linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pci_hotplug.h>
  26#include <asm-generic/pci-bridge.h>
  27#include <asm/setup.h>
  28#include "pci.h"
  29
  30const char *pci_power_names[] = {
  31        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  32};
  33EXPORT_SYMBOL_GPL(pci_power_names);
  34
  35int isa_dma_bridge_buggy;
  36EXPORT_SYMBOL(isa_dma_bridge_buggy);
  37
  38int pci_pci_problems;
  39EXPORT_SYMBOL(pci_pci_problems);
  40
  41unsigned int pci_pm_d3_delay;
  42
  43static void pci_pme_list_scan(struct work_struct *work);
  44
  45static LIST_HEAD(pci_pme_list);
  46static DEFINE_MUTEX(pci_pme_list_mutex);
  47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  48
  49struct pci_pme_device {
  50        struct list_head list;
  51        struct pci_dev *dev;
  52};
  53
  54#define PME_TIMEOUT 1000 /* How long between PME checks */
  55
  56static void pci_dev_d3_sleep(struct pci_dev *dev)
  57{
  58        unsigned int delay = dev->d3_delay;
  59
  60        if (delay < pci_pm_d3_delay)
  61                delay = pci_pm_d3_delay;
  62
  63        msleep(delay);
  64}
  65
  66#ifdef CONFIG_PCI_DOMAINS
  67int pci_domains_supported = 1;
  68#endif
  69
  70#define DEFAULT_CARDBUS_IO_SIZE         (256)
  71#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  75
  76#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  77#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  79unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  81
  82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  83
  84/*
  85 * The default CLS is used if arch didn't set CLS explicitly and not
  86 * all pci devices agree on the same value.  Arch can override either
  87 * the dfl or actual value as it sees fit.  Don't forget this is
  88 * measured in 32-bit words, not bytes.
  89 */
  90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  91u8 pci_cache_line_size;
  92
  93/*
  94 * If we set up a device for bus mastering, we need to check the latency
  95 * timer as certain BIOSes forget to set it properly.
  96 */
  97unsigned int pcibios_max_latency = 255;
  98
  99/* If set, the PCIe ARI capability will not be used. */
 100static bool pcie_ari_disabled;
 101
 102/**
 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 104 * @bus: pointer to PCI bus structure to search
 105 *
 106 * Given a PCI bus, returns the highest PCI bus number present in the set
 107 * including the given PCI bus and its list of child PCI buses.
 108 */
 109unsigned char pci_bus_max_busnr(struct pci_bus* bus)
 110{
 111        struct list_head *tmp;
 112        unsigned char max, n;
 113
 114        max = bus->busn_res.end;
 115        list_for_each(tmp, &bus->children) {
 116                n = pci_bus_max_busnr(pci_bus_b(tmp));
 117                if(n > max)
 118                        max = n;
 119        }
 120        return max;
 121}
 122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 123
 124#ifdef CONFIG_HAS_IOMEM
 125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 126{
 127        /*
 128         * Make sure the BAR is actually a memory resource, not an IO resource
 129         */
 130        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 131                WARN_ON(1);
 132                return NULL;
 133        }
 134        return ioremap_nocache(pci_resource_start(pdev, bar),
 135                                     pci_resource_len(pdev, bar));
 136}
 137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 138#endif
 139
 140#define PCI_FIND_CAP_TTL        48
 141
 142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 143                                   u8 pos, int cap, int *ttl)
 144{
 145        u8 id;
 146
 147        while ((*ttl)--) {
 148                pci_bus_read_config_byte(bus, devfn, pos, &pos);
 149                if (pos < 0x40)
 150                        break;
 151                pos &= ~3;
 152                pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 153                                         &id);
 154                if (id == 0xff)
 155                        break;
 156                if (id == cap)
 157                        return pos;
 158                pos += PCI_CAP_LIST_NEXT;
 159        }
 160        return 0;
 161}
 162
 163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 164                               u8 pos, int cap)
 165{
 166        int ttl = PCI_FIND_CAP_TTL;
 167
 168        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 169}
 170
 171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 172{
 173        return __pci_find_next_cap(dev->bus, dev->devfn,
 174                                   pos + PCI_CAP_LIST_NEXT, cap);
 175}
 176EXPORT_SYMBOL_GPL(pci_find_next_capability);
 177
 178static int __pci_bus_find_cap_start(struct pci_bus *bus,
 179                                    unsigned int devfn, u8 hdr_type)
 180{
 181        u16 status;
 182
 183        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 184        if (!(status & PCI_STATUS_CAP_LIST))
 185                return 0;
 186
 187        switch (hdr_type) {
 188        case PCI_HEADER_TYPE_NORMAL:
 189        case PCI_HEADER_TYPE_BRIDGE:
 190                return PCI_CAPABILITY_LIST;
 191        case PCI_HEADER_TYPE_CARDBUS:
 192                return PCI_CB_CAPABILITY_LIST;
 193        default:
 194                return 0;
 195        }
 196
 197        return 0;
 198}
 199
 200/**
 201 * pci_find_capability - query for devices' capabilities 
 202 * @dev: PCI device to query
 203 * @cap: capability code
 204 *
 205 * Tell if a device supports a given PCI capability.
 206 * Returns the address of the requested capability structure within the
 207 * device's PCI configuration space or 0 in case the device does not
 208 * support it.  Possible values for @cap:
 209 *
 210 *  %PCI_CAP_ID_PM           Power Management 
 211 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
 212 *  %PCI_CAP_ID_VPD          Vital Product Data 
 213 *  %PCI_CAP_ID_SLOTID       Slot Identification 
 214 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 215 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
 216 *  %PCI_CAP_ID_PCIX         PCI-X
 217 *  %PCI_CAP_ID_EXP          PCI Express
 218 */
 219int pci_find_capability(struct pci_dev *dev, int cap)
 220{
 221        int pos;
 222
 223        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 224        if (pos)
 225                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 226
 227        return pos;
 228}
 229
 230/**
 231 * pci_bus_find_capability - query for devices' capabilities 
 232 * @bus:   the PCI bus to query
 233 * @devfn: PCI device to query
 234 * @cap:   capability code
 235 *
 236 * Like pci_find_capability() but works for pci devices that do not have a
 237 * pci_dev structure set up yet. 
 238 *
 239 * Returns the address of the requested capability structure within the
 240 * device's PCI configuration space or 0 in case the device does not
 241 * support it.
 242 */
 243int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 244{
 245        int pos;
 246        u8 hdr_type;
 247
 248        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 249
 250        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 251        if (pos)
 252                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 253
 254        return pos;
 255}
 256
 257/**
 258 * pci_find_next_ext_capability - Find an extended capability
 259 * @dev: PCI device to query
 260 * @start: address at which to start looking (0 to start at beginning of list)
 261 * @cap: capability code
 262 *
 263 * Returns the address of the next matching extended capability structure
 264 * within the device's PCI configuration space or 0 if the device does
 265 * not support it.  Some capabilities can occur several times, e.g., the
 266 * vendor-specific capability, and this provides a way to find them all.
 267 */
 268int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 269{
 270        u32 header;
 271        int ttl;
 272        int pos = PCI_CFG_SPACE_SIZE;
 273
 274        /* minimum 8 bytes per capability */
 275        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 276
 277        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 278                return 0;
 279
 280        if (start)
 281                pos = start;
 282
 283        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 284                return 0;
 285
 286        /*
 287         * If we have no capabilities, this is indicated by cap ID,
 288         * cap version and next pointer all being 0.
 289         */
 290        if (header == 0)
 291                return 0;
 292
 293        while (ttl-- > 0) {
 294                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 295                        return pos;
 296
 297                pos = PCI_EXT_CAP_NEXT(header);
 298                if (pos < PCI_CFG_SPACE_SIZE)
 299                        break;
 300
 301                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 302                        break;
 303        }
 304
 305        return 0;
 306}
 307EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 308
 309/**
 310 * pci_find_ext_capability - Find an extended capability
 311 * @dev: PCI device to query
 312 * @cap: capability code
 313 *
 314 * Returns the address of the requested extended capability structure
 315 * within the device's PCI configuration space or 0 if the device does
 316 * not support it.  Possible values for @cap:
 317 *
 318 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 319 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 320 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 321 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 322 */
 323int pci_find_ext_capability(struct pci_dev *dev, int cap)
 324{
 325        return pci_find_next_ext_capability(dev, 0, cap);
 326}
 327EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 328
 329static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 330{
 331        int rc, ttl = PCI_FIND_CAP_TTL;
 332        u8 cap, mask;
 333
 334        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 335                mask = HT_3BIT_CAP_MASK;
 336        else
 337                mask = HT_5BIT_CAP_MASK;
 338
 339        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 340                                      PCI_CAP_ID_HT, &ttl);
 341        while (pos) {
 342                rc = pci_read_config_byte(dev, pos + 3, &cap);
 343                if (rc != PCIBIOS_SUCCESSFUL)
 344                        return 0;
 345
 346                if ((cap & mask) == ht_cap)
 347                        return pos;
 348
 349                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 350                                              pos + PCI_CAP_LIST_NEXT,
 351                                              PCI_CAP_ID_HT, &ttl);
 352        }
 353
 354        return 0;
 355}
 356/**
 357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 358 * @dev: PCI device to query
 359 * @pos: Position from which to continue searching
 360 * @ht_cap: Hypertransport capability code
 361 *
 362 * To be used in conjunction with pci_find_ht_capability() to search for
 363 * all capabilities matching @ht_cap. @pos should always be a value returned
 364 * from pci_find_ht_capability().
