linux/drivers/net/wireless/ath/ath5k/base.c
<<
>>
Prefs
   1/*-
   2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
   3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
   4 * Copyright (c) 2006 Devicescape Software, Inc.
   5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
   6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * All rights reserved.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer,
  15 *    without modification.
  16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18 *    redistribution must be conditioned upon including a substantially
  19 *    similar Disclaimer requirement for further binary redistribution.
  20 * 3. Neither the names of the above-listed copyright holders nor the names
  21 *    of any contributors may be used to endorse or promote products derived
  22 *    from this software without specific prior written permission.
  23 *
  24 * Alternatively, this software may be distributed under the terms of the
  25 * GNU General Public License ("GPL") version 2 as published by the Free
  26 * Software Foundation.
  27 *
  28 * NO WARRANTY
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39 * THE POSSIBILITY OF SUCH DAMAGES.
  40 *
  41 */
  42
  43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  44
  45#include <linux/module.h>
  46#include <linux/delay.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/hardirq.h>
  49#include <linux/if.h>
  50#include <linux/io.h>
  51#include <linux/netdevice.h>
  52#include <linux/cache.h>
  53#include <linux/ethtool.h>
  54#include <linux/uaccess.h>
  55#include <linux/slab.h>
  56#include <linux/etherdevice.h>
  57#include <linux/nl80211.h>
  58
  59#include <net/cfg80211.h>
  60#include <net/ieee80211_radiotap.h>
  61
  62#include <asm/unaligned.h>
  63
  64#include <net/mac80211.h>
  65#include "base.h"
  66#include "reg.h"
  67#include "debug.h"
  68#include "ani.h"
  69#include "ath5k.h"
  70#include "../regd.h"
  71
  72#define CREATE_TRACE_POINTS
  73#include "trace.h"
  74
  75bool ath5k_modparam_nohwcrypt;
  76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
  77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  78
  79static bool modparam_fastchanswitch;
  80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
  81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  82
  83static bool ath5k_modparam_no_hw_rfkill_switch;
  84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
  85                                                                bool, S_IRUGO);
  86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
  87
  88
  89/* Module info */
  90MODULE_AUTHOR("Jiri Slaby");
  91MODULE_AUTHOR("Nick Kossifidis");
  92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  94MODULE_LICENSE("Dual BSD/GPL");
  95
  96static int ath5k_init(struct ieee80211_hw *hw);
  97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  98                                                                bool skip_pcu);
  99
 100/* Known SREVs */
 101static const struct ath5k_srev_name srev_names[] = {
 102#ifdef CONFIG_ATHEROS_AR231X
 103        { "5312",       AR5K_VERSION_MAC,       AR5K_SREV_AR5312_R2 },
 104        { "5312",       AR5K_VERSION_MAC,       AR5K_SREV_AR5312_R7 },
 105        { "2313",       AR5K_VERSION_MAC,       AR5K_SREV_AR2313_R8 },
 106        { "2315",       AR5K_VERSION_MAC,       AR5K_SREV_AR2315_R6 },
 107        { "2315",       AR5K_VERSION_MAC,       AR5K_SREV_AR2315_R7 },
 108        { "2317",       AR5K_VERSION_MAC,       AR5K_SREV_AR2317_R1 },
 109        { "2317",       AR5K_VERSION_MAC,       AR5K_SREV_AR2317_R2 },
 110#else
 111        { "5210",       AR5K_VERSION_MAC,       AR5K_SREV_AR5210 },
 112        { "5311",       AR5K_VERSION_MAC,       AR5K_SREV_AR5311 },
 113        { "5311A",      AR5K_VERSION_MAC,       AR5K_SREV_AR5311A },
 114        { "5311B",      AR5K_VERSION_MAC,       AR5K_SREV_AR5311B },
 115        { "5211",       AR5K_VERSION_MAC,       AR5K_SREV_AR5211 },
 116        { "5212",       AR5K_VERSION_MAC,       AR5K_SREV_AR5212 },
 117        { "5213",       AR5K_VERSION_MAC,       AR5K_SREV_AR5213 },
 118        { "5213A",      AR5K_VERSION_MAC,       AR5K_SREV_AR5213A },
 119        { "2413",       AR5K_VERSION_MAC,       AR5K_SREV_AR2413 },
 120        { "2414",       AR5K_VERSION_MAC,       AR5K_SREV_AR2414 },
 121        { "5424",       AR5K_VERSION_MAC,       AR5K_SREV_AR5424 },
 122        { "5413",       AR5K_VERSION_MAC,       AR5K_SREV_AR5413 },
 123        { "5414",       AR5K_VERSION_MAC,       AR5K_SREV_AR5414 },
 124        { "2415",       AR5K_VERSION_MAC,       AR5K_SREV_AR2415 },
 125        { "5416",       AR5K_VERSION_MAC,       AR5K_SREV_AR5416 },
 126        { "5418",       AR5K_VERSION_MAC,       AR5K_SREV_AR5418 },
 127        { "2425",       AR5K_VERSION_MAC,       AR5K_SREV_AR2425 },
 128        { "2417",       AR5K_VERSION_MAC,       AR5K_SREV_AR2417 },
 129#endif
 130        { "xxxxx",      AR5K_VERSION_MAC,       AR5K_SREV_UNKNOWN },
 131        { "5110",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5110 },
 132        { "5111",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5111 },
 133        { "5111A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5111A },
 134        { "2111",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2111 },
 135        { "5112",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112 },
 136        { "5112A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112A },
 137        { "5112B",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112B },
 138        { "2112",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112 },
 139        { "2112A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112A },
 140        { "2112B",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112B },
 141        { "2413",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2413 },
 142        { "5413",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5413 },
 143        { "5424",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5424 },
 144        { "5133",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5133 },
 145#ifdef CONFIG_ATHEROS_AR231X
 146        { "2316",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2316 },
 147        { "2317",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2317 },
 148#endif
 149        { "xxxxx",      AR5K_VERSION_RAD,       AR5K_SREV_UNKNOWN },
 150};
 151
 152static const struct ieee80211_rate ath5k_rates[] = {
 153        { .bitrate = 10,
 154          .hw_value = ATH5K_RATE_CODE_1M, },
 155        { .bitrate = 20,
 156          .hw_value = ATH5K_RATE_CODE_2M,
 157          .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
 158          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 159        { .bitrate = 55,
 160          .hw_value = ATH5K_RATE_CODE_5_5M,
 161          .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
 162          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 163        { .bitrate = 110,
 164          .hw_value = ATH5K_RATE_CODE_11M,
 165          .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
 166          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 167        { .bitrate = 60,
 168          .hw_value = ATH5K_RATE_CODE_6M,
 169          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 170                   IEEE80211_RATE_SUPPORTS_10MHZ },
 171        { .bitrate = 90,
 172          .hw_value = ATH5K_RATE_CODE_9M,
 173          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 174                   IEEE80211_RATE_SUPPORTS_10MHZ },
 175        { .bitrate = 120,
 176          .hw_value = ATH5K_RATE_CODE_12M,
 177          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 178                   IEEE80211_RATE_SUPPORTS_10MHZ },
 179        { .bitrate = 180,
 180          .hw_value = ATH5K_RATE_CODE_18M,
 181          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 182                   IEEE80211_RATE_SUPPORTS_10MHZ },
 183        { .bitrate = 240,
 184          .hw_value = ATH5K_RATE_CODE_24M,
 185          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 186                   IEEE80211_RATE_SUPPORTS_10MHZ },
 187        { .bitrate = 360,
 188          .hw_value = ATH5K_RATE_CODE_36M,
 189          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 190                   IEEE80211_RATE_SUPPORTS_10MHZ },
 191        { .bitrate = 480,
 192          .hw_value = ATH5K_RATE_CODE_48M,
 193          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 194                   IEEE80211_RATE_SUPPORTS_10MHZ },
 195        { .bitrate = 540,
 196          .hw_value = ATH5K_RATE_CODE_54M,
 197          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 198                   IEEE80211_RATE_SUPPORTS_10MHZ },
 199};
 200
 201static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
 202{
 203        u64 tsf = ath5k_hw_get_tsf64(ah);
 204
 205        if ((tsf & 0x7fff) < rstamp)
 206                tsf -= 0x8000;
 207
 208        return (tsf & ~0x7fff) | rstamp;
 209}
 210
 211const char *
 212ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
 213{
 214        const char *name = "xxxxx";
 215        unsigned int i;
 216
 217        for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
 218                if (srev_names[i].sr_type != type)
 219                        continue;
 220
 221                if ((val & 0xf0) == srev_names[i].sr_val)
 222                        name = srev_names[i].sr_name;
 223
 224                if ((val & 0xff) == srev_names[i].sr_val) {
 225                        name = srev_names[i].sr_name;
 226                        break;
 227                }
 228        }
 229
 230        return name;
 231}
 232static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
 233{
 234        struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 235        return ath5k_hw_reg_read(ah, reg_offset);
 236}
 237
 238static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
 239{
 240        struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 241        ath5k_hw_reg_write(ah, val, reg_offset);
 242}
 243
 244static const struct ath_ops ath5k_common_ops = {
 245        .read = ath5k_ioread32,
 246        .write = ath5k_iowrite32,
 247};
 248
 249/***********************\
 250* Driver Initialization *
 251\***********************/
 252
 253static void ath5k_reg_notifier(struct wiphy *wiphy,
 254                               struct regulatory_request *request)
 255{
 256        struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
 257        struct ath5k_hw *ah = hw->priv;
 258        struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
 259
 260        ath_reg_notifier_apply(wiphy, request, regulatory);
 261}
 262
 263/********************\
 264* Channel/mode setup *
 265\********************/
 266
 267/*
 268 * Returns true for the channel numbers used.
 269 */
 270#ifdef CONFIG_ATH5K_TEST_CHANNELS
 271static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 272{
 273        return true;
 274}
 275
 276#else
 277static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 278{
 279        if (band == IEEE80211_BAND_2GHZ && chan <= 14)
 280                return true;
 281
 282        return  /* UNII 1,2 */
 283                (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
 284                /* midband */
 285                ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
 286                /* UNII-3 */
 287                ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
 288                /* 802.11j 5.030-5.080 GHz (20MHz) */
 289                (chan == 8 || chan == 12 || chan == 16) ||
 290                /* 802.11j 4.9GHz (20MHz) */
 291                (chan == 184 || chan == 188 || chan == 192 || chan == 196));
 292}
 293#endif
 294
 295static unsigned int
 296ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
 297                unsigned int mode, unsigned int max)
 298{
 299        unsigned int count, size, freq, ch;
 300        enum ieee80211_band band;
 301
 302        switch (mode) {
 303        case AR5K_MODE_11A:
 304                /* 1..220, but 2GHz frequencies are filtered by check_channel */
 305                size = 220;
 306                band = IEEE80211_BAND_5GHZ;
 307                break;
 308        case AR5K_MODE_11B:
 309        case AR5K_MODE_11G:
 310                size = 26;
 311                band = IEEE80211_BAND_2GHZ;
 312                break;
 313        default:
 314                ATH5K_WARN(ah, "bad mode, not copying channels\n");
 315                return 0;
 316        }
 317
 318        count = 0;
 319        for (ch = 1; ch <= size && count < max; ch++) {
 320                freq = ieee80211_channel_to_frequency(ch, band);
 321
 322                if (freq == 0) /* mapping failed - not a standard channel */
 323                        continue;
 324
 325                /* Write channel info, needed for ath5k_channel_ok() */
 326                channels[count].center_freq = freq;
 327                channels[count].band = band;
 328                channels[count].hw_value = mode;
 329
 330                /* Check if channel is supported by the chipset */
 331                if (!ath5k_channel_ok(ah, &channels[count]))
 332                        continue;
 333
 334                if (!ath5k_is_standard_channel(ch, band))
 335                        continue;
 336
 337                count++;
 338        }
 339
 340        return count;
 341}
 342
 343static void
 344ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
 345{
 346        u8 i;
 347
 348        for (i = 0; i < AR5K_MAX_RATES; i++)
 349                ah->rate_idx[b->band][i] = -1;
 350
 351        for (i = 0; i < b->n_bitrates; i++) {
 352                ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
 353                if (b->bitrates[i].hw_value_short)
 354                        ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
 355        }
 356}
 357
 358static int
 359ath5k_setup_bands(struct ieee80211_hw *hw)
 360{
 361        struct ath5k_hw *ah = hw->priv;
 362        struct ieee80211_supported_band *sband;
 363        int max_c, count_c = 0;
 364        int i;
 365
 366        BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
 367        max_c = ARRAY_SIZE(ah->channels);
 368
 369        /* 2GHz band */
 370        sband = &ah->sbands[IEEE80211_BAND_2GHZ];
 371        sband->band = IEEE80211_BAND_2GHZ;
 372        sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
 373
 374        if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
 375                /* G mode */
 376                memcpy(sband->bitrates, &ath5k_rates[0],
 377                       sizeof(struct ieee80211_rate) * 12);
 378                sband->n_bitrates = 12;
 379
 380                sband->channels = ah->channels;
 381                sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 382                                        AR5K_MODE_11G, max_c);
 383
 384                hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 385                count_c = sband->n_channels;
 386                max_c -= count_c;
 387        } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
 388                /* B mode */
 389                memcpy(sband->bitrates, &ath5k_rates[0],
 390                       sizeof(struct ieee80211_rate) * 4);
 391                sband->n_bitrates = 4;
 392
 393                /* 5211 only supports B rates and uses 4bit rate codes
 394                 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
 395                 * fix them up here:
 396                 */
 397                if (ah->ah_version == AR5K_AR5211) {
 398                        for (i = 0; i < 4; i++) {
 399                                sband->bitrates[i].hw_value =
 400                                        sband->bitrates[i].hw_value & 0xF;
 401                                sband->bitrates[i].hw_value_short =
 402                                        sband->bitrates[i].hw_value_short & 0xF;
 403                        }
 404                }
 405
 406                sband->channels = ah->channels;
 407                sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 408                                        AR5K_MODE_11B, max_c);
 409
 410                hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 411                count_c = sband->n_channels;
 412                max_c -= count_c;
 413        }
 414        ath5k_setup_rate_idx(ah, sband);
 415
 416        /* 5GHz band, A mode */
 417        if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
 418                sband = &ah->sbands[IEEE80211_BAND_5GHZ];
 419                sband->band = IEEE80211_BAND_5GHZ;
 420                sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
 421
 422                memcpy(sband->bitrates, &ath5k_rates[4],
 423                       sizeof(struct ieee80211_rate) * 8);
 424                sband->n_bitrates = 8;
 425
 426                sband->channels = &ah->channels[count_c];
 427                sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 428                                        AR5K_MODE_11A, max_c);
 429
 430                hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
 431        }
 432        ath5k_setup_rate_idx(ah, sband);
 433
 434        ath5k_debug_dump_bands(ah);
 435
 436        return 0;
 437}
 438
 439/*
 440 * Set/change channels. We always reset the chip.
