317 * memory to do so, a slow fill will be scheduled.
 318 *
 319 * The caller must provide serialisation (none is used here). In practise,
 320 * this means this function must run from the NAPI handler, or be called
 321 * when NAPI is disabled.
 322 */
 323void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
 324{
 325        struct efx_nic *efx = rx_queue->efx;
 326        unsigned int fill_level, batch_size;
 327        int space, rc = 0;
 328
 329        if (!rx_queue->refill_enabled)
 330                return;
 331
 332        /* Calculate current fill level, and exit if we don't need to fill */
 333        fill_level = (rx_queue->added_count - rx_queue->removed_count);
 334        EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
 335        if (fill_level >= rx_queue->fast_fill_trigger)
 336                goto out;
 337
 338        /* Record minimum fill level */
 339        if (unlikely(fill_level < rx_queue->min_fill)) {
 340                if (fill_level)
 341                        rx_queue->min_fill = fill_level;
 342        }
 343
 344        batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 345        space = rx_queue->max_fill - fill_level;
 346        EFX_BUG_ON_PARANOID(space < batch_size);
 347
 348        netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 349                   "RX queue %d fast-filling descriptor ring from"
 350                   " level %d to level %d\n",
 351                   efx_rx_queue_index(rx_queue), fill_level,
 352                   rx_queue->max_fill);
 353
 354
 355        do {
 356                rc = efx_init_rx_buffers(rx_queue);
 357                if (unlikely(rc)) {
 358                        /* Ensure that we don't leave the rx queue empty */
 359                        if (rx_queue->added_count == rx_queue->removed_count)
 360                                efx_schedule_slow_fill(rx_queue);
 361                        goto out;
 362                }
 363        } while ((space -= batch_size) >= batch_size);
 364
 365        netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 366                   "RX queue %d fast-filled descriptor ring "
 367                   "to level %d\n", efx_rx_queue_index(rx_queue),
 368                   rx_queue->added_count - rx_queue->removed_count);
 369
 370 out:
 371        if (rx_queue->notified_count != rx_queue->added_count)
 372                efx_nic_notify_rx_desc(rx_queue);
 373}
 374
 375void efx_rx_slow_fill(unsigned long context)
 376{
 377        struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
 378
 379        /* Post an event to cause NAPI to run and refill the queue */
 380        efx_nic_generate_fill_event(rx_queue);
 381        ++rx_queue->slow_fill_count;
 382}
 383
 384static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
 385                                     struct efx_rx_buffer *rx_buf,
 386                                     int len)
 387{
 388        struct efx_nic *efx = rx_queue->efx;
 389        unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
 390
 391        if (likely(len <= max_len))
 392                return;
 393
 394        /* The packet must be discarded, but this is only a fatal error
 395         * if the caller indicated it was
 396         */
 397        rx_buf->flags |= EFX_RX_PKT_DISCARD;
 398
 399        if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
 400                if (net_ratelimit())
 401                        netif_err(efx, rx_err, efx->net_dev,
 402                                  " RX queue %d seriously overlength "
 403                                  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
 404                                  efx_rx_queue_index(rx_queue), len, max_len,
 405                                  efx->type->rx_buffer_padding);
 406                efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
 407        } else {
 408                if (net_ratelimit())
 409                        netif_err(efx, rx_err, efx->net_dev,
 410                                  " RX queue %d overlength RX event "
 411                                  "(0x%x > 0x%x)\n",
 412                                  efx_rx_queue_index(rx_queue), len, max_len);
 413        }
 414
 415        efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
 416}
 417
 418/* Pass a received packet up through GRO.  GRO can handle pages
 419 * regardless of checksum state and skbs with a good checksum.