 365 *
 366 * NB. To be 100% safe against broken PCI devices, the caller should take
 367 * steps to avoid an infinite loop.
 368 */
 369int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 370{
 371        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 372}
 373EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 374
 375/**
 376 * pci_find_ht_capability - query a device's Hypertransport capabilities
 377 * @dev: PCI device to query
 378 * @ht_cap: Hypertransport capability code
 379 *
 380 * Tell if a device supports a given Hypertransport capability.
 381 * Returns an address within the device's PCI configuration space
 382 * or 0 in case the device does not support the request capability.
 383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 384 * which has a Hypertransport capability matching @ht_cap.
 385 */
 386int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 387{
 388        int pos;
 389
 390        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 391        if (pos)
 392                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 393
 394        return pos;
 395}
 396EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 397
 398/**
 399 * pci_find_parent_resource - return resource region of parent bus of given region
 400 * @dev: PCI device structure contains resources to be searched
 401 * @res: child resource record for which parent is sought
 402 *
 403 *  For given resource region of given device, return the resource
 404 *  region of parent bus the given region is contained in or where
 405 *  it should be allocated from.
 406 */
 407struct resource *
 408pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 409{
 410        const struct pci_bus *bus = dev->bus;
 411        int i;
 412        struct resource *best = NULL, *r;
 413
 414        pci_bus_for_each_resource(bus, r, i) {
 415                if (!r)
 416                        continue;
 417                if (res->start && !(res->start >= r->start && res->end <= r->end))
 418                        continue;       /* Not contained */
 419                if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
 420                        continue;       /* Wrong type */
 421                if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
 422                        return r;       /* Exact match */
 423                /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
 424                if (r->flags & IORESOURCE_PREFETCH)
 425                        continue;
 426                /* .. but we can put a prefetchable resource inside a non-prefetchable one */
 427                if (!best)
 428                        best = r;
 429        }
 430        return best;
 431}
 432
 433/**
 434 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 435 * @dev: PCI device to have its BARs restored
 436 *
 437 * Restore the BAR values for a given device, so as to make it
 438 * accessible by its driver.
 439 */
 440static void
 441pci_restore_bars(struct pci_dev *dev)
 442{
 443        int i;
 444
 445        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 446                pci_update_resource(dev, i);
 447}
 448
 449static struct pci_platform_pm_ops *pci_platform_pm;
 450
 451int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 452{
 453        if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 454            || !ops->sleep_wake)
 455                return -EINVAL;
 456        pci_platform_pm = ops;
 457        return 0;
 458}
 459
 460static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 461{
 462        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 463}
 464
 465static inline int platform_pci_set_power_state(struct pci_dev *dev,
 466                                                pci_power_t t)
 467{
 468        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 469}
 470
 471static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 472{
 473        return pci_platform_pm ?
 474                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 475}
 476
 477static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 478{
 479        return pci_platform_pm ?
 480                        pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 481}
 482
 483static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 484{
 485        return pci_platform_pm ?
 486                        pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 487}
 488
 489/**
 490 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 491 *                           given PCI device
 492 * @dev: PCI device to handle.
 493 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 494 *
 495 * RETURN VALUE:
 496 * -EINVAL if the requested state is invalid.
 497 * -EIO if device does not support PCI PM or its PM capabilities register has a
 498 * wrong version, or device doesn't support the requested state.
 499 * 0 if device already is in the requested state.
 500 * 0 if device's power state has been successfully changed.
 501 */
 502static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 503{
 504        u16 pmcsr;
 505        bool need_restore = false;
 506
 507        /* Check if we're already there */
 508        if (dev->current_state == state)
 509                return 0;
 510
 511        if (!dev->pm_cap)
 512                return -EIO;
 513
 514        if (state < PCI_D0 || state > PCI_D3hot)
 515                return -EINVAL;
 516
 517        /* Validate current state:
 518         * Can enter D0 from any state, but if we can only go deeper 
 519         * to sleep if we're already in a low power state
 520         */
 521        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 522            && dev->current_state > state) {
 523                dev_err(&dev->dev, "invalid power transition "
 524                        "(from state %d to %d)\n", dev->current_state, state);
 525                return -EINVAL;
 526        }
 527
 528        /* check if this device supports the desired state */
 529        if ((state == PCI_D1 && !dev->d1_support)
 530           || (state == PCI_D2 && !dev->d2_support))
 531                return -EIO;
 532
 533        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 534
 535        /* If we're (effectively) in D3, force entire word to 0.
 536         * This doesn't affect PME_Status, disables PME_En, and
 537         * sets PowerState to 0.
 538         */
 539        switch (dev->current_state) {
 540        case PCI_D0:
 541        case PCI_D1:
 542        case PCI_D2:
 543                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 544                pmcsr |= state;
 545                break;
 546        case PCI_D3hot:
 547        case PCI_D3cold:
 548        case PCI_UNKNOWN: /* Boot-up */
 549                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 550                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 551                        need_restore = true;
 552                /* Fall-through: force to D0 */
 553        default:
 554                pmcsr = 0;
 555                break;
 556        }
 557
 558        /* enter specified state */
 559        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 560
 561        /* Mandatory power management transition delays */
 562        /* see PCI PM 1.1 5.6.1 table 18 */
 563        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 564                pci_dev_d3_sleep(dev);
 565        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 566                udelay(PCI_PM_D2_DELAY);
 567
 568        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 569        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 570        if (dev->current_state != state && printk_ratelimit())
 571                dev_info(&dev->dev, "Refused to change power state, "
 572                        "currently in D%d\n", dev->current_state);
 573
 574        /*
 575         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 576         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 577         * from D3hot to D0 _may_ perform an internal reset, thereby
 578         * going to "D0 Uninitialized" rather than "D0 Initialized".
 579         * For example, at least some versions of the 3c905B and the
 580         * 3c556B exhibit this behaviour.
 581         *
 582         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 583         * devices in a D3hot state at boot.  Consequently, we need to
 584         * restore at least the BARs so that the device will be
 585         * accessible to its driver.
 586         */
 587        if (need_restore)
 588                pci_restore_bars(dev);
 589
 590        if (dev->bus->self)
 591                pcie_aspm_pm_state_change(dev->bus->self);
 592
 593        return 0;
 594}
 595
 596/**
 597 * pci_update_current_state - Read PCI power state of given device from its
 598 *                            PCI PM registers and cache it
 599 * @dev: PCI device to handle.
 600 * @state: State to cache in case the device doesn't have the PM capability
 601 */
 602void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 603{
 604        if (dev->pm_cap) {
 605                u16 pmcsr;
 606
 607                /*
 608                 * Configuration space is not accessible for device in
 609                 * D3cold, so just keep or set D3cold for safety
 610                 */
 611                if (dev->current_state == PCI_D3cold)
 612                        return;
 613                if (state == PCI_D3cold) {
 614                        dev->current_state = PCI_D3cold;
 615                        return;
 616                }
 617                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 618                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 619        } else {
 620                dev->current_state = state;
 621        }
 622}
 623
 624/**
 625 * pci_power_up - Put the given device into D0 forcibly
 626 * @dev: PCI device to power up
 627 */
 628void pci_power_up(struct pci_dev *dev)
 629{
 630        if (platform_pci_power_manageable(dev))
 631                platform_pci_set_power_state(dev, PCI_D0);
 632
 633        pci_raw_set_power_state(dev, PCI_D0);
 634        pci_update_current_state(dev, PCI_D0);
 635}
 636
 637/**
 638 * pci_platform_power_transition - Use platform to change device power state
 639 * @dev: PCI device to handle.
 640 * @state: State to put the device into.
 641 */
 642static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 643{
 644        int error;
 645
 646        if (platform_pci_power_manageable(dev)) {
 647                error = platform_pci_set_power_state(dev, state);
 648                if (!error)
 649                        pci_update_current_state(dev, state);
 650        } else
 651                error = -ENODEV;
 652
 653        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 654                dev->current_state = PCI_D0;
 655
 656        return error;
 657}
 658
 659/**
 660 * __pci_start_power_transition - Start power transition of a PCI device
 661 * @dev: PCI device to handle.
 662 * @state: State to put the device into.
 663 */
 664static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 665{
 666        if (state == PCI_D0) {
 667                pci_platform_power_transition(dev, PCI_D0);
 668                /*
 669                 * Mandatory power management transition delays, see
 670                 * PCI Express Base Specification Revision 2.0 Section
 671                 * 6.6.1: Conventional Reset.  Do not delay for
 672                 * devices powered on/off by corresponding bridge,
 673                 * because have already delayed for the bridge.
 674                 */
 675                if (dev->runtime_d3cold) {
 676                        msleep(dev->d3cold_delay);
 677                        /*
 678                         * When powering on a bridge from D3cold, the
 679                         * whole hierarchy may be powered on into
 680                         * D0uninitialized state, resume them to give
 681                         * them a chance to suspend again
 682                         */
 683                        pci_wakeup_bus(dev->subordinate);
 684                }
 685        }
 686}
 687
 688/**
 689 * __pci_dev_set_current_state - Set current state of a PCI device
 690 * @dev: Device to handle
 691 * @data: pointer to state to be set
 692 */
 693static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 694{
 695        pci_power_t state = *(pci_power_t *)data;
 696
 697        dev->current_state = state;
 698        return 0;
 699}
 700
 701/**
 702 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 703 * @bus: Top bus of the subtree to walk.
 704 * @state: state to be set
 705 */
 706static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 707{
 708        if (bus)
 709                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 710}
 711
 712/**
 713 * __pci_complete_power_transition - Complete power transition of a PCI device
 714 * @dev: PCI device to handle.
