linux/drivers/net/wireless/rt2x00/rt2500usb.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt2500usb
  23        Abstract: rt2500usb device specific routines.
  24        Supported chipsets: RT2570.
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/etherdevice.h>
  29#include <linux/init.h>
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/slab.h>
  33#include <linux/usb.h>
  34
  35#include "rt2x00.h"
  36#include "rt2x00usb.h"
  37#include "rt2500usb.h"
  38
  39/*
  40 * Allow hardware encryption to be disabled.
  41 */
  42static bool modparam_nohwcrypt;
  43module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  44MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  45
  46/*
  47 * Register access.
  48 * All access to the CSR registers will go through the methods
  49 * rt2500usb_register_read and rt2500usb_register_write.
  50 * BBP and RF register require indirect register access,
  51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  52 * These indirect registers work with busy bits,
  53 * and we will try maximal REGISTER_BUSY_COUNT times to access
  54 * the register while taking a REGISTER_BUSY_DELAY us delay
  55 * between each attampt. When the busy bit is still set at that time,
  56 * the access attempt is considered to have failed,
  57 * and we will print an error.
  58 * If the csr_mutex is already held then the _lock variants must
  59 * be used instead.
  60 */
  61static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  62                                           const unsigned int offset,
  63                                           u16 *value)
  64{
  65        __le16 reg;
  66        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  67                                      USB_VENDOR_REQUEST_IN, offset,
  68                                      &reg, sizeof(reg), REGISTER_TIMEOUT);
  69        *value = le16_to_cpu(reg);
  70}
  71
  72static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  73                                                const unsigned int offset,
  74                                                u16 *value)
  75{
  76        __le16 reg;
  77        rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  78                                       USB_VENDOR_REQUEST_IN, offset,
  79                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
  80        *value = le16_to_cpu(reg);
  81}
  82
  83static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  84                                                const unsigned int offset,
  85                                                void *value, const u16 length)
  86{
  87        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  88                                      USB_VENDOR_REQUEST_IN, offset,
  89                                      value, length,
  90                                      REGISTER_TIMEOUT16(length));
  91}
  92
  93static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  94                                            const unsigned int offset,
  95                                            u16 value)
  96{
  97        __le16 reg = cpu_to_le16(value);
  98        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  99                                      USB_VENDOR_REQUEST_OUT, offset,
 100                                      &reg, sizeof(reg), REGISTER_TIMEOUT);
 101}
 102
 103static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
 104                                                 const unsigned int offset,
 105                                                 u16 value)
 106{
 107        __le16 reg = cpu_to_le16(value);
 108        rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
 109                                       USB_VENDOR_REQUEST_OUT, offset,
 110                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
 111}
 112
 113static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
 114                                                 const unsigned int offset,
 115                                                 void *value, const u16 length)
 116{
 117        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
 118                                      USB_VENDOR_REQUEST_OUT, offset,
 119                                      value, length,
 120                                      REGISTER_TIMEOUT16(length));
 121}
 122
 123static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
 124                                  const unsigned int offset,
 125                                  struct rt2x00_field16 field,
 126                                  u16 *reg)
 127{
 128        unsigned int i;
 129
 130        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 131                rt2500usb_register_read_lock(rt2x00dev, offset, reg);
 132                if (!rt2x00_get_field16(*reg, field))
 133                        return 1;
 134                udelay(REGISTER_BUSY_DELAY);
 135        }
 136
 137        rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
 138                   offset, *reg);
 139        *reg = ~0;
 140
 141        return 0;
 142}
 143
 144#define WAIT_FOR_BBP(__dev, __reg) \
 145        rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
 146#define WAIT_FOR_RF(__dev, __reg) \
 147        rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
 148
 149static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
 150                                const unsigned int word, const u8 value)
 151{
 152        u16 reg;
 153
 154        mutex_lock(&rt2x00dev->csr_mutex);
 155
 156        /*
 157         * Wait until the BBP becomes available, afterwards we
 158         * can safely write the new data into the register.
 159         */
 160        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 161                reg = 0;
 162                rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
 163                rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 164                rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
 165
 166                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 167        }
 168
 169        mutex_unlock(&rt2x00dev->csr_mutex);
 170}
 171
 172static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
 173                               const unsigned int word, u8 *value)
 174{
 175        u16 reg;
 176
 177        mutex_lock(&rt2x00dev->csr_mutex);
 178
 179        /*
 180         * Wait until the BBP becomes available, afterwards we
 181         * can safely write the read request into the register.
 182         * After the data has been written, we wait until hardware
 183         * returns the correct value, if at any time the register
 184         * doesn't become available in time, reg will be 0xffffffff
 185         * which means we return 0xff to the caller.
 186         */
 187        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 188                reg = 0;
 189                rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 190                rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
 191
 192                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 193
 194                if (WAIT_FOR_BBP(rt2x00dev, &reg))
 195                        rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
 196        }
 197
 198        *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
 199
 200        mutex_unlock(&rt2x00dev->csr_mutex);
 201}
 202
 203static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
 204                               const unsigned int word, const u32 value)
 205{
 206        u16 reg;
 207
 208        mutex_lock(&rt2x00dev->csr_mutex);
 209
 210        /*
 211         * Wait until the RF becomes available, afterwards we
 212         * can safely write the new data into the register.