 420 */
 421static void
 422efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
 423                  unsigned int n_frags, u8 *eh)
 424{
 425        struct napi_struct *napi = &channel->napi_str;
 426        gro_result_t gro_result;
 427        struct efx_nic *efx = channel->efx;
 428        struct sk_buff *skb;
 429
 430        skb = napi_get_frags(napi);
 431        if (unlikely(!skb)) {
 432                while (n_frags--) {
 433                        put_page(rx_buf->page);
 434                        rx_buf->page = NULL;
 435                        rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 436                }
 437                return;
 438        }
 439
 440        if (efx->net_dev->features & NETIF_F_RXHASH)
 441                skb->rxhash = efx_rx_buf_hash(efx, eh);
 442        skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
 443                          CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
 444
 445        for (;;) {
 446                skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 447                                   rx_buf->page, rx_buf->page_offset,
 448                                   rx_buf->len);
 449                rx_buf->page = NULL;
 450                skb->len += rx_buf->len;
 451                if (skb_shinfo(skb)->nr_frags == n_frags)
 452                        break;
 453
 454                rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 455        }
 456
 457        skb->data_len = skb->len;
 458        skb->truesize += n_frags * efx->rx_buffer_truesize;
 459
 460        skb_record_rx_queue(skb, channel->rx_queue.core_index);
 461
 462        gro_result = napi_gro_frags(napi);
 463        if (gro_result != GRO_DROP)
 464                channel->irq_mod_score += 2;
 465}
 466
 467/* Allocate and construct an SKB around page fragments */
 468static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
 469                                     struct efx_rx_buffer *rx_buf,
 470                                     unsigned int n_frags,
 471                                     u8 *eh, int hdr_len)
 472{
 473        struct efx_nic *efx = channel->efx;
 474        struct sk_buff *skb;
 475
 476        /* Allocate an SKB to store the headers */
 477        skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
 478        if (unlikely(skb == NULL))
 479                return NULL;
 480
 481        EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
 482
 483        skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
 484        memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
 485
 486        /* Append the remaining page(s) onto the frag list */
 487        if (rx_buf->len > hdr_len) {
 488                rx_buf->page_offset += hdr_len;
 489                rx_buf->len -= hdr_len;
 490
 491                for (;;) {
 492                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 493                                           rx_buf->page, rx_buf->page_offset,
 494                                           rx_buf->len);
 495                        rx_buf->page = NULL;
 496                        skb->len += rx_buf->len;
 497                        skb->data_len += rx_buf->len;
 498                        if (skb_shinfo(skb)->nr_frags == n_frags)
 499                                break;
 500
 501                        rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 502                }
 503        } else {
 504                __free_pages(rx_buf->page, efx->rx_buffer_order);
 505                rx_buf->page = NULL;
 506                n_frags = 0;
 507        }
 508
 509        skb->truesize += n_frags * efx->rx_buffer_truesize;
 510
 511        /* Move past the ethernet header */
 512        skb->protocol = eth_type_trans(skb, efx->net_dev);
 513
 514        return skb;
 515}
 516
 517void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
 518                   unsigned int n_frags, unsigned int len, u16 flags)
 519{
 520        struct efx_nic *efx = rx_queue->efx;
 521        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 522        struct efx_rx_buffer *rx_buf;
 523
 524        rx_buf = efx_rx_buffer(rx_queue, index);
 525        rx_buf->flags |= flags;
 526
 527        /* Validate the number of fragments and completed length */
 528        if (n_frags == 1) {
 529                if (!(flags & EFX_RX_PKT_PREFIX_LEN))
 530                        efx_rx_packet__check_len(rx_queue, rx_buf, len);
 531        } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
 532                   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
 533                   unlikely(len > n_frags * efx->rx_dma_len) ||
 534                   unlikely(!efx->rx_scatter)) {
 535                /* If this isn't an explicit discard request, either
 536                 * the hardware or the driver is broken.
 537                 */
 538                WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
 539                rx_buf->flags |= EFX_RX_PKT_DISCARD;
 540        }
 541
 542        netif_vdbg(efx, rx_status, efx->net_dev,
 543                   "RX queue %d received ids %x-%x len %d %s%s\n",
 544                   efx_rx_queue_index(rx_queue), index,
 545                   (index + n_frags - 1) & rx_queue->ptr_mask, len,
 546                   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
 547                   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
 548
 549        /* Discard packet, if instructed to do so.  Process the
 550         * previous receive first.
 551         */
 552        if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
 553                efx_rx_flush_packet(channel);
 554                efx_discard_rx_packet(channel, rx_buf, n_frags);
 555                return;
 556        }
 557
 558        if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
 559                rx_buf->len = len;
 560
 561        /* Release and/or sync the DMA mapping - assumes all RX buffers
 562         * consumed in-order per RX queue.