 715 * @state: State to put the device into.
 716 *
 717 * This function should not be called directly by device drivers.
 718 */
 719int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 720{
 721        int ret;
 722
 723        if (state <= PCI_D0)
 724                return -EINVAL;
 725        ret = pci_platform_power_transition(dev, state);
 726        /* Power off the bridge may power off the whole hierarchy */
 727        if (!ret && state == PCI_D3cold)
 728                __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 729        return ret;
 730}
 731EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 732
 733/**
 734 * pci_set_power_state - Set the power state of a PCI device
 735 * @dev: PCI device to handle.
 736 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 737 *
 738 * Transition a device to a new power state, using the platform firmware and/or
 739 * the device's PCI PM registers.
 740 *
 741 * RETURN VALUE:
 742 * -EINVAL if the requested state is invalid.
 743 * -EIO if device does not support PCI PM or its PM capabilities register has a
 744 * wrong version, or device doesn't support the requested state.
 745 * 0 if device already is in the requested state.
 746 * 0 if device's power state has been successfully changed.
 747 */
 748int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 749{
 750        int error;
 751
 752        /* bound the state we're entering */
 753        if (state > PCI_D3cold)
 754                state = PCI_D3cold;
 755        else if (state < PCI_D0)
 756                state = PCI_D0;
 757        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 758                /*
 759                 * If the device or the parent bridge do not support PCI PM,
 760                 * ignore the request if we're doing anything other than putting
 761                 * it into D0 (which would only happen on boot).
 762                 */
 763                return 0;
 764
 765        /* Check if we're already there */
 766        if (dev->current_state == state)
 767                return 0;
 768
 769        __pci_start_power_transition(dev, state);
 770
 771        /* This device is quirked not to be put into D3, so
 772           don't put it in D3 */
 773        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 774                return 0;
 775
 776        /*
 777         * To put device in D3cold, we put device into D3hot in native
 778         * way, then put device into D3cold with platform ops
 779         */
 780        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 781                                        PCI_D3hot : state);
 782
 783        if (!__pci_complete_power_transition(dev, state))
 784                error = 0;
 785        /*
 786         * When aspm_policy is "powersave" this call ensures
 787         * that ASPM is configured.
 788         */
 789        if (!error && dev->bus->self)
 790                pcie_aspm_powersave_config_link(dev->bus->self);
 791
 792        return error;
 793}
 794
 795/**
 796 * pci_choose_state - Choose the power state of a PCI device
 797 * @dev: PCI device to be suspended
 798 * @state: target sleep state for the whole system. This is the value
 799 *      that is passed to suspend() function.
 800 *
 801 * Returns PCI power state suitable for given device and given system
 802 * message.
 803 */
 804
 805pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 806{
 807        pci_power_t ret;
 808
 809        if (!dev->pm_cap)
 810                return PCI_D0;
 811
 812        ret = platform_pci_choose_state(dev);
 813        if (ret != PCI_POWER_ERROR)
 814                return ret;
 815
 816        switch (state.event) {
 817        case PM_EVENT_ON:
 818                return PCI_D0;
 819        case PM_EVENT_FREEZE:
 820        case PM_EVENT_PRETHAW:
 821                /* REVISIT both freeze and pre-thaw "should" use D0 */
 822        case PM_EVENT_SUSPEND:
 823        case PM_EVENT_HIBERNATE:
 824                return PCI_D3hot;
 825        default:
 826                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 827                         state.event);
 828                BUG();
 829        }
 830        return PCI_D0;
 831}
 832
 833EXPORT_SYMBOL(pci_choose_state);
 834
 835#define PCI_EXP_SAVE_REGS       7
 836
 837
 838static struct pci_cap_saved_state *pci_find_saved_cap(
 839        struct pci_dev *pci_dev, char cap)
 840{
 841        struct pci_cap_saved_state *tmp;
 842
 843        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 844                if (tmp->cap.cap_nr == cap)
 845                        return tmp;
 846        }
 847        return NULL;
 848}
 849
 850static int pci_save_pcie_state(struct pci_dev *dev)
 851{
 852        int i = 0;
 853        struct pci_cap_saved_state *save_state;
 854        u16 *cap;
 855
 856        if (!pci_is_pcie(dev))
 857                return 0;
 858
 859        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 860        if (!save_state) {
 861                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 862                return -ENOMEM;
 863        }
 864
 865        cap = (u16 *)&save_state->cap.data[0];
 866        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 867        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 868        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 869        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 870        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 871        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 872        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 873
 874        return 0;
 875}
 876
 877static void pci_restore_pcie_state(struct pci_dev *dev)
 878{
 879        int i = 0;
 880        struct pci_cap_saved_state *save_state;
 881        u16 *cap;
 882
 883        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 884        if (!save_state)
 885                return;
 886
 887        cap = (u16 *)&save_state->cap.data[0];
 888        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 889        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
 890        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
 891        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
 892        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
 893        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
 894        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 895}
 896
 897
 898static int pci_save_pcix_state(struct pci_dev *dev)
 899{
 900        int pos;
 901        struct pci_cap_saved_state *save_state;
 902
 903        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 904        if (pos <= 0)
 905                return 0;
 906
 907        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 908        if (!save_state) {
 909                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 910                return -ENOMEM;
 911        }
 912
 913        pci_read_config_word(dev, pos + PCI_X_CMD,
 914                             (u16 *)save_state->cap.data);
 915
 916        return 0;
 917}
 918
 919static void pci_restore_pcix_state(struct pci_dev *dev)
 920{
 921        int i = 0, pos;
 922        struct pci_cap_saved_state *save_state;
 923        u16 *cap;
 924
 925        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 926        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 927        if (!save_state || pos <= 0)
 928                return;
 929        cap = (u16 *)&save_state->cap.data[0];
 930
 931        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 932}
 933
 934
 935/**
 936 * pci_save_state - save the PCI configuration space of a device before suspending
 937 * @dev: - PCI device that we're dealing with
 938 */
 939int
 940pci_save_state(struct pci_dev *dev)
 941{
 942        int i;
 943        /* XXX: 100% dword access ok here? */
 944        for (i = 0; i < 16; i++)
 945                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 946        dev->state_saved = true;
 947        if ((i = pci_save_pcie_state(dev)) != 0)
 948                return i;
 949        if ((i = pci_save_pcix_state(dev)) != 0)
 950                return i;
 951        return 0;
 952}
 953
 954static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
 955                                     u32 saved_val, int retry)
 956{
 957        u32 val;
 958
 959        pci_read_config_dword(pdev, offset, &val);
 960        if (val == saved_val)
 961                return;
 962
 963        for (;;) {
 964                dev_dbg(&pdev->dev, "restoring config space at offset "
 965                        "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
 966                pci_write_config_dword(pdev, offset, saved_val);
 967                if (retry-- <= 0)
 968                        return;
 969
 970                pci_read_config_dword(pdev, offset, &val);
 971                if (val == saved_val)
 972                        return;
 973
 974                mdelay(1);
 975        }
 976}
 977
 978static void pci_restore_config_space_range(struct pci_dev *pdev,
 979                                           int start, int end, int retry)
 980{
 981        int index;
 982
 983        for (index = end; index >= start; index--)
 984                pci_restore_config_dword(pdev, 4 * index,
 985                                         pdev->saved_config_space[index],
 986                                         retry);
 987}
 988
 989static void pci_restore_config_space(struct pci_dev *pdev)
 990{
 991        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
 992                pci_restore_config_space_range(pdev, 10, 15, 0);
 993                /* Restore BARs before the command register. */
 994                pci_restore_config_space_range(pdev, 4, 9, 10);
 995                pci_restore_config_space_range(pdev, 0, 3, 0);
 996        } else {
 997                pci_restore_config_space_range(pdev, 0, 15, 0);
 998        }
 999}
1000
1001/** 
1002 * pci_restore_state - Restore the saved state of a PCI device
1003 * @dev: - PCI device that we're dealing with
1004 */
1005void pci_restore_state(struct pci_dev *dev)
1006{
1007        if (!dev->state_saved)
1008                return;
1009
1010        /* PCI Express register must be restored first */
1011        pci_restore_pcie_state(dev);
1012        pci_restore_ats_state(dev);
1013
1014        pci_restore_config_space(dev);
1015
1016        pci_restore_pcix_state(dev);
1017        pci_restore_msi_state(dev);
1018        pci_restore_iov_state(dev);
1019
1020        dev->state_saved = false;
1021}
1022
1023struct pci_saved_state {
1024        u32 config_space[16];
1025        struct pci_cap_saved_data cap[0];
1026};
1027
1028/**
1029 * pci_store_saved_state - Allocate and return an opaque struct containing
1030 *                         the device saved state.
1031 * @dev: PCI device that we're dealing with
1032 *
1033 * Rerturn NULL if no state or error.