 213         */
 214        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 215                reg = 0;
 216                rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
 217                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
 218
 219                reg = 0;
 220                rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
 221                rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
 222                rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
 223                rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
 224
 225                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
 226                rt2x00_rf_write(rt2x00dev, word, value);
 227        }
 228
 229        mutex_unlock(&rt2x00dev->csr_mutex);
 230}
 231
 232#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 233static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 234                                     const unsigned int offset,
 235                                     u32 *value)
 236{
 237        rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
 238}
 239
 240static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 241                                      const unsigned int offset,
 242                                      u32 value)
 243{
 244        rt2500usb_register_write(rt2x00dev, offset, value);
 245}
 246
 247static const struct rt2x00debug rt2500usb_rt2x00debug = {
 248        .owner  = THIS_MODULE,
 249        .csr    = {
 250                .read           = _rt2500usb_register_read,
 251                .write          = _rt2500usb_register_write,
 252                .flags          = RT2X00DEBUGFS_OFFSET,
 253                .word_base      = CSR_REG_BASE,
 254                .word_size      = sizeof(u16),
 255                .word_count     = CSR_REG_SIZE / sizeof(u16),
 256        },
 257        .eeprom = {
 258                .read           = rt2x00_eeprom_read,
 259                .write          = rt2x00_eeprom_write,
 260                .word_base      = EEPROM_BASE,
 261                .word_size      = sizeof(u16),
 262                .word_count     = EEPROM_SIZE / sizeof(u16),
 263        },
 264        .bbp    = {
 265                .read           = rt2500usb_bbp_read,
 266                .write          = rt2500usb_bbp_write,
 267                .word_base      = BBP_BASE,
 268                .word_size      = sizeof(u8),
 269                .word_count     = BBP_SIZE / sizeof(u8),
 270        },
 271        .rf     = {
 272                .read           = rt2x00_rf_read,
 273                .write          = rt2500usb_rf_write,
 274                .word_base      = RF_BASE,
 275                .word_size      = sizeof(u32),
 276                .word_count     = RF_SIZE / sizeof(u32),
 277        },
 278};
 279#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 280
 281static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 282{
 283        u16 reg;
 284
 285        rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
 286        return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
 287}
 288
 289#ifdef CONFIG_RT2X00_LIB_LEDS
 290static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
 291                                     enum led_brightness brightness)
 292{
 293        struct rt2x00_led *led =
 294            container_of(led_cdev, struct rt2x00_led, led_dev);
 295        unsigned int enabled = brightness != LED_OFF;
 296        u16 reg;
 297
 298        rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
 299
 300        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 301                rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
 302        else if (led->type == LED_TYPE_ACTIVITY)
 303                rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
 304
 305        rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
 306}
 307
 308static int rt2500usb_blink_set(struct led_classdev *led_cdev,
 309                               unsigned long *delay_on,
 310                               unsigned long *delay_off)
 311{
 312        struct rt2x00_led *led =
 313            container_of(led_cdev, struct rt2x00_led, led_dev);
 314        u16 reg;
 315
 316        rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
 317        rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
 318        rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
 319        rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
 320
 321        return 0;
 322}
 323
 324static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
 325                               struct rt2x00_led *led,
 326                               enum led_type type)
 327{
 328        led->rt2x00dev = rt2x00dev;
 329        led->type = type;
 330        led->led_dev.brightness_set = rt2500usb_brightness_set;
 331        led->led_dev.blink_set = rt2500usb_blink_set;
 332        led->flags = LED_INITIALIZED;
 333}
 334#endif /* CONFIG_RT2X00_LIB_LEDS */
 335
 336/*
 337 * Configuration handlers.
 338 */
 339
 340/*
 341 * rt2500usb does not differentiate between shared and pairwise
 342 * keys, so we should use the same function for both key types.
 343 */
 344static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
 345                                struct rt2x00lib_crypto *crypto,
 346                                struct ieee80211_key_conf *key)
 347{
 348        u32 mask;
 349        u16 reg;
 350        enum cipher curr_cipher;
 351
 352        if (crypto->cmd == SET_KEY) {
 353                /*
 354                 * Disallow to set WEP key other than with index 0,
 355                 * it is known that not work at least on some hardware.
 356                 * SW crypto will be used in that case.
 357                 */
 358                if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
 359                     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
 360                    key->keyidx != 0)
 361                        return -EOPNOTSUPP;
 362
 363                /*
 364                 * Pairwise key will always be entry 0, but this
 365                 * could collide with a shared key on the same
 366                 * position...
 367                 */
 368                mask = TXRX_CSR0_KEY_ID.bit_mask;
 369
 370                rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 371                curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
 372                reg &= mask;
 373
 374                if (reg && reg == mask)
 375                        return -ENOSPC;
 376
 377                reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 378
 379                key->hw_key_idx += reg ? ffz(reg) : 0;
 380                /*
 381                 * Hardware requires that all keys use the same cipher
 382                 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
 383                 * If this is not the first key, compare the cipher with the
 384                 * first one and fall back to SW crypto if not the same.
 385                 */
 386                if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
 387                        return -EOPNOTSUPP;
 388
 389                rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
 390                                              crypto->key, sizeof(crypto->key));
 391
 392                /*
 393                 * The driver does not support the IV/EIV generation
 394                 * in hardware. However it demands the data to be provided
 395                 * both separately as well as inside the frame.
 396                 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
 397                 * to ensure rt2x00lib will not strip the data from the
 398                 * frame after the copy, now we must tell mac80211
 399                 * to generate the IV/EIV data.
 400                 */
 401                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 402                key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
 403        }
 404
 405        /*
 406         * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
 407         * a particular key is valid.
 408         */
 409        rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 410        rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
 411        rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 412
 413        mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 414        if (crypto->cmd == SET_KEY)
 415                mask |= 1 << key->hw_key_idx;
 416        else if (crypto->cmd == DISABLE_KEY)
 417                mask &= ~(1 << key->hw_key_idx);
 418        rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
 419        rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 420
 421        return 0;
 422}
 423
 424static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
 425                                    const unsigned int filter_flags)
 426{
 427        u16 reg;
 428
 429        /*
 430         * Start configuration steps.
 431         * Note that the version error will always be dropped
 432         * and broadcast frames will always be accepted since
 433         * there is no filter for it at this time.
 434         */
 435        rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 436        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
 437                           !(filter_flags & FIF_FCSFAIL));
 438        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
 439                           !(filter_flags & FIF_PLCPFAIL));
 440        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
 441                           !(filter_flags & FIF_CONTROL));
 442        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
 443                           !(filter_flags & FIF_PROMISC_IN_BSS));
 444        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
 445                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 446                           !rt2x00dev->intf_ap_count);
 447        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
 448        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
 449                           !(filter_flags & FIF_ALLMULTI));
 450        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
 451        rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 452}
 453
 454static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
 455                                  struct rt2x00_intf *intf,
 456                                  struct rt2x00intf_conf *conf,
 457                                  const unsigned int flags)
 458{
 459        unsigned int bcn_preload;
 460        u16 reg;
 461
 462        if (flags & CONFIG_UPDATE_TYPE) {
 463                /*
 464                 * Enable beacon config
 465                 */
 466                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 467                rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
 468                rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
 469                rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
 470                                   2 * (conf->type != NL80211_IFTYPE_STATION));
 471                rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
 472
 473                /*
 474                 * Enable synchronisation.