 563         */
 564        efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
 565
 566        /* Prefetch nice and early so data will (hopefully) be in cache by
 567         * the time we look at it.
 568         */
 569        prefetch(efx_rx_buf_va(rx_buf));
 570
 571        rx_buf->page_offset += efx->rx_prefix_size;
 572        rx_buf->len -= efx->rx_prefix_size;
 573
 574        if (n_frags > 1) {
 575                /* Release/sync DMA mapping for additional fragments.
 576                 * Fix length for last fragment.
 577                 */
 578                unsigned int tail_frags = n_frags - 1;
 579
 580                for (;;) {
 581                        rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 582                        if (--tail_frags == 0)
 583                                break;
 584                        efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
 585                }
 586                rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
 587                efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
 588        }
 589
 590        /* All fragments have been DMA-synced, so recycle pages. */
 591        rx_buf = efx_rx_buffer(rx_queue, index);
 592        efx_recycle_rx_pages(channel, rx_buf, n_frags);
 593
 594        /* Pipeline receives so that we give time for packet headers to be
 595         * prefetched into cache.
 596         */
 597        efx_rx_flush_packet(channel);
 598        channel->rx_pkt_n_frags = n_frags;
 599        channel->rx_pkt_index = index;
 600}
 601
 602static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
 603                           struct efx_rx_buffer *rx_buf,
 604                           unsigned int n_frags)
 605{
 606        struct sk_buff *skb;
 607        u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
 608
 609        skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
 610        if (unlikely(skb == NULL)) {
 611                efx_free_rx_buffer(rx_buf);
 612                return;
 613        }
 614        skb_record_rx_queue(skb, channel->rx_queue.core_index);
 615
 616        /* Set the SKB flags */
 617        skb_checksum_none_assert(skb);
 618        if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
 619                skb->ip_summed = CHECKSUM_UNNECESSARY;
 620
 621        if (channel->type->receive_skb)
 622                if (channel->type->receive_skb(channel, skb))
 623                        return;
 624
 625        /* Pass the packet up */
 626        netif_receive_skb(skb);
 627}
 628
 629/* Handle a received packet.  Second half: Touches packet payload. */
 630void __efx_rx_packet(struct efx_channel *channel)
 631{
 632        struct efx_nic *efx = channel->efx;
 633        struct efx_rx_buffer *rx_buf =
 634                efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
 635        u8 *eh = efx_rx_buf_va(rx_buf);
 636
 637        /* Read length from the prefix if necessary.  This already
 638         * excludes the length of the prefix itself.
 639         */
 640        if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
 641                rx_buf->len = le16_to_cpup((__le16 *)
 642                                           (eh + efx->rx_packet_len_offset));
 643
 644        /* If we're in loopback test, then pass the packet directly to the
 645         * loopback layer, and free the rx_buf here
 646         */
 647        if (unlikely(efx->loopback_selftest)) {
 648                efx_loopback_rx_packet(efx, eh, rx_buf->len);
 649                efx_free_rx_buffer(rx_buf);
 650                goto out;
 651        }
 652
 653        if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
 654                rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
 655
 656        if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
 657                efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
 658        else
 659                efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
 660out:
 661        channel->rx_pkt_n_frags = 0;
 662}
 663
 664int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
 665{
 666        struct efx_nic *efx = rx_queue->efx;
 667        unsigned int entries;
 668        int rc;
 669
 670        /* Create the smallest power-of-two aligned ring */
 671        entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
 672        EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 673        rx_queue->ptr_mask = entries - 1;
 674
 675        netif_dbg(efx, probe, efx->net_dev,
 676                  "creating RX queue %d size %#x mask %#x\n",
 677                  efx_rx_queue_index(rx_queue), efx->rxq_entries,
 678                  rx_queue->ptr_mask);
 679
 680        /* Allocate RX buffers */
 681        rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
 682                                   GFP_KERNEL);
 683        if (!rx_queue->buffer)
 684                return -ENOMEM;
 685
 686        rc = efx_nic_probe_rx(rx_queue);
 687        if (rc) {
 688                kfree(rx_queue->buffer);
 689                rx_queue->buffer = NULL;
 690        }
 691
 692        return rc;
 693}
 694
 695static void efx_init_rx_recycle_ring(struct efx_nic *efx,
 696                                     struct efx_rx_queue *rx_queue)
 697{
 698        unsigned int bufs_in_recycle_ring, page_ring_size;
 699
 700        /* Set the RX recycle ring size */