 441 * To accomplish this we must first cleanup any pending DMA,
 442 * then restart stuff after a la  ath5k_init.
 443 *
 444 * Called with ah->lock.
 445 */
 446int
 447ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
 448{
 449        ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
 450                  "channel set, resetting (%u -> %u MHz)\n",
 451                  ah->curchan->center_freq, chandef->chan->center_freq);
 452
 453        switch (chandef->width) {
 454        case NL80211_CHAN_WIDTH_20:
 455        case NL80211_CHAN_WIDTH_20_NOHT:
 456                ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
 457                break;
 458        case NL80211_CHAN_WIDTH_5:
 459                ah->ah_bwmode = AR5K_BWMODE_5MHZ;
 460                break;
 461        case NL80211_CHAN_WIDTH_10:
 462                ah->ah_bwmode = AR5K_BWMODE_10MHZ;
 463                break;
 464        default:
 465                WARN_ON(1);
 466                return -EINVAL;
 467        }
 468
 469        /*
 470         * To switch channels clear any pending DMA operations;
 471         * wait long enough for the RX fifo to drain, reset the
 472         * hardware at the new frequency, and then re-enable
 473         * the relevant bits of the h/w.
 474         */
 475        return ath5k_reset(ah, chandef->chan, true);
 476}
 477
 478void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
 479{
 480        struct ath5k_vif_iter_data *iter_data = data;
 481        int i;
 482        struct ath5k_vif *avf = (void *)vif->drv_priv;
 483
 484        if (iter_data->hw_macaddr)
 485                for (i = 0; i < ETH_ALEN; i++)
 486                        iter_data->mask[i] &=
 487                                ~(iter_data->hw_macaddr[i] ^ mac[i]);
 488
 489        if (!iter_data->found_active) {
 490                iter_data->found_active = true;
 491                memcpy(iter_data->active_mac, mac, ETH_ALEN);
 492        }
 493
 494        if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
 495                if (ether_addr_equal(iter_data->hw_macaddr, mac))
 496                        iter_data->need_set_hw_addr = false;
 497
 498        if (!iter_data->any_assoc) {
 499                if (avf->assoc)
 500                        iter_data->any_assoc = true;
 501        }
 502
 503        /* Calculate combined mode - when APs are active, operate in AP mode.
 504         * Otherwise use the mode of the new interface. This can currently
 505         * only deal with combinations of APs and STAs. Only one ad-hoc
 506         * interfaces is allowed.
 507         */
 508        if (avf->opmode == NL80211_IFTYPE_AP)
 509                iter_data->opmode = NL80211_IFTYPE_AP;
 510        else {
 511                if (avf->opmode == NL80211_IFTYPE_STATION)
 512                        iter_data->n_stas++;
 513                if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
 514                        iter_data->opmode = avf->opmode;
 515        }
 516}
 517
 518void
 519ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
 520                                   struct ieee80211_vif *vif)
 521{
 522        struct ath_common *common = ath5k_hw_common(ah);
 523        struct ath5k_vif_iter_data iter_data;
 524        u32 rfilt;
 525
 526        /*
 527         * Use the hardware MAC address as reference, the hardware uses it
 528         * together with the BSSID mask when matching addresses.
 529         */
 530        iter_data.hw_macaddr = common->macaddr;
 531        memset(&iter_data.mask, 0xff, ETH_ALEN);
 532        iter_data.found_active = false;
 533        iter_data.need_set_hw_addr = true;
 534        iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
 535        iter_data.n_stas = 0;
 536
 537        if (vif)
 538                ath5k_vif_iter(&iter_data, vif->addr, vif);
 539
 540        /* Get list of all active MAC addresses */
 541        ieee80211_iterate_active_interfaces_atomic(
 542                ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 543                ath5k_vif_iter, &iter_data);
 544        memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
 545
 546        ah->opmode = iter_data.opmode;
 547        if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
 548                /* Nothing active, default to station mode */
 549                ah->opmode = NL80211_IFTYPE_STATION;
 550
 551        ath5k_hw_set_opmode(ah, ah->opmode);
 552        ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
 553                  ah->opmode, ath_opmode_to_string(ah->opmode));
 554
 555        if (iter_data.need_set_hw_addr && iter_data.found_active)
 556                ath5k_hw_set_lladdr(ah, iter_data.active_mac);
 557
 558        if (ath5k_hw_hasbssidmask(ah))
 559                ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
 560
 561        /* Set up RX Filter */
 562        if (iter_data.n_stas > 1) {
 563                /* If you have multiple STA interfaces connected to
 564                 * different APs, ARPs are not received (most of the time?)
 565                 * Enabling PROMISC appears to fix that problem.
 566                 */
 567                ah->filter_flags |= AR5K_RX_FILTER_PROM;
 568        }
 569
 570        rfilt = ah->filter_flags;
 571        ath5k_hw_set_rx_filter(ah, rfilt);
 572        ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
 573}
 574
 575static inline int
 576ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
 577{
 578        int rix;
 579
 580        /* return base rate on errors */
 581        if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
 582                        "hw_rix out of bounds: %x\n", hw_rix))
 583                return 0;
 584
 585        rix = ah->rate_idx[ah->curchan->band][hw_rix];
 586        if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
 587                rix = 0;
 588
 589        return rix;
 590}
 591
 592/***************\
 593* Buffers setup *
 594\***************/
 595
 596static
 597struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
 598{
 599        struct ath_common *common = ath5k_hw_common(ah);
 600        struct sk_buff *skb;
 601
 602        /*
 603         * Allocate buffer with headroom_needed space for the
 604         * fake physical layer header at the start.
 605         */
 606        skb = ath_rxbuf_alloc(common,
 607                              common->rx_bufsize,
 608                              GFP_ATOMIC);
 609
 610        if (!skb) {
 611                ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
 612                                common->rx_bufsize);
 613                return NULL;
 614        }
 615
 616        *skb_addr = dma_map_single(ah->dev,
 617                                   skb->data, common->rx_bufsize,
 618                                   DMA_FROM_DEVICE);
 619
 620        if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
 621                ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
 622                dev_kfree_skb(skb);
 623                return NULL;
 624        }
 625        return skb;
 626}
 627
 628static int
 629ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
 630{
 631        struct sk_buff *skb = bf->skb;
 632        struct ath5k_desc *ds;
 633        int ret;
 634
 635        if (!skb) {
 636                skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
 637                if (!skb)
 638                        return -ENOMEM;
 639                bf->skb = skb;
 640        }
 641
 642        /*
 643         * Setup descriptors.  For receive we always terminate
 644         * the descriptor list with a self-linked entry so we'll
 645         * not get overrun under high load (as can happen with a
 646         * 5212 when ANI processing enables PHY error frames).
 647         *
 648         * To ensure the last descriptor is self-linked we create
 649         * each descriptor as self-linked and add it to the end.  As
 650         * each additional descriptor is added the previous self-linked
 651         * entry is "fixed" naturally.  This should be safe even
 652         * if DMA is happening.  When processing RX interrupts we
 653         * never remove/process the last, self-linked, entry on the
 654         * descriptor list.  This ensures the hardware always has
 655         * someplace to write a new frame.