1034 */
1035struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1036{
1037        struct pci_saved_state *state;
1038        struct pci_cap_saved_state *tmp;
1039        struct pci_cap_saved_data *cap;
1040        size_t size;
1041
1042        if (!dev->state_saved)
1043                return NULL;
1044
1045        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1046
1047        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1048                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1049
1050        state = kzalloc(size, GFP_KERNEL);
1051        if (!state)
1052                return NULL;
1053
1054        memcpy(state->config_space, dev->saved_config_space,
1055               sizeof(state->config_space));
1056
1057        cap = state->cap;
1058        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1059                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1060                memcpy(cap, &tmp->cap, len);
1061                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1062        }
1063        /* Empty cap_save terminates list */
1064
1065        return state;
1066}
1067EXPORT_SYMBOL_GPL(pci_store_saved_state);
1068
1069/**
1070 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1071 * @dev: PCI device that we're dealing with
1072 * @state: Saved state returned from pci_store_saved_state()
1073 */
1074int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1075{
1076        struct pci_cap_saved_data *cap;
1077
1078        dev->state_saved = false;
1079
1080        if (!state)
1081                return 0;
1082
1083        memcpy(dev->saved_config_space, state->config_space,
1084               sizeof(state->config_space));
1085
1086        cap = state->cap;
1087        while (cap->size) {
1088                struct pci_cap_saved_state *tmp;
1089
1090                tmp = pci_find_saved_cap(dev, cap->cap_nr);
1091                if (!tmp || tmp->cap.size != cap->size)
1092                        return -EINVAL;
1093
1094                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1095                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1096                       sizeof(struct pci_cap_saved_data) + cap->size);
1097        }
1098
1099        dev->state_saved = true;
1100        return 0;
1101}
1102EXPORT_SYMBOL_GPL(pci_load_saved_state);
1103
1104/**
1105 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1106 *                                 and free the memory allocated for it.
1107 * @dev: PCI device that we're dealing with
1108 * @state: Pointer to saved state returned from pci_store_saved_state()
1109 */
1110int pci_load_and_free_saved_state(struct pci_dev *dev,
1111                                  struct pci_saved_state **state)
1112{
1113        int ret = pci_load_saved_state(dev, *state);
1114        kfree(*state);
1115        *state = NULL;
1116        return ret;
1117}
1118EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1119
1120static int do_pci_enable_device(struct pci_dev *dev, int bars)
1121{
1122        int err;
1123
1124        err = pci_set_power_state(dev, PCI_D0);
1125        if (err < 0 && err != -EIO)
1126                return err;
1127        err = pcibios_enable_device(dev, bars);
1128        if (err < 0)
1129                return err;
1130        pci_fixup_device(pci_fixup_enable, dev);
1131
1132        return 0;
1133}
1134
1135/**
1136 * pci_reenable_device - Resume abandoned device
1137 * @dev: PCI device to be resumed
1138 *
1139 *  Note this function is a backend of pci_default_resume and is not supposed
1140 *  to be called by normal code, write proper resume handler and use it instead.
1141 */
1142int pci_reenable_device(struct pci_dev *dev)
1143{
1144        if (pci_is_enabled(dev))
1145                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1146        return 0;
1147}
1148
1149static void pci_enable_bridge(struct pci_dev *dev)
1150{
1151        int retval;
1152
1153        if (!dev)
1154                return;
1155
1156        pci_enable_bridge(dev->bus->self);
1157
1158        if (pci_is_enabled(dev)) {
1159                if (!dev->is_busmaster) {
1160                        dev_warn(&dev->dev, "driver skip pci_set_master, fix it!\n");
1161                        pci_set_master(dev);
1162                }
1163                return;
1164        }
1165
1166        retval = pci_enable_device(dev);
1167        if (retval)
1168                dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1169                        retval);
1170        pci_set_master(dev);
1171}
1172
1173static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1174{
1175        int err;
1176        int i, bars = 0;
1177
1178        /*
1179         * Power state could be unknown at this point, either due to a fresh
1180         * boot or a device removal call.  So get the current power state
1181         * so that things like MSI message writing will behave as expected
1182         * (e.g. if the device really is in D0 at enable time).
1183         */
1184        if (dev->pm_cap) {
1185                u16 pmcsr;
1186                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1187                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1188        }
1189
1190        if (atomic_inc_return(&dev->enable_cnt) > 1)
1191                return 0;               /* already enabled */
1192
1193        pci_enable_bridge(dev->bus->self);
1194
1195        /* only skip sriov related */
1196        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1197                if (dev->resource[i].flags & flags)
1198                        bars |= (1 << i);
1199        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1200                if (dev->resource[i].flags & flags)
1201                        bars |= (1 << i);
1202
1203        err = do_pci_enable_device(dev, bars);
1204        if (err < 0)
1205                atomic_dec(&dev->enable_cnt);
1206        return err;
1207}
1208
1209/**
1210 * pci_enable_device_io - Initialize a device for use with IO space
1211 * @dev: PCI device to be initialized
1212 *
1213 *  Initialize device before it's used by a driver. Ask low-level code
1214 *  to enable I/O resources. Wake up the device if it was suspended.
1215 *  Beware, this function can fail.
1216 */
1217int pci_enable_device_io(struct pci_dev *dev)
1218{
1219        return pci_enable_device_flags(dev, IORESOURCE_IO);
1220}
1221
1222/**
1223 * pci_enable_device_mem - Initialize a device for use with Memory space
1224 * @dev: PCI device to be initialized
1225 *
1226 *  Initialize device before it's used by a driver. Ask low-level code
1227 *  to enable Memory resources. Wake up the device if it was suspended.
1228 *  Beware, this function can fail.
1229 */
1230int pci_enable_device_mem(struct pci_dev *dev)
1231{
1232        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1233}
1234
1235/**
1236 * pci_enable_device - Initialize device before it's used by a driver.
1237 * @dev: PCI device to be initialized
1238 *
1239 *  Initialize device before it's used by a driver. Ask low-level code
1240 *  to enable I/O and memory. Wake up the device if it was suspended.
1241 *  Beware, this function can fail.
1242 *
1243 *  Note we don't actually enable the device many times if we call
1244 *  this function repeatedly (we just increment the count).
1245 */
1246int pci_enable_device(struct pci_dev *dev)
1247{
1248        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1249}
1250
1251/*
1252 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1253 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1254 * there's no need to track it separately.  pci_devres is initialized
1255 * when a device is enabled using managed PCI device enable interface.
1256 */
1257struct pci_devres {
1258        unsigned int enabled:1;
1259        unsigned int pinned:1;
1260        unsigned int orig_intx:1;
1261        unsigned int restore_intx:1;
1262        u32 region_mask;
1263};
1264
1265static void pcim_release(struct device *gendev, void *res)
1266{
1267        struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1268        struct pci_devres *this = res;
1269        int i;
1270
1271        if (dev->msi_enabled)
1272                pci_disable_msi(dev);
1273        if (dev->msix_enabled)
1274                pci_disable_msix(dev);
1275
1276        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1277                if (this->region_mask & (1 << i))
1278                        pci_release_region(dev, i);
1279
1280        if (this->restore_intx)
1281                pci_intx(dev, this->orig_intx);
1282
1283        if (this->enabled && !this->pinned)
1284                pci_disable_device(dev);
1285}
1286
1287static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1288{
1289        struct pci_devres *dr, *new_dr;
1290
1291        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1292        if (dr)
1293                return dr;
1294
1295        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1296        if (!new_dr)
1297                return NULL;
1298        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1299}
1300
1301static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1302{
1303        if (pci_is_managed(pdev))
1304                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1305        return NULL;
1306}
1307
1308/**
1309 * pcim_enable_device - Managed pci_enable_device()
1310 * @pdev: PCI device to be initialized
1311 *
1312 * Managed pci_enable_device().
1313 */
1314int pcim_enable_device(struct pci_dev *pdev)
1315{
1316        struct pci_devres *dr;
1317        int rc;
1318
1319        dr = get_pci_dr(pdev);
1320        if (unlikely(!dr))
1321                return -ENOMEM;
1322        if (dr->enabled)
1323                return 0;
1324
1325        rc = pci_enable_device(pdev);
1326        if (!rc) {
1327                pdev->is_managed = 1;
1328                dr->enabled = 1;
1329        }
1330        return rc;
1331}
1332
1333/**
1334 * pcim_pin_device - Pin managed PCI device
1335 * @pdev: PCI device to pin
1336 *
1337 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1338 * driver detach.  @pdev must have been enabled with
1339 * pcim_enable_device().
1340 */
1341void pcim_pin_device(struct pci_dev *pdev)
1342{
1343        struct pci_devres *dr;
1344
1345        dr = find_pci_dr(pdev);
1346        WARN_ON(!dr || !dr->enabled);
1347        if (dr)
1348                dr->pinned = 1;
1349}
1350
1351/*
1352 * pcibios_add_device - provide arch specific hooks when adding device dev
1353 * @dev: the PCI device being added
1354 *
1355 * Permits the platform to provide architecture specific functionality when
1356 * devices are added. This is the default implementation. Architecture
1357 * implementations can override this.
1358 */
1359int __weak pcibios_add_device (struct pci_dev *dev)
1360{
1361        return 0;
1362}
1363
1364/**
1365 * pcibios_release_device - provide arch specific hooks when releasing device dev
1366 * @dev: the PCI device being released
1367 *
1368 * Permits the platform to provide architecture specific functionality when
1369 * devices are released. This is the default implementation. Architecture
1370 * implementations can override this.
1371 */
1372void __weak pcibios_release_device(struct pci_dev *dev) {}
1373
1374/**
1375 * pcibios_disable_device - disable arch specific PCI resources for device dev
1376 * @dev: the PCI device to disable
1377 *
1378 * Disables architecture specific PCI resources for the device. This
1379 * is the default implementation. Architecture implementations can
1380 * override this.
1381 */
1382void __weak pcibios_disable_device (struct pci_dev *dev) {}
1383
1384static void do_pci_disable_device(struct pci_dev *dev)
1385{
1386        u16 pci_command;
1387
1388        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1389        if (pci_command & PCI_COMMAND_MASTER) {
1390                pci_command &= ~PCI_COMMAND_MASTER;
1391                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1392        }
1393
1394        pcibios_disable_device(dev);
1395}
1396
1397/**
1398 * pci_disable_enabled_device - Disable device without updating enable_cnt
1399 * @dev: PCI device to disable
1400 *
1401 * NOTE: This function is a backend of PCI power management routines and is
1402 * not supposed to be called drivers.