 701#ifdef CONFIG_PPC64
 702        bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
 703#else
 704        if (iommu_present(&pci_bus_type))
 705                bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
 706        else
 707                bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
 708#endif /* CONFIG_PPC64 */
 709
 710        page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
 711                                            efx->rx_bufs_per_page);
 712        rx_queue->page_ring = kcalloc(page_ring_size,
 713                                      sizeof(*rx_queue->page_ring), GFP_KERNEL);
 714        rx_queue->page_ptr_mask = page_ring_size - 1;
 715}
 716
 717void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
 718{
 719        struct efx_nic *efx = rx_queue->efx;
 720        unsigned int max_fill, trigger, max_trigger;
 721
 722        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 723                  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
 724
 725        /* Initialise ptr fields */
 726        rx_queue->added_count = 0;
 727        rx_queue->notified_count = 0;
 728        rx_queue->removed_count = 0;
 729        rx_queue->min_fill = -1U;
 730        efx_init_rx_recycle_ring(efx, rx_queue);
 731
 732        rx_queue->page_remove = 0;
 733        rx_queue->page_add = rx_queue->page_ptr_mask + 1;
 734        rx_queue->page_recycle_count = 0;
 735        rx_queue->page_recycle_failed = 0;
 736        rx_queue->page_recycle_full = 0;
 737
 738        /* Initialise limit fields */
 739        max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
 740        max_trigger =
 741                max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 742        if (rx_refill_threshold != 0) {
 743                trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
 744                if (trigger > max_trigger)
 745                        trigger = max_trigger;
 746        } else {
 747                trigger = max_trigger;
 748        }
 749
 750        rx_queue->max_fill = max_fill;
 751        rx_queue->fast_fill_trigger = trigger;
 752        rx_queue->refill_enabled = true;
 753
 754        /* Set up RX descriptor ring */
 755        efx_nic_init_rx(rx_queue);
 756}
 757
 758void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
 759{
 760        int i;
 761        struct efx_nic *efx = rx_queue->efx;
 762        struct efx_rx_buffer *rx_buf;
 763
 764        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 765                  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
 766
 767        del_timer_sync(&rx_queue->slow_fill);
 768
 769        /* Release RX buffers from the current read ptr to the write ptr */
 770        if (rx_queue->buffer) {
 771                for (i = rx_queue->removed_count; i < rx_queue->added_count;
 772                     i++) {
 773                        unsigned index = i & rx_queue->ptr_mask;
 774                        rx_buf = efx_rx_buffer(rx_queue, index);
 775                        efx_fini_rx_buffer(rx_queue, rx_buf);
 776                }
 777        }
 778
 779        /* Unmap and release the pages in the recycle ring. Remove the ring. */
 780        for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
 781                struct page *page = rx_queue->page_ring[i];
 782                struct efx_rx_page_state *state;
 783
 784                if (page == NULL)
 785                        continue;
 786
 787                state = page_address(page);
 788                dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
 789                               PAGE_SIZE << efx->rx_buffer_order,
 790                               DMA_FROM_DEVICE);
 791                put_page(page);
 792        }
 793        kfree(rx_queue->page_ring);
 794        rx_queue->page_ring = NULL;
 795}
 796
 797void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
 798{
 799        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 800                  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
 801
 802        efx_nic_remove_rx(rx_queue);
 803
 804        kfree(rx_queue->buffer);
 805        rx_queue->buffer = NULL;
 806}
 807
 808
 809module_param(rx_refill_threshold, uint, 0444);
 810MODULE_PARM_DESC(rx_refill_threshold,
 811                 "RX descriptor ring refill threshold (%)");
 812
 813#ifdef CONFIG_RFS_ACCEL
 814
 815int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
 816                   u16 rxq_index, u32 flow_id)
 817{
 818        struct efx_nic *efx = netdev_priv(net_dev);
 819        struct efx_channel *channel;
 820        struct efx_filter_spec spec;
 821        const struct iphdr *ip;
 822        const __be16 *ports;
 823        int nhoff;
 824        int rc;
 825
 826        nhoff = skb_network_offset(skb);
 827
 828        if (skb->protocol == htons(ETH_P_8021Q)) {
 829                EFX_BUG_ON_PARANOID(skb_headlen(skb) <
 830                                    nhoff + sizeof(struct vlan_hdr));
 831                if (((const struct vlan_hdr *)skb->data + nhoff)->
 832                    h_vlan_encapsulated_proto != htons(ETH_P_IP))
 833                        return -EPROTONOSUPPORT;
 834
 835                /* This is IP over 802.1q VLAN.  We can't filter on the
 836                 * IP 5-tuple and the vlan together, so just strip the
 837                 * vlan header and filter on the IP part.