 656         */
 657        ds = bf->desc;
 658        ds->ds_link = bf->daddr;        /* link to self */
 659        ds->ds_data = bf->skbaddr;
 660        ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
 661        if (ret) {
 662                ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
 663                return ret;
 664        }
 665
 666        if (ah->rxlink != NULL)
 667                *ah->rxlink = bf->daddr;
 668        ah->rxlink = &ds->ds_link;
 669        return 0;
 670}
 671
 672static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
 673{
 674        struct ieee80211_hdr *hdr;
 675        enum ath5k_pkt_type htype;
 676        __le16 fc;
 677
 678        hdr = (struct ieee80211_hdr *)skb->data;
 679        fc = hdr->frame_control;
 680
 681        if (ieee80211_is_beacon(fc))
 682                htype = AR5K_PKT_TYPE_BEACON;
 683        else if (ieee80211_is_probe_resp(fc))
 684                htype = AR5K_PKT_TYPE_PROBE_RESP;
 685        else if (ieee80211_is_atim(fc))
 686                htype = AR5K_PKT_TYPE_ATIM;
 687        else if (ieee80211_is_pspoll(fc))
 688                htype = AR5K_PKT_TYPE_PSPOLL;
 689        else
 690                htype = AR5K_PKT_TYPE_NORMAL;
 691
 692        return htype;
 693}
 694
 695static struct ieee80211_rate *
 696ath5k_get_rate(const struct ieee80211_hw *hw,
 697               const struct ieee80211_tx_info *info,
 698               struct ath5k_buf *bf, int idx)
 699{
 700        /*
 701        * convert a ieee80211_tx_rate RC-table entry to
 702        * the respective ieee80211_rate struct
 703        */
 704        if (bf->rates[idx].idx < 0) {
 705                return NULL;
 706        }
 707
 708        return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
 709}
 710
 711static u16
 712ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
 713                        const struct ieee80211_tx_info *info,
 714                        struct ath5k_buf *bf, int idx)
 715{
 716        struct ieee80211_rate *rate;
 717        u16 hw_rate;
 718        u8 rc_flags;
 719
 720        rate = ath5k_get_rate(hw, info, bf, idx);
 721        if (!rate)
 722                return 0;
 723
 724        rc_flags = bf->rates[idx].flags;
 725        hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
 726                   rate->hw_value_short : rate->hw_value;
 727
 728        return hw_rate;
 729}
 730
 731static int
 732ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
 733                  struct ath5k_txq *txq, int padsize,
 734                  struct ieee80211_tx_control *control)
 735{
 736        struct ath5k_desc *ds = bf->desc;
 737        struct sk_buff *skb = bf->skb;
 738        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 739        unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
 740        struct ieee80211_rate *rate;
 741        unsigned int mrr_rate[3], mrr_tries[3];
 742        int i, ret;
 743        u16 hw_rate;
 744        u16 cts_rate = 0;
 745        u16 duration = 0;
 746        u8 rc_flags;
 747
 748        flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
 749
 750        /* XXX endianness */
 751        bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
 752                        DMA_TO_DEVICE);
 753
 754        ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
 755                               ARRAY_SIZE(bf->rates));
 756
 757        rate = ath5k_get_rate(ah->hw, info, bf, 0);
 758
 759        if (!rate) {
 760                ret = -EINVAL;
 761                goto err_unmap;
 762        }
 763
 764        if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 765                flags |= AR5K_TXDESC_NOACK;
 766
 767        rc_flags = info->control.rates[0].flags;
 768
 769        hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
 770
 771        pktlen = skb->len;
 772
 773        /* FIXME: If we are in g mode and rate is a CCK rate
 774         * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
 775         * from tx power (value is in dB units already) */
 776        if (info->control.hw_key) {
 777                keyidx = info->control.hw_key->hw_key_idx;
 778                pktlen += info->control.hw_key->icv_len;
 779        }
 780        if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 781                flags |= AR5K_TXDESC_RTSENA;
 782                cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 783                duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
 784                        info->control.vif, pktlen, info));
 785        }
 786        if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
 787                flags |= AR5K_TXDESC_CTSENA;
 788                cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 789                duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
 790                        info->control.vif, pktlen, info));
 791        }
 792
 793        ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
 794                ieee80211_get_hdrlen_from_skb(skb), padsize,
 795                get_hw_packet_type(skb),
 796                (ah->ah_txpower.txp_requested * 2),
 797                hw_rate,
 798                bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
 799                cts_rate, duration);
 800        if (ret)
 801                goto err_unmap;
 802
 803        /* Set up MRR descriptor */
 804        if (ah->ah_capabilities.cap_has_mrr_support) {
 805                memset(mrr_rate, 0, sizeof(mrr_rate));
 806                memset(mrr_tries, 0, sizeof(mrr_tries));
 807
 808                for (i = 0; i < 3; i++) {
 809
 810                        rate = ath5k_get_rate(ah->hw, info, bf, i);
 811                        if (!rate)
 812                                break;
 813
 814                        mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
 815                        mrr_tries[i] = bf->rates[i].count;
 816                }
 817
 818                ath5k_hw_setup_mrr_tx_desc(ah, ds,
 819                        mrr_rate[0], mrr_tries[0],
 820                        mrr_rate[1], mrr_tries[1],
 821                        mrr_rate[2], mrr_tries[2]);
 822        }
 823
 824        ds->ds_link = 0;
 825        ds->ds_data = bf->skbaddr;
 826
 827        spin_lock_bh(&txq->lock);
 828        list_add_tail(&bf->list, &txq->q);
 829        txq->txq_len++;
 830        if (txq->link == NULL) /* is this first packet? */
 831                ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
 832        else /* no, so only link it */
 833                *txq->link = bf->daddr;
 834
 835        txq->link = &ds->ds_link;
 836        ath5k_hw_start_tx_dma(ah, txq->qnum);
 837        mmiowb();
 838        spin_unlock_bh(&txq->lock);
 839
 840        return 0;
 841err_unmap:
 842        dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
 843        return ret;
 844}
 845
 846/*******************\
 847* Descriptors setup *
 848\*******************/
 849
 850static int
 851ath5k_desc_alloc(struct ath5k_hw *ah)
 852{
 853        struct ath5k_desc *ds;
 854        struct ath5k_buf *bf;
 855        dma_addr_t da;
 856        unsigned int i;
 857        int ret;
 858
 859        /* allocate descriptors */
 860        ah->desc_len = sizeof(struct ath5k_desc) *
 861                        (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
 862
 863        ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
 864                                &ah->desc_daddr, GFP_KERNEL);
 865        if (ah->desc == NULL) {
 866                ATH5K_ERR(ah, "can't allocate descriptors\n");
 867                ret = -ENOMEM;
 868                goto err;
 869        }
 870        ds = ah->desc;
 871        da = ah->desc_daddr;
 872        ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
 873                ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
 874
 875        bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
 876                        sizeof(struct ath5k_buf), GFP_KERNEL);
 877        if (bf == NULL) {
 878                ATH5K_ERR(ah, "can't allocate bufptr\n");
 879                ret = -ENOMEM;
 880                goto err_free;
 881        }
 882        ah->bufptr = bf;
 883
 884        INIT_LIST_HEAD(&ah->rxbuf);
 885        for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 886                bf->desc = ds;
 887                bf->daddr = da;
 888                list_add_tail(&bf->list, &ah->rxbuf);
 889        }
 890
 891        INIT_LIST_HEAD(&ah->txbuf);
 892        ah->txbuf_len = ATH_TXBUF;
 893        for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 894                bf->desc = ds;
 895                bf->daddr = da;
 896                list_add_tail(&bf->list, &ah->txbuf);
 897        }
 898
 899        /* beacon buffers */
 900        INIT_LIST_HEAD(&ah->bcbuf);
 901        for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 902                bf->desc = ds;
 903                bf->daddr = da;
 904                list_add_tail(&bf->list, &ah->bcbuf);
 905        }
 906
 907        return 0;
 908err_free:
 909        dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 910err:
 911        ah->desc = NULL;
 912        return ret;
 913}
 914
 915void
 916ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 917{
 918        BUG_ON(!bf);
 919        if (!bf->skb)
 920                return;
 921        dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
 922                        DMA_TO_DEVICE);
 923        ieee80211_free_txskb(ah->hw, bf->skb);
 924        bf->skb = NULL;
 925        bf->skbaddr = 0;
 926        bf->desc->ds_data = 0;
 927}
 928
 929void
 930ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 931{
 932        struct ath_common *common = ath5k_hw_common(ah);
 933
 934        BUG_ON(!bf);
 935        if (!bf->skb)
 936                return;
 937        dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
 938                        DMA_FROM_DEVICE);
 939        dev_kfree_skb_any(bf->skb);
 940        bf->skb = NULL;
 941        bf->skbaddr = 0;
 942        bf->desc->ds_data = 0;
 943}
 944
 945static void
 946ath5k_desc_free(struct ath5k_hw *ah)
 947{
 948        struct ath5k_buf *bf;
 949
 950        list_for_each_entry(bf, &ah->txbuf, list)
 951                ath5k_txbuf_free_skb(ah, bf);
 952        list_for_each_entry(bf, &ah->rxbuf, list)
 953                ath5k_rxbuf_free_skb(ah, bf);
 954        list_for_each_entry(bf, &ah->bcbuf, list)
 955                ath5k_txbuf_free_skb(ah, bf);
 956
 957        /* Free memory associated with all descriptors */
 958        dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 959        ah->desc = NULL;
 960        ah->desc_daddr = 0;
 961
 962        kfree(ah->bufptr);
 963        ah->bufptr = NULL;
 964}
 965
 966
 967/**************\
 968* Queues setup *
 969\**************/
 970
 971static struct ath5k_txq *
 972ath5k_txq_setup(struct ath5k_hw *ah,
 973                int qtype, int subtype)
 974{
 975        struct ath5k_txq *txq;
 976        struct ath5k_txq_info qi = {
 977                .tqi_subtype = subtype,
 978                /* XXX: default values not correct for B and XR channels,
 979                 * but who cares? */
 980                .tqi_aifs = AR5K_TUNE_AIFS,
 981                .tqi_cw_min = AR5K_TUNE_CWMIN,
 982                .tqi_cw_max = AR5K_TUNE_CWMAX
 983        };
 984        int qnum;
 985
 986        /*
 987         * Enable interrupts only for EOL and DESC conditions.
 988         * We mark tx descriptors to receive a DESC interrupt
 989         * when a tx queue gets deep; otherwise we wait for the
 990         * EOL to reap descriptors.  Note that this is done to
 991         * reduce interrupt load and this only defers reaping
 992         * descriptors, never transmitting frames.  Aside from
 993         * reducing interrupts this also permits more concurrency.
 994         * The only potential downside is if the tx queue backs
 995         * up in which case the top half of the kernel may backup
 996         * due to a lack of tx descriptors.
 997         */
 998        qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
 999                                AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1000        qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1001        if (qnum < 0) {
1002                /*
1003                 * NB: don't print a message, this happens
1004                 * normally on parts with too few tx queues
1005                 */
1006                return ERR_PTR(qnum);
1007        }
1008        txq = &ah->txqs[qnum];
1009        if (!txq->setup) {
1010                txq->qnum = qnum;
1011                txq->link = NULL;
1012                INIT_LIST_HEAD(&txq->q);
1013                spin_lock_init(&txq->lock);
1014                txq->setup = true;
1015                txq->txq_len = 0;
1016                txq->txq_max = ATH5K_TXQ_LEN_MAX;
1017                txq->txq_poll_mark = false;
1018                txq->txq_stuck = 0;
1019        }
1020        return &ah->txqs[qnum];
1021}
1022
1023static int
1024ath5k_beaconq_setup(struct ath5k_hw *ah)
1025{
1026        struct ath5k_txq_info qi = {
1027                /* XXX: default values not correct for B and XR channels,
1028                 * but who cares? */
1029                .tqi_aifs = AR5K_TUNE_AIFS,
1030                .tqi_cw_min = AR5K_TUNE_CWMIN,
1031                .tqi_cw_max = AR5K_TUNE_CWMAX,
1032                /* NB: for dynamic turbo, don't enable any other interrupts */
1033                .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1034        };
1035
1036        return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1037}
1038
1039static int
1040ath5k_beaconq_config(struct ath5k_hw *ah)
1041{
1042        struct ath5k_txq_info qi;
1043        int ret;
1044
1045        ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1046        if (ret)
1047                goto err;
1048
1049        if (ah->opmode == NL80211_IFTYPE_AP ||
1050            ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1051                /*
1052                 * Always burst out beacon and CAB traffic
1053                 * (aifs = cwmin = cwmax = 0)
1054                 */
1055                qi.tqi_aifs = 0;
1056                qi.tqi_cw_min = 0;
1057                qi.tqi_cw_max = 0;
1058        } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1059                /*
1060                 * Adhoc mode; backoff between 0 and (2 * cw_min).
1061                 */
1062                qi.tqi_aifs = 0;
1063                qi.tqi_cw_min = 0;
1064                qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1065        }
1066
1067        ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1068                "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1069                qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1070
1071        ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1072        if (ret) {
1073                ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1074                        "hardware queue!\n", __func__);
1075                goto err;
1076        }
1077        ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1078        if (ret)
1079                goto err;
1080
1081        /* reconfigure cabq with ready time to 80% of beacon_interval */
1082        ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1083        if (ret)
1084                goto err;
1085
1086        qi.tqi_ready_time = (ah->bintval * 80) / 100;
1087        ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1088        if (ret)
1089                goto err;
1090
1091        ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1092err:
1093        return ret;
1094}
1095
1096/**
1097 * ath5k_drain_tx_buffs - Empty tx buffers
1098 *
1099 * @ah The &struct ath5k_hw
1100 *
1101 * Empty tx buffers from all queues in preparation
1102 * of a reset or during shutdown.
1103 *
1104 * NB:  this assumes output has been stopped and
1105 *      we do not need to block ath5k_tx_tasklet
1106 */
1107static void
1108ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1109{
1110        struct ath5k_txq *txq;
1111        struct ath5k_buf *bf, *bf0;
1112        int i;
1113
1114        for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1115                if (ah->txqs[i].setup) {
1116                        txq = &ah->txqs[i];
1117                        spin_lock_bh(&txq->lock);
1118                        list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1119                                ath5k_debug_printtxbuf(ah, bf);
1120
1121                                ath5k_txbuf_free_skb(ah, bf);
1122
1123                                spin_lock(&ah->txbuflock);
1124                                list_move_tail(&bf->list, &ah->txbuf);
1125                                ah->txbuf_len++;
1126                                txq->txq_len--;
1127                                spin_unlock(&ah->txbuflock);
1128                        }
1129                        txq->link = NULL;
1130                        txq->txq_poll_mark = false;
1131                        spin_unlock_bh(&txq->lock);
1132                }
1133        }
1134}
1135
1136static void
1137ath5k_txq_release(struct ath5k_hw *ah)
1138{
1139        struct ath5k_txq *txq = ah->txqs;
1140        unsigned int i;
1141
1142        for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1143                if (txq->setup) {
1144                        ath5k_hw_release_tx_queue(ah, txq->qnum);
1145                        txq->setup = false;
1146                }
1147}
1148
1149
1150/*************\
1151* RX Handling *
1152\*************/
1153
1154/*
1155 * Enable the receive h/w following a reset.