1403 */
1404void pci_disable_enabled_device(struct pci_dev *dev)
1405{
1406        if (pci_is_enabled(dev))
1407                do_pci_disable_device(dev);
1408}
1409
1410/**
1411 * pci_disable_device - Disable PCI device after use
1412 * @dev: PCI device to be disabled
1413 *
1414 * Signal to the system that the PCI device is not in use by the system
1415 * anymore.  This only involves disabling PCI bus-mastering, if active.
1416 *
1417 * Note we don't actually disable the device until all callers of
1418 * pci_enable_device() have called pci_disable_device().
1419 */
1420void
1421pci_disable_device(struct pci_dev *dev)
1422{
1423        struct pci_devres *dr;
1424
1425        dr = find_pci_dr(dev);
1426        if (dr)
1427                dr->enabled = 0;
1428
1429        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1430                      "disabling already-disabled device");
1431
1432        if (atomic_dec_return(&dev->enable_cnt) != 0)
1433                return;
1434
1435        do_pci_disable_device(dev);
1436
1437        dev->is_busmaster = 0;
1438}
1439
1440/**
1441 * pcibios_set_pcie_reset_state - set reset state for device dev
1442 * @dev: the PCIe device reset
1443 * @state: Reset state to enter into
1444 *
1445 *
1446 * Sets the PCIe reset state for the device. This is the default
1447 * implementation. Architecture implementations can override this.
1448 */
1449int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1450                                        enum pcie_reset_state state)
1451{
1452        return -EINVAL;
1453}
1454
1455/**
1456 * pci_set_pcie_reset_state - set reset state for device dev
1457 * @dev: the PCIe device reset
1458 * @state: Reset state to enter into
1459 *
1460 *
1461 * Sets the PCI reset state for the device.
1462 */
1463int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1464{
1465        return pcibios_set_pcie_reset_state(dev, state);
1466}
1467
1468/**
1469 * pci_check_pme_status - Check if given device has generated PME.
1470 * @dev: Device to check.
1471 *
1472 * Check the PME status of the device and if set, clear it and clear PME enable
1473 * (if set).  Return 'true' if PME status and PME enable were both set or
1474 * 'false' otherwise.
1475 */
1476bool pci_check_pme_status(struct pci_dev *dev)
1477{
1478        int pmcsr_pos;
1479        u16 pmcsr;
1480        bool ret = false;
1481
1482        if (!dev->pm_cap)
1483                return false;
1484
1485        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1486        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1487        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1488                return false;
1489
1490        /* Clear PME status. */
1491        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1492        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1493                /* Disable PME to avoid interrupt flood. */
1494                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1495                ret = true;
1496        }
1497
1498        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1499
1500        return ret;
1501}
1502
1503/**
1504 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1505 * @dev: Device to handle.
1506 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1507 *
1508 * Check if @dev has generated PME and queue a resume request for it in that
1509 * case.
1510 */
1511static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1512{
1513        if (pme_poll_reset && dev->pme_poll)
1514                dev->pme_poll = false;
1515
1516        if (pci_check_pme_status(dev)) {
1517                pci_wakeup_event(dev);
1518                pm_request_resume(&dev->dev);
1519        }
1520        return 0;
1521}
1522
1523/**
1524 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1525 * @bus: Top bus of the subtree to walk.
1526 */
1527void pci_pme_wakeup_bus(struct pci_bus *bus)
1528{
1529        if (bus)
1530                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1531}
1532
1533/**
1534 * pci_wakeup - Wake up a PCI device
1535 * @pci_dev: Device to handle.
1536 * @ign: ignored parameter
1537 */
1538static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1539{
1540        pci_wakeup_event(pci_dev);
1541        pm_request_resume(&pci_dev->dev);
1542        return 0;
1543}
1544
1545/**
1546 * pci_wakeup_bus - Walk given bus and wake up devices on it
1547 * @bus: Top bus of the subtree to walk.
1548 */
1549void pci_wakeup_bus(struct pci_bus *bus)
1550{
1551        if (bus)
1552                pci_walk_bus(bus, pci_wakeup, NULL);
1553}
1554
1555/**
1556 * pci_pme_capable - check the capability of PCI device to generate PME#
1557 * @dev: PCI device to handle.
1558 * @state: PCI state from which device will issue PME#.
1559 */
1560bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1561{
1562        if (!dev->pm_cap)
1563                return false;
1564
1565        return !!(dev->pme_support & (1 << state));
1566}
1567
1568static void pci_pme_list_scan(struct work_struct *work)
1569{
1570        struct pci_pme_device *pme_dev, *n;
1571
1572        mutex_lock(&pci_pme_list_mutex);
1573        if (!list_empty(&pci_pme_list)) {
1574                list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1575                        if (pme_dev->dev->pme_poll) {
1576                                struct pci_dev *bridge;
1577
1578                                bridge = pme_dev->dev->bus->self;
1579                                /*
1580                                 * If bridge is in low power state, the
1581                                 * configuration space of subordinate devices
1582                                 * may be not accessible
1583                                 */
1584                                if (bridge && bridge->current_state != PCI_D0)
1585                                        continue;
1586                                pci_pme_wakeup(pme_dev->dev, NULL);
1587                        } else {
1588                                list_del(&pme_dev->list);
1589                                kfree(pme_dev);
1590                        }
1591                }
1592                if (!list_empty(&pci_pme_list))
1593                        schedule_delayed_work(&pci_pme_work,
1594                                              msecs_to_jiffies(PME_TIMEOUT));
1595        }
1596        mutex_unlock(&pci_pme_list_mutex);
1597}
1598
1599/**
1600 * pci_pme_active - enable or disable PCI device's PME# function
1601 * @dev: PCI device to handle.
1602 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1603 *
1604 * The caller must verify that the device is capable of generating PME# before
1605 * calling this function with @enable equal to 'true'.
1606 */
1607void pci_pme_active(struct pci_dev *dev, bool enable)
1608{
1609        u16 pmcsr;
1610
1611        if (!dev->pme_support)
1612                return;
1613
1614        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1615        /* Clear PME_Status by writing 1 to it and enable PME# */
1616        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1617        if (!enable)
1618                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1619
1620        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1621
1622        /*
1623         * PCI (as opposed to PCIe) PME requires that the device have
1624         * its PME# line hooked up correctly. Not all hardware vendors
1625         * do this, so the PME never gets delivered and the device
1626         * remains asleep. The easiest way around this is to
1627         * periodically walk the list of suspended devices and check
1628         * whether any have their PME flag set. The assumption is that
1629         * we'll wake up often enough anyway that this won't be a huge
1630         * hit, and the power savings from the devices will still be a
1631         * win.
1632         *
1633         * Although PCIe uses in-band PME message instead of PME# line
1634         * to report PME, PME does not work for some PCIe devices in
1635         * reality.  For example, there are devices that set their PME
1636         * status bits, but don't really bother to send a PME message;
1637         * there are PCI Express Root Ports that don't bother to
1638         * trigger interrupts when they receive PME messages from the
1639         * devices below.  So PME poll is used for PCIe devices too.
1640         */
1641
1642        if (dev->pme_poll) {
1643                struct pci_pme_device *pme_dev;
1644                if (enable) {
1645                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1646                                          GFP_KERNEL);
1647                        if (!pme_dev)
1648                                goto out;
1649                        pme_dev->dev = dev;
1650                        mutex_lock(&pci_pme_list_mutex);
1651                        list_add(&pme_dev->list, &pci_pme_list);
1652                        if (list_is_singular(&pci_pme_list))
1653                                schedule_delayed_work(&pci_pme_work,
1654                                                      msecs_to_jiffies(PME_TIMEOUT));
1655                        mutex_unlock(&pci_pme_list_mutex);
1656                } else {
1657                        mutex_lock(&pci_pme_list_mutex);
1658                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1659                                if (pme_dev->dev == dev) {
1660                                        list_del(&pme_dev->list);
1661                                        kfree(pme_dev);
1662                                        break;
1663                                }
1664                        }
1665                        mutex_unlock(&pci_pme_list_mutex);
1666                }
1667        }
1668
1669out:
1670        dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1671}
1672
1673/**
1674 * __pci_enable_wake - enable PCI device as wakeup event source
1675 * @dev: PCI device affected
1676 * @state: PCI state from which device will issue wakeup events
1677 * @runtime: True if the events are to be generated at run time
1678 * @enable: True to enable event generation; false to disable
1679 *
1680 * This enables the device as a wakeup event source, or disables it.
1681 * When such events involves platform-specific hooks, those hooks are
1682 * called automatically by this routine.
1683 *
1684 * Devices with legacy power management (no standard PCI PM capabilities)
1685 * always require such platform hooks.
1686 *
1687 * RETURN VALUE:
1688 * 0 is returned on success
1689 * -EINVAL is returned if device is not supposed to wake up the system
1690 * Error code depending on the platform is returned if both the platform and
1691 * the native mechanism fail to enable the generation of wake-up events
1692 */
1693int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1694                      bool runtime, bool enable)
1695{
1696        int ret = 0;
1697
1698        if (enable && !runtime && !device_may_wakeup(&dev->dev))
1699                return -EINVAL;
1700
1701        /* Don't do the same thing twice in a row for one device. */
1702        if (!!enable == !!dev->wakeup_prepared)
1703                return 0;
1704
1705        /*
1706         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1707         * Anderson we should be doing PME# wake enable followed by ACPI wake
1708         * enable.  To disable wake-up we call the platform first, for symmetry.