 838                 */
 839                nhoff += sizeof(struct vlan_hdr);
 840        } else if (skb->protocol != htons(ETH_P_IP)) {
 841                return -EPROTONOSUPPORT;
 842        }
 843
 844        /* RFS must validate the IP header length before calling us */
 845        EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
 846        ip = (const struct iphdr *)(skb->data + nhoff);
 847        if (ip_is_fragment(ip))
 848                return -EPROTONOSUPPORT;
 849        EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
 850        ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
 851
 852        efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
 853                           efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
 854                           rxq_index);
 855        rc = efx_filter_set_ipv4_full(&spec, ip->protocol,
 856                                      ip->daddr, ports[1], ip->saddr, ports[0]);
 857        if (rc)
 858                return rc;
 859
 860        rc = efx->type->filter_rfs_insert(efx, &spec);
 861        if (rc < 0)
 862                return rc;
 863
 864        /* Remember this so we can check whether to expire the filter later */
 865        efx->rps_flow_id[rc] = flow_id;
 866        channel = efx_get_channel(efx, skb_get_rx_queue(skb));
 867        ++channel->rfs_filters_added;
 868
 869        netif_info(efx, rx_status, efx->net_dev,
 870                   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
 871                   (ip->protocol == IPPROTO_TCP) ? "TCP" : "UDP",
 872                   &ip->saddr, ntohs(ports[0]), &ip->daddr, ntohs(ports[1]),
 873                   rxq_index, flow_id, rc);
 874
 875        return rc;
 876}
 877
 878bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
 879{
 880        bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
 881        unsigned int index, size;
 882        u32 flow_id;
 883
 884        if (!spin_trylock_bh(&efx->filter_lock))
 885                return false;
 886
 887        expire_one = efx->type->filter_rfs_expire_one;
 888        index = efx->rps_expire_index;
 889        size = efx->type->max_rx_ip_filters;
 890        while (quota--) {
 891                flow_id = efx->rps_flow_id[index];
 892                if (expire_one(efx, flow_id, index))
 893                        netif_info(efx, rx_status, efx->net_dev,
 894                                   "expired filter %d [flow %u]\n",
 895                                   index, flow_id);
 896                if (++index == size)
 897                        index = 0;
 898        }
 899        efx->rps_expire_index = index;
 900
 901        spin_unlock_bh(&efx->filter_lock);
 902        return true;
 903}
 904
 905#endif /* CONFIG_RFS_ACCEL */
 906
 907/**
 908 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
 909 * @spec: Specification to test
 910 *
 911 * Return: %true if the specification is a non-drop RX filter that
 912 * matches a local MAC address I/G bit value of 1 or matches a local
 913 * IPv4 or IPv6 address value in the respective multicast address
 914 * range.  Otherwise %false.
 915 */
 916bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
 917{
 918        if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
 919            spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
 920                return false;
 921
 922        if (spec->match_flags &
 923            (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
 924            is_multicast_ether_addr(spec->loc_mac))
 925                return true;
 926
 927        if ((spec->match_flags &
 928             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
 929            (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
 930                if (spec->ether_type == htons(ETH_P_IP) &&
 931                    ipv4_is_multicast(spec->loc_host[0]))
 932                        return true;
 933                if (spec->ether_type == htons(ETH_P_IPV6) &&
 934                    ((const u8 *)spec->loc_host)[0] == 0xff)
 935                        return true;
 936        }
 937
 938        return false;
 939}
 940