1156 */
1157static int
1158ath5k_rx_start(struct ath5k_hw *ah)
1159{
1160        struct ath_common *common = ath5k_hw_common(ah);
1161        struct ath5k_buf *bf;
1162        int ret;
1163
1164        common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1165
1166        ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1167                  common->cachelsz, common->rx_bufsize);
1168
1169        spin_lock_bh(&ah->rxbuflock);
1170        ah->rxlink = NULL;
1171        list_for_each_entry(bf, &ah->rxbuf, list) {
1172                ret = ath5k_rxbuf_setup(ah, bf);
1173                if (ret != 0) {
1174                        spin_unlock_bh(&ah->rxbuflock);
1175                        goto err;
1176                }
1177        }
1178        bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1179        ath5k_hw_set_rxdp(ah, bf->daddr);
1180        spin_unlock_bh(&ah->rxbuflock);
1181
1182        ath5k_hw_start_rx_dma(ah);      /* enable recv descriptors */
1183        ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1184        ath5k_hw_start_rx_pcu(ah);      /* re-enable PCU/DMA engine */
1185
1186        return 0;
1187err:
1188        return ret;
1189}
1190
1191/*
1192 * Disable the receive logic on PCU (DRU)
1193 * In preparation for a shutdown.
1194 *
1195 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1196 * does.
1197 */
1198static void
1199ath5k_rx_stop(struct ath5k_hw *ah)
1200{
1201
1202        ath5k_hw_set_rx_filter(ah, 0);  /* clear recv filter */
1203        ath5k_hw_stop_rx_pcu(ah);       /* disable PCU */
1204
1205        ath5k_debug_printrxbuffs(ah);
1206}
1207
1208static unsigned int
1209ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1210                   struct ath5k_rx_status *rs)
1211{
1212        struct ath_common *common = ath5k_hw_common(ah);
1213        struct ieee80211_hdr *hdr = (void *)skb->data;
1214        unsigned int keyix, hlen;
1215
1216        if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1217                        rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1218                return RX_FLAG_DECRYPTED;
1219
1220        /* Apparently when a default key is used to decrypt the packet
1221           the hw does not set the index used to decrypt.  In such cases
1222           get the index from the packet. */
1223        hlen = ieee80211_hdrlen(hdr->frame_control);
1224        if (ieee80211_has_protected(hdr->frame_control) &&
1225            !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1226            skb->len >= hlen + 4) {
1227                keyix = skb->data[hlen + 3] >> 6;
1228
1229                if (test_bit(keyix, common->keymap))
1230                        return RX_FLAG_DECRYPTED;
1231        }
1232
1233        return 0;
1234}
1235
1236
1237static void
1238ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1239                     struct ieee80211_rx_status *rxs)
1240{
1241        struct ath_common *common = ath5k_hw_common(ah);
1242        u64 tsf, bc_tstamp;
1243        u32 hw_tu;
1244        struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1245
1246        if (ieee80211_is_beacon(mgmt->frame_control) &&
1247            le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1248            ether_addr_equal(mgmt->bssid, common->curbssid)) {
1249                /*
1250                 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251                 * have updated the local TSF. We have to work around various
1252                 * hardware bugs, though...
1253                 */
1254                tsf = ath5k_hw_get_tsf64(ah);
1255                bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256                hw_tu = TSF_TO_TU(tsf);
1257
1258                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259                        "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260                        (unsigned long long)bc_tstamp,
1261                        (unsigned long long)rxs->mactime,
1262                        (unsigned long long)(rxs->mactime - bc_tstamp),
1263                        (unsigned long long)tsf);
1264
1265                /*
1266                 * Sometimes the HW will give us a wrong tstamp in the rx
1267                 * status, causing the timestamp extension to go wrong.
1268                 * (This seems to happen especially with beacon frames bigger
1269                 * than 78 byte (incl. FCS))
1270                 * But we know that the receive timestamp must be later than the
1271                 * timestamp of the beacon since HW must have synced to that.
1272                 *
1273                 * NOTE: here we assume mactime to be after the frame was
1274                 * received, not like mac80211 which defines it at the start.
1275                 */
1276                if (bc_tstamp > rxs->mactime) {
1277                        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278                                "fixing mactime from %llx to %llx\n",
1279                                (unsigned long long)rxs->mactime,
1280                                (unsigned long long)tsf);
1281                        rxs->mactime = tsf;
1282                }
1283
1284                /*
1285                 * Local TSF might have moved higher than our beacon timers,
1286                 * in that case we have to update them to continue sending
1287                 * beacons. This also takes care of synchronizing beacon sending
1288                 * times with other stations.
1289                 */
1290                if (hw_tu >= ah->nexttbtt)
1291                        ath5k_beacon_update_timers(ah, bc_tstamp);
1292
1293                /* Check if the beacon timers are still correct, because a TSF
1294                 * update might have created a window between them - for a
1295                 * longer description see the comment of this function: */
1296                if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297                        ath5k_beacon_update_timers(ah, bc_tstamp);
1298                        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299                                "fixed beacon timers after beacon receive\n");
1300                }
1301        }
1302}
1303
1304static void
1305ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1306{
1307        struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1308        struct ath_common *common = ath5k_hw_common(ah);
1309
1310        /* only beacons from our BSSID */
1311        if (!ieee80211_is_beacon(mgmt->frame_control) ||
1312            !ether_addr_equal(mgmt->bssid, common->curbssid))
1313                return;
1314
1315        ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1316
1317        /* in IBSS mode we should keep RSSI statistics per neighbour */
1318        /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1319}
1320
1321/*
1322 * Compute padding position. skb must contain an IEEE 802.11 frame
1323 */
1324static int ath5k_common_padpos(struct sk_buff *skb)
1325{
1326        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1327        __le16 frame_control = hdr->frame_control;
1328        int padpos = 24;
1329
1330        if (ieee80211_has_a4(frame_control))
1331                padpos += ETH_ALEN;
1332
1333        if (ieee80211_is_data_qos(frame_control))
1334                padpos += IEEE80211_QOS_CTL_LEN;
1335
1336        return padpos;
1337}
1338
1339/*
1340 * This function expects an 802.11 frame and returns the number of
1341 * bytes added, or -1 if we don't have enough header room.
1342 */
1343static int ath5k_add_padding(struct sk_buff *skb)
1344{
1345        int padpos = ath5k_common_padpos(skb);
1346        int padsize = padpos & 3;
1347
1348        if (padsize && skb->len > padpos) {
1349
1350                if (skb_headroom(skb) < padsize)
1351                        return -1;
1352
1353                skb_push(skb, padsize);
1354                memmove(skb->data, skb->data + padsize, padpos);
1355                return padsize;
1356        }
1357
1358        return 0;
1359}
1360
1361/*
1362 * The MAC header is padded to have 32-bit boundary if the
1363 * packet payload is non-zero. The general calculation for
1364 * padsize would take into account odd header lengths:
1365 * padsize = 4 - (hdrlen & 3); however, since only
1366 * even-length headers are used, padding can only be 0 or 2
1367 * bytes and we can optimize this a bit.  We must not try to
1368 * remove padding from short control frames that do not have a
1369 * payload.
1370 *
1371 * This function expects an 802.11 frame and returns the number of
1372 * bytes removed.
1373 */
1374static int ath5k_remove_padding(struct sk_buff *skb)
1375{
1376        int padpos = ath5k_common_padpos(skb);
1377        int padsize = padpos & 3;
1378
1379        if (padsize && skb->len >= padpos + padsize) {
1380                memmove(skb->data + padsize, skb->data, padpos);
1381                skb_pull(skb, padsize);
1382                return padsize;
1383        }
1384
1385        return 0;
1386}
1387
1388static void
1389ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1390                    struct ath5k_rx_status *rs)
1391{
1392        struct ieee80211_rx_status *rxs;
1393
1394        ath5k_remove_padding(skb);
1395
1396        rxs = IEEE80211_SKB_RXCB(skb);
1397
1398        rxs->flag = 0;
1399        if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1400                rxs->flag |= RX_FLAG_MMIC_ERROR;
1401
1402        /*
1403         * always extend the mac timestamp, since this information is
1404         * also needed for proper IBSS merging.
1405         *
1406         * XXX: it might be too late to do it here, since rs_tstamp is
1407         * 15bit only. that means TSF extension has to be done within
1408         * 32768usec (about 32ms). it might be necessary to move this to
1409         * the interrupt handler, like it is done in madwifi.
1410         */
1411        rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1412        rxs->flag |= RX_FLAG_MACTIME_END;
1413
1414        rxs->freq = ah->curchan->center_freq;
1415        rxs->band = ah->curchan->band;
1416
1417        rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1418
1419        rxs->antenna = rs->rs_antenna;
1420
1421        if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1422                ah->stats.antenna_rx[rs->rs_antenna]++;
1423        else
1424                ah->stats.antenna_rx[0]++; /* invalid */
1425
1426        rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1427        rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1428        switch (ah->ah_bwmode) {
1429        case AR5K_BWMODE_5MHZ:
1430                rxs->flag |= RX_FLAG_5MHZ;
1431                break;
1432        case AR5K_BWMODE_10MHZ:
1433                rxs->flag |= RX_FLAG_10MHZ;
1434                break;
1435        default:
1436                break;
1437        }
1438
1439        if (rxs->rate_idx >= 0 && rs->rs_rate ==
1440            ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1441                rxs->flag |= RX_FLAG_SHORTPRE;
1442
1443        trace_ath5k_rx(ah, skb);
1444
1445        ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1446
1447        /* check beacons in IBSS mode */
1448        if (ah->opmode == NL80211_IFTYPE_ADHOC)
1449                ath5k_check_ibss_tsf(ah, skb, rxs);
1450
1451        ieee80211_rx(ah->hw, skb);
1452}
1453
1454/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1455 *
1456 * Check if we want to further process this frame or not. Also update
1457 * statistics. Return true if we want this frame, false if not.
1458 */
1459static bool
1460ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1461{
1462        ah->stats.rx_all_count++;
1463        ah->stats.rx_bytes_count += rs->rs_datalen;
1464
1465        if (unlikely(rs->rs_status)) {
1466                if (rs->rs_status & AR5K_RXERR_CRC)
1467                        ah->stats.rxerr_crc++;
1468                if (rs->rs_status & AR5K_RXERR_FIFO)
1469                        ah->stats.rxerr_fifo++;
1470                if (rs->rs_status & AR5K_RXERR_PHY) {
1471                        ah->stats.rxerr_phy++;
1472                        if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1473                                ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1474                        return false;
1475                }
1476                if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1477                        /*
1478                         * Decrypt error.  If the error occurred
1479                         * because there was no hardware key, then
1480                         * let the frame through so the upper layers
1481                         * can process it.  This is necessary for 5210
1482                         * parts which have no way to setup a ``clear''
1483                         * key cache entry.
1484                         *
1485                         * XXX do key cache faulting
1486                         */
1487                        ah->stats.rxerr_decrypt++;
1488                        if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1489                            !(rs->rs_status & AR5K_RXERR_CRC))
1490                                return true;
1491                }
1492                if (rs->rs_status & AR5K_RXERR_MIC) {
1493                        ah->stats.rxerr_mic++;
1494                        return true;
1495                }
1496
1497                /* reject any frames with non-crypto errors */
1498                if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1499                        return false;
1500        }
1501
1502        if (unlikely(rs->rs_more)) {
1503                ah->stats.rxerr_jumbo++;
1504                return false;
1505        }
1506        return true;
1507}
1508
1509static void
1510ath5k_set_current_imask(struct ath5k_hw *ah)
1511{
1512        enum ath5k_int imask;
1513        unsigned long flags;
1514
1515        spin_lock_irqsave(&ah->irqlock, flags);
1516        imask = ah->imask;
1517        if (ah->rx_pending)
1518                imask &= ~AR5K_INT_RX_ALL;
1519        if (ah->tx_pending)
1520                imask &= ~AR5K_INT_TX_ALL;
1521        ath5k_hw_set_imr(ah, imask);
1522        spin_unlock_irqrestore(&ah->irqlock, flags);
1523}
1524
1525static void
1526ath5k_tasklet_rx(unsigned long data)
1527{
1528        struct ath5k_rx_status rs = {};
1529        struct sk_buff *skb, *next_skb;
1530        dma_addr_t next_skb_addr;
1531        struct ath5k_hw *ah = (void *)data;
1532        struct ath_common *common = ath5k_hw_common(ah);
1533        struct ath5k_buf *bf;
1534        struct ath5k_desc *ds;
1535        int ret;
1536
1537        spin_lock(&ah->rxbuflock);
1538        if (list_empty(&ah->rxbuf)) {
1539                ATH5K_WARN(ah, "empty rx buf pool\n");
1540                goto unlock;
1541        }
1542        do {
1543                bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1544                BUG_ON(bf->skb == NULL);
1545                skb = bf->skb;
1546                ds = bf->desc;
1547
1548                /* bail if HW is still using self-linked descriptor */
1549                if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1550                        break;
1551
1552                ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1553                if (unlikely(ret == -EINPROGRESS))
1554                        break;
1555                else if (unlikely(ret)) {
1556                        ATH5K_ERR(ah, "error in processing rx descriptor\n");
1557                        ah->stats.rxerr_proc++;
1558                        break;
1559                }
1560
1561                if (ath5k_receive_frame_ok(ah, &rs)) {
1562                        next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1563
1564                        /*
1565                         * If we can't replace bf->skb with a new skb under
1566                         * memory pressure, just skip this packet
1567                         */
1568                        if (!next_skb)
1569                                goto next;
1570
1571                        dma_unmap_single(ah->dev, bf->skbaddr,
1572                                         common->rx_bufsize,
1573                                         DMA_FROM_DEVICE);
1574
1575                        skb_put(skb, rs.rs_datalen);
1576
1577                        ath5k_receive_frame(ah, skb, &rs);
1578
1579                        bf->skb = next_skb;
1580                        bf->skbaddr = next_skb_addr;
1581                }
1582next:
1583                list_move_tail(&bf->list, &ah->rxbuf);
1584        } while (ath5k_rxbuf_setup(ah, bf) == 0);
1585unlock:
1586        spin_unlock(&ah->rxbuflock);
1587        ah->rx_pending = false;
1588        ath5k_set_current_imask(ah);
1589}
1590
1591
1592/*************\
1593* TX Handling *
1594\*************/
1595
1596void
1597ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1598               struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1599{
1600        struct ath5k_hw *ah = hw->priv;
1601        struct ath5k_buf *bf;
1602        unsigned long flags;
1603        int padsize;
1604
1605        trace_ath5k_tx(ah, skb, txq);
1606
1607        /*
1608         * The hardware expects the header padded to 4 byte boundaries.