1709         */
1710
1711        if (enable) {
1712                int error;
1713
1714                if (pci_pme_capable(dev, state))
1715                        pci_pme_active(dev, true);
1716                else
1717                        ret = 1;
1718                error = runtime ? platform_pci_run_wake(dev, true) :
1719                                        platform_pci_sleep_wake(dev, true);
1720                if (ret)
1721                        ret = error;
1722                if (!ret)
1723                        dev->wakeup_prepared = true;
1724        } else {
1725                if (runtime)
1726                        platform_pci_run_wake(dev, false);
1727                else
1728                        platform_pci_sleep_wake(dev, false);
1729                pci_pme_active(dev, false);
1730                dev->wakeup_prepared = false;
1731        }
1732
1733        return ret;
1734}
1735EXPORT_SYMBOL(__pci_enable_wake);
1736
1737/**
1738 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1739 * @dev: PCI device to prepare
1740 * @enable: True to enable wake-up event generation; false to disable
1741 *
1742 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1743 * and this function allows them to set that up cleanly - pci_enable_wake()
1744 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1745 * ordering constraints.
1746 *
1747 * This function only returns error code if the device is not capable of
1748 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1749 * enable wake-up power for it.
1750 */
1751int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1752{
1753        return pci_pme_capable(dev, PCI_D3cold) ?
1754                        pci_enable_wake(dev, PCI_D3cold, enable) :
1755                        pci_enable_wake(dev, PCI_D3hot, enable);
1756}
1757
1758/**
1759 * pci_target_state - find an appropriate low power state for a given PCI dev
1760 * @dev: PCI device
1761 *
1762 * Use underlying platform code to find a supported low power state for @dev.
1763 * If the platform can't manage @dev, return the deepest state from which it
1764 * can generate wake events, based on any available PME info.
1765 */
1766pci_power_t pci_target_state(struct pci_dev *dev)
1767{
1768        pci_power_t target_state = PCI_D3hot;
1769
1770        if (platform_pci_power_manageable(dev)) {
1771                /*
1772                 * Call the platform to choose the target state of the device
1773                 * and enable wake-up from this state if supported.
1774                 */
1775                pci_power_t state = platform_pci_choose_state(dev);
1776
1777                switch (state) {
1778                case PCI_POWER_ERROR:
1779                case PCI_UNKNOWN:
1780                        break;
1781                case PCI_D1:
1782                case PCI_D2:
1783                        if (pci_no_d1d2(dev))
1784                                break;
1785                default:
1786                        target_state = state;
1787                }
1788        } else if (!dev->pm_cap) {
1789                target_state = PCI_D0;
1790        } else if (device_may_wakeup(&dev->dev)) {
1791                /*
1792                 * Find the deepest state from which the device can generate
1793                 * wake-up events, make it the target state and enable device
1794                 * to generate PME#.
1795                 */
1796                if (dev->pme_support) {
1797                        while (target_state
1798                              && !(dev->pme_support & (1 << target_state)))
1799                                target_state--;
1800                }
1801        }
1802
1803        return target_state;
1804}
1805
1806/**
1807 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1808 * @dev: Device to handle.
1809 *
1810 * Choose the power state appropriate for the device depending on whether
1811 * it can wake up the system and/or is power manageable by the platform
1812 * (PCI_D3hot is the default) and put the device into that state.
1813 */
1814int pci_prepare_to_sleep(struct pci_dev *dev)
1815{
1816        pci_power_t target_state = pci_target_state(dev);
1817        int error;
1818
1819        if (target_state == PCI_POWER_ERROR)
1820                return -EIO;
1821
1822        /* D3cold during system suspend/hibernate is not supported */
1823        if (target_state > PCI_D3hot)
1824                target_state = PCI_D3hot;
1825
1826        pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1827
1828        error = pci_set_power_state(dev, target_state);
1829
1830        if (error)
1831                pci_enable_wake(dev, target_state, false);
1832
1833        return error;
1834}
1835
1836/**
1837 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1838 * @dev: Device to handle.
1839 *
1840 * Disable device's system wake-up capability and put it into D0.
1841 */
1842int pci_back_from_sleep(struct pci_dev *dev)
1843{
1844        pci_enable_wake(dev, PCI_D0, false);
1845        return pci_set_power_state(dev, PCI_D0);
1846}
1847
1848/**
1849 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1850 * @dev: PCI device being suspended.
1851 *
1852 * Prepare @dev to generate wake-up events at run time and put it into a low
1853 * power state.
1854 */
1855int pci_finish_runtime_suspend(struct pci_dev *dev)
1856{
1857        pci_power_t target_state = pci_target_state(dev);
1858        int error;
1859
1860        if (target_state == PCI_POWER_ERROR)
1861                return -EIO;
1862
1863        dev->runtime_d3cold = target_state == PCI_D3cold;
1864
1865        __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1866
1867        error = pci_set_power_state(dev, target_state);
1868
1869        if (error) {
1870                __pci_enable_wake(dev, target_state, true, false);
1871                dev->runtime_d3cold = false;
1872        }
1873
1874        return error;
1875}
1876
1877/**
1878 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1879 * @dev: Device to check.
1880 *
1881 * Return true if the device itself is cabable of generating wake-up events
1882 * (through the platform or using the native PCIe PME) or if the device supports
1883 * PME and one of its upstream bridges can generate wake-up events.
1884 */
1885bool pci_dev_run_wake(struct pci_dev *dev)
1886{
1887        struct pci_bus *bus = dev->bus;
1888
1889        if (device_run_wake(&dev->dev))
1890                return true;
1891
1892        if (!dev->pme_support)
1893                return false;
1894
1895        while (bus->parent) {
1896                struct pci_dev *bridge = bus->self;
1897
1898                if (device_run_wake(&bridge->dev))
1899                        return true;
1900
1901                bus = bus->parent;
1902        }
1903
1904        /* We have reached the root bus. */
1905        if (bus->bridge)
1906                return device_run_wake(bus->bridge);
1907
1908        return false;
1909}
1910EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1911
1912void pci_config_pm_runtime_get(struct pci_dev *pdev)
1913{
1914        struct device *dev = &pdev->dev;
1915        struct device *parent = dev->parent;
1916
1917        if (parent)
1918                pm_runtime_get_sync(parent);
1919        pm_runtime_get_noresume(dev);
1920        /*
1921         * pdev->current_state is set to PCI_D3cold during suspending,
1922         * so wait until suspending completes
1923         */
1924        pm_runtime_barrier(dev);
1925        /*
1926         * Only need to resume devices in D3cold, because config
1927         * registers are still accessible for devices suspended but
1928         * not in D3cold.
1929         */
1930        if (pdev->current_state == PCI_D3cold)
1931                pm_runtime_resume(dev);
1932}
1933
1934void pci_config_pm_runtime_put(struct pci_dev *pdev)
1935{
1936        struct device *dev = &pdev->dev;
1937        struct device *parent = dev->parent;
1938
1939        pm_runtime_put(dev);
1940        if (parent)
1941                pm_runtime_put_sync(parent);
1942}
1943
1944/**
1945 * pci_pm_init - Initialize PM functions of given PCI device
1946 * @dev: PCI device to handle.
1947 */
1948void pci_pm_init(struct pci_dev *dev)
1949{
1950        int pm;
1951        u16 pmc;
1952
1953        pm_runtime_forbid(&dev->dev);
1954        pm_runtime_set_active(&dev->dev);
1955        pm_runtime_enable(&dev->dev);
1956        device_enable_async_suspend(&dev->dev);
1957        dev->wakeup_prepared = false;
1958
1959        dev->pm_cap = 0;
1960        dev->pme_support = 0;
1961
1962        /* find PCI PM capability in list */
1963        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1964        if (!pm)
1965                return;
1966        /* Check device's ability to generate PME# */
1967        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1968
1969        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1970                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1971                        pmc & PCI_PM_CAP_VER_MASK);
1972                return;
1973        }
1974
1975        dev->pm_cap = pm;
1976        dev->d3_delay = PCI_PM_D3_WAIT;
1977        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1978        dev->d3cold_allowed = true;
1979
1980        dev->d1_support = false;
1981        dev->d2_support = false;
1982        if (!pci_no_d1d2(dev)) {
1983                if (pmc & PCI_PM_CAP_D1)
1984                        dev->d1_support = true;
1985                if (pmc & PCI_PM_CAP_D2)
1986                        dev->d2_support = true;
1987
1988                if (dev->d1_support || dev->d2_support)
1989                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1990                                   dev->d1_support ? " D1" : "",
1991                                   dev->d2_support ? " D2" : "");
1992        }
1993
1994        pmc &= PCI_PM_CAP_PME_MASK;
1995        if (pmc) {
1996                dev_printk(KERN_DEBUG, &dev->dev,
1997                         "PME# supported from%s%s%s%s%s\n",
1998                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1999                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2000                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2001                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2002                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2003                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2004                dev->pme_poll = true;
2005                /*
2006                 * Make device's PM flags reflect the wake-up capability, but
2007                 * let the user space enable it to wake up the system as needed.
2008                 */
2009                device_set_wakeup_capable(&dev->dev, true);
2010                /* Disable the PME# generation functionality */
2011                pci_pme_active(dev, false);
2012        }
2013}
2014
2015static void pci_add_saved_cap(struct pci_dev *pci_dev,
2016        struct pci_cap_saved_state *new_cap)
2017{
2018        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2019}
2020
2021/**
2022 * pci_add_cap_save_buffer - allocate buffer for saving given capability registers
2023 * @dev: the PCI device
2024 * @cap: the capability to allocate the buffer for
2025 * @size: requested size of the buffer
2026 */
2027static int pci_add_cap_save_buffer(
2028        struct pci_dev *dev, char cap, unsigned int size)
2029{
2030        int pos;
2031        struct pci_cap_saved_state *save_state;
2032
2033        pos = pci_find_capability(dev, cap);
2034        if (pos <= 0)
2035                return 0;
2036
2037        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2038        if (!save_state)
2039                return -ENOMEM;
2040
2041        save_state->cap.cap_nr = cap;
2042        save_state->cap.size = size;
2043        pci_add_saved_cap(dev, save_state);
2044
2045        return 0;
2046}
2047
2048/**
2049 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2050 * @dev: the PCI device
2051 */
2052void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2053{
2054        int error;
2055
2056        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2057                                        PCI_EXP_SAVE_REGS * sizeof(u16));
2058        if (error)
2059                dev_err(&dev->dev,
2060                        "unable to preallocate PCI Express save buffer\n");
2061
2062        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2063        if (error)
2064                dev_err(&dev->dev,
2065                        "unable to preallocate PCI-X save buffer\n");
2066}
2067
2068void pci_free_cap_save_buffers(struct pci_dev *dev)
2069{
2070        struct pci_cap_saved_state *tmp;
2071        struct hlist_node *n;
2072
2073        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2074                kfree(tmp);
2075}
2076
2077/**
2078 * pci_configure_ari - enable or disable ARI forwarding
2079 * @dev: the PCI device
2080 *
2081 * If @dev and its upstream bridge both support ARI, enable ARI in the
2082 * bridge.  Otherwise, disable ARI in the bridge.
2083 */
2084void pci_configure_ari(struct pci_dev *dev)
2085{
2086        u32 cap;
2087        struct pci_dev *bridge;
2088
2089        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2090                return;
2091
2092        bridge = dev->bus->self;
2093        if (!bridge)
2094                return;
2095
2096        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2097        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2098                return;
2099
2100        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2101                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2102                                         PCI_EXP_DEVCTL2_ARI);
2103                bridge->ari_enabled = 1;
2104        } else {
2105                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2106                                           PCI_EXP_DEVCTL2_ARI);
2107                bridge->ari_enabled = 0;
2108        }
2109}
2110
2111/**
2112 * pci_enable_ido - enable ID-based Ordering on a device
2113 * @dev: the PCI device
2114 * @type: which types of IDO to enable
2115 *
2116 * Enable ID-based ordering on @dev.  @type can contain the bits
2117 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2118 * which types of transactions are allowed to be re-ordered.
2119 */
2120void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2121{
2122        u16 ctrl = 0;
2123
2124        if (type & PCI_EXP_IDO_REQUEST)
2125                ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2126        if (type & PCI_EXP_IDO_COMPLETION)
2127                ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2128        if (ctrl)
2129                pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2130}
2131EXPORT_SYMBOL(pci_enable_ido);
2132
2133/**
2134 * pci_disable_ido - disable ID-based ordering on a device
2135 * @dev: the PCI device
2136 * @type: which types of IDO to disable
2137 */
2138void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2139{
2140        u16 ctrl = 0;
2141
2142        if (type & PCI_EXP_IDO_REQUEST)
2143                ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2144        if (type & PCI_EXP_IDO_COMPLETION)
2145                ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2146        if (ctrl)
2147                pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2148}
2149EXPORT_SYMBOL(pci_disable_ido);
2150
2151/**
2152 * pci_enable_obff - enable optimized buffer flush/fill
2153 * @dev: PCI device
2154 * @type: type of signaling to use
2155 *
2156 * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2157 * signaling if possible, falling back to message signaling only if
2158 * WAKE# isn't supported.  @type should indicate whether the PCIe link
2159 * be brought out of L0s or L1 to send the message.  It should be either
2160 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2161 *
2162 * If your device can benefit from receiving all messages, even at the
2163 * power cost of bringing the link back up from a low power state, use
2164 * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2165 * preferred type).
2166 *
2167 * RETURNS:
2168 * Zero on success, appropriate error number on failure.
2169 */
2170int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2171{
2172        u32 cap;
2173        u16 ctrl;
2174        int ret;
2175
2176        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2177        if (!(cap & PCI_EXP_DEVCAP2_OBFF_MASK))
2178                return -ENOTSUPP; /* no OBFF support at all */
2179
2180        /* Make sure the topology supports OBFF as well */
2181        if (dev->bus->self) {
2182                ret = pci_enable_obff(dev->bus->self, type);
2183                if (ret)
2184                        return ret;
2185        }
2186
2187        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2188        if (cap & PCI_EXP_DEVCAP2_OBFF_WAKE)
2189                ctrl |= PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2190        else {
2191                switch (type) {
2192                case PCI_EXP_OBFF_SIGNAL_L0:
2193                        if (!(ctrl & PCI_EXP_DEVCTL2_OBFF_WAKE_EN))
2194                                ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGA_EN;
2195                        break;
2196                case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2197                        ctrl &= ~PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2198                        ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGB_EN;
2199                        break;
2200                default:
2201                        WARN(1, "bad OBFF signal type\n");
2202                        return -ENOTSUPP;
2203                }
2204        }
2205        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2206
2207        return 0;
2208}
2209EXPORT_SYMBOL(pci_enable_obff);
2210
2211/**
2212 * pci_disable_obff - disable optimized buffer flush/fill
2213 * @dev: PCI device
2214 *
2215 * Disable OBFF on @dev.
2216 */
2217void pci_disable_obff(struct pci_dev *dev)
2218{
2219        pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2220                                   PCI_EXP_DEVCTL2_OBFF_WAKE_EN);
2221}
2222EXPORT_SYMBOL(pci_disable_obff);
2223
2224/**
2225 * pci_ltr_supported - check whether a device supports LTR
2226 * @dev: PCI device
2227 *
2228 * RETURNS:
2229 * True if @dev supports latency tolerance reporting, false otherwise.
2230 */
2231static bool pci_ltr_supported(struct pci_dev *dev)
2232{
2233        u32 cap;
2234
2235        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2236
2237        return cap & PCI_EXP_DEVCAP2_LTR;
2238}
2239
2240/**
2241 * pci_enable_ltr - enable latency tolerance reporting
2242 * @dev: PCI device
2243 *
2244 * Enable LTR on @dev if possible, which means enabling it first on
2245 * upstream ports.
2246 *
2247 * RETURNS:
2248 * Zero on success, errno on failure.
2249 */
2250int pci_enable_ltr(struct pci_dev *dev)
2251{
2252        int ret;
2253
2254        /* Only primary function can enable/disable LTR */
2255        if (PCI_FUNC(dev->devfn) != 0)
2256                return -EINVAL;
2257
2258        if (!pci_ltr_supported(dev))
2259                return -ENOTSUPP;
2260
2261        /* Enable upstream ports first */
2262        if (dev->bus->self) {
2263                ret = pci_enable_ltr(dev->bus->self);
2264                if (ret)
2265                        return ret;
2266        }
2267
2268        return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
2269                                        PCI_EXP_DEVCTL2_LTR_EN);
2270}
2271EXPORT_SYMBOL(pci_enable_ltr);
2272
2273/**
2274 * pci_disable_ltr - disable latency tolerance reporting
2275 * @dev: PCI device
2276 */
2277void pci_disable_ltr(struct pci_dev *dev)
2278{
2279        /* Only primary function can enable/disable LTR */
2280        if (PCI_FUNC(dev->devfn) != 0)
2281                return;
2282
2283        if (!pci_ltr_supported(dev))
2284                return;
2285
2286        pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2287                                   PCI_EXP_DEVCTL2_LTR_EN);
2288}
2289EXPORT_SYMBOL(pci_disable_ltr);
2290
2291static int __pci_ltr_scale(int *val)
2292{
2293        int scale = 0;
2294
2295        while (*val > 1023) {
2296                *val = (*val + 31) / 32;
2297                scale++;
2298        }
2299        return scale;
2300}
2301
2302/**
2303 * pci_set_ltr - set LTR latency values
2304 * @dev: PCI device
2305 * @snoop_lat_ns: snoop latency in nanoseconds
2306 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2307 *
2308 * Figure out the scale and set the LTR values accordingly.
2309 */
2310int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2311{
2312        int pos, ret, snoop_scale, nosnoop_scale;
2313        u16 val;
2314
2315        if (!pci_ltr_supported(dev))
2316                return -ENOTSUPP;
2317
2318        snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2319        nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2320
2321        if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2322            nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2323                return -EINVAL;
2324
2325        if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2326            (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2327                return -EINVAL;
2328
2329        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2330        if (!pos)
2331                return -ENOTSUPP;
2332
2333        val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2334        ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2335        if (ret != 4)
2336                return -EIO;
2337
2338        val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2339        ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2340        if (ret != 4)
2341                return -EIO;
2342
2343        return 0;
2344}
2345EXPORT_SYMBOL(pci_set_ltr);
2346
2347static int pci_acs_enable;
2348
2349/**
2350 * pci_request_acs - ask for ACS to be enabled if supported
2351 */
2352void pci_request_acs(void)
2353{
2354        pci_acs_enable = 1;
2355}
2356
2357/**
2358 * pci_enable_acs - enable ACS if hardware support it
2359 * @dev: the PCI device
2360 */
2361void pci_enable_acs(struct pci_dev *dev)
2362{
2363        int pos;
2364        u16 cap;
2365        u16 ctrl;
2366
2367        if (!pci_acs_enable)
2368                return;
2369
2370        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2371        if (!pos)
2372                return;
2373
2374        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2375        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2376
2377        /* Source Validation */
2378        ctrl |= (cap & PCI_ACS_SV);
2379
2380        /* P2P Request Redirect */
2381        ctrl |= (cap & PCI_ACS_RR);
2382
2383        /* P2P Completion Redirect */
2384        ctrl |= (cap & PCI_ACS_CR);
2385
2386        /* Upstream Forwarding */
2387        ctrl |= (cap & PCI_ACS_UF);
2388
2389        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2390}
2391
2392static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2393{
2394        int pos;
2395        u16 cap, ctrl;
2396
2397        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2398        if (!pos)
2399                return false;
2400
2401        /*
2402         * Except for egress control, capabilities are either required
2403         * or only required if controllable.  Features missing from the
2404         * capability field can therefore be assumed as hard-wired enabled.
2405         */
2406        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2407        acs_flags &= (cap | PCI_ACS_EC);
2408
2409        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2410        return (ctrl & acs_flags) == acs_flags;
2411}
2412
2413/**
2414 * pci_acs_enabled - test ACS against required flags for a given device
2415 * @pdev: device to test
2416 * @acs_flags: required PCI ACS flags
2417 *
2418 * Return true if the device supports the provided flags.  Automatically
2419 * filters out flags that are not implemented on multifunction devices.
2420 *
2421 * Note that this interface checks the effective ACS capabilities of the
2422 * device rather than the actual capabilities.  For instance, most single
2423 * function endpoints are not required to support ACS because they have no
2424 * opportunity for peer-to-peer access.  We therefore return 'true'
2425 * regardless of whether the device exposes an ACS capability.  This makes
2426 * it much easier for callers of this function to ignore the actual type
2427 * or topology of the device when testing ACS support.
2428 */
2429bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2430{
2431        int ret;
2432
2433        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2434        if (ret >= 0)
2435                return ret > 0;
2436
2437        /*
2438         * Conventional PCI and PCI-X devices never support ACS, either
2439         * effectively or actually.  The shared bus topology implies that
2440         * any device on the bus can receive or snoop DMA.
2441         */
2442        if (!pci_is_pcie(pdev))
2443                return false;
2444
2445        switch (pci_pcie_type(pdev)) {
2446        /*
2447         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2448         * but since their primary inteface is PCI/X, we conservatively
2449         * handle them as we would a non-PCIe device.
2450         */
2451        case PCI_EXP_TYPE_PCIE_BRIDGE:
2452        /*
2453         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2454         * applicable... must never implement an ACS Extended Capability...".
2455         * This seems arbitrary, but we take a conservative interpretation
2456         * of this statement.
2457         */
2458        case PCI_EXP_TYPE_PCI_BRIDGE:
2459        case PCI_EXP_TYPE_RC_EC:
2460                return false;
2461        /*
2462         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2463         * implement ACS in order to indicate their peer-to-peer capabilities,
2464         * regardless of whether they are single- or multi-function devices.
2465         */
2466        case PCI_EXP_TYPE_DOWNSTREAM:
2467        case PCI_EXP_TYPE_ROOT_PORT:
2468                return pci_acs_flags_enabled(pdev, acs_flags);
2469        /*
2470         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2471         * implemented by the remaining PCIe types to indicate peer-to-peer
2472         * capabilities, but only when they are part of a multifunciton
2473         * device.  The footnote for section 6.12 indicates the specific
2474         * PCIe types included here.
2475         */
2476        case PCI_EXP_TYPE_ENDPOINT:
2477        case PCI_EXP_TYPE_UPSTREAM:
2478        case PCI_EXP_TYPE_LEG_END:
2479        case PCI_EXP_TYPE_RC_END:
2480                if (!pdev->multifunction)
2481                        break;
2482
2483                return pci_acs_flags_enabled(pdev, acs_flags);
2484        }
2485
2486        /*
2487         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilties are applicable
2488         * to single function devices with the exception of downstream ports.
2489         */
2490        return true;
2491}
2492
2493/**
2494 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2495 * @start: starting downstream device
2496 * @end: ending upstream device or NULL to search to the root bus
2497 * @acs_flags: required flags
2498 *
2499 * Walk up a device tree from start to end testing PCI ACS support.  If
2500 * any step along the way does not support the required flags, return false.
2501 */
2502bool pci_acs_path_enabled(struct pci_dev *start,
2503                          struct pci_dev *end, u16 acs_flags)
2504{
2505        struct pci_dev *pdev, *parent = start;
2506
2507        do {
2508                pdev = parent;
2509
2510                if (!pci_acs_enabled(pdev, acs_flags))
2511                        return false;
2512
2513                if (pci_is_root_bus(pdev->bus))
2514                        return (end == NULL);
2515
2516                parent = pdev->bus->self;
2517        } while (pdev != end);
2518
2519        return true;
2520}
2521
2522/**
2523 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2524 * @dev: the PCI device
2525 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2526 *
2527 * Perform INTx swizzling for a device behind one level of bridge.  This is
2528 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2529 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2530 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2531 * the PCI Express Base Specification, Revision 2.1)
2532 */
2533u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2534{
2535        int slot;
2536
2537        if (pci_ari_enabled(dev->bus))
2538                slot = 0;
2539        else
2540                slot = PCI_SLOT(dev->devfn);
2541
2542        return (((pin - 1) + slot) % 4) + 1;
2543}
2544
2545int
2546pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2547{
2548        u8 pin;
2549
2550        pin = dev->pin;
2551        if (!pin)
2552                return -1;
2553
2554        while (!pci_is_root_bus(dev->bus)) {
2555                pin = pci_swizzle_interrupt_pin(dev, pin);
2556                dev = dev->bus->self;
2557        }
2558        *bridge = dev;
2559        return pin;
2560}
2561
2562/**
2563 * pci_common_swizzle - swizzle INTx all the way to root bridge
2564 * @dev: the PCI device
2565 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2566 *
2567 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2568 * bridges all the way up to a PCI root bus.
2569 */
2570u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2571{
2572        u8 pin = *pinp;
2573
2574        while (!pci_is_root_bus(dev->bus)) {
2575                pin = pci_swizzle_interrupt_pin(dev, pin);
2576                dev = dev->bus->self;
2577        }
2578        *pinp = pin;
2579        return PCI_SLOT(dev->devfn);
2580}
2581
2582/**
2583 *      pci_release_region - Release a PCI bar
2584 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
2585 *      @bar: BAR to release
2586 *
2587 *      Releases the PCI I/O and memory resources previously reserved by a
2588 *      successful call to pci_request_region.  Call this function only
2589 *      after all use of the PCI regions has ceased.
2590 */
2591void pci_release_region(struct pci_dev *pdev, int bar)
2592{
2593        struct pci_devres *dr;
2594
2595        if (pci_resource_len(pdev, bar) == 0)
2596                return;
2597        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2598                release_region(pci_resource_start(pdev, bar),
2599                                pci_resource_len(pdev, bar));
2600        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2601                release_mem_region(pci_resource_start(pdev, bar),
2602                                pci_resource_len(pdev, bar));
2603
2604        dr = find_pci_dr(pdev);
2605        if (dr)
2606                dr->region_mask &= ~(1 << bar);
2607}
2608
2609/**
2610 *      __pci_request_region - Reserved PCI I/O and memory resource
2611 *      @pdev: PCI device whose resources are to be reserved
2612 *      @bar: BAR to be reserved
2613 *      @res_name: Name to be associated with resource.
2614 *      @exclusive: whether the region access is exclusive or not
2615 *
2616 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2617 *      being reserved by owner @res_name.  Do not access any
2618 *      address inside the PCI regions unless this call returns
2619 *      successfully.
2620 *
2621 *      If @exclusive is set, then the region is marked so that userspace
2622 *      is explicitly not allowed to map the resource via /dev/mem or
2623 *      sysfs MMIO access.
2624 *
2625 *      Returns 0 on success, or %EBUSY on error.  A warning
2626 *      message is also printed on failure.
2627 */
2628static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2629                                                                        int exclusive)
2630{
2631        struct pci_devres *dr;
2632
2633        if (pci_resource_len(pdev, bar) == 0)
2634                return 0;
2635                
2636        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2637                if (!request_region(pci_resource_start(pdev, bar),
2638                            pci_resource_len(pdev, bar), res_name))
2639                        goto err_out;
2640        }
2641        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2642                if (!__request_mem_region(pci_resource_start(pdev, bar),
2643                                        pci_resource_len(pdev, bar), res_name,
2644                                        exclusive))
2645                        goto err_out;
2646        }
2647
2648        dr = find_pci_dr(pdev);
2649        if (dr)
2650                dr->region_mask |= 1 << bar;
2651
2652        return 0;
2653
2654err_out:
2655        dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2656                 &pdev->resource[bar]);
2657        return -EBUSY;
2658}
2659
2660/**
2661 *      pci_request_region - Reserve PCI I/O and memory resource
2662 *      @pdev: PCI device whose resources are to be reserved
2663 *      @bar: BAR to be reserved
2664 *      @res_name: Name to be associated with resource
2665 *
2666 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
2667 *      being reserved by owner @res_name.  Do not access any
2668 *      address inside the PCI regions unless this call returns
2669 *      successfully.
2670 *
2671 *      Returns 0 on success, or %EBUSY on error.  A warning
2672 *      message is also printed on failure.
2673 */
2674int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2675{
2676        return __pci_request_region(pdev, bar, res_name, 0);
2677}
2678
2679/**
2680 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
2681 *      @pdev: PCