linux/drivers/net/wireless/rt2x00/rt61pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt61pci
  23        Abstract: rt61pci device specific routines.
  24        Supported chipsets: RT2561, RT2561s, RT2661.
  25 */
  26
  27#include <linux/crc-itu-t.h>
  28#include <linux/delay.h>
  29#include <linux/etherdevice.h>
  30#include <linux/init.h>
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34#include <linux/pci.h>
  35#include <linux/eeprom_93cx6.h>
  36
  37#include "rt2x00.h"
  38#include "rt2x00mmio.h"
  39#include "rt2x00pci.h"
  40#include "rt61pci.h"
  41
  42/*
  43 * Allow hardware encryption to be disabled.
  44 */
  45static bool modparam_nohwcrypt = false;
  46module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  47MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  48
  49/*
  50 * Register access.
  51 * BBP and RF register require indirect register access,
  52 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  53 * These indirect registers work with busy bits,
  54 * and we will try maximal REGISTER_BUSY_COUNT times to access
  55 * the register while taking a REGISTER_BUSY_DELAY us delay
  56 * between each attempt. When the busy bit is still set at that time,
  57 * the access attempt is considered to have failed,
  58 * and we will print an error.
  59 */
  60#define WAIT_FOR_BBP(__dev, __reg) \
  61        rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  62#define WAIT_FOR_RF(__dev, __reg) \
  63        rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  64#define WAIT_FOR_MCU(__dev, __reg) \
  65        rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  66                                H2M_MAILBOX_CSR_OWNER, (__reg))
  67
  68static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  69                              const unsigned int word, const u8 value)
  70{
  71        u32 reg;
  72
  73        mutex_lock(&rt2x00dev->csr_mutex);
  74
  75        /*
  76         * Wait until the BBP becomes available, afterwards we
  77         * can safely write the new data into the register.
  78         */
  79        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  80                reg = 0;
  81                rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  82                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  83                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  84                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  85
  86                rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
  87        }
  88
  89        mutex_unlock(&rt2x00dev->csr_mutex);
  90}
  91
  92static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  93                             const unsigned int word, u8 *value)
  94{
  95        u32 reg;
  96
  97        mutex_lock(&rt2x00dev->csr_mutex);
  98
  99        /*
 100         * Wait until the BBP becomes available, afterwards we
 101         * can safely write the read request into the register.
 102         * After the data has been written, we wait until hardware
 103         * returns the correct value, if at any time the register
 104         * doesn't become available in time, reg will be 0xffffffff
 105         * which means we return 0xff to the caller.
 106         */
 107        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 108                reg = 0;
 109                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 110                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 111                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 112
 113                rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
 114
 115                WAIT_FOR_BBP(rt2x00dev, &reg);
 116        }
 117
 118        *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 119
 120        mutex_unlock(&rt2x00dev->csr_mutex);
 121}
 122
 123static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 124                             const unsigned int word, const u32 value)
 125{
 126        u32 reg;
 127
 128        mutex_lock(&rt2x00dev->csr_mutex);
 129
 130        /*
 131         * Wait until the RF becomes available, afterwards we
 132         * can safely write the new data into the register.
 133         */
 134        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 135                reg = 0;
 136                rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 137                rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
 138                rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 139                rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 140
 141                rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
 142                rt2x00_rf_write(rt2x00dev, word, value);
 143        }
 144
 145        mutex_unlock(&rt2x00dev->csr_mutex);
 146}
 147
 148static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 149                                const u8 command, const u8 token,
 150                                const u8 arg0, const u8 arg1)
 151{
 152        u32 reg;
 153
 154        mutex_lock(&rt2x00dev->csr_mutex);
 155
 156        /*
 157         * Wait until the MCU becomes available, afterwards we
 158         * can safely write the new data into the register.
 159         */
 160        if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
 161                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
 162                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 163                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
 164                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
 165                rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 166
 167                rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
 168                rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
 169                rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 170                rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 171        }
 172
 173        mutex_unlock(&rt2x00dev->csr_mutex);
 174
 175}
 176
 177static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 178{
 179        struct rt2x00_dev *rt2x00dev = eeprom->data;
 180        u32 reg;
 181
 182        rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
 183
 184        eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 185        eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 186        eeprom->reg_data_clock =
 187            !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 188        eeprom->reg_chip_select =
 189            !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 190}
 191
 192static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 193{
 194        struct rt2x00_dev *rt2x00dev = eeprom->data;
 195        u32 reg = 0;
 196
 197        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 198        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 199        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
 200                           !!eeprom->reg_data_clock);
 201        rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
 202                           !!eeprom->reg_chip_select);
 203
 204        rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
 205}
 206
 207#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 208static const struct rt2x00debug rt61pci_rt2x00debug = {
 209        .owner  = THIS_MODULE,
 210        .csr    = {
 211                .read           = rt2x00mmio_register_read,
 212                .write          = rt2x00mmio_register_write,
 213                .flags          = RT2X00DEBUGFS_OFFSET,
 214                .word_base      = CSR_REG_BASE,
 215                .word_size      = sizeof(u32),
 216                .word_count     = CSR_REG_SIZE / sizeof(u32),
 217        },
 218        .eeprom = {
 219                .read           = rt2x00_eeprom_read,
 220                .write          = rt2x00_eeprom_write,
 221                .word_base      = EEPROM_BASE,
 222                .word_size      = sizeof(u16),
 223                .word_count     = EEPROM_SIZE / sizeof(u16),
 224        },
 225        .bbp    = {
 226                .read           = rt61pci_bbp_read,
 227                .write          = rt61pci_bbp_write,
 228                .word_base      = BBP_BASE,
 229                .word_size      = sizeof(u8),
 230                .word_count     = BBP_SIZE / sizeof(u8),
 231        },
 232        .rf     = {
 233                .read           = rt2x00_rf_read,
 234                .write          = rt61pci_rf_write,
 235                .word_base      = RF_BASE,
 236                .word_size      = sizeof(u32),
 237                .word_count     = RF_SIZE / sizeof(u32),
 238        },
 239};
 240#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 241
 242static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 243{
 244        u32 reg;
 245
 246        rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
 247        return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
 248}
 249
 250#ifdef CONFIG_RT2X00_LIB_LEDS
 251static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 252                                   enum led_brightness brightness)
 253{
 254        struct rt2x00_led *led =
 255            container_of(led_cdev, struct rt2x00_led, led_dev);
 256        unsigned int enabled = brightness != LED_OFF;
 257        unsigned int a_mode =
 258            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 259        unsigned int bg_mode =
 260            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 261
 262        if (led->type == LED_TYPE_RADIO) {
 263                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 264                                   MCU_LEDCS_RADIO_STATUS, enabled);
 265
 266                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 267                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 268                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 269        } else if (led->type == LED_TYPE_ASSOC) {
 270                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 271                                   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 272                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 273                                   MCU_LEDCS_LINK_A_STATUS, a_mode);
 274
 275                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 276                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 277                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 278        } else if (led->type == LED_TYPE_QUALITY) {
 279                /*
 280                 * The brightness is divided into 6 levels (0 - 5),
 281                 * this means we need to convert the brightness
 282                 * argument into the matching level within that range.
 283                 */
 284                rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 285                                    brightness / (LED_FULL / 6), 0);
 286        }
 287}
 288
 289static int rt61pci_blink_set(struct led_classdev *led_cdev,
 290                             unsigned long *delay_on,
 291                             unsigned long *delay_off)
 292{
 293        struct rt2x00_led *led =
 294            container_of(led_cdev, struct rt2x00_led, led_dev);
 295        u32 reg;
 296
 297        rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 298        rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 299        rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 300        rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
 301
 302        return 0;
 303}
 304
 305static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 306                             struct rt2x00_led *led,
 307                             enum led_type type)
 308{
 309        led->rt2x00dev = rt2x00dev;
 310        led->type = type;
 311        led->led_dev.brightness_set = rt61pci_brightness_set;
 312        led->led_dev.blink_set = rt61pci_blink_set;
 313        led->flags = LED_INITIALIZED;
 314}
 315#endif /* CONFIG_RT2X00_LIB_LEDS */
 316
 317/*
 318 * Configuration handlers.
 319 */
 320static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 321                                     struct rt2x00lib_crypto *crypto,
 322                                     struct ieee80211_key_conf *key)
 323{
 324        struct hw_key_entry key_entry;
 325        struct rt2x00_field32 field;
 326        u32 mask;
 327        u32 reg;
 328
 329        if (crypto->cmd == SET_KEY) {
 330                /*
 331                 * rt2x00lib can't determine the correct free
 332                 * key_idx for shared keys. We have 1 register
 333                 * with key valid bits. The goal is simple, read
 334                 * the register, if that is full we have no slots
 335                 * left.
 336                 * Note that each BSS is allowed to have up to 4
 337                 * shared keys, so put a mask over the allowed
 338                 * entries.
 339                 */
 340                mask = (0xf << crypto->bssidx);
 341
 342                rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
 343                reg &= mask;
 344
 345                if (reg && reg == mask)
 346                        return -ENOSPC;
 347
 348                key->hw_key_idx += reg ? ffz(reg) : 0;
 349
 350                /*
 351                 * Upload key to hardware
 352                 */
 353                memcpy(key_entry.key, crypto->key,
 354                       sizeof(key_entry.key));
 355                memcpy(key_entry.tx_mic, crypto->tx_mic,
 356                       sizeof(key_entry.tx_mic));
 357                memcpy(key_entry.rx_mic, crypto->rx_mic,
 358                       sizeof(key_entry.rx_mic));
 359
 360                reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 361                rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 362                                               &key_entry, sizeof(key_entry));
 363
 364                /*
 365                 * The cipher types are stored over 2 registers.