 475                 */
 476                rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
 477                rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
 478                rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 479
 480                rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 481                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
 482                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 483        }
 484
 485        if (flags & CONFIG_UPDATE_MAC)
 486                rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
 487                                              (3 * sizeof(__le16)));
 488
 489        if (flags & CONFIG_UPDATE_BSSID)
 490                rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
 491                                              (3 * sizeof(__le16)));
 492}
 493
 494static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
 495                                 struct rt2x00lib_erp *erp,
 496                                 u32 changed)
 497{
 498        u16 reg;
 499
 500        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 501                rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
 502                rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
 503                                   !!erp->short_preamble);
 504                rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
 505        }
 506
 507        if (changed & BSS_CHANGED_BASIC_RATES)
 508                rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
 509                                         erp->basic_rates);
 510
 511        if (changed & BSS_CHANGED_BEACON_INT) {
 512                rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
 513                rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
 514                                   erp->beacon_int * 4);
 515                rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 516        }
 517
 518        if (changed & BSS_CHANGED_ERP_SLOT) {
 519                rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
 520                rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
 521                rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
 522        }
 523}
 524
 525static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
 526                                 struct antenna_setup *ant)
 527{
 528        u8 r2;
 529        u8 r14;
 530        u16 csr5;
 531        u16 csr6;
 532
 533        /*
 534         * We should never come here because rt2x00lib is supposed
 535         * to catch this and send us the correct antenna explicitely.
 536         */
 537        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 538               ant->tx == ANTENNA_SW_DIVERSITY);
 539
 540        rt2500usb_bbp_read(rt2x00dev, 2, &r2);
 541        rt2500usb_bbp_read(rt2x00dev, 14, &r14);
 542        rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
 543        rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
 544
 545        /*
 546         * Configure the TX antenna.
 547         */
 548        switch (ant->tx) {
 549        case ANTENNA_HW_DIVERSITY:
 550                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
 551                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
 552                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
 553                break;
 554        case ANTENNA_A:
 555                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 556                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
 557                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
 558                break;
 559        case ANTENNA_B:
 560        default:
 561                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 562                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
 563                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
 564                break;
 565        }
 566
 567        /*
 568         * Configure the RX antenna.
 569         */
 570        switch (ant->rx) {
 571        case ANTENNA_HW_DIVERSITY:
 572                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
 573                break;
 574        case ANTENNA_A:
 575                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 576                break;
 577        case ANTENNA_B:
 578        default:
 579                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 580                break;
 581        }
 582
 583        /*
 584         * RT2525E and RT5222 need to flip TX I/Q
 585         */
 586        if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 587                rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 588                rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
 589                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
 590
 591                /*
 592                 * RT2525E does not need RX I/Q Flip.
 593                 */
 594                if (rt2x00_rf(rt2x00dev, RF2525E))
 595                        rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 596        } else {
 597                rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
 598                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
 599        }
 600
 601        rt2500usb_bbp_write(rt2x00dev, 2, r2);
 602        rt2500usb_bbp_write(rt2x00dev, 14, r14);
 603        rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
 604        rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
 605}
 606
 607static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
 608                                     struct rf_channel *rf, const int txpower)
 609{
 610        /*
 611         * Set TXpower.
 612         */
 613        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 614
 615        /*
 616         * For RT2525E we should first set the channel to half band higher.
 617         */
 618        if (rt2x00_rf(rt2x00dev, RF2525E)) {
 619                static const u32 vals[] = {
 620                        0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
 621                        0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
 622                        0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
 623                        0x00000902, 0x00000906
 624                };
 625
 626                rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 627                if (rf->rf4)
 628                        rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 629        }
 630
 631        rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
 632        rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
 633        rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
 634        if (rf->rf4)
 635                rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 636}
 637
 638static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 639                                     const int txpower)
 640{
 641        u32 rf3;
 642
 643        rt2x00_rf_read(rt2x00dev, 3, &rf3);
 644        rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 645        rt2500usb_rf_write(rt2x00dev, 3, rf3);
 646}
 647
 648static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
 649                                struct rt2x00lib_conf *libconf)
 650{
 651        enum dev_state state =
 652            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 653                STATE_SLEEP : STATE_AWAKE;
 654        u16 reg;
 655
 656        if (state == STATE_SLEEP) {
 657                rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 658                rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
 659                                   rt2x00dev->beacon_int - 20);
 660                rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
 661                                   libconf->conf->listen_interval - 1);
 662
 663                /* We must first disable autowake before it can be enabled */
 664                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 665                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 666
 667                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
 668                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 669        } else {
 670                rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 671                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 672                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 673        }
 674
 675        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 676}
 677
 678static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
 679                             struct rt2x00lib_conf *libconf,
 680                             const unsigned int flags)
 681{
 682        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 683                rt2500usb_config_channel(rt2x00dev, &libconf->rf,
 684                                         libconf->conf->power_level);
 685        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 686            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 687                rt2500usb_config_txpower(rt2x00dev,
 688                                         libconf->conf->power_level);
 689        if (flags & IEEE80211_CONF_CHANGE_PS)
 690                rt2500usb_config_ps(rt2x00dev, libconf);
 691}
 692
 693/*
 694 * Link tuning
 695 */
 696static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
 697                                 struct link_qual *qual)
 698{
 699        u16 reg;
 700
 701        /*
 702         * Update FCS error count from register.
 703         */
 704        rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
 705        qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
 706
 707        /*
 708         * Update False CCA count from register.
 709         */
 710        rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
 711        qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
 712}
 713
 714static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 715                                  struct link_qual *qual)
 716{
 717        u16 eeprom;
 718        u16 value;
 719
 720        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
 721        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
 722        rt2500usb_bbp_write(rt2x00dev, 24, value);
 723
 724        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
 725        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
 726        rt2500usb_bbp_write(rt2x00dev, 25, value);
 727
 728        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
 729        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
 730        rt2500usb_bbp_write(rt2x00dev, 61, value);
 731
 732        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
 733        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
 734        rt2500usb_bbp_write(rt2x00dev, 17, value);
 735
 736        qual->vgc_level = value;
 737}
 738
 739/*
 740 * Queue handlers.
 741 */
 742static void rt2500usb_start_queue(struct data_queue *queue)
 743{
 744        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 745        u16 reg;
 746
 747        switch (queue->qid) {
 748        case QID_RX:
 749                rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 750                rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
 751                rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 752                break;
 753        case QID_BEACON:
 754                rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 755                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
 756                rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
 757                rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
 758                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 759                break;
 760        default:
 761                break;
 762        }
 763}
 764
 765static void rt2500usb_stop_queue(struct data_queue *queue)
 766{
 767        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 768        u16 reg;
 769
 770        switch (queue->qid) {
 771        case QID_RX:
 772                rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 773                rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 774                rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 775                break;
 776        case QID_BEACON:
 777                rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 778                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 779                rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 780                rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 781                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 782                break;
 783        default:
 784                break;
 785        }
 786}
 787
 788/*
 789 * Initialization functions.
 790 */
 791static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
 792{
 793        u16 reg;
 794
 795        rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
 796                                    USB_MODE_TEST, REGISTER_TIMEOUT);
 797        rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
 798                                    0x00f0, REGISTER_TIMEOUT);
 799
 800        rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 801        rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 802        rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 803
 804        rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
 805        rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
 806
 807        rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 808        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
 809        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
 810        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 811        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 812
 813        rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 814        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 815        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 816        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 817        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 818
 819        rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
 820        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
 821        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
 822        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
 823        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
 824        rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
 825
 826        rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
 827        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
 828        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
 829        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
 830        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
 831        rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
 832
 833        rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
 834        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
 835        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
 836        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
 837        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
 838        rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
 839
 840        rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
 841        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
 842        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
 843        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
 844        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
 845        rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
 846
 847        rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 848        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 849        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
 850        rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 851        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 852        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 853
 854        rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
 855        rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
 856
 857        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 858                return -EBUSY;
 859
 860        rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 861        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 862        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 863        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
 864        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 865
 866        if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
 867                rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
 868                rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
 869        } else {
 870                reg = 0;
 871                rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
 872                rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
 873        }
 874        rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
 875
 876        rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
 877        rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
 878        rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
 879        rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
 880
 881        rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
 882        rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
 883                           rt2x00dev->rx->data_size);
 884        rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
 885
 886        rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 887        rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
 888        rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 889        rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
 890        rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 891
 892        rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 893        rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
 894        rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 895
 896        rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
 897        rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
 898        rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
 899
 900        rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
 901        rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
 902        rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
 903
 904        return 0;
 905}
 906
 907static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 908{
 909        unsigned int i;
 910        u8 value;
 911
 912        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 913                rt2500usb_bbp_read(rt2x00dev, 0, &value);
 914                if ((value != 0xff) && (value != 0x00))
 915                        return 0;
 916                udelay(REGISTER_BUSY_DELAY);
 917        }
 918
 919        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 920        return -EACCES;
 921}
 922
 923static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
 924{
 925        unsigned int i;
 926        u16 eeprom;
 927        u8 value;
 928        u8 reg_id;
 929
 930        if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
 931                return -EACCES;
 932
 933        rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
 934        rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
 935        rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
 936        rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
 937        rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
 938        rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
 939        rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
 940        rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
 941        rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
 942        rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
 943        rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
 944        rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
 945        rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
 946        rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
 947        rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
 948        rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
 949        rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
 950        rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
 951        rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
 952        rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
 953        rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
 954        rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
 955        rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
 956        rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
 957        rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
 958        rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
 959        rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
 960        rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
 961        rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
 962        rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
 963        rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
 964
 965        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 966                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
 967
 968                if (eeprom != 0xffff && eeprom != 0x0000) {
 969                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 970                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 971                        rt2500usb_bbp_write(rt2x00dev, reg_id, value);
 972                }
 973        }
 974
 975        return 0;
 976}
 977
 978/*
 979 * Device state switch handlers.
 980 */
 981static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
 982{
 983        /*
 984         * Initialize all registers.
 985         */
 986        if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
 987                     rt2500usb_init_bbp(rt2x00dev)))
 988                return -EIO;
 989
 990        return 0;
 991}
 992
 993static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
 994{
 995        rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
 996        rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
 997
 998        /*
 999         * Disable synchronisation.
1000         */
1001        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1002
1003        rt2x00usb_disable_radio(rt2x00dev);
1004}
1005
1006static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1007                               enum dev_state state)
1008{
1009        u16 reg;
1010        u16 reg2;
1011        unsigned int i;
1012        char put_to_sleep;
1013        char bbp_state;
1014        char rf_state;
1015
1016        put_to_sleep = (state != STATE_AWAKE);
1017
1018        reg = 0;
1019        rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1020        rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1021        rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1022        rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1023        rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1024        rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1025
1026        /*
1027         * Device is not guaranteed to be in the requested state yet.
1028         * We must wait until the register indicates that the
1029         * device has entered the correct state.
1030         */
1031        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1032                rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1033                bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1034                rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1035                if (bbp_state == state && rf_state == state)
1036                        return 0;
1037                rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1038                msleep(30);
1039        }
1040
1041        return -EBUSY;
1042}
1043
1044static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1045                                      enum dev_state state)
1046{
1047        int retval = 0;
1048
1049        switch (state) {
1050        case STATE_RADIO_ON:
1051                retval = rt2500usb_enable_radio(rt2x00dev);
1052                break;
1053        case STATE_RADIO_OFF:
1054                rt2500usb_disable_radio(rt2x00dev);
1055                break;
1056        case STATE_RADIO_IRQ_ON:
1057        case STATE_RADIO_IRQ_OFF:
1058                /* No support, but no error either */
1059                break;
1060        case STATE_DEEP_SLEEP:
1061        case STATE_SLEEP:
1062        case STATE_STANDBY:
1063        case STATE_AWAKE:
1064                retval = rt2500usb_set_state(rt2x00dev, state);
1065                break;
1066        default:
1067                retval = -ENOTSUPP;
1068                break;
1069        }
1070
1071        if (unlikely(retval))
1072                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1073                           state, retval);
1074
1075        return retval;
1076}
1077
1078/*
1079 * TX descriptor initialization
1080 */
1081static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1082                                    struct txentry_desc *txdesc)
1083{
1084        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1085        __le32 *txd = (__le32 *) entry->skb->data;
1086        u32 word;
1087
1088        /*
1089         * Start writing the descriptor words.
1090         */
1091        rt2x00_desc_read(txd, 0, &word);
1092        rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1093        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1094                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1095        rt2x00_set_field32(&word, TXD_W0_ACK,
1096                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1097        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1098                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1099        rt2x00_set_field32(&word, TXD_W0_OFDM,
1100                           (txdesc->rate_mode == RATE_MODE_OFDM));
1101        rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1102                           test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1103        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1104        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1105        rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1106        rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1107        rt2x00_desc_write(txd, 0, word);
1108
1109        rt2x00_desc_read(txd, 1, &word);
1110        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1111        rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1112        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1113        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1114        rt2x00_desc_write(txd, 1, word);
1115
1116        rt2x00_desc_read(txd, 2, &word);
1117        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1118        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1119        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1120                           txdesc->u.plcp.length_low);
1121        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1122                           txdesc->u.plcp.length_high);
1123        rt2x00_desc_write(txd, 2, word);
1124
1125        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1126                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1127                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1128        }
1129
1130        /*
1131         * Register descriptor details in skb frame descriptor.
1132         */
1133        skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1134        skbdesc->desc = txd;
1135        skbdesc->desc_len = TXD_DESC_SIZE;
1136}
1137
1138/*
1139 * TX data initialization
1140 */
1141static void rt2500usb_beacondone(struct urb *urb);
1142
1143static void rt2500usb_write_beacon(struct queue_entry *entry,
1144                                   struct txentry_desc *txdesc)
1145{
1146        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1147        struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1148        struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1149        int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1150        int length;
1151        u16 reg, reg0;
1152
1153        /*
1154         * Disable beaconing while we are reloading the beacon data,
1155         * otherwise we might be sending out invalid data.
1156         */
1157        rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1158        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1159        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1160
1161        /*
1162         * Add space for the descriptor in front of the skb.
1163         */
1164        skb_push(entry->skb, TXD_DESC_SIZE);
1165        memset(entry->skb->data, 0, TXD_DESC_SIZE);
1166
1167        /*
1168         * Write the TX descriptor for the beacon.
1169         */
1170        rt2500usb_write_tx_desc(entry, txdesc);
1171
1172        /*
1173         * Dump beacon to userspace through debugfs.
1174         */
1175        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1176
1177        /*
1178         * USB devices cannot blindly pass the skb->len as the
1179         * length of the data to usb_fill_bulk_urb. Pass the skb
1180         * to the driver to determine what the length should be.
1181         */
1182        length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1183
1184        usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1185                          entry->skb->data, length, rt2500usb_beacondone,
1186                          entry);
1187
1188        /*
1189         * Second we need to create the guardian byte.
1190         * We only need a single byte, so lets recycle
1191         * the 'flags' field we are not using for beacons.
1192         */
1193        bcn_priv->guardian_data = 0;
1194        usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1195                          &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1196                          entry);
1197
1198        /*
1199         * Send out the guardian byte.
1200         */
1201        usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1202
1203        /*
1204         * Enable beaconing again.
1205         */
1206        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1207        rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1208        reg0 = reg;
1209        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1210        /*
1211         * Beacon generation will fail initially.
1212         * To prevent this we need to change the TXRX_CSR19
1213         * register several times (reg0 is the same as reg
1214         * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1215         * and 1 in reg).
1216         */
1217        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1219        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1221        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1222}
1223
1224static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1225{
1226        int length;
1227
1228        /*
1229         * The length _must_ be a multiple of 2,
1230         * but it must _not_ be a multiple of the USB packet size.
1231         */
1232        length = roundup(entry->skb->len, 2);
1233        length += (2 * !(length % entry->queue->usb_maxpacket));
1234
1235        return length;
1236}
1237
1238/*
1239 * RX control handlers
1240 */
1241static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1242                                  struct rxdone_entry_desc *rxdesc)
1243{
1244        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1245        struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1246        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1247        __le32 *rxd =
1248            (__le32 *)(entry->skb->data +
1249                       (entry_priv->urb->actual_length -
1250                        entry->queue->desc_size));
1251        u32 word0;
1252        u32 word1;
1253
1254        /*
1255         * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1256         * frame data in rt2x00usb.
1257         */
1258        memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1259        rxd = (__le32 *)skbdesc->desc;
1260
1261        /*
1262         * It is now safe to read the descriptor on all architectures.
1263         */
1264        rt2x00_desc_read(rxd, 0, &word0);
1265        rt2x00_desc_read(rxd, 1, &word1);
1266
1267        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1268                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1269        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1270                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1271
1272        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1273        if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1274                rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1275
1276        if (rxdesc->cipher != CIPHER_NONE) {
1277                _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1278                _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1279                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1280
1281                /* ICV is located at the end of frame */
1282
1283                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1284                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1285                        rxdesc->flags |= RX_FLAG_DECRYPTED;
1286                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1287                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1288        }
1289
1290        /*
1291         * Obtain the status about this packet.
1292         * When frame was received with an OFDM bitrate,
1293         * the signal is the PLCP value. If it was received with
1294         * a CCK bitrate the signal is the rate in 100kbit/s.
1295         */
1296        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1297        rxdesc->rssi =
1298            rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1299        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1300
1301        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1302                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1303        else
1304                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1305        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1306                rxdesc->dev_flags |= RXDONE_MY_BSS;
1307
1308        /*
1309         * Adjust the skb memory window to the frame boundaries.
1310         */
1311        skb_trim(entry->skb, rxdesc->size);
1312}
1313
1314/*
1315 * Interrupt functions.
1316 */
1317static void rt2500usb_beacondone(struct urb *urb)
1318{
1319        struct queue_entry *entry = (struct queue_entry *)urb->context;
1320        struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1321
1322        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1323                return;
1324
1325        /*
1326         * Check if this was the guardian beacon,
1327         * if that was the case we need to send the real beacon now.
1328         * Otherwise we should free the sk_buffer, the device
1329         * should be doing the rest of the work now.
1330         */
1331        if (bcn_priv->guardian_urb == urb) {
1332                usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1333        } else if (bcn_priv->urb == urb) {
1334                dev_kfree_skb(entry->skb);
1335                entry->skb = NULL;
1336        }
1337}
1338
1339/*
1340 * Device probe functions.
1341 */
1342static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1343{
1344        u16 word;
1345        u8 *mac;
1346        u8 bbp;
1347
1348        rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1349
1350        /*
1351         * Start validation of the data that has been read.
1352         */
1353        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1354        if (!is_valid_ether_addr(mac)) {
1355                eth_random_addr(mac);
1356                rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1357        }
1358
1359        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1360        if (word == 0xffff) {
1361                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1362                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1363                                   ANTENNA_SW_DIVERSITY);
1364                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1365                                   ANTENNA_SW_DIVERSITY);
1366                rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1367                                   LED_MODE_DEFAULT);
1368                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1369                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1370                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1371                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1372                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1373        }
1374
1375        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1376        if (word == 0xffff) {
1377                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1378                rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1379                rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1380                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1381                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1382        }
1383
1384        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1385        if (word == 0xffff) {
1386                rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1387                                   DEFAULT_RSSI_OFFSET);
1388                rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1389                rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1390                                  word);
1391        }
1392
1393        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1394        if (word == 0xffff) {
1395                rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1396                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1397                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1398        }
1399
1400        /*
1401         * Switch lower vgc bound to current BBP R17 value,
1402         * lower the value a bit for better quality.
1403         */
1404        rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1405        bbp -= 6;
1406
1407        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1408        if (word == 0xffff) {
1409                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1410                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1411                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1412                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1413        } else {
1414                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1415                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1416        }
1417
1418        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1419        if (word == 0xffff) {
1420                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1421                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1422                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1423                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1424        }
1425
1426        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1427        if (word == 0xffff) {
1428                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1429                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1430                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1431                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1432        }
1433
1434        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1435        if (word == 0xffff) {
1436                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1437                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1438                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1439                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1440        }
1441
1442        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1443        if (word == 0xffff) {
1444                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1445                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1446                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1447                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1448        }
1449
1450        return 0;
1451}
1452
1453static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1454{
1455        u16 reg;
1456        u16 value;
1457        u16 eeprom;
1458
1459        /*
1460         * Read EEPROM word for configuration.
1461         */
1462        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1463
1464        /*
1465         * Identify RF chipset.
1466         */
1467        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1468        rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1469        rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1470
1471        if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1472                rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1473                return -ENODEV;
1474        }
1475
1476        if (!rt2x00_rf(rt2x00dev, RF2522) &&
1477            !rt2x00_rf(rt2x00dev, RF2523) &&
1478            !rt2x00_rf(rt2x00dev, RF2524) &&
1479            !rt2x00_rf(rt2x00dev, RF2525) &&
1480            !rt2x00_rf(rt2x00dev, RF2525E) &&
1481            !rt2x00_rf(rt2x00dev, RF5222)) {
1482                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1483                return -ENODEV;
1484        }
1485
1486        /*
1487         * Identify default antenna configuration.
1488         */
1489        rt2x00dev->default_ant.tx =
1490            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1491        rt2x00dev->default_ant.rx =
1492            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1493
1494        /*
1495         * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1496         * I am not 100% sure about this, but the legacy drivers do not
1497         * indicate antenna swapping in software is required when
1498         * diversity is enabled.
1499         */
1500        if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1501                rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1502        if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1503                rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1504
1505        /*
1506         * Store led mode, for correct led behaviour.
1507         */
1508#ifdef CONFIG_RT2X00_LIB_LEDS
1509        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1510
1511        rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1512        if (value == LED_MODE_TXRX_ACTIVITY ||
1513            value == LED_MODE_DEFAULT ||
1514            value == LED_MODE_ASUS)
1515                rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1516                                   LED_TYPE_ACTIVITY);
1517#endif /* CONFIG_RT2X00_LIB_LEDS */
1518
1519        /*
1520         * Detect if this device has an hardware controlled radio.
1521         */
1522        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1523                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1524
1525        /*
1526         * Read the RSSI <-> dBm offset information.
1527         */
1528        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1529        rt2x00dev->rssi_offset =
1530            rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1531
1532        return 0;
1533}
1534
1535/*
1536 * RF value list for RF2522
1537 * Supports: 2.4 GHz
1538 */
1539static const struct rf_channel rf_vals_bg_2522[] = {
1540        { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1541        { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1542        { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1543        { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1544        { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1545        { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1546        { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1547        { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1548        { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1549        { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1550        { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1551        { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1552        { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1553        { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1554};
1555
1556/*
1557 * RF value list for RF2523
1558 * Supports: 2.4 GHz
1559 */
1560static const struct rf_channel rf_vals_bg_2523[] = {
1561        { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1562        { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1563        { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1564        { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1565        { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1566        { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1567        { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1568        { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1569        { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1570        { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1571        { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1572        { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1573        { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1574        { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1575};
1576
1577/*
1578 * RF value list for RF2524
1579 * Supports: 2.4 GHz
1580 */
1581static const struct rf_channel rf_vals_bg_2524[] = {
1582        { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1583        { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1584        { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1585        { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1586        { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1587        { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1588        { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1589        { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1590        { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1591        { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1592        { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1593        { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1594        { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1595        { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1596};
1597
1598/*
1599 * RF value list for RF2525
1600 * Supports: 2.4 GHz
1601 */
1602static const struct rf_channel rf_vals_bg_2525[] = {
1603        { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1604        { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1605        { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1606        { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1607        { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1608        { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1609        { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1610        { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1611        { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1612        { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1613        { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1614        { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1615        { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1616        { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1617};
1618
1619/*
1620 * RF value list for RF2525e
1621 * Supports: 2.4 GHz
1622 */
1623static const struct rf_channel rf_vals_bg_2525e[] = {
1624        { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1625        { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1626        { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1627        { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1628        { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1629        { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1630        { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1631        { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1632        { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1633        { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1634        { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1635        { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1636        { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1637        { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1638};
1639
1640/*
1641 * RF value list for RF5222
1642 * Supports: 2.4 GHz & 5.2 GHz
1643 */
1644static const struct rf_channel rf_vals_5222[] = {
1645        { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1646        { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1647        { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1648        { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1649        { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1650        { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1651        { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1652        { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1653        { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1654        { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1655        { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1656        { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1657        { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1658        { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1659
1660        /* 802.11 UNI / HyperLan 2 */
1661        { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1662        { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1663        { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1664        { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1665        { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1666        { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1667        { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1668        { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1669
1670        /* 802.11 HyperLan 2 */
1671        { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1672        { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1673        { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1674        { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1675        { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1676        { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1677        { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1678        { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1679        { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1680        { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1681
1682        /* 802.11 UNII */
1683        { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1684        { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1685        { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1686        { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1687        { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1688};
1689
1690static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1691{
1692        struct hw_mode_spec *spec = &rt2x00dev->spec;
1693        struct channel_info *info;
1694        char *tx_power;
1695        unsigned int i;
1696
1697        /*
1698         * Initialize all hw fields.
1699         *
1700         * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1701         * capable of sending the buffered frames out after the DTIM
1702         * transmission using rt2x00lib_beacondone. This will send out
1703         * multicast and broadcast traffic immediately instead of buffering it
1704         * infinitly and thus dropping it after some time.
1705         */
1706        rt2x00dev->hw->flags =
1707            IEEE80211_HW_RX_INCLUDES_FCS |
1708            IEEE80211_HW_SIGNAL_DBM |
1709            IEEE80211_HW_SUPPORTS_PS |
1710            IEEE80211_HW_PS_NULLFUNC_STACK;
1711
1712        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1713        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1714                                rt2x00_eeprom_addr(rt2x00dev,
1715                                                   EEPROM_MAC_ADDR_0));
1716
1717        /*
1718         * Initialize hw_mode information.
1719         */
1720        spec->supported_bands = SUPPORT_BAND_2GHZ;
1721        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1722
1723        if (rt2x00_rf(rt2x00dev, RF2522)) {
1724                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1725                spec->channels = rf_vals_bg_2522;
1726        } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1727                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1728                spec->channels = rf_vals_bg_2523;
1729        } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1730                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1731                spec->channels = rf_vals_bg_2524;
1732        } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1733                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1734                spec->channels = rf_vals_bg_2525;
1735        } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1736                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1737                spec->channels = rf_vals_bg_2525e;
1738        } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1739                spec->supported_bands |= SUPPORT_BAND_5GHZ;
1740                spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1741                spec->channels = rf_vals_5222;
1742        }
1743
1744        /*
1745         * Create channel information array
1746         */
1747        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1748        if (!info)
1749                return -ENOMEM;
1750
1751        spec->channels_info = info;
1752
1753        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1754        for (i = 0; i < 14; i++) {
1755                info[i].max_power = MAX_TXPOWER;
1756                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1757        }
1758
1759        if (spec->num_channels > 14) {
1760                for (i = 14; i < spec->num_channels; i++) {
1761                        info[i].max_power = MAX_TXPOWER;
1762                        info[i].default_power1 = DEFAULT_TXPOWER;
1763                }
1764        }
1765
1766        return 0;
1767}
1768
1769static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1770{
1771        int retval;
1772        u16 reg;
1773
1774        /*
1775         * Allocate eeprom data.
1776         */
1777        retval = rt2500usb_validate_eeprom(rt2x00dev);
1778        if (retval)
1779                return retval;
1780
1781        retval = rt2500usb_init_eeprom(rt2x00dev);
1782        if (retval)
1783                return retval;
1784
1785        /*
1786         * Enable rfkill polling by setting GPIO direction of the
1787         * rfkill switch GPIO pin correctly.
1788         */
1789        rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1790        rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1791        rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1792
1793        /*
1794         * Initialize hw specifications.
1795         */
1796        retval = rt2500usb_probe_hw_mode(rt2x00dev);
1797        if (retval)
1798                return retval;
1799
1800        /*
1801         * This device requires the atim queue
1802         */
1803        __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1804        __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1805        if (!modparam_nohwcrypt) {
1806                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1807                __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1808        }
1809        __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1810        __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1811
1812        /*
1813         * Set the rssi offset.
1814         */
1815        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1816
1817        return 0;
1818}
1819
1820static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1821        .tx                     = rt2x00mac_tx,
1822        .start                  = rt2x00mac_start,
1823        .stop                   = rt2x00mac_stop,
1824        .add_interface          = rt2x00mac_add_interface,
1825        .remove_interface       = rt2x00mac_remove_interface,
1826        .config                 = rt2x00mac_config,
1827        .configure_filter       = rt2x00mac_configure_filter,
1828        .set_tim                = rt2x00mac_set_tim,
1829        .set_key                = rt2x00mac_set_key,
1830        .sw_scan_start          = rt2x00mac_sw_scan_start,
1831        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1832        .get_stats              = rt2x00mac_get_stats,
1833        .bss_info_changed       = rt2x00mac_bss_info_changed,
1834        .conf_tx                = rt2x00mac_conf_tx,
1835        .rfkill_poll            = rt2x00mac_rfkill_poll,
1836        .flush                  = rt2x00mac_flush,
1837        .set_antenna            = rt2x00mac_set_antenna,
1838        .get_antenna            = rt2x00mac_get_antenna,
1839        .get_ringparam          = rt2x00mac_get_ringparam,
1840        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1841};
1842
1843static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1844        .probe_hw               = rt2500usb_probe_hw,
1845        .initialize             = rt2x00usb_initialize,
1846        .uninitialize           = rt2x00usb_uninitialize,
1847        .clear_entry            = rt2x00usb_clear_entry,
1848        .set_device_state       = rt2500usb_set_device_state,
1849        .rfkill_poll            = rt2500usb_rfkill_poll,
1850        .link_stats             = rt2500usb_link_stats,
1851        .reset_tuner            = rt2500usb_reset_tuner,
1852        .watchdog               = rt2x00usb_watchdog,
1853        .start_queue            = rt2500usb_start_queue,
1854        .kick_queue             = rt2x00usb_kick_queue,
1855        .stop_queue             = rt2500usb_stop_queue,
1856        .flush_queue            = rt2x00usb_flush_queue,
1857        .write_tx_desc          = rt2500usb_write_tx_desc,
1858        .write_beacon           = rt2500usb_write_beacon,
1859        .get_tx_data_len        = rt2500usb_get_tx_data_len,
1860        .fill_rxdone            = rt2500usb_fill_rxdone,
1861        .config_shared_key      = rt2500usb_config_key,
1862        .config_pairwise_key    = rt2500usb_config_key,
1863        .config_filter          = rt2500usb_config_filter,
1864        .config_intf            = rt2500usb_config_intf,
1865        .config_erp             = rt2500usb_config_erp,
1866        .config_ant             = rt2500usb_config_ant,
1867        .config                 = rt2500usb_config,
1868};
1869
1870static void rt2500usb_queue_init(struct data_queue *queue)
1871{
1872        switch (queue->qid) {
1873        case QID_RX:
1874                queue->limit = 32;
1875                queue->data_size = DATA_FRAME_SIZE;
1876                queue->desc_size = RXD_DESC_SIZE;
1877                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878                break;
1879
1880        case QID_AC_VO:
1881        case QID_AC_VI:
1882        case QID_AC_BE:
1883        case QID_AC_BK:
1884                queue->limit = 32;
1885                queue->data_size = DATA_FRAME_SIZE;
1886                queue->desc_size = TXD_DESC_SIZE;
1887                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1888                break;
1889
1890        case QID_BEACON:
1891                queue->limit = 1;
1892                queue->data_size = MGMT_FRAME_SIZE;
1893                queue->desc_size = TXD_DESC_SIZE;
1894                queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1895                break;
1896
1897        case QID_ATIM:
1898                queue->limit = 8;
1899                queue->data_size = DATA_FRAME_SIZE;
1900                queue->desc_size = TXD_DESC_SIZE;
1901                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1902                break;
1903
1904        default:
1905                BUG();
1906                break;
1907        }
1908}
1909
1910static const struct rt2x00_ops rt2500usb_ops = {
1911        .name                   = KBUILD_MODNAME,
1912        .max_ap_intf            = 1,
1913        .eeprom_size            = EEPROM_SIZE,
1914        .rf_size                = RF_SIZE,
1915        .tx_queues              = NUM_TX_QUEUES,
1916        .queue_init             = rt2500usb_queue_init,
1917        .lib                    = &rt2500usb_rt2x00_ops,
1918        .hw                     = &rt2500usb_mac80211_ops,
1919#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1920        .debugfs                = &rt2500usb_rt2x00debug,
1921#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1922};
1923
1924/*
1925 * rt2500usb module information.
1926 */
1927static struct usb_device_id rt2500usb_device_table[] = {
1928        /* ASUS */
1929        { USB_DEVICE(0x0b05, 0x1706) },
1930        { USB_DEVICE(0x0b05, 0x1707) },
1931        /* Belkin */
1932        { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1933        { USB_DEVICE(0x050d, 0x7051) },
1934        /* Cisco Systems */
1935        { USB_DEVICE(0x13b1, 0x000d) },
1936        { USB_DEVICE(0x13b1, 0x0011) },
1937        { USB_DEVICE(0x13b1, 0x001a) },
1938        /* Conceptronic */
1939        { USB_DEVICE(0x14b2, 0x3c02) },
1940        /* D-LINK */
1941        { USB_DEVICE(0x2001, 0x3c00) },
1942        /* Gigabyte */
1943        { USB_DEVICE(0x1044, 0x8001) },
1944        { USB_DEVICE(0x1044, 0x8007) },
1945        /* Hercules */
1946        { USB_DEVICE(0x06f8, 0xe000) },
1947        /* Melco */
1948        { USB_DEVICE(0x0411, 0x005e) },
1949        { USB_DEVICE(0x0411, 0x0066) },
1950        { USB_DEVICE(0x0411, 0x0067) },
1951        { USB_DEVICE(0x0411, 0x008b) },
1952        { USB_DEVICE(0x0411, 0x0097) },
1953        /* MSI */
1954        { USB_DEVICE(0x0db0, 0x6861) },
1955        { USB_DEVICE(0x0db0, 0x6865) },
1956        { USB_DEVICE(0x0db0, 0x6869) },
1957        /* Ralink */
1958        { USB_DEVICE(0x148f, 0x1706) },
1959        { USB_DEVICE(0x148f, 0x2570) },
1960        { USB_DEVICE(0x148f, 0x9020) },
1961        /* Sagem */
1962        { USB_DEVICE(0x079b, 0x004b) },
1963        /* Siemens */
1964        { USB_DEVICE(0x0681, 0x3c06) },
1965        /* SMC */
1966        { USB_DEVICE(0x0707, 0xee13) },
1967        /* Spairon */
1968        { USB_DEVICE(0x114b, 0x0110) },
1969        /* SURECOM */
1970        { USB_DEVICE(0x0769, 0x11f3) },
1971        /* Trust */
1972        { USB_DEVICE(0x0eb0, 0x9020) },
1973        /* VTech */
1974        { USB_DEVICE(0x0f88, 0x3012) },
1975        /* Zinwell */
1976        { USB_DEVICE(0x5a57, 0x0260) },
1977        { 0, }
1978};
1979
1980MODULE_AUTHOR(DRV_PROJECT);
1981MODULE_VERSION(DRV_VERSION);
1982MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1983MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1984MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1985MODULE_LICENSE("GPL");
1986
1987static int rt2500usb_probe(struct usb_interface *usb_intf,
1988                           const struct usb_device_id *id)
1989{
1990        return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1991}
1992
1993static struct usb_driver rt2500usb_driver = {
1994        .name           = KBUILD_MODNAME,
1995        .id_table       = rt2500usb_device_table,
1996        .probe          = rt2500usb_probe,
1997        .disconnect     = rt2x00usb_disconnect,
1998        .suspend        = rt2x00usb_suspend,
1999        .resume         = rt2x00usb_resume,
2000        .reset_resume   = rt2x00usb_resume,
2001        .disable_hub_initiated_lpm = 1,
2002};
2003
2004module_usb_driver(rt2500usb_driver);
2005