1609         * If this is not the case, we add the padding after the header.
1610         */
1611        padsize = ath5k_add_padding(skb);
1612        if (padsize < 0) {
1613                ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1614                          " headroom to pad");
1615                goto drop_packet;
1616        }
1617
1618        if (txq->txq_len >= txq->txq_max &&
1619            txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1620                ieee80211_stop_queue(hw, txq->qnum);
1621
1622        spin_lock_irqsave(&ah->txbuflock, flags);
1623        if (list_empty(&ah->txbuf)) {
1624                ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1625                spin_unlock_irqrestore(&ah->txbuflock, flags);
1626                ieee80211_stop_queues(hw);
1627                goto drop_packet;
1628        }
1629        bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1630        list_del(&bf->list);
1631        ah->txbuf_len--;
1632        if (list_empty(&ah->txbuf))
1633                ieee80211_stop_queues(hw);
1634        spin_unlock_irqrestore(&ah->txbuflock, flags);
1635
1636        bf->skb = skb;
1637
1638        if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1639                bf->skb = NULL;
1640                spin_lock_irqsave(&ah->txbuflock, flags);
1641                list_add_tail(&bf->list, &ah->txbuf);
1642                ah->txbuf_len++;
1643                spin_unlock_irqrestore(&ah->txbuflock, flags);
1644                goto drop_packet;
1645        }
1646        return;
1647
1648drop_packet:
1649        ieee80211_free_txskb(hw, skb);
1650}
1651
1652static void
1653ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1654                         struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1655                         struct ath5k_buf *bf)
1656{
1657        struct ieee80211_tx_info *info;
1658        u8 tries[3];
1659        int i;
1660        int size = 0;
1661
1662        ah->stats.tx_all_count++;
1663        ah->stats.tx_bytes_count += skb->len;
1664        info = IEEE80211_SKB_CB(skb);
1665
1666        tries[0] = info->status.rates[0].count;
1667        tries[1] = info->status.rates[1].count;
1668        tries[2] = info->status.rates[2].count;
1669
1670        ieee80211_tx_info_clear_status(info);
1671
1672        size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1673        memcpy(info->status.rates, bf->rates, size);
1674
1675        for (i = 0; i < ts->ts_final_idx; i++) {
1676                struct ieee80211_tx_rate *r =
1677                        &info->status.rates[i];
1678
1679                r->count = tries[i];
1680        }
1681
1682        info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1683        info->status.rates[ts->ts_final_idx + 1].idx = -1;
1684
1685        if (unlikely(ts->ts_status)) {
1686                ah->stats.ack_fail++;
1687                if (ts->ts_status & AR5K_TXERR_FILT) {
1688                        info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1689                        ah->stats.txerr_filt++;
1690                }
1691                if (ts->ts_status & AR5K_TXERR_XRETRY)
1692                        ah->stats.txerr_retry++;
1693                if (ts->ts_status & AR5K_TXERR_FIFO)
1694                        ah->stats.txerr_fifo++;
1695        } else {
1696                info->flags |= IEEE80211_TX_STAT_ACK;
1697                info->status.ack_signal = ts->ts_rssi;
1698
1699                /* count the successful attempt as well */
1700                info->status.rates[ts->ts_final_idx].count++;
1701        }
1702
1703        /*
1704        * Remove MAC header padding before giving the frame
1705        * back to mac80211.
1706        */
1707        ath5k_remove_padding(skb);
1708
1709        if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1710                ah->stats.antenna_tx[ts->ts_antenna]++;
1711        else
1712                ah->stats.antenna_tx[0]++; /* invalid */
1713
1714        trace_ath5k_tx_complete(ah, skb, txq, ts);
1715        ieee80211_tx_status(ah->hw, skb);
1716}
1717
1718static void
1719ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1720{
1721        struct ath5k_tx_status ts = {};
1722        struct ath5k_buf *bf, *bf0;
1723        struct ath5k_desc *ds;
1724        struct sk_buff *skb;
1725        int ret;
1726
1727        spin_lock(&txq->lock);
1728        list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1729
1730                txq->txq_poll_mark = false;
1731
1732                /* skb might already have been processed last time. */
1733                if (bf->skb != NULL) {
1734                        ds = bf->desc;
1735
1736                        ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1737                        if (unlikely(ret == -EINPROGRESS))
1738                                break;
1739                        else if (unlikely(ret)) {
1740                                ATH5K_ERR(ah,
1741                                        "error %d while processing "
1742                                        "queue %u\n", ret, txq->qnum);
1743                                break;
1744                        }
1745
1746                        skb = bf->skb;
1747                        bf->skb = NULL;
1748
1749                        dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1750                                        DMA_TO_DEVICE);
1751                        ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1752                }
1753
1754                /*
1755                 * It's possible that the hardware can say the buffer is
1756                 * completed when it hasn't yet loaded the ds_link from
1757                 * host memory and moved on.
1758                 * Always keep the last descriptor to avoid HW races...
1759                 */
1760                if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1761                        spin_lock(&ah->txbuflock);
1762                        list_move_tail(&bf->list, &ah->txbuf);
1763                        ah->txbuf_len++;
1764                        txq->txq_len--;
1765                        spin_unlock(&ah->txbuflock);
1766                }
1767        }
1768        spin_unlock(&txq->lock);
1769        if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1770                ieee80211_wake_queue(ah->hw, txq->qnum);
1771}
1772
1773static void
1774ath5k_tasklet_tx(unsigned long data)
1775{
1776        int i;
1777        struct ath5k_hw *ah = (void *)data;
1778
1779        for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1780                if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1781                        ath5k_tx_processq(ah, &ah->txqs[i]);
1782
1783        ah->tx_pending = false;
1784        ath5k_set_current_imask(ah);
1785}
1786
1787
1788/*****************\
1789* Beacon handling *
1790\*****************/
1791
1792/*
1793 * Setup the beacon frame for transmit.
1794 */
1795static int
1796ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1797{
1798        struct sk_buff *skb = bf->skb;
1799        struct  ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1800        struct ath5k_desc *ds;
1801        int ret = 0;
1802        u8 antenna;
1803        u32 flags;
1804        const int padsize = 0;
1805
1806        bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1807                        DMA_TO_DEVICE);
1808        ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1809                        "skbaddr %llx\n", skb, skb->data, skb->len,
1810                        (unsigned long long)bf->skbaddr);
1811
1812        if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1813                ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1814                dev_kfree_skb_any(skb);
1815                bf->skb = NULL;
1816                return -EIO;
1817        }
1818
1819        ds = bf->desc;
1820        antenna = ah->ah_tx_ant;
1821
1822        flags = AR5K_TXDESC_NOACK;
1823        if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1824                ds->ds_link = bf->daddr;        /* self-linked */
1825                flags |= AR5K_TXDESC_VEOL;
1826        } else
1827                ds->ds_link = 0;
1828
1829        /*
1830         * If we use multiple antennas on AP and use
1831         * the Sectored AP scenario, switch antenna every
1832         * 4 beacons to make sure everybody hears our AP.
1833         * When a client tries to associate, hw will keep
1834         * track of the tx antenna to be used for this client
1835         * automatically, based on ACKed packets.
1836         *
1837         * Note: AP still listens and transmits RTS on the
1838         * default antenna which is supposed to be an omni.
1839         *
1840         * Note2: On sectored scenarios it's possible to have
1841         * multiple antennas (1 omni -- the default -- and 14
1842         * sectors), so if we choose to actually support this
1843         * mode, we need to allow the user to set how many antennas
1844         * we have and tweak the code below to send beacons
1845         * on all of them.
1846         */
1847        if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1848                antenna = ah->bsent & 4 ? 2 : 1;
1849
1850
1851        /* FIXME: If we are in g mode and rate is a CCK rate
1852         * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1853         * from tx power (value is in dB units already) */
1854        ds->ds_data = bf->skbaddr;
1855        ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1856                        ieee80211_get_hdrlen_from_skb(skb), padsize,
1857                        AR5K_PKT_TYPE_BEACON,
1858                        (ah->ah_txpower.txp_requested * 2),
1859                        ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1860                        1, AR5K_TXKEYIX_INVALID,
1861                        antenna, flags, 0, 0);
1862        if (ret)
1863                goto err_unmap;
1864
1865        return 0;
1866err_unmap:
1867        dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1868        return ret;
1869}
1870
1871/*
1872 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1873 * this is called only once at config_bss time, for AP we do it every
1874 * SWBA interrupt so that the TIM will reflect buffered frames.
1875 *
1876 * Called with the beacon lock.
1877 */
1878int
1879ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1880{
1881        int ret;
1882        struct ath5k_hw *ah = hw->priv;
1883        struct ath5k_vif *avf;
1884        struct sk_buff *skb;
1885
1886        if (WARN_ON(!vif)) {
1887                ret = -EINVAL;
1888                goto out;
1889        }
1890
1891        skb = ieee80211_beacon_get(hw, vif);
1892
1893        if (!skb) {
1894                ret = -ENOMEM;
1895                goto out;
1896        }
1897
1898        avf = (void *)vif->drv_priv;
1899        ath5k_txbuf_free_skb(ah, avf->bbuf);
1900        avf->bbuf->skb = skb;
1901        ret = ath5k_beacon_setup(ah, avf->bbuf);
1902out:
1903        return ret;
1904}
1905
1906/*
1907 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1908 * frame contents are done as needed and the slot time is
1909 * also adjusted based on current state.
1910 *
1911 * This is called from software irq context (beacontq tasklets)
1912 * or user context from ath5k_beacon_config.
1913 */
1914static void
1915ath5k_beacon_send(struct ath5k_hw *ah)
1916{
1917        struct ieee80211_vif *vif;
1918        struct ath5k_vif *avf;
1919        struct ath5k_buf *bf;
1920        struct sk_buff *skb;
1921        int err;
1922
1923        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1924
1925        /*
1926         * Check if the previous beacon has gone out.  If
1927         * not, don't don't try to post another: skip this
1928         * period and wait for the next.  Missed beacons
1929         * indicate a problem and should not occur.  If we
1930         * miss too many consecutive beacons reset the device.
1931         */
1932        if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1933                ah->bmisscount++;
1934                ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1935                        "missed %u consecutive beacons\n", ah->bmisscount);
1936                if (ah->bmisscount > 10) {      /* NB: 10 is a guess */
1937                        ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1938                                "stuck beacon time (%u missed)\n",
1939                                ah->bmisscount);
1940                        ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1941                                  "stuck beacon, resetting\n");
1942                        ieee80211_queue_work(ah->hw, &ah->reset_work);
1943                }
1944                return;
1945        }
1946        if (unlikely(ah->bmisscount != 0)) {
1947                ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1948                        "resume beacon xmit after %u misses\n",
1949                        ah->bmisscount);
1950                ah->bmisscount = 0;
1951        }
1952
1953        if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1954                        ah->num_mesh_vifs > 1) ||
1955                        ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1956                u64 tsf = ath5k_hw_get_tsf64(ah);
1957                u32 tsftu = TSF_TO_TU(tsf);
1958                int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1959                vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1960                ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1961                        "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1962                        (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1963        } else /* only one interface */
1964                vif = ah->bslot[0];
1965
1966        if (!vif)
1967                return;
1968
1969        avf = (void *)vif->drv_priv;
1970        bf = avf->bbuf;
1971
1972        /*
1973         * Stop any current dma and put the new frame on the queue.
1974         * This should never fail since we check above that no frames
1975         * are still pending on the queue.
1976         */
1977        if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1978                ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1979                /* NB: hw still stops DMA, so proceed */
1980        }
1981
1982        /* refresh the beacon for AP or MESH mode */
1983        if (ah->opmode == NL80211_IFTYPE_AP ||
1984            ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1985                err = ath5k_beacon_update(ah->hw, vif);
1986                if (err)
1987                        return;
1988        }
1989
1990        if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1991                     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1992                ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1993                return;
1994        }
1995
1996        trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1997
1998        ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1999        ath5k_hw_start_tx_dma(ah, ah->bhalq);
2000        ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2001                ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2002
2003        skb = ieee80211_get_buffered_bc(ah->hw, vif);
2004        while (skb) {
2005                ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2006
2007                if (ah->cabq->txq_len >= ah->cabq->txq_max)
2008                        break;
2009
2010                skb = ieee80211_get_buffered_bc(ah->hw, vif);
2011        }
2012
2013        ah->bsent++;
2014}
2015
2016/**
2017 * ath5k_beacon_update_timers - update beacon timers
2018 *
2019 * @ah: struct ath5k_hw pointer we are operating on
2020 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2021 *          beacon timer update based on the current HW TSF.
2022 *
2023 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2024 * of a received beacon or the current local hardware TSF and write it to the
2025 * beacon timer registers.
2026 *
2027 * This is called in a variety of situations, e.g. when a beacon is received,
2028 * when a TSF update has been detected, but also when an new IBSS is created or
2029 * when we otherwise know we have to update the timers, but we keep it in this
2030 * function to have it all together in one place.
2031 */
2032void
2033ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2034{
2035        u32 nexttbtt, intval, hw_tu, bc_tu;
2036        u64 hw_tsf;
2037
2038        intval = ah->bintval & AR5K_BEACON_PERIOD;
2039        if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2040                + ah->num_mesh_vifs > 1) {
2041                intval /= ATH_BCBUF;    /* staggered multi-bss beacons */
2042                if (intval < 15)
2043                        ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2044                                   intval);
2045        }
2046        if (WARN_ON(!intval))
2047                return;
2048
2049        /* beacon TSF converted to TU */
2050        bc_tu = TSF_TO_TU(bc_tsf);
2051
2052        /* current TSF converted to TU */
2053        hw_tsf = ath5k_hw_get_tsf64(ah);
2054        hw_tu = TSF_TO_TU(hw_tsf);
2055
2056#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2057        /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2058         * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2059         * configuration we need to make sure it is bigger than that. */
2060
2061        if (bc_tsf == -1) {
2062                /*
2063                 * no beacons received, called internally.
2064                 * just need to refresh timers based on HW TSF.
2065                 */
2066                nexttbtt = roundup(hw_tu + FUDGE, intval);
2067        } else if (bc_tsf == 0) {
2068                /*
2069                 * no beacon received, probably called by ath5k_reset_tsf().
2070                 * reset TSF to start with 0.
2071                 */
2072                nexttbtt = intval;
2073                intval |= AR5K_BEACON_RESET_TSF;
2074        } else if (bc_tsf > hw_tsf) {
2075                /*
2076                 * beacon received, SW merge happened but HW TSF not yet updated.
2077                 * not possible to reconfigure timers yet, but next time we
2078                 * receive a beacon with the same BSSID, the hardware will
2079                 * automatically update the TSF and then we need to reconfigure
2080                 * the timers.
2081                 */
2082                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2083                        "need to wait for HW TSF sync\n");
2084                return;
2085        } else {
2086                /*
2087                 * most important case for beacon synchronization between STA.
2088                 *
2089                 * beacon received and HW TSF has been already updated by HW.
2090                 * update next TBTT based on the TSF of the beacon, but make
2091                 * sure it is ahead of our local TSF timer.
2092                 */
2093                nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2094        }
2095#undef FUDGE
2096
2097        ah->nexttbtt = nexttbtt;
2098
2099        intval |= AR5K_BEACON_ENA;
2100        ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2101
2102        /*
2103         * debugging output last in order to preserve the time critical aspect
2104         * of this function
2105         */
2106        if (bc_tsf == -1)
2107                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2108                        "reconfigured timers based on HW TSF\n");
2109        else if (bc_tsf == 0)
2110                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2111                        "reset HW TSF and timers\n");
2112        else
2113                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2114                        "updated timers based on beacon TSF\n");
2115
2116        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2117                          "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2118                          (unsigned long long) bc_tsf,
2119                          (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2120        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2121                intval & AR5K_BEACON_PERIOD,
2122                intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2123                intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2124}
2125
2126/**
2127 * ath5k_beacon_config - Configure the beacon queues and interrupts
2128 *
2129 * @ah: struct ath5k_hw pointer we are operating on
2130 *
2131 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2132 * interrupts to detect TSF updates only.
2133 */
2134void
2135ath5k_beacon_config(struct ath5k_hw *ah)
2136{
2137        spin_lock_bh(&ah->block);
2138        ah->bmisscount = 0;
2139        ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2140
2141        if (ah->enable_beacon) {
2142                /*
2143                 * In IBSS mode we use a self-linked tx descriptor and let the
2144                 * hardware send the beacons automatically. We have to load it
2145                 * only once here.
2146                 * We use the SWBA interrupt only to keep track of the beacon
2147                 * timers in order to detect automatic TSF updates.
2148                 */
2149                ath5k_beaconq_config(ah);
2150
2151                ah->imask |= AR5K_INT_SWBA;
2152
2153                if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2154                        if (ath5k_hw_hasveol(ah))
2155                                ath5k_beacon_send(ah);
2156                } else
2157                        ath5k_beacon_update_timers(ah, -1);
2158        } else {
2159                ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2160        }
2161
2162        ath5k_hw_set_imr(ah, ah->imask);
2163        mmiowb();
2164        spin_unlock_bh(&ah->block);
2165}
2166
2167static void ath5k_tasklet_beacon(unsigned long data)
2168{
2169        struct ath5k_hw *ah = (struct ath5k_hw *) data;
2170
2171        /*
2172         * Software beacon alert--time to send a beacon.
2173         *
2174         * In IBSS mode we use this interrupt just to
2175         * keep track of the next TBTT (target beacon
2176         * transmission time) in order to detect whether
2177         * automatic TSF updates happened.
2178         */
2179        if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2180                /* XXX: only if VEOL supported */
2181                u64 tsf = ath5k_hw_get_tsf64(ah);
2182                ah->nexttbtt += ah->bintval;
2183                ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2184                                "SWBA nexttbtt: %x hw_tu: %x "
2185                                "TSF: %llx\n",
2186                                ah->nexttbtt,
2187                                TSF_TO_TU(tsf),
2188                                (unsigned long long) tsf);
2189        } else {
2190                spin_lock(&ah->block);
2191                ath5k_beacon_send(ah);
2192                spin_unlock(&ah->block);
2193        }
2194}
2195
2196
2197/********************\
2198* Interrupt handling *
2199\********************/
2200
2201static void
2202ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2203{
2204        if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2205           !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2206           !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2207
2208                /* Run ANI only when calibration is not active */
2209
2210                ah->ah_cal_next_ani = jiffies +
2211                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2212                tasklet_schedule(&ah->ani_tasklet);
2213
2214        } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2215                !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2216                !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2217
2218                /* Run calibration only when another calibration
2219                 * is not running.
2220                 *
2221                 * Note: This is for both full/short calibration,
2222                 * if it's time for a full one, ath5k_calibrate_work will deal
2223                 * with it. */
2224
2225                ah->ah_cal_next_short = jiffies +
2226                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2227                ieee80211_queue_work(ah->hw, &ah->calib_work);
2228        }
2229        /* we could use SWI to generate enough interrupts to meet our
2230         * calibration interval requirements, if necessary:
2231         * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2232}
2233
2234static void
2235ath5k_schedule_rx(struct ath5k_hw *ah)
2236{
2237        ah->rx_pending = true;
2238        tasklet_schedule(&ah->rxtq);
2239}
2240
2241static void
2242ath5k_schedule_tx(struct ath5k_hw *ah)
2243{
2244        ah->tx_pending = true;
2245        tasklet_schedule(&ah->txtq);
2246}
2247
2248static irqreturn_t
2249ath5k_intr(int irq, void *dev_id)
2250{
2251        struct ath5k_hw *ah = dev_id;
2252        enum ath5k_int status;
2253        unsigned int counter = 1000;
2254
2255
2256        /*
2257         * If hw is not ready (or detached) and we get an
2258         * interrupt, or if we have no interrupts pending
2259         * (that means it's not for us) skip it.
2260         *
2261         * NOTE: Group 0/1 PCI interface registers are not
2262         * supported on WiSOCs, so we can't check for pending
2263         * interrupts (ISR belongs to another register group
2264         * so we are ok).
2265         */
2266        if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2267                        ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2268                        !ath5k_hw_is_intr_pending(ah))))
2269                return IRQ_NONE;
2270
2271        /** Main loop **/
2272        do {
2273                ath5k_hw_get_isr(ah, &status);  /* NB: clears IRQ too */
2274
2275                ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2276                                status, ah->imask);
2277
2278                /*
2279                 * Fatal hw error -> Log and reset
2280                 *
2281                 * Fatal errors are unrecoverable so we have to
2282                 * reset the card. These errors include bus and
2283                 * dma errors.
2284                 */
2285                if (unlikely(status & AR5K_INT_FATAL)) {
2286
2287                        ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2288                                  "fatal int, resetting\n");
2289                        ieee80211_queue_work(ah->hw, &ah->reset_work);
2290
2291                /*
2292                 * RX Overrun -> Count and reset if needed
2293                 *
2294                 * Receive buffers are full. Either the bus is busy or
2295                 * the CPU is not fast enough to process all received
2296                 * frames.
2297                 */
2298                } else if (unlikely(status & AR5K_INT_RXORN)) {
2299
2300                        /*
2301                         * Older chipsets need a reset to come out of this
2302                         * condition, but we treat it as RX for newer chips.
2303                         * We don't know exactly which versions need a reset
2304                         * this guess is copied from the HAL.
2305                         */
2306                        ah->stats.rxorn_intr++;
2307
2308                        if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2309                                ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2310                                          "rx overrun, resetting\n");
2311                                ieee80211_queue_work(ah->hw, &ah->reset_work);
2312                        } else
2313                                ath5k_schedule_rx(ah);
2314
2315                } else {
2316
2317                        /* Software Beacon Alert -> Schedule beacon tasklet */
2318                        if (status & AR5K_INT_SWBA)
2319                                tasklet_hi_schedule(&ah->beacontq);
2320
2321                        /*
2322                         * No more RX descriptors -> Just count
2323                         *
2324                         * NB: the hardware should re-read the link when
2325                         *     RXE bit is written, but it doesn't work at
2326                         *     least on older hardware revs.
2327                         */
2328                        if (status & AR5K_INT_RXEOL)
2329                                ah->stats.rxeol_intr++;
2330
2331
2332                        /* TX Underrun -> Bump tx trigger level */
2333                        if (status & AR5K_INT_TXURN)
2334                                ath5k_hw_update_tx_triglevel(ah, true);
2335
2336                        /* RX -> Schedule rx tasklet */
2337                        if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2338                                ath5k_schedule_rx(ah);
2339
2340                        /* TX -> Schedule tx tasklet */
2341                        if (status & (AR5K_INT_TXOK
2342                                        | AR5K_INT_TXDESC
2343                                        | AR5K_INT_TXERR
2344                                        | AR5K_INT_TXEOL))
2345                                ath5k_schedule_tx(ah);
2346
2347                        /* Missed beacon -> TODO
2348                        if (status & AR5K_INT_BMISS)
2349                        */
2350
2351                        /* MIB event -> Update counters and notify ANI */
2352                        if (status & AR5K_INT_MIB) {
2353                                ah->stats.mib_intr++;
2354                                ath5k_hw_update_mib_counters(ah);
2355                                ath5k_ani_mib_intr(ah);
2356                        }
2357
2358                        /* GPIO -> Notify RFKill layer */
2359                        if (status & AR5K_INT_GPIO)
2360                                tasklet_schedule(&ah->rf_kill.toggleq);
2361
2362                }
2363
2364                if (ath5k_get_bus_type(ah) == ATH_AHB)
2365                        break;
2366
2367        } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2368
2369        /*
2370         * Until we handle rx/tx interrupts mask them on IMR
2371         *
2372         * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2373         * and unset after we 've handled the interrupts.
2374         */
2375        if (ah->rx_pending || ah->tx_pending)
2376                ath5k_set_current_imask(ah);
2377
2378        if (unlikely(!counter))
2379                ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2380
2381        /* Fire up calibration poll */
2382        ath5k_intr_calibration_poll(ah);
2383
2384        return IRQ_HANDLED;
2385}
2386
2387/*
2388 * Periodically recalibrate the PHY to account
2389 * for temperature/environment changes.
2390 */
2391static void
2392ath5k_calibrate_work(struct work_struct *work)
2393{
2394        struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2395                calib_work);
2396
2397        /* Should we run a full calibration ? */
2398        if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2399
2400                ah->ah_cal_next_full = jiffies +
2401                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2402                ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2403
2404                ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2405                                "running full calibration\n");
2406
2407                if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2408                        /*
2409                         * Rfgain is out of bounds, reset the chip
2410                         * to load new gain values.
2411                         */
2412                        ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2413                                        "got new rfgain, resetting\n");
2414                        ieee80211_queue_work(ah->hw, &ah->reset_work);
2415                }
2416        } else
2417                ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2418
2419
2420        ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2421                ieee80211_frequency_to_channel(ah->curchan->center_freq),
2422                ah->curchan->hw_value);
2423
2424        if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2425                ATH5K_ERR(ah, "calibration of channel %u failed\n",
2426                        ieee80211_frequency_to_channel(
2427                                ah->curchan->center_freq));
2428
2429        /* Clear calibration flags */
2430        if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2431                ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2432        else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2433                ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2434}
2435
2436
2437static void
2438ath5k_tasklet_ani(unsigned long data)
2439{
2440        struct ath5k_hw *ah = (void *)data;
2441
2442        ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2443        ath5k_ani_calibration(ah);
2444        ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2445}
2446
2447
2448static void
2449ath5k_tx_complete_poll_work(struct work_struct *work)
2450{
2451        struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2452                        tx_complete_work.work);
2453        struct ath5k_txq *txq;
2454        int i;
2455        bool needreset = false;
2456
2457        if (!test_bit(ATH_STAT_STARTED, ah->status))
2458                return;
2459
2460        mutex_lock(&ah->lock);
2461
2462        for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2463                if (ah->txqs[i].setup) {
2464                        txq = &ah->txqs[i];
2465                        spin_lock_bh(&txq->lock);
2466                        if (txq->txq_len > 1) {
2467                                if (txq->txq_poll_mark) {
2468                                        ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2469                                                  "TX queue stuck %d\n",
2470                                                  txq->qnum);
2471                                        needreset = true;
2472                                        txq->txq_stuck++;
2473                                        spin_unlock_bh(&txq->lock);
2474                                        break;
2475                                } else {
2476                                        txq->txq_poll_mark = true;
2477                                }
2478                        }
2479                        spin_unlock_bh(&txq->lock);
2480                }
2481        }
2482
2483        if (needreset) {
2484                ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2485                          "TX queues stuck, resetting\n");
2486                ath5k_reset(ah, NULL, true);
2487        }
2488
2489        mutex_unlock(&ah->lock);
2490
2491        ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2492                msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2493}
2494
2495
2496/*************************\
2497* Initialization routines *
2498\*************************/
2499
2500static const struct ieee80211_iface_limit if_limits[] = {
2501        { .max = 2048,  .types = BIT(NL80211_IFTYPE_STATION) },
2502        { .max = 4,     .types =
2503#ifdef CONFIG_MAC80211_MESH
2504                                 BIT(NL80211_IFTYPE_MESH_POINT) |
2505#endif
2506                                 BIT(NL80211_IFTYPE_AP) },
2507};
2508
2509static const struct ieee80211_iface_combination if_comb = {
2510        .limits = if_limits,
2511        .n_limits = ARRAY_SIZE(if_limits),
2512        .max_interfaces = 2048,
2513        .num_different_channels = 1,
2514};
2515
2516int
2517ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2518{
2519        struct ieee80211_hw *hw = ah->hw;
2520        struct ath_common *common;
2521        int ret;
2522        int csz;
2523
2524        /* Initialize driver private data */
2525        SET_IEEE80211_DEV(hw, ah->dev);
2526        hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2527                        IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2528                        IEEE80211_HW_SIGNAL_DBM |
2529                        IEEE80211_HW_MFP_CAPABLE |
2530                        IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2531                        IEEE80211_HW_SUPPORTS_RC_TABLE;
2532
2533        hw->wiphy->interface_modes =
2534                BIT(NL80211_IFTYPE_AP) |
2535                BIT(NL80211_IFTYPE_STATION) |
2536                BIT(NL80211_IFTYPE_ADHOC) |
2537                BIT(NL80211_IFTYPE_MESH_POINT);
2538
2539        hw->wiphy->iface_combinations = &if_comb;
2540        hw->wiphy->n_iface_combinations = 1;
2541
2542        /* SW support for IBSS_RSN is provided by mac80211 */
2543        hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2544
2545        hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2546
2547        /* both antennas can be configured as RX or TX */
2548        hw->wiphy->available_antennas_tx = 0x3;
2549        hw->wiphy->available_antennas_rx = 0x3;
2550
2551        hw->extra_tx_headroom = 2;
2552        hw->channel_change_time = 5000;
2553
2554        /*
2555         * Mark the device as detached to avoid processing
2556         * interrupts until setup is complete.
2557         */
2558        __set_bit(ATH_STAT_INVALID, ah->status);
2559
2560        ah->opmode = NL80211_IFTYPE_STATION;
2561        ah->bintval = 1000;
2562        mutex_init(&ah->lock);
2563        spin_lock_init(&ah->rxbuflock);
2564        spin_lock_init(&ah->txbuflock);
2565        spin_lock_init(&ah->block);
2566        spin_lock_init(&ah->irqlock);
2567
2568        /* Setup interrupt handler */
2569        ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2570        if (ret) {
2571                ATH5K_ERR(ah, "request_irq failed\n");
2572                goto err;
2573        }
2574
2575        common = ath5k_hw_common(ah);
2576        common->ops = &ath5k_common_ops;
2577        common->bus_ops = bus_ops;
2578        common->ah = ah;
2579        common->hw = hw;
2580        common->priv = ah;
2581        common->clockrate = 40;
2582
2583        /*
2584         * Cache line size is used to size and align various
2585         * structures used to communicate with the hardware.
2586         */
2587        ath5k_read_cachesize(common, &csz);
2588        common->cachelsz = csz << 2; /* convert to bytes */
2589
2590        spin_lock_init(&common->cc_lock);
2591
2592        /* Initialize device */
2593        ret = ath5k_hw_init(ah);
2594        if (ret)
2595                goto err_irq;
2596
2597        /* Set up multi-rate retry capabilities */
2598        if (ah->ah_capabilities.cap_has_mrr_support) {
2599                hw->max_rates = 4;
2600                hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2601                                         AR5K_INIT_RETRY_LONG);
2602        }
2603
2604        hw->vif_data_size = sizeof(struct ath5k_vif);
2605
2606        /* Finish private driver data initialization */
2607        ret = ath5k_init(hw);
2608        if (ret)
2609                goto err_ah;
2610
2611        ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2612                        ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2613                                        ah->ah_mac_srev,
2614                                        ah->ah_phy_revision);
2615
2616        if (!ah->ah_single_chip) {
2617                /* Single chip radio (!RF5111) */
2618                if (ah->ah_radio_5ghz_revision &&
2619                        !ah->ah_radio_2ghz_revision) {
2620                        /* No 5GHz support -> report 2GHz radio */
2621                        if (!test_bit(AR5K_MODE_11A,
2622                                ah->ah_capabilities.cap_mode)) {
2623                                ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2624                                        ath5k_chip_name(AR5K_VERSION_RAD,
2625                                                ah->ah_radio_5ghz_revision),
2626                                                ah->ah_radio_5ghz_revision);
2627                        /* No 2GHz support (5110 and some
2628                         * 5GHz only cards) -> report 5GHz radio */
2629                        } else if (!test_bit(AR5K_MODE_11B,
2630                                ah->ah_capabilities.cap_mode)) {
2631                                ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2632                                        ath5k_chip_name(AR5K_VERSION_RAD,
2633                                                ah->ah_radio_5ghz_revision),
2634                                                ah->ah_radio_5ghz_revision);
2635                        /* Multiband radio */
2636                        } else {
2637                                ATH5K_INFO(ah, "RF%s multiband radio found"
2638                                        " (0x%x)\n",
2639                                        ath5k_chip_name(AR5K_VERSION_RAD,
2640                                                ah->ah_radio_5ghz_revision),
2641                                                ah->ah_radio_5ghz_revision);
2642                        }
2643                }
2644                /* Multi chip radio (RF5111 - RF2111) ->
2645                 * report both 2GHz/5GHz radios */
2646                else if (ah->ah_radio_5ghz_revision &&
2647                                ah->ah_radio_2ghz_revision) {
2648                        ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2649                                ath5k_chip_name(AR5K_VERSION_RAD,
2650                                        ah->ah_radio_5ghz_revision),
2651                                        ah->ah_radio_5ghz_revision);
2652                        ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2653                                ath5k_chip_name(AR5K_VERSION_RAD,
2654                                        ah->ah_radio_2ghz_revision),
2655                                        ah->ah_radio_2ghz_revision);
2656                }
2657        }
2658
2659        ath5k_debug_init_device(ah);
2660
2661        /* ready to process interrupts */
2662        __clear_bit(ATH_STAT_INVALID, ah->status);
2663
2664        return 0;
2665err_ah:
2666        ath5k_hw_deinit(ah);
2667err_irq:
2668        free_irq(ah->irq, ah);
2669err:
2670        return ret;
2671}
2672
2673static int
2674ath5k_stop_locked(struct ath5k_hw *ah)
2675{
2676
2677        ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2678                        test_bit(ATH_STAT_INVALID, ah->status));
2679
2680        /*
2681         * Shutdown the hardware and driver:
2682         *    stop output from above
2683         *    disable interrupts
2684         *    turn off timers
2685         *    turn off the radio
2686         *    clear transmit machinery
2687         *    clear receive machinery
2688         *    drain and release tx queues
2689         *    reclaim beacon resources
2690         *    power down hardware
2691         *
2692         * Note that some of this work is not possible if the
2693         * hardware is gone (invalid).
2694         */
2695        ieee80211_stop_queues(ah->hw);
2696
2697        if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2698                ath5k_led_off(ah);
2699                ath5k_hw_set_imr(ah, 0);
2700                synchronize_irq(ah->irq);
2701                ath5k_rx_stop(ah);
2702                ath5k_hw_dma_stop(ah);
2703                ath5k_drain_tx_buffs(ah);
2704                ath5k_hw_phy_disable(ah);
2705        }
2706
2707        return 0;
2708}
2709
2710int ath5k_start(struct ieee80211_hw *hw)
2711{
2712        struct ath5k_hw *ah = hw->priv;
2713        struct ath_common *common = ath5k_hw_common(ah);
2714        int ret, i;
2715
2716        mutex_lock(&ah->lock);
2717
2718        ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2719
2720        /*
2721         * Stop anything previously setup.  This is safe
2722         * no matter this is the first time through or not.
2723         */
2724        ath5k_stop_locked(ah);
2725
2726        /*
2727         * The basic interface to setting the hardware in a good
2728         * state is ``reset''.  On return the hardware is known to
2729         * be powered up and with interrupts disabled.  This must
2730         * be followed by initialization of the appropriate bits
2731         * and then setup of the interrupt mask.
2732         */
2733        ah->curchan = ah->hw->conf.chandef.chan;
2734        ah->imask = AR5K_INT_RXOK
2735                | AR5K_INT_RXERR
2736                | AR5K_INT_RXEOL
2737                | AR5K_INT_RXORN
2738                | AR5K_INT_TXDESC
2739                | AR5K_INT_TXEOL
2740                | AR5K_INT_FATAL
2741                | AR5K_INT_GLOBAL
2742                | AR5K_INT_MIB;
2743
2744        ret = ath5k_reset(ah, NULL, false);
2745        if (ret)
2746                goto done;
2747
2748        if (!ath5k_modparam_no_hw_rfkill_switch)
2749                ath5k_rfkill_hw_start(ah);
2750
2751        /*
2752         * Reset the key cache since some parts do not reset the
2753         * contents on initial power up or resume from suspend.
2754         */
2755        for (i = 0; i < common->keymax; i++)
2756                ath_hw_keyreset(common, (u16) i);
2757
2758        /* Use higher rates for acks instead of base
2759         * rate */
2760        ah->ah_ack_bitrate_high = true;
2761
2762        for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2763                ah->bslot[i] = NULL;
2764
2765        ret = 0;
2766done:
2767        mmiowb();
2768        mutex_unlock(&ah->lock);
2769
2770        set_bit(ATH_STAT_STARTED, ah->status);
2771        ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2772                        msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2773
2774        return ret;
2775}
2776
2777static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2778{
2779        ah->rx_pending = false;
2780        ah->tx_pending = false;
2781        tasklet_kill(&ah->rxtq);
2782        tasklet_kill(&ah->txtq);
2783        tasklet_kill(&ah->beacontq);
2784        tasklet_kill(&ah->ani_tasklet);
2785}
2786
2787/*
2788 * Stop the device, grabbing the top-level lock to protect
2789 * against concurrent entry through ath5k_init (which can happen
2790 * if another thread does a system call and the thread doing the
2791 * stop is preempted).
2792 */
2793void ath5k_stop(struct ieee80211_hw *hw)
2794{
2795        struct ath5k_hw *ah = hw->priv;
2796        int ret;
2797
2798        mutex_lock(&ah->lock);
2799        ret = ath5k_stop_locked(ah);
2800        if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2801                /*
2802                 * Don't set the card in full sleep mode!
2803                 *
2804                 * a) When the device is in this state it must be carefully
2805                 * woken up or references to registers in the PCI clock
2806                 * domain may freeze the bus (and system).  This varies
2807                 * by chip and is mostly an issue with newer parts
2808                 * (madwifi sources mentioned srev >= 0x78) that go to
2809                 * sleep more quickly.
2810                 *
2811                 * b) On older chips full sleep results a weird behaviour
2812                 * during wakeup. I tested various cards with srev < 0x78
2813                 * and they don't wake up after module reload, a second
2814                 * module reload is needed to bring the card up again.
2815                 *
2816                 * Until we figure out what's going on don't enable
2817                 * full chip reset on any chip (this is what Legacy HAL
2818                 * and Sam's HAL do anyway). Instead Perform a full reset
2819                 * on the device (same as initial state after attach) and
2820                 * leave it idle (keep MAC/BB on warm reset) */
2821                ret = ath5k_hw_on_hold(ah);
2822
2823                ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2824                                "putting device to sleep\n");
2825        }
2826
2827        mmiowb();
2828        mutex_unlock(&ah->lock);
2829
2830        ath5k_stop_tasklets(ah);
2831
2832        clear_bit(ATH_STAT_STARTED, ah->status);
2833        cancel_delayed_work_sync(&ah->tx_complete_work);
2834
2835        if (!ath5k_modparam_no_hw_rfkill_switch)
2836                ath5k_rfkill_hw_stop(ah);
2837}
2838
2839/*
2840 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2841 * and change to the given channel.
2842 *
2843 * This should be called with ah->lock.
2844 */
2845static int
2846ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2847                                                        bool skip_pcu)
2848{
2849        struct ath_common *common = ath5k_hw_common(ah);
2850        int ret, ani_mode;
2851        bool fast;
2852
2853        ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2854
2855        ath5k_hw_set_imr(ah, 0);
2856        synchronize_irq(ah->irq);
2857        ath5k_stop_tasklets(ah);
2858
2859        /* Save ani mode and disable ANI during
2860         * reset. If we don't we might get false
2861         * PHY error interrupts. */
2862        ani_mode = ah->ani_state.ani_mode;
2863        ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2864
2865        /* We are going to empty hw queues
2866         * so we should also free any remaining
2867         * tx buffers */
2868        ath5k_drain_tx_buffs(ah);
2869        if (chan)
2870                ah->curchan = chan;
2871
2872        fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2873
2874        ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2875        if (ret) {
2876                ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2877                goto err;
2878        }
2879
2880        ret = ath5k_rx_start(ah);
2881        if (ret) {
2882                ATH5K_ERR(ah, "can't start recv logic\n");
2883                goto err;
2884        }
2885
2886        ath5k_ani_init(ah, ani_mode);
2887
2888        /*
2889         * Set calibration intervals
2890         *
2891         * Note: We don't need to run calibration imediately
2892         * since some initial calibration is done on reset
2893         * even for fast channel switching. Also on scanning
2894         * this will get set again and again and it won't get
2895         * executed unless we connect somewhere and spend some
2896         * time on the channel (that's what calibration needs
2897         * anyway to be accurate).
2898         */
2899        ah->ah_cal_next_full = jiffies +
2900                msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2901        ah->ah_cal_next_ani = jiffies +
2902                msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2903        ah->ah_cal_next_short = jiffies +
2904                msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2905
2906        ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2907
2908        /* clear survey data and cycle counters */
2909        memset(&ah->survey, 0, sizeof(ah->survey));
2910        spin_lock_bh(&common->cc_lock);
2911        ath_hw_cycle_counters_update(common);
2912        memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2913        memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2914        spin_unlock_bh(&common->cc_lock);
2915
2916        /*
2917         * Change channels and update the h/w rate map if we're switching;
2918         * e.g. 11a to 11b/g.
2919         *
2920         * We may be doing a reset in response to an ioctl that changes the
2921         * channel so update any state that might change as a result.
2922         *
2923         * XXX needed?
2924         */
2925/*      ath5k_chan_change(ah, c); */
2926
2927        ath5k_beacon_config(ah);
2928        /* intrs are enabled by ath5k_beacon_config */
2929
2930        ieee80211_wake_queues(ah->hw);
2931
2932        return 0;
2933err:
2934        return ret;
2935}
2936
2937static void ath5k_reset_work(struct work_struct *work)
2938{
2939        struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2940                reset_work);
2941
2942        mutex_lock(&ah->lock);
2943        ath5k_reset(ah, NULL, true);
2944        mutex_unlock(&ah->lock);
2945}
2946
2947static int
2948ath5k_init(struct ieee80211_hw *hw)
2949{
2950
2951        struct ath5k_hw *ah = hw->priv;
2952        struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2953        struct ath5k_txq *txq;
2954        u8 mac[ETH_ALEN] = {};
2955        int ret;
2956
2957
2958        /*
2959         * Collect the channel list.  The 802.11 layer
2960         * is responsible for filtering this list based
2961         * on settings like the phy mode and regulatory
2962         * domain restrictions.
2963         */
2964        ret = ath5k_setup_bands(hw);
2965        if (ret) {
2966                ATH5K_ERR(ah, "can't get channels\n");
2967                goto err;
2968        }
2969
2970        /*
2971         * Allocate tx+rx descriptors and populate the lists.
2972         */
2973        ret = ath5k_desc_alloc(ah);
2974        if (ret) {
2975                ATH5K_ERR(ah, "can't allocate descriptors\n");
2976                goto err;
2977        }
2978
2979        /*
2980         * Allocate hardware transmit queues: one queue for
2981         * beacon frames and one data queue for each QoS
2982         * priority.  Note that hw functions handle resetting
2983         * these queues at the needed time.
2984         */
2985        ret = ath5k_beaconq_setup(ah);
2986        if (ret < 0) {
2987                ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2988                goto err_desc;
2989        }
2990        ah->bhalq = ret;
2991        ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2992        if (IS_ERR(ah->cabq)) {
2993                ATH5K_ERR(ah, "can't setup cab queue\n");
2994                ret = PTR_ERR(ah->cabq);
2995                goto err_bhal;
2996        }
2997
2998        /* 5211 and 5212 usually support 10 queues but we better rely on the
2999         * capability information */
3000        if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3001                /* This order matches mac80211's queue priority, so we can
3002                * directly use the mac80211 queue number without any mapping */
3003                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3004                if (IS_ERR(txq)) {
3005                        ATH5K_ERR(ah, "can't setup xmit queue\n");
3006                        ret = PTR_ERR(txq);
3007                        goto err_queues;
3008                }
3009                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3010                if (IS_ERR(txq)) {
3011                        ATH5K_ERR(ah, "can't setup xmit queue\n");
3012                        ret = PTR_ERR(txq);
3013                        goto err_queues;
3014                }
3015                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3016                if (IS_ERR(txq)) {
3017                        ATH5K_ERR(ah, "can't setup xmit queue\n");
3018                        ret = PTR_ERR(txq);
3019                        goto err_queues;
3020                }
3021                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3022                if (IS_ERR(txq)) {
3023                        ATH5K_ERR(ah, "can't setup xmit queue\n");
3024                        ret = PTR_ERR(txq);
3025                        goto err_queues;
3026                }
3027                hw->queues = 4;
3028        } else {
3029                /* older hardware (5210) can only support one data queue */
3030                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3031                if (IS_ERR(txq)) {
3032                        ATH5K_ERR(ah, "can't setup xmit queue\n");
3033                        ret = PTR_ERR(txq);
3034                        goto err_queues;
3035                }
3036                hw->queues = 1;
3037        }
3038
3039        tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3040        tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3041        tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3042        tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3043
3044        INIT_WORK(&ah->reset_work, ath5k_reset_work);
3045        INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3046        INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3047
3048        ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3049        if (ret) {
3050                ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3051                goto err_queues;
3052        }
3053
3054        SET_IEEE80211_PERM_ADDR(hw, mac);
3055        /* All MAC address bits matter for ACKs */
3056        ath5k_update_bssid_mask_and_opmode(ah, NULL);
3057
3058        regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3059        ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3060        if (ret) {
3061                ATH5K_ERR(ah, "can't initialize regulatory system\n");
3062                goto err_queues;
3063        }
3064
3065        ret = ieee80211_register_hw(hw);
3066        if (ret) {
3067                ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3068                goto err_queues;
3069        }
3070
3071        if (!ath_is_world_regd(regulatory))
3072                regulatory_hint(hw->wiphy, regulatory->alpha2);
3073
3074        ath5k_init_leds(ah);
3075
3076        ath5k_sysfs_register(ah);
3077
3078        return 0;
3079err_queues:
3080        ath5k_txq_release(ah);
3081err_bhal:
3082        ath5k_hw_release_tx_queue(ah, ah->bhalq);
3083err_desc:
3084        ath5k_desc_free(ah);
3085err:
3086        return ret;
3087}
3088
3089void
3090ath5k_deinit_ah(struct ath5k_hw *ah)
3091{
3092        struct ieee80211_hw *hw = ah->hw;
3093
3094        /*
3095         * NB: the order of these is important:
3096         * o call the 802.11 layer before detaching ath5k_hw to
3097         *   ensure callbacks into the driver to delete global
3098         *   key cache entries can be handled
3099         * o reclaim the tx queue data structures after calling
3100         *   the 802.11 layer as we'll get called back to reclaim
3101         *   node state and potentially want to use them
3102         * o to cleanup the tx queues the hal is called, so detach
3103         *   it last
3104         * XXX: ??? detach ath5k_hw ???
3105         * Other than that, it's straightforward...
3106         */
3107        ieee80211_unregister_hw(hw);
3108        ath5k_desc_free(ah);
3109        ath5k_txq_release(ah);
3110        ath5k_hw_release_tx_queue(ah, ah->bhalq);
3111        ath5k_unregister_leds(ah);
3112
3113        ath5k_sysfs_unregister(ah);
3114        /*
3115         * NB: can't reclaim these until after ieee80211_ifdetach
3116         * returns because we'll get called back to reclaim node
3117         * state and potentially want to use them.
3118         */
3119        ath5k_hw_deinit(ah);
3120        free_irq(ah->irq, ah);
3121}
3122
3123bool
3124ath5k_any_vif_assoc(struct ath5k_hw *ah)
3125{
3126        struct ath5k_vif_iter_data iter_data;
3127        iter_data.hw_macaddr = NULL;
3128        iter_data.any_assoc = false;
3129        iter_data.need_set_hw_addr = false;
3130        iter_data.found_active = true;
3131
3132        ieee80211_iterate_active_interfaces_atomic(
3133                ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3134                ath5k_vif_iter, &iter_data);
3135        return iter_data.any_assoc;
3136}
3137
3138void
3139ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3140{
3141        struct ath5k_hw *ah = hw->priv;
3142        u32 rfilt;
3143        rfilt = ath5k_hw_get_rx_filter(ah);
3144        if (enable)
3145                rfilt |= AR5K_RX_FILTER_BEACON;
3146        else
3147                rfilt &= ~AR5K_RX_FILTER_BEACON;
3148        ath5k_hw_set_rx_filter(ah, rfilt);
3149        ah->filter_flags = rfilt;
3150}
3151
3152void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3153                   const char *fmt, ...)
3154{
3155        struct va_format vaf;
3156        va_list args;
3157
3158        va_start(args, fmt);
3159
3160        vaf.fmt = fmt;
3161        vaf.va = &args;
3162
3163        if (ah && ah->hw)
3164                printk("%s" pr_fmt("%s: %pV"),
3165                       level, wiphy_name(ah->hw->wiphy), &vaf);
3166        else
3167                printk("%s" pr_fmt("%pV"), level, &vaf);
3168
3169        va_end(args);
3170}
3171