 366                 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 367                 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 368                 * Using the correct defines correctly will cause overhead,
 369                 * so just calculate the correct offset.
 370                 */
 371                if (key->hw_key_idx < 8) {
 372                        field.bit_offset = (3 * key->hw_key_idx);
 373                        field.bit_mask = 0x7 << field.bit_offset;
 374
 375                        rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
 376                        rt2x00_set_field32(&reg, field, crypto->cipher);
 377                        rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
 378                } else {
 379                        field.bit_offset = (3 * (key->hw_key_idx - 8));
 380                        field.bit_mask = 0x7 << field.bit_offset;
 381
 382                        rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
 383                        rt2x00_set_field32(&reg, field, crypto->cipher);
 384                        rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
 385                }
 386
 387                /*
 388                 * The driver does not support the IV/EIV generation
 389                 * in hardware. However it doesn't support the IV/EIV
 390                 * inside the ieee80211 frame either, but requires it
 391                 * to be provided separately for the descriptor.
 392                 * rt2x00lib will cut the IV/EIV data out of all frames
 393                 * given to us by mac80211, but we must tell mac80211
 394                 * to generate the IV/EIV data.
 395                 */
 396                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 397        }
 398
 399        /*
 400         * SEC_CSR0 contains only single-bit fields to indicate
 401         * a particular key is valid. Because using the FIELD32()
 402         * defines directly will cause a lot of overhead, we use
 403         * a calculation to determine the correct bit directly.
 404         */
 405        mask = 1 << key->hw_key_idx;
 406
 407        rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
 408        if (crypto->cmd == SET_KEY)
 409                reg |= mask;
 410        else if (crypto->cmd == DISABLE_KEY)
 411                reg &= ~mask;
 412        rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
 413
 414        return 0;
 415}
 416
 417static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 418                                       struct rt2x00lib_crypto *crypto,
 419                                       struct ieee80211_key_conf *key)
 420{
 421        struct hw_pairwise_ta_entry addr_entry;
 422        struct hw_key_entry key_entry;
 423        u32 mask;
 424        u32 reg;
 425
 426        if (crypto->cmd == SET_KEY) {
 427                /*
 428                 * rt2x00lib can't determine the correct free
 429                 * key_idx for pairwise keys. We have 2 registers
 430                 * with key valid bits. The goal is simple: read
 431                 * the first register. If that is full, move to
 432                 * the next register.
 433                 * When both registers are full, we drop the key.
 434                 * Otherwise, we use the first invalid entry.
 435                 */
 436                rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
 437                if (reg && reg == ~0) {
 438                        key->hw_key_idx = 32;
 439                        rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
 440                        if (reg && reg == ~0)
 441                                return -ENOSPC;
 442                }
 443
 444                key->hw_key_idx += reg ? ffz(reg) : 0;
 445
 446                /*
 447                 * Upload key to hardware
 448                 */
 449                memcpy(key_entry.key, crypto->key,
 450                       sizeof(key_entry.key));
 451                memcpy(key_entry.tx_mic, crypto->tx_mic,
 452                       sizeof(key_entry.tx_mic));
 453                memcpy(key_entry.rx_mic, crypto->rx_mic,
 454                       sizeof(key_entry.rx_mic));
 455
 456                memset(&addr_entry, 0, sizeof(addr_entry));
 457                memcpy(&addr_entry, crypto->address, ETH_ALEN);
 458                addr_entry.cipher = crypto->cipher;
 459
 460                reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 461                rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 462                                               &key_entry, sizeof(key_entry));
 463
 464                reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 465                rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 466                                               &addr_entry, sizeof(addr_entry));
 467
 468                /*
 469                 * Enable pairwise lookup table for given BSS idx.
 470                 * Without this, received frames will not be decrypted
 471                 * by the hardware.
 472                 */
 473                rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
 474                reg |= (1 << crypto->bssidx);
 475                rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
 476
 477                /*
 478                 * The driver does not support the IV/EIV generation
 479                 * in hardware. However it doesn't support the IV/EIV
 480                 * inside the ieee80211 frame either, but requires it
 481                 * to be provided separately for the descriptor.
 482                 * rt2x00lib will cut the IV/EIV data out of all frames
 483                 * given to us by mac80211, but we must tell mac80211
 484                 * to generate the IV/EIV data.
 485                 */
 486                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 487        }
 488
 489        /*
 490         * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 491         * a particular key is valid. Because using the FIELD32()
 492         * defines directly will cause a lot of overhead, we use
 493         * a calculation to determine the correct bit directly.
 494         */
 495        if (key->hw_key_idx < 32) {
 496                mask = 1 << key->hw_key_idx;
 497
 498                rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
 499                if (crypto->cmd == SET_KEY)
 500                        reg |= mask;
 501                else if (crypto->cmd == DISABLE_KEY)
 502                        reg &= ~mask;
 503                rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
 504        } else {
 505                mask = 1 << (key->hw_key_idx - 32);
 506
 507                rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
 508                if (crypto->cmd == SET_KEY)
 509                        reg |= mask;
 510                else if (crypto->cmd == DISABLE_KEY)
 511                        reg &= ~mask;
 512                rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
 513        }
 514
 515        return 0;
 516}
 517
 518static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 519                                  const unsigned int filter_flags)
 520{
 521        u32 reg;
 522
 523        /*
 524         * Start configuration steps.
 525         * Note that the version error will always be dropped
 526         * and broadcast frames will always be accepted since
 527         * there is no filter for it at this time.
 528         */
 529        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
 530        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 531                           !(filter_flags & FIF_FCSFAIL));
 532        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 533                           !(filter_flags & FIF_PLCPFAIL));
 534        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 535                           !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 536        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 537                           !(filter_flags & FIF_PROMISC_IN_BSS));
 538        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 539                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 540                           !rt2x00dev->intf_ap_count);
 541        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 542        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 543                           !(filter_flags & FIF_ALLMULTI));
 544        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 545        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 546                           !(filter_flags & FIF_CONTROL));
 547        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 548}
 549
 550static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 551                                struct rt2x00_intf *intf,
 552                                struct rt2x00intf_conf *conf,
 553                                const unsigned int flags)
 554{
 555        u32 reg;
 556
 557        if (flags & CONFIG_UPDATE_TYPE) {
 558                /*
 559                 * Enable synchronisation.
 560                 */
 561                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
 562                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 563                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 564        }
 565
 566        if (flags & CONFIG_UPDATE_MAC) {
 567                reg = le32_to_cpu(conf->mac[1]);
 568                rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 569                conf->mac[1] = cpu_to_le32(reg);
 570
 571                rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
 572                                               conf->mac, sizeof(conf->mac));
 573        }
 574
 575        if (flags & CONFIG_UPDATE_BSSID) {
 576                reg = le32_to_cpu(conf->bssid[1]);
 577                rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 578                conf->bssid[1] = cpu_to_le32(reg);
 579
 580                rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
 581                                               conf->bssid,
 582                                               sizeof(conf->bssid));
 583        }
 584}
 585
 586static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 587                               struct rt2x00lib_erp *erp,
 588                               u32 changed)
 589{
 590        u32 reg;
 591
 592        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
 593        rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 594        rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 595        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 596
 597        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 598                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
 599                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 600                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 601                                   !!erp->short_preamble);
 602                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
 603        }
 604
 605        if (changed & BSS_CHANGED_BASIC_RATES)
 606                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
 607                                          erp->basic_rates);
 608
 609        if (changed & BSS_CHANGED_BEACON_INT) {
 610                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
 611                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 612                                   erp->beacon_int * 16);
 613                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 614        }
 615
 616        if (changed & BSS_CHANGED_ERP_SLOT) {
 617                rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
 618                rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 619                rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
 620
 621                rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
 622                rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 623                rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 624                rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 625                rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
 626        }
 627}
 628
 629static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 630                                      struct antenna_setup *ant)
 631{
 632        u8 r3;
 633        u8 r4;
 634        u8 r77;
 635
 636        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 637        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 638        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 639
 640        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
 641
 642        /*
 643         * Configure the RX antenna.
 644         */
 645        switch (ant->rx) {
 646        case ANTENNA_HW_DIVERSITY:
 647                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 648                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 649                                  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 650                break;
 651        case ANTENNA_A:
 652                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 653                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 654                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 655                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 656                else
 657                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 658                break;
 659        case ANTENNA_B:
 660        default:
 661                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 662                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 663                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 664                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 665                else
 666                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 667                break;
 668        }
 669
 670        rt61pci_bbp_write(rt2x00dev, 77, r77);
 671        rt61pci_bbp_write(rt2x00dev, 3, r3);
 672        rt61pci_bbp_write(rt2x00dev, 4, r4);
 673}
 674
 675static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 676                                      struct antenna_setup *ant)
 677{
 678        u8 r3;
 679        u8 r4;
 680        u8 r77;
 681
 682        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 683        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 684        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 685
 686        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
 687        rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 688                          !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
 689
 690        /*
 691         * Configure the RX antenna.
 692         */
 693        switch (ant->rx) {
 694        case ANTENNA_HW_DIVERSITY:
 695                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 696                break;
 697        case ANTENNA_A:
 698                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 699                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 700                break;
 701        case ANTENNA_B:
 702        default:
 703                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 704                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 705                break;
 706        }
 707
 708        rt61pci_bbp_write(rt2x00dev, 77, r77);
 709        rt61pci_bbp_write(rt2x00dev, 3, r3);
 710        rt61pci_bbp_write(rt2x00dev, 4, r4);
 711}
 712
 713static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 714                                           const int p1, const int p2)
 715{
 716        u32 reg;
 717
 718        rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
 719
 720        rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
 721        rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
 722
 723        rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
 724        rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
 725
 726        rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
 727}
 728
 729static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 730                                        struct antenna_setup *ant)
 731{
 732        u8 r3;
 733        u8 r4;
 734        u8 r77;
 735
 736        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 737        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 738        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 739
 740        /*
 741         * Configure the RX antenna.
 742         */
 743        switch (ant->rx) {
 744        case ANTENNA_A:
 745                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 746                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 747                rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 748                break;
 749        case ANTENNA_HW_DIVERSITY:
 750                /*
 751                 * FIXME: Antenna selection for the rf 2529 is very confusing
 752                 * in the legacy driver. Just default to antenna B until the
 753                 * legacy code can be properly translated into rt2x00 code.
 754                 */
 755        case ANTENNA_B:
 756        default:
 757                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 758                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 759                rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 760                break;
 761        }
 762
 763        rt61pci_bbp_write(rt2x00dev, 77, r77);
 764        rt61pci_bbp_write(rt2x00dev, 3, r3);
 765        rt61pci_bbp_write(rt2x00dev, 4, r4);
 766}
 767
 768struct antenna_sel {
 769        u8 word;
 770        /*
 771         * value[0] -> non-LNA
 772         * value[1] -> LNA
 773         */
 774        u8 value[2];
 775};
 776
 777static const struct antenna_sel antenna_sel_a[] = {
 778        { 96,  { 0x58, 0x78 } },
 779        { 104, { 0x38, 0x48 } },
 780        { 75,  { 0xfe, 0x80 } },
 781        { 86,  { 0xfe, 0x80 } },
 782        { 88,  { 0xfe, 0x80 } },
 783        { 35,  { 0x60, 0x60 } },
 784        { 97,  { 0x58, 0x58 } },
 785        { 98,  { 0x58, 0x58 } },
 786};
 787
 788static const struct antenna_sel antenna_sel_bg[] = {
 789        { 96,  { 0x48, 0x68 } },
 790        { 104, { 0x2c, 0x3c } },
 791        { 75,  { 0xfe, 0x80 } },
 792        { 86,  { 0xfe, 0x80 } },
 793        { 88,  { 0xfe, 0x80 } },
 794        { 35,  { 0x50, 0x50 } },
 795        { 97,  { 0x48, 0x48 } },
 796        { 98,  { 0x48, 0x48 } },
 797};
 798
 799static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 800                               struct antenna_setup *ant)
 801{
 802        const struct antenna_sel *sel;
 803        unsigned int lna;
 804        unsigned int i;
 805        u32 reg;
 806
 807        /*
 808         * We should never come here because rt2x00lib is supposed
 809         * to catch this and send us the correct antenna explicitely.
 810         */
 811        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 812               ant->tx == ANTENNA_SW_DIVERSITY);
 813
 814        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 815                sel = antenna_sel_a;
 816                lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
 817        } else {
 818                sel = antenna_sel_bg;
 819                lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
 820        }
 821
 822        for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 823                rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 824
 825        rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
 826
 827        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 828                           rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 829        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 830                           rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 831
 832        rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
 833
 834        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
 835                rt61pci_config_antenna_5x(rt2x00dev, ant);
 836        else if (rt2x00_rf(rt2x00dev, RF2527))
 837                rt61pci_config_antenna_2x(rt2x00dev, ant);
 838        else if (rt2x00_rf(rt2x00dev, RF2529)) {
 839                if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
 840                        rt61pci_config_antenna_2x(rt2x00dev, ant);
 841                else
 842                        rt61pci_config_antenna_2529(rt2x00dev, ant);
 843        }
 844}
 845
 846static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 847                                    struct rt2x00lib_conf *libconf)
 848{
 849        u16 eeprom;
 850        short lna_gain = 0;
 851
 852        if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
 853                if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
 854                        lna_gain += 14;
 855
 856                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 857                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 858        } else {
 859                if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
 860                        lna_gain += 14;
 861
 862                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 863                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 864        }
 865
 866        rt2x00dev->lna_gain = lna_gain;
 867}
 868
 869static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 870                                   struct rf_channel *rf, const int txpower)
 871{
 872        u8 r3;
 873        u8 r94;
 874        u8 smart;
 875
 876        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 877        rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 878
 879        smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 880
 881        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 882        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 883        rt61pci_bbp_write(rt2x00dev, 3, r3);
 884
 885        r94 = 6;
 886        if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 887                r94 += txpower - MAX_TXPOWER;
 888        else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 889                r94 += txpower;
 890        rt61pci_bbp_write(rt2x00dev, 94, r94);
 891
 892        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 893        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 894        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 895        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 896
 897        udelay(200);
 898
 899        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 900        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 901        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 902        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 903
 904        udelay(200);
 905
 906        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 907        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 908        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 909        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 910
 911        msleep(1);
 912}
 913
 914static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 915                                   const int txpower)
 916{
 917        struct rf_channel rf;
 918
 919        rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 920        rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 921        rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 922        rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 923
 924        rt61pci_config_channel(rt2x00dev, &rf, txpower);
 925}
 926
 927static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 928                                    struct rt2x00lib_conf *libconf)
 929{
 930        u32 reg;
 931
 932        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
 933        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 934        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 935        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 936        rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 937                           libconf->conf->long_frame_max_tx_count);
 938        rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 939                           libconf->conf->short_frame_max_tx_count);
 940        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
 941}
 942
 943static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 944                                struct rt2x00lib_conf *libconf)
 945{
 946        enum dev_state state =
 947            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 948                STATE_SLEEP : STATE_AWAKE;
 949        u32 reg;
 950
 951        if (state == STATE_SLEEP) {
 952                rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
 953                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 954                                   rt2x00dev->beacon_int - 10);
 955                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 956                                   libconf->conf->listen_interval - 1);
 957                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 958
 959                /* We must first disable autowake before it can be enabled */
 960                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 961                rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 962
 963                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 964                rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 965
 966                rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
 967                                          0x00000005);
 968                rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 969                rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 970
 971                rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 972        } else {
 973                rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
 974                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 975                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 976                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 977                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 978                rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 979
 980                rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
 981                                          0x00000007);
 982                rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 983                rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 984
 985                rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 986        }
 987}
 988
 989static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 990                           struct rt2x00lib_conf *libconf,
 991                           const unsigned int flags)
 992{
 993        /* Always recalculate LNA gain before changing configuration */
 994        rt61pci_config_lna_gain(rt2x00dev, libconf);
 995
 996        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 997                rt61pci_config_channel(rt2x00dev, &libconf->rf,
 998                                       libconf->conf->power_level);
 999        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1000            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1001                rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1002        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1003                rt61pci_config_retry_limit(rt2x00dev, libconf);
1004        if (flags & IEEE80211_CONF_CHANGE_PS)
1005                rt61pci_config_ps(rt2x00dev, libconf);
1006}
1007
1008/*
1009 * Link tuning
1010 */
1011static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1012                               struct link_qual *qual)
1013{
1014        u32 reg;
1015
1016        /*
1017         * Update FCS error count from register.
1018         */
1019        rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1020        qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1021
1022        /*
1023         * Update False CCA count from register.
1024         */
1025        rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1026        qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1027}
1028
1029static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1030                                   struct link_qual *qual, u8 vgc_level)
1031{
1032        if (qual->vgc_level != vgc_level) {
1033                rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1034                qual->vgc_level = vgc_level;
1035                qual->vgc_level_reg = vgc_level;
1036        }
1037}
1038
1039static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1040                                struct link_qual *qual)
1041{
1042        rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1043}
1044
1045static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1046                               struct link_qual *qual, const u32 count)
1047{
1048        u8 up_bound;
1049        u8 low_bound;
1050
1051        /*
1052         * Determine r17 bounds.
1053         */
1054        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1055                low_bound = 0x28;
1056                up_bound = 0x48;
1057                if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1058                        low_bound += 0x10;
1059                        up_bound += 0x10;
1060                }
1061        } else {
1062                low_bound = 0x20;
1063                up_bound = 0x40;
1064                if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1065                        low_bound += 0x10;
1066                        up_bound += 0x10;
1067                }
1068        }
1069
1070        /*
1071         * If we are not associated, we should go straight to the
1072         * dynamic CCA tuning.
1073         */
1074        if (!rt2x00dev->intf_associated)
1075                goto dynamic_cca_tune;
1076
1077        /*
1078         * Special big-R17 for very short distance
1079         */
1080        if (qual->rssi >= -35) {
1081                rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1082                return;
1083        }
1084
1085        /*
1086         * Special big-R17 for short distance
1087         */
1088        if (qual->rssi >= -58) {
1089                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1090                return;
1091        }
1092
1093        /*
1094         * Special big-R17 for middle-short distance
1095         */
1096        if (qual->rssi >= -66) {
1097                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1098                return;
1099        }
1100
1101        /*
1102         * Special mid-R17 for middle distance
1103         */
1104        if (qual->rssi >= -74) {
1105                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1106                return;
1107        }
1108
1109        /*
1110         * Special case: Change up_bound based on the rssi.
1111         * Lower up_bound when rssi is weaker then -74 dBm.
1112         */
1113        up_bound -= 2 * (-74 - qual->rssi);
1114        if (low_bound > up_bound)
1115                up_bound = low_bound;
1116
1117        if (qual->vgc_level > up_bound) {
1118                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1119                return;
1120        }
1121
1122dynamic_cca_tune:
1123
1124        /*
1125         * r17 does not yet exceed upper limit, continue and base
1126         * the r17 tuning on the false CCA count.
1127         */
1128        if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1129                rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1130        else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1131                rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1132}
1133
1134/*
1135 * Queue handlers.
1136 */
1137static void rt61pci_start_queue(struct data_queue *queue)
1138{
1139        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1140        u32 reg;
1141
1142        switch (queue->qid) {
1143        case QID_RX:
1144                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1145                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1146                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1147                break;
1148        case QID_BEACON:
1149                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1150                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1151                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1152                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1153                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1154                break;
1155        default:
1156                break;
1157        }
1158}
1159
1160static void rt61pci_kick_queue(struct data_queue *queue)
1161{
1162        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1163        u32 reg;
1164
1165        switch (queue->qid) {
1166        case QID_AC_VO:
1167                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1168                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1169                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1170                break;
1171        case QID_AC_VI:
1172                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1173                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1174                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1175                break;
1176        case QID_AC_BE:
1177                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1178                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1179                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1180                break;
1181        case QID_AC_BK:
1182                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1183                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1184                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1185                break;
1186        default:
1187                break;
1188        }
1189}
1190
1191static void rt61pci_stop_queue(struct data_queue *queue)
1192{
1193        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1194        u32 reg;
1195
1196        switch (queue->qid) {
1197        case QID_AC_VO:
1198                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1199                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1200                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1201                break;
1202        case QID_AC_VI:
1203                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1204                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1205                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1206                break;
1207        case QID_AC_BE:
1208                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1209                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1210                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1211                break;
1212        case QID_AC_BK:
1213                rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1214                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1215                rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1216                break;
1217        case QID_RX:
1218                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1219                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1220                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1221                break;
1222        case QID_BEACON:
1223                rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1224                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1225                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1226                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1227                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1228
1229                /*
1230                 * Wait for possibly running tbtt tasklets.
1231                 */
1232                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1233                break;
1234        default:
1235                break;
1236        }
1237}
1238
1239/*
1240 * Firmware functions
1241 */
1242static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1243{
1244        u16 chip;
1245        char *fw_name;
1246
1247        pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1248        switch (chip) {
1249        case RT2561_PCI_ID:
1250                fw_name = FIRMWARE_RT2561;
1251                break;
1252        case RT2561s_PCI_ID:
1253                fw_name = FIRMWARE_RT2561s;
1254                break;
1255        case RT2661_PCI_ID:
1256                fw_name = FIRMWARE_RT2661;
1257                break;
1258        default:
1259                fw_name = NULL;
1260                break;
1261        }
1262
1263        return fw_name;
1264}
1265
1266static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1267                                  const u8 *data, const size_t len)
1268{
1269        u16 fw_crc;
1270        u16 crc;
1271
1272        /*
1273         * Only support 8kb firmware files.
1274         */
1275        if (len != 8192)
1276                return FW_BAD_LENGTH;
1277
1278        /*
1279         * The last 2 bytes in the firmware array are the crc checksum itself.
1280         * This means that we should never pass those 2 bytes to the crc
1281         * algorithm.
1282         */
1283        fw_crc = (data[len - 2] << 8 | data[len - 1]);
1284
1285        /*
1286         * Use the crc itu-t algorithm.
1287         */
1288        crc = crc_itu_t(0, data, len - 2);
1289        crc = crc_itu_t_byte(crc, 0);
1290        crc = crc_itu_t_byte(crc, 0);
1291
1292        return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1293}
1294
1295static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1296                                 const u8 *data, const size_t len)
1297{
1298        int i;
1299        u32 reg;
1300
1301        /*
1302         * Wait for stable hardware.
1303         */
1304        for (i = 0; i < 100; i++) {
1305                rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
1306                if (reg)
1307                        break;
1308                msleep(1);
1309        }
1310
1311        if (!reg) {
1312                rt2x00_err(rt2x00dev, "Unstable hardware\n");
1313                return -EBUSY;
1314        }
1315
1316        /*
1317         * Prepare MCU and mailbox for firmware loading.
1318         */
1319        reg = 0;
1320        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1321        rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1322        rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1323        rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1324        rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1325
1326        /*
1327         * Write firmware to device.
1328         */
1329        reg = 0;
1330        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1331        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1332        rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1333
1334        rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1335                                       data, len);
1336
1337        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1338        rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339
1340        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1341        rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1342
1343        for (i = 0; i < 100; i++) {
1344                rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1345                if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1346                        break;
1347                msleep(1);
1348        }
1349
1350        if (i == 100) {
1351                rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1352                return -EBUSY;
1353        }
1354
1355        /*
1356         * Hardware needs another millisecond before it is ready.
1357         */
1358        msleep(1);
1359
1360        /*
1361         * Reset MAC and BBP registers.
1362         */
1363        reg = 0;
1364        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1365        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1366        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1367
1368        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1369        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1370        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1371        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1372
1373        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1374        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1375        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1376
1377        return 0;
1378}
1379
1380/*
1381 * Initialization functions.
1382 */
1383static bool rt61pci_get_entry_state(struct queue_entry *entry)
1384{
1385        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1386        u32 word;
1387
1388        if (entry->queue->qid == QID_RX) {
1389                rt2x00_desc_read(entry_priv->desc, 0, &word);
1390
1391                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1392        } else {
1393                rt2x00_desc_read(entry_priv->desc, 0, &word);
1394
1395                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1396                        rt2x00_get_field32(word, TXD_W0_VALID));
1397        }
1398}
1399
1400static void rt61pci_clear_entry(struct queue_entry *entry)
1401{
1402        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1403        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1404        u32 word;
1405
1406        if (entry->queue->qid == QID_RX) {
1407                rt2x00_desc_read(entry_priv->desc, 5, &word);
1408                rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1409                                   skbdesc->skb_dma);
1410                rt2x00_desc_write(entry_priv->desc, 5, word);
1411
1412                rt2x00_desc_read(entry_priv->desc, 0, &word);
1413                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1414                rt2x00_desc_write(entry_priv->desc, 0, word);
1415        } else {
1416                rt2x00_desc_read(entry_priv->desc, 0, &word);
1417                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1418                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1419                rt2x00_desc_write(entry_priv->desc, 0, word);
1420        }
1421}
1422
1423static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1424{
1425        struct queue_entry_priv_mmio *entry_priv;
1426        u32 reg;
1427
1428        /*
1429         * Initialize registers.
1430         */
1431        rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1432        rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1433                           rt2x00dev->tx[0].limit);
1434        rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1435                           rt2x00dev->tx[1].limit);
1436        rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1437                           rt2x00dev->tx[2].limit);
1438        rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1439                           rt2x00dev->tx[3].limit);
1440        rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1441
1442        rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1443        rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1444                           rt2x00dev->tx[0].desc_size / 4);
1445        rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1446
1447        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1448        rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1449        rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1450                           entry_priv->desc_dma);
1451        rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1452
1453        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1454        rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1455        rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1456                           entry_priv->desc_dma);
1457        rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1458
1459        entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1460        rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1461        rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1462                           entry_priv->desc_dma);
1463        rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1464
1465        entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1466        rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1467        rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1468                           entry_priv->desc_dma);
1469        rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1470
1471        rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
1472        rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1473        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1474                           rt2x00dev->rx->desc_size / 4);
1475        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1476        rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1477
1478        entry_priv = rt2x00dev->rx->entries[0].priv_data;
1479        rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1480        rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1481                           entry_priv->desc_dma);
1482        rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1483
1484        rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1485        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1486        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1487        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1488        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1489        rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1490
1491        rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1492        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1493        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1494        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1495        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1496        rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1497
1498        rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1499        rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1500        rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1501
1502        return 0;
1503}
1504
1505static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1506{
1507        u32 reg;
1508
1509        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1510        rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1511        rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1512        rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1513        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1514
1515        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
1516        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1517        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1518        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1519        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1520        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1521        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1522        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1523        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1524        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1525
1526        /*
1527         * CCK TXD BBP registers
1528         */
1529        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
1530        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1531        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1532        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1533        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1534        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1535        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1536        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1537        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1538        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1539
1540        /*
1541         * OFDM TXD BBP registers
1542         */
1543        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
1544        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1545        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1546        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1547        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1548        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1549        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1550        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1551
1552        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
1553        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1554        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1555        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1556        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1557        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1558
1559        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
1560        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1561        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1562        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1563        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1564        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1565
1566        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1567        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1568        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1569        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1570        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1571        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1572        rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1573        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1574
1575        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1576
1577        rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1578
1579        rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
1580        rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1581        rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1582
1583        rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1584
1585        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1586                return -EBUSY;
1587
1588        rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1589
1590        /*
1591         * Invalidate all Shared Keys (SEC_CSR0),
1592         * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1593         */
1594        rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1595        rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1596        rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1597
1598        rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1599        rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1600        rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1601        rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1602
1603        rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1604
1605        rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1606
1607        rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1608
1609        /*
1610         * Clear all beacons
1611         * For the Beacon base registers we only need to clear
1612         * the first byte since that byte contains the VALID and OWNER
1613         * bits which (when set to 0) will invalidate the entire beacon.
1614         */
1615        rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1616        rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1617        rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1618        rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1619
1620        /*
1621         * We must clear the error counters.
1622         * These registers are cleared on read,
1623         * so we may pass a useless variable to store the value.
1624         */
1625        rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1626        rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1627        rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
1628
1629        /*
1630         * Reset MAC and BBP registers.
1631         */
1632        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1633        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1634        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1635        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1636
1637        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1638        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1639        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1640        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1641
1642        rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1643        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1644        rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1645
1646        return 0;
1647}
1648
1649static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1650{
1651        unsigned int i;
1652        u8 value;
1653
1654        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1655                rt61pci_bbp_read(rt2x00dev, 0, &value);
1656                if ((value != 0xff) && (value != 0x00))
1657                        return 0;
1658                udelay(REGISTER_BUSY_DELAY);
1659        }
1660
1661        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1662        return -EACCES;
1663}
1664
1665static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1666{
1667        unsigned int i;
1668        u16 eeprom;
1669        u8 reg_id;
1670        u8 value;
1671
1672        if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1673                return -EACCES;
1674
1675        rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1676        rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1677        rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1678        rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1679        rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1680        rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1681        rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1682        rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1683        rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1684        rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1685        rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1686        rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1687        rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1688        rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1689        rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1690        rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1691        rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1692        rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1693        rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1694        rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1695        rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1696        rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1697        rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1698        rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1699
1700        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1701                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1702
1703                if (eeprom != 0xffff && eeprom != 0x0000) {
1704                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1705                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1706                        rt61pci_bbp_write(rt2x00dev, reg_id, value);
1707                }
1708        }
1709
1710        return 0;
1711}
1712
1713/*
1714 * Device state switch handlers.
1715 */
1716static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1717                               enum dev_state state)
1718{
1719        int mask = (state == STATE_RADIO_IRQ_OFF);
1720        u32 reg;
1721        unsigned long flags;
1722
1723        /*
1724         * When interrupts are being enabled, the interrupt registers
1725         * should clear the register to assure a clean state.
1726         */
1727        if (state == STATE_RADIO_IRQ_ON) {
1728                rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1729                rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1730
1731                rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1732                rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1733        }
1734
1735        /*
1736         * Only toggle the interrupts bits we are going to use.
1737         * Non-checked interrupt bits are disabled by default.
1738         */
1739        spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1740
1741        rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1742        rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1743        rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1744        rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1745        rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1746        rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1747        rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1748
1749        rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1750        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1751        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1752        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1753        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1754        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1755        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1756        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1757        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1758        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1759        rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1760
1761        spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1762
1763        if (state == STATE_RADIO_IRQ_OFF) {
1764                /*
1765                 * Ensure that all tasklets are finished.
1766                 */
1767                tasklet_kill(&rt2x00dev->txstatus_tasklet);
1768                tasklet_kill(&rt2x00dev->rxdone_tasklet);
1769                tasklet_kill(&rt2x00dev->autowake_tasklet);
1770                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1771        }
1772}
1773
1774static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1775{
1776        u32 reg;
1777
1778        /*
1779         * Initialize all registers.
1780         */
1781        if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1782                     rt61pci_init_registers(rt2x00dev) ||
1783                     rt61pci_init_bbp(rt2x00dev)))
1784                return -EIO;
1785
1786        /*
1787         * Enable RX.
1788         */
1789        rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1790        rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1791        rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1792
1793        return 0;
1794}
1795
1796static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1797{
1798        /*
1799         * Disable power
1800         */
1801        rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1802}
1803
1804static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1805{
1806        u32 reg, reg2;
1807        unsigned int i;
1808        char put_to_sleep;
1809
1810        put_to_sleep = (state != STATE_AWAKE);
1811
1812        rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
1813        rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1814        rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1815        rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1816
1817        /*
1818         * Device is not guaranteed to be in the requested state yet.
1819         * We must wait until the register indicates that the
1820         * device has entered the correct state.
1821         */
1822        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1823                rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
1824                state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1825                if (state == !put_to_sleep)
1826                        return 0;
1827                rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1828                msleep(10);
1829        }
1830
1831        return -EBUSY;
1832}
1833
1834static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1835                                    enum dev_state state)
1836{
1837        int retval = 0;
1838
1839        switch (state) {
1840        case STATE_RADIO_ON:
1841                retval = rt61pci_enable_radio(rt2x00dev);
1842                break;
1843        case STATE_RADIO_OFF:
1844                rt61pci_disable_radio(rt2x00dev);
1845                break;
1846        case STATE_RADIO_IRQ_ON:
1847        case STATE_RADIO_IRQ_OFF:
1848                rt61pci_toggle_irq(rt2x00dev, state);
1849                break;
1850        case STATE_DEEP_SLEEP:
1851        case STATE_SLEEP:
1852        case STATE_STANDBY:
1853        case STATE_AWAKE:
1854                retval = rt61pci_set_state(rt2x00dev, state);
1855                break;
1856        default:
1857                retval = -ENOTSUPP;
1858                break;
1859        }
1860
1861        if (unlikely(retval))
1862                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1863                           state, retval);
1864
1865        return retval;
1866}
1867
1868/*
1869 * TX descriptor initialization
1870 */
1871static void rt61pci_write_tx_desc(struct queue_entry *entry,
1872                                  struct txentry_desc *txdesc)
1873{
1874        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1875        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1876        __le32 *txd = entry_priv->desc;
1877        u32 word;
1878
1879        /*
1880         * Start writing the descriptor words.
1881         */
1882        rt2x00_desc_read(txd, 1, &word);
1883        rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1884        rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1885        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1886        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1887        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1888        rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1889                           test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1890        rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1891        rt2x00_desc_write(txd, 1, word);
1892
1893        rt2x00_desc_read(txd, 2, &word);
1894        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1895        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1896        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1897                           txdesc->u.plcp.length_low);
1898        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1899                           txdesc->u.plcp.length_high);
1900        rt2x00_desc_write(txd, 2, word);
1901
1902        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1903                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1904                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1905        }
1906
1907        rt2x00_desc_read(txd, 5, &word);
1908        rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1909        rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1910                           skbdesc->entry->entry_idx);
1911        rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1912                           TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1913        rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1914        rt2x00_desc_write(txd, 5, word);
1915
1916        if (entry->queue->qid != QID_BEACON) {
1917                rt2x00_desc_read(txd, 6, &word);
1918                rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1919                                   skbdesc->skb_dma);
1920                rt2x00_desc_write(txd, 6, word);
1921
1922                rt2x00_desc_read(txd, 11, &word);
1923                rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1924                                   txdesc->length);
1925                rt2x00_desc_write(txd, 11, word);
1926        }
1927
1928        /*
1929         * Writing TXD word 0 must the last to prevent a race condition with
1930         * the device, whereby the device may take hold of the TXD before we
1931         * finished updating it.
1932         */
1933        rt2x00_desc_read(txd, 0, &word);
1934        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1935        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1936        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1937                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1938        rt2x00_set_field32(&word, TXD_W0_ACK,
1939                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1940        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1941                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1942        rt2x00_set_field32(&word, TXD_W0_OFDM,
1943                           (txdesc->rate_mode == RATE_MODE_OFDM));
1944        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1945        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1946                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1947        rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1948                           test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1949        rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1950                           test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1951        rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1952        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1953        rt2x00_set_field32(&word, TXD_W0_BURST,
1954                           test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1955        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1956        rt2x00_desc_write(txd, 0, word);
1957
1958        /*
1959         * Register descriptor details in skb frame descriptor.
1960         */
1961        skbdesc->desc = txd;
1962        skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1963                            TXD_DESC_SIZE;
1964}
1965
1966/*
1967 * TX data initialization
1968 */
1969static void rt61pci_write_beacon(struct queue_entry *entry,
1970                                 struct txentry_desc *txdesc)
1971{
1972        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1973        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1974        unsigned int beacon_base;
1975        unsigned int padding_len;
1976        u32 orig_reg, reg;
1977
1978        /*
1979         * Disable beaconing while we are reloading the beacon data,
1980         * otherwise we might be sending out invalid data.
1981         */
1982        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1983        orig_reg = reg;
1984        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1985        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1986
1987        /*
1988         * Write the TX descriptor for the beacon.
1989         */
1990        rt61pci_write_tx_desc(entry, txdesc);
1991
1992        /*
1993         * Dump beacon to userspace through debugfs.
1994         */
1995        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1996
1997        /*
1998         * Write entire beacon with descriptor and padding to register.
1999         */
2000        padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
2001        if (padding_len && skb_pad(entry->skb, padding_len)) {
2002                rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
2003                /* skb freed by skb_pad() on failure */
2004                entry->skb = NULL;
2005                rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2006                return;
2007        }
2008
2009        beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2010        rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2011                                       entry_priv->desc, TXINFO_SIZE);
2012        rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2013                                       entry->skb->data,
2014                                       entry->skb->len + padding_len);
2015
2016        /*
2017         * Enable beaconing again.
2018         *
2019         * For Wi-Fi faily generated beacons between participating
2020         * stations. Set TBTT phase adaptive adjustment step to 8us.
2021         */
2022        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2023
2024        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2025        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2026
2027        /*
2028         * Clean up beacon skb.
2029         */
2030        dev_kfree_skb_any(entry->skb);
2031        entry->skb = NULL;
2032}
2033
2034static void rt61pci_clear_beacon(struct queue_entry *entry)
2035{
2036        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2037        u32 reg;
2038
2039        /*
2040         * Disable beaconing while we are reloading the beacon data,
2041         * otherwise we might be sending out invalid data.
2042         */
2043        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
2044        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2045        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2046
2047        /*
2048         * Clear beacon.
2049         */
2050        rt2x00mmio_register_write(rt2x00dev,
2051                                  HW_BEACON_OFFSET(entry->entry_idx), 0);
2052
2053        /*
2054         * Enable beaconing again.
2055         */
2056        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2057        rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2058}
2059
2060/*
2061 * RX control handlers
2062 */
2063static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2064{
2065        u8 offset = rt2x00dev->lna_gain;
2066        u8 lna;
2067
2068        lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2069        switch (lna) {
2070        case 3:
2071                offset += 90;
2072                break;
2073        case 2:
2074                offset += 74;
2075                break;
2076        case 1:
2077                offset += 64;
2078                break;
2079        default:
2080                return 0;
2081        }
2082
2083        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2084                if (lna == 3 || lna == 2)
2085                        offset += 10;
2086        }
2087
2088        return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2089}
2090
2091static void rt61pci_fill_rxdone(struct queue_entry *entry,
2092                                struct rxdone_entry_desc *rxdesc)
2093{
2094        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2095        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2096        u32 word0;
2097        u32 word1;
2098
2099        rt2x00_desc_read(entry_priv->desc, 0, &word0);
2100        rt2x00_desc_read(entry_priv->desc, 1, &word1);
2101
2102        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2103                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2104
2105        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2106        rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2107
2108        if (rxdesc->cipher != CIPHER_NONE) {
2109                _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2110                _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2111                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2112
2113                _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2114                rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2115
2116                /*
2117                 * Hardware has stripped IV/EIV data from 802.11 frame during
2118                 * decryption. It has provided the data separately but rt2x00lib
2119                 * should decide if it should be reinserted.
2120                 */
2121                rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2122
2123                /*
2124                 * The hardware has already checked the Michael Mic and has
2125                 * stripped it from the frame. Signal this to mac80211.
2126                 */
2127                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2128
2129                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2130                        rxdesc->flags |= RX_FLAG_DECRYPTED;
2131                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2132                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2133        }
2134
2135        /*
2136         * Obtain the status about this packet.
2137         * When frame was received with an OFDM bitrate,
2138         * the signal is the PLCP value. If it was received with
2139         * a CCK bitrate the signal is the rate in 100kbit/s.
2140         */
2141        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2142        rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2143        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2144
2145        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2146                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2147        else
2148                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2149        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2150                rxdesc->dev_flags |= RXDONE_MY_BSS;
2151}
2152
2153/*
2154 * Interrupt functions.
2155 */
2156static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2157{
2158        struct data_queue *queue;
2159        struct queue_entry *entry;
2160        struct queue_entry *entry_done;
2161        struct queue_entry_priv_mmio *entry_priv;
2162        struct txdone_entry_desc txdesc;
2163        u32 word;
2164        u32 reg;
2165        int type;
2166        int index;
2167        int i;
2168
2169        /*
2170         * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2171         * at most X times and also stop processing once the TX_STA_FIFO_VALID
2172         * flag is not set anymore.
2173         *
2174         * The legacy drivers use X=TX_RING_SIZE but state in a comment
2175         * that the TX_STA_FIFO stack has a size of 16. We stick to our
2176         * tx ring size for now.
2177         */
2178        for (i = 0; i < rt2x00dev->tx->limit; i++) {
2179                rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
2180                if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2181                        break;
2182
2183                /*
2184                 * Skip this entry when it contains an invalid
2185                 * queue identication number.
2186                 */
2187                type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2188                queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2189                if (unlikely(!queue))
2190                        continue;
2191
2192                /*
2193                 * Skip this entry when it contains an invalid
2194                 * index number.
2195                 */
2196                index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2197                if (unlikely(index >= queue->limit))
2198                        continue;
2199
2200                entry = &queue->entries[index];
2201                entry_priv = entry->priv_data;
2202                rt2x00_desc_read(entry_priv->desc, 0, &word);
2203
2204                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2205                    !rt2x00_get_field32(word, TXD_W0_VALID))
2206                        return;
2207
2208                entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2209                while (entry != entry_done) {
2210                        /* Catch up.
2211                         * Just report any entries we missed as failed.
2212                         */
2213                        rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2214                                    entry_done->entry_idx);
2215
2216                        rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2217                        entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2218                }
2219
2220                /*
2221                 * Obtain the status about this packet.
2222                 */
2223                txdesc.flags = 0;
2224                switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2225                case 0: /* Success, maybe with retry */
2226                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2227                        break;
2228                case 6: /* Failure, excessive retries */
2229                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2230                        /* Don't break, this is a failed frame! */
2231                default: /* Failure */
2232                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
2233                }
2234                txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2235
2236                /*
2237                 * the frame was retried at least once
2238                 * -> hw used fallback rates
2239                 */
2240                if (txdesc.retry)
2241                        __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2242
2243                rt2x00lib_txdone(entry, &txdesc);
2244        }
2245}
2246
2247static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2248{
2249        struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2250
2251        rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2252}
2253
2254static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2255                                            struct rt2x00_field32 irq_field)
2256{
2257        u32 reg;
2258
2259        /*
2260         * Enable a single interrupt. The interrupt mask register
2261         * access needs locking.
2262         */
2263        spin_lock_irq(&rt2x00dev->irqmask_lock);
2264
2265        rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2266        rt2x00_set_field32(&reg, irq_field, 0);
2267        rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2268
2269        spin_unlock_irq(&rt2x00dev->irqmask_lock);
2270}
2271
2272static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2273                                         struct rt2x00_field32 irq_field)
2274{
2275        u32 reg;
2276
2277        /*
2278         * Enable a single MCU interrupt. The interrupt mask register
2279         * access needs locking.
2280         */
2281        spin_lock_irq(&rt2x00dev->irqmask_lock);
2282
2283        rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2284        rt2x00_set_field32(&reg, irq_field, 0);
2285        rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2286
2287        spin_unlock_irq(&rt2x00dev->irqmask_lock);
2288}
2289
2290static void rt61pci_txstatus_tasklet(unsigned long data)
2291{
2292        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2293        rt61pci_txdone(rt2x00dev);
2294        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2295                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2296}
2297
2298static void rt61pci_tbtt_tasklet(unsigned long data)
2299{
2300        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2301        rt2x00lib_beacondone(rt2x00dev);
2302        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2303                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2304}
2305
2306static void rt61pci_rxdone_tasklet(unsigned long data)
2307{
2308        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2309        if (rt2x00mmio_rxdone(rt2x00dev))
2310                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2311        else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2312                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2313}
2314
2315static void rt61pci_autowake_tasklet(unsigned long data)
2316{
2317        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2318        rt61pci_wakeup(rt2x00dev);
2319        rt2x00mmio_register_write(rt2x00dev,
2320                                  M2H_CMD_DONE_CSR, 0xffffffff);
2321        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2322                rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2323}
2324
2325static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2326{
2327        struct rt2x00_dev *rt2x00dev = dev_instance;
2328        u32 reg_mcu, mask_mcu;
2329        u32 reg, mask;
2330
2331        /*
2332         * Get the interrupt sources & saved to local variable.
2333         * Write register value back to clear pending interrupts.
2334         */
2335        rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2336        rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2337
2338        rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2339        rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2340
2341        if (!reg && !reg_mcu)
2342                return IRQ_NONE;
2343
2344        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2345                return IRQ_HANDLED;
2346
2347        /*
2348         * Schedule tasklets for interrupt handling.
2349         */
2350        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2351                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2352
2353        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2354                tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2355
2356        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2357                tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2358
2359        if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2360                tasklet_schedule(&rt2x00dev->autowake_tasklet);
2361
2362        /*
2363         * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2364         * for interrupts and interrupt masks we can just use the value of
2365         * INT_SOURCE_CSR to create the interrupt mask.
2366         */
2367        mask = reg;
2368        mask_mcu = reg_mcu;
2369
2370        /*
2371         * Disable all interrupts for which a tasklet was scheduled right now,
2372         * the tasklet will reenable the appropriate interrupts.
2373         */
2374        spin_lock(&rt2x00dev->irqmask_lock);
2375
2376        rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2377        reg |= mask;
2378        rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2379
2380        rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2381        reg |= mask_mcu;
2382        rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2383
2384        spin_unlock(&rt2x00dev->irqmask_lock);
2385
2386        return IRQ_HANDLED;
2387}
2388
2389/*
2390 * Device probe functions.
2391 */
2392static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2393{
2394        struct eeprom_93cx6 eeprom;
2395        u32 reg;
2396        u16 word;
2397        u8 *mac;
2398        s8 value;
2399
2400        rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
2401
2402        eeprom.data = rt2x00dev;
2403        eeprom.register_read = rt61pci_eepromregister_read;
2404        eeprom.register_write = rt61pci_eepromregister_write;
2405        eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2406            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2407        eeprom.reg_data_in = 0;
2408        eeprom.reg_data_out = 0;
2409        eeprom.reg_data_clock = 0;
2410        eeprom.reg_chip_select = 0;
2411
2412        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2413                               EEPROM_SIZE / sizeof(u16));
2414
2415        /*
2416         * Start validation of the data that has been read.
2417         */
2418        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2419        if (!is_valid_ether_addr(mac)) {
2420                eth_random_addr(mac);
2421                rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
2422        }
2423
2424        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2425        if (word == 0xffff) {
2426                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2427                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2428                                   ANTENNA_B);
2429                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2430                                   ANTENNA_B);
2431                rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2432                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2433                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2434                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2435                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2436                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2437        }
2438
2439        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2440        if (word == 0xffff) {
2441                rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2442                rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2443                rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2444                rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2445                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2446                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2447                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2448                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2449                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2450        }
2451
2452        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2453        if (word == 0xffff) {
2454                rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2455                                   LED_MODE_DEFAULT);
2456                rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2457                rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2458        }
2459
2460        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2461        if (word == 0xffff) {
2462                rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2463                rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2464                rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2465                rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2466        }
2467
2468        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2469        if (word == 0xffff) {
2470                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2471                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2472                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2473                rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2474        } else {
2475                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2476                if (value < -10 || value > 10)
2477                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2478                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2479                if (value < -10 || value > 10)
2480                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2481                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2482        }
2483
2484        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2485        if (word == 0xffff) {
2486                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2487                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2488                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2489                rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2490        } else {
2491                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2492                if (value < -10 || value > 10)
2493                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2494                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2495                if (value < -10 || value > 10)
2496                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2497                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2498        }
2499
2500        return 0;
2501}
2502
2503static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2504{
2505        u32 reg;
2506        u16 value;
2507        u16 eeprom;
2508
2509        /*
2510         * Read EEPROM word for configuration.
2511         */
2512        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2513
2514        /*
2515         * Identify RF chipset.
2516         */
2517        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2518        rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
2519        rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2520                        value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2521
2522        if (!rt2x00_rf(rt2x00dev, RF5225) &&
2523            !rt2x00_rf(rt2x00dev, RF5325) &&
2524            !rt2x00_rf(rt2x00dev, RF2527) &&
2525            !rt2x00_rf(rt2x00dev, RF2529)) {
2526                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2527                return -ENODEV;
2528        }
2529
2530        /*
2531         * Determine number of antennas.
2532         */
2533        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2534                __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2535
2536        /*
2537         * Identify default antenna configuration.
2538         */
2539        rt2x00dev->default_ant.tx =
2540            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2541        rt2x00dev->default_ant.rx =
2542            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2543
2544        /*
2545         * Read the Frame type.
2546         */
2547        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2548                __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2549
2550        /*
2551         * Detect if this device has a hardware controlled radio.
2552         */
2553        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2554                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2555
2556        /*
2557         * Read frequency offset and RF programming sequence.
2558         */
2559        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2560        if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2561                __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2562
2563        rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2564
2565        /*
2566         * Read external LNA informations.
2567         */
2568        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2569
2570        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2571                __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2572        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2573                __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2574
2575        /*
2576         * When working with a RF2529 chip without double antenna,
2577         * the antenna settings should be gathered from the NIC
2578         * eeprom word.
2579         */
2580        if (rt2x00_rf(rt2x00dev, RF2529) &&
2581            !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2582                rt2x00dev->default_ant.rx =
2583                    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2584                rt2x00dev->default_ant.tx =
2585                    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2586
2587                if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2588                        rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2589                if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2590                        rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2591        }
2592
2593        /*
2594         * Store led settings, for correct led behaviour.
2595         * If the eeprom value is invalid,
2596         * switch to default led mode.
2597         */
2598#ifdef CONFIG_RT2X00_LIB_LEDS
2599        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2600        value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2601
2602        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2603        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2604        if (value == LED_MODE_SIGNAL_STRENGTH)
2605                rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2606                                 LED_TYPE_QUALITY);
2607
2608        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2609        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2610                           rt2x00_get_field16(eeprom,
2611                                              EEPROM_LED_POLARITY_GPIO_0));
2612        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2613                           rt2x00_get_field16(eeprom,
2614                                              EEPROM_LED_POLARITY_GPIO_1));
2615        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2616                           rt2x00_get_field16(eeprom,
2617                                              EEPROM_LED_POLARITY_GPIO_2));
2618        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2619                           rt2x00_get_field16(eeprom,
2620                                              EEPROM_LED_POLARITY_GPIO_3));
2621        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2622                           rt2x00_get_field16(eeprom,
2623                                              EEPROM_LED_POLARITY_GPIO_4));
2624        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2625                           rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2626        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2627                           rt2x00_get_field16(eeprom,
2628                                              EEPROM_LED_POLARITY_RDY_G));
2629        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2630                           rt2x00_get_field16(eeprom,
2631                                              EEPROM_LED_POLARITY_RDY_A));
2632#endif /* CONFIG_RT2X00_LIB_LEDS */
2633
2634        return 0;
2635}
2636
2637/*
2638 * RF value list for RF5225 & RF5325
2639 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2640 */
2641static const struct rf_channel rf_vals_noseq[] = {
2642        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2643        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2644        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2645        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2646        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2647        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2648        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2649        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2650        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2651        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2652        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2653        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2654        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2655        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2656
2657        /* 802.11 UNI / HyperLan 2 */
2658        { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2659        { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2660        { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2661        { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2662        { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2663        { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2664        { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2665        { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2666
2667        /* 802.11 HyperLan 2 */
2668        { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2669        { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2670        { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2671        { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2672        { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2673        { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2674        { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2675        { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2676        { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2677        { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2678
2679        /* 802.11 UNII */
2680        { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2681        { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2682        { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2683        { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2684        { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2685        { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2686
2687        /* MMAC(Japan)J52 ch 34,38,42,46 */
2688        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2689        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2690        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2691        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2692};
2693
2694/*
2695 * RF value list for RF5225 & RF5325
2696 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2697 */
2698static const struct rf_channel rf_vals_seq[] = {
2699        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2700        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2701        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2702        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2703        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2704        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2705        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2706        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2707        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2708        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2709        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2710        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2711        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2712        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2713
2714        /* 802.11 UNI / HyperLan 2 */
2715        { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2716        { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2717        { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2718        { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2719        { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2720        { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2721        { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2722        { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2723
2724        /* 802.11 HyperLan 2 */
2725        { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2726        { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2727        { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2728        { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2729        { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2730        { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2731        { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2732        { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2733        { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2734        { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2735
2736        /* 802.11 UNII */
2737        { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2738        { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2739        { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2740        { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2741        { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2742        { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2743
2744        /* MMAC(Japan)J52 ch 34,38,42,46 */
2745        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2746        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2747        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2748        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2749};
2750
2751static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2752{
2753        struct hw_mode_spec *spec = &rt2x00dev->spec;
2754        struct channel_info *info;
2755        char *tx_power;
2756        unsigned int i;
2757
2758        /*
2759         * Disable powersaving as default.
2760         */
2761        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2762
2763        /*
2764         * Initialize all hw fields.
2765         */
2766        rt2x00dev->hw->flags =
2767            IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2768            IEEE80211_HW_SIGNAL_DBM |
2769            IEEE80211_HW_SUPPORTS_PS |
2770            IEEE80211_HW_PS_NULLFUNC_STACK;
2771
2772        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2773        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2774                                rt2x00_eeprom_addr(rt2x00dev,
2775                                                   EEPROM_MAC_ADDR_0));
2776
2777        /*
2778         * As rt61 has a global fallback table we cannot specify
2779         * more then one tx rate per frame but since the hw will
2780         * try several rates (based on the fallback table) we should
2781         * initialize max_report_rates to the maximum number of rates
2782         * we are going to try. Otherwise mac80211 will truncate our
2783         * reported tx rates and the rc algortihm will end up with
2784         * incorrect data.
2785         */
2786        rt2x00dev->hw->max_rates = 1;
2787        rt2x00dev->hw->max_report_rates = 7;
2788        rt2x00dev->hw->max_rate_tries = 1;
2789
2790        /*
2791         * Initialize hw_mode information.
2792         */
2793        spec->supported_bands = SUPPORT_BAND_2GHZ;
2794        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2795
2796        if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2797                spec->num_channels = 14;
2798                spec->channels = rf_vals_noseq;
2799        } else {
2800                spec->num_channels = 14;
2801                spec->channels = rf_vals_seq;
2802        }
2803
2804        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2805                spec->supported_bands |= SUPPORT_BAND_5GHZ;
2806                spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2807        }
2808
2809        /*
2810         * Create channel information array
2811         */
2812        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2813        if (!info)
2814                return -ENOMEM;
2815
2816        spec->channels_info = info;
2817
2818        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2819        for (i = 0; i < 14; i++) {
2820                info[i].max_power = MAX_TXPOWER;
2821                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2822        }
2823
2824        if (spec->num_channels > 14) {
2825                tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2826                for (i = 14; i < spec->num_channels; i++) {
2827                        info[i].max_power = MAX_TXPOWER;
2828                        info[i].default_power1 =
2829                                        TXPOWER_FROM_DEV(tx_power[i - 14]);
2830                }
2831        }
2832
2833        return 0;
2834}
2835
2836static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2837{
2838        int retval;
2839        u32 reg;
2840
2841        /*
2842         * Disable power saving.
2843         */
2844        rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2845
2846        /*
2847         * Allocate eeprom data.
2848         */
2849        retval = rt61pci_validate_eeprom(rt2x00dev);
2850        if (retval)
2851                return retval;
2852
2853        retval = rt61pci_init_eeprom(rt2x00dev);
2854        if (retval)
2855                return retval;
2856
2857        /*
2858         * Enable rfkill polling by setting GPIO direction of the
2859         * rfkill switch GPIO pin correctly.
2860         */
2861        rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
2862        rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2863        rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2864
2865        /*
2866         * Initialize hw specifications.
2867         */
2868        retval = rt61pci_probe_hw_mode(rt2x00dev);
2869        if (retval)
2870                return retval;
2871
2872        /*
2873         * This device has multiple filters for control frames,
2874         * but has no a separate filter for PS Poll frames.
2875         */
2876        __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2877
2878        /*
2879         * This device requires firmware and DMA mapped skbs.
2880         */
2881        __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2882        __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2883        if (!modparam_nohwcrypt)
2884                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2885        __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2886
2887        /*
2888         * Set the rssi offset.
2889         */
2890        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2891
2892        return 0;
2893}
2894
2895/*
2896 * IEEE80211 stack callback functions.
2897 */
2898static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2899                           struct ieee80211_vif *vif, u16 queue_idx,
2900                           const struct ieee80211_tx_queue_params *params)
2901{
2902        struct rt2x00_dev *rt2x00dev = hw->priv;
2903        struct data_queue *queue;
2904        struct rt2x00_field32 field;
2905        int retval;
2906        u32 reg;
2907        u32 offset;
2908
2909        /*
2910         * First pass the configuration through rt2x00lib, that will
2911         * update the queue settings and validate the input. After that
2912         * we are free to update the registers based on the value
2913         * in the queue parameter.
2914         */
2915        retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2916        if (retval)
2917                return retval;
2918
2919        /*
2920         * We only need to perform additional register initialization
2921         * for WMM queues.
2922         */
2923        if (queue_idx >= 4)
2924                return 0;
2925
2926        queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2927
2928        /* Update WMM TXOP register */
2929        offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2930        field.bit_offset = (queue_idx & 1) * 16;
2931        field.bit_mask = 0xffff << field.bit_offset;
2932
2933        rt2x00mmio_register_read(rt2x00dev, offset, &reg);
2934        rt2x00_set_field32(&reg, field, queue->txop);
2935        rt2x00mmio_register_write(rt2x00dev, offset, reg);
2936
2937        /* Update WMM registers */
2938        field.bit_offset = queue_idx * 4;
2939        field.bit_mask = 0xf << field.bit_offset;
2940
2941        rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
2942        rt2x00_set_field32(&reg, field, queue->aifs);
2943        rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2944
2945        rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
2946        rt2x00_set_field32(&reg, field, queue->cw_min);
2947        rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2948
2949        rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
2950        rt2x00_set_field32(&reg, field, queue->cw_max);
2951        rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2952
2953        return 0;
2954}
2955
2956static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2957{
2958        struct rt2x00_dev *rt2x00dev = hw->priv;
2959        u64 tsf;
2960        u32 reg;
2961
2962        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
2963        tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2964        rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
2965        tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2966
2967        return tsf;
2968}
2969
2970static const struct ieee80211_ops rt61pci_mac80211_ops = {
2971        .tx                     = rt2x00mac_tx,
2972        .start                  = rt2x00mac_start,
2973        .stop                   = rt2x00mac_stop,
2974        .add_interface          = rt2x00mac_add_interface,
2975        .remove_interface       = rt2x00mac_remove_interface,
2976        .config                 = rt2x00mac_config,
2977        .configure_filter       = rt2x00mac_configure_filter,
2978        .set_key                = rt2x00mac_set_key,
2979        .sw_scan_start          = rt2x00mac_sw_scan_start,
2980        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2981        .get_stats              = rt2x00mac_get_stats,
2982        .bss_info_changed       = rt2x00mac_bss_info_changed,
2983        .conf_tx                = rt61pci_conf_tx,
2984        .get_tsf                = rt61pci_get_tsf,
2985        .rfkill_poll            = rt2x00mac_rfkill_poll,
2986        .flush                  = rt2x00mac_flush,
2987        .set_antenna            = rt2x00mac_set_antenna,
2988        .get_antenna            = rt2x00mac_get_antenna,
2989        .get_ringparam          = rt2x00mac_get_ringparam,
2990        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2991};
2992
2993static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2994        .irq_handler            = rt61pci_interrupt,
2995        .txstatus_tasklet       = rt61pci_txstatus_tasklet,
2996        .tbtt_tasklet           = rt61pci_tbtt_tasklet,
2997        .rxdone_tasklet         = rt61pci_rxdone_tasklet,
2998        .autowake_tasklet       = rt61pci_autowake_tasklet,
2999        .probe_hw               = rt61pci_probe_hw,
3000        .get_firmware_name      = rt61pci_get_firmware_name,
3001        .check_firmware         = rt61pci_check_firmware,
3002        .load_firmware          = rt61pci_load_firmware,
3003        .initialize             = rt2x00mmio_initialize,
3004        .uninitialize           = rt2x00mmio_uninitialize,
3005        .get_entry_state        = rt61pci_get_entry_state,
3006        .clear_entry            = rt61pci_clear_entry,
3007        .set_device_state       = rt61pci_set_device_state,
3008        .rfkill_poll            = rt61pci_rfkill_poll,
3009        .link_stats             = rt61pci_link_stats,
3010        .reset_tuner            = rt61pci_reset_tuner,
3011        .link_tuner             = rt61pci_link_tuner,
3012        .start_queue            = rt61pci_start_queue,
3013        .kick_queue             = rt61pci_kick_queue,
3014        .stop_queue             = rt61pci_stop_queue,
3015        .flush_queue            = rt2x00mmio_flush_queue,
3016        .write_tx_desc          = rt61pci_write_tx_desc,
3017        .write_beacon           = rt61pci_write_beacon,
3018        .clear_beacon           = rt61pci_clear_beacon,
3019        .fill_rxdone            = rt61pci_fill_rxdone,
3020        .config_shared_key      = rt61pci_config_shared_key,
3021        .config_pairwise_key    = rt61pci_config_pairwise_key,
3022        .config_filter          = rt61pci_config_filter,
3023        .config_intf            = rt61pci_config_intf,
3024        .config_erp             = rt61pci_config_erp,
3025        .config_ant             = rt61pci_config_ant,
3026        .config                 = rt61pci_config,
3027};
3028
3029static void rt61pci_queue_init(struct data_queue *queue)
3030{
3031        switch (queue->qid) {
3032        case QID_RX:
3033                queue->limit = 32;
3034                queue->data_size = DATA_FRAME_SIZE;
3035                queue->desc_size = RXD_DESC_SIZE;
3036                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3037                break;
3038
3039        case QID_AC_VO:
3040        case QID_AC_VI:
3041        case QID_AC_BE:
3042        case QID_AC_BK:
3043                queue->limit = 32;
3044                queue->data_size = DATA_FRAME_SIZE;
3045                queue->desc_size = TXD_DESC_SIZE;
3046                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3047                break;
3048
3049        case QID_BEACON:
3050                queue->limit = 4;
3051                queue->data_size = 0; /* No DMA required for beacons */
3052                queue->desc_size = TXINFO_SIZE;
3053                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3054                break;
3055
3056        case QID_ATIM:
3057                /* fallthrough */
3058        default:
3059                BUG();
3060                break;
3061        }
3062}
3063
3064static const struct rt2x00_ops rt61pci_ops = {
3065        .name                   = KBUILD_MODNAME,
3066        .max_ap_intf            = 4,
3067        .eeprom_size            = EEPROM_SIZE,
3068        .rf_size                = RF_SIZE,
3069        .tx_queues              = NUM_TX_QUEUES,
3070        .queue_init             = rt61pci_queue_init,
3071        .lib                    = &rt61pci_rt2x00_ops,
3072        .hw                     = &rt61pci_mac80211_ops,
3073#ifdef CONFIG_RT2X00_LIB_DEBUGFS
3074        .debugfs                = &rt61pci_rt2x00debug,
3075#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3076};
3077
3078/*
3079 * RT61pci module information.
3080 */
3081static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3082        /* RT2561s */
3083        { PCI_DEVICE(0x1814, 0x0301) },
3084        /* RT2561 v2 */
3085        { PCI_DEVICE(0x1814, 0x0302) },
3086        /* RT2661 */
3087        { PCI_DEVICE(0x1814, 0x0401) },
3088        { 0, }
3089};
3090
3091MODULE_AUTHOR(DRV_PROJECT);
3092MODULE_VERSION(DRV_VERSION);
3093MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3094MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3095                        "PCI & PCMCIA chipset based cards");
3096MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3097MODULE_FIRMWARE(FIRMWARE_RT2561);
3098MODULE_FIRMWARE(FIRMWARE_RT2561s);
3099MODULE_FIRMWARE(FIRMWARE_RT2661);
3100MODULE_LICENSE("GPL");
3101
3102static int rt61pci_probe(struct pci_dev *pci_dev,
3103                         const struct pci_device_id *id)
3104{
3105        return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3106}
3107
3108static struct pci_driver rt61pci_driver = {
3109        .name           = KBUILD_MODNAME,
3110        .id_table       = rt61pci_device_table,
3111        .probe          = rt61pci_probe,
3112        .remove         = rt2x00pci_remove,
3113        .suspend        = rt2x00pci_suspend,
3114        .resume         = rt2x00pci_resume,
3115};
3116
3117module_pci_driver(rt61pci_driver);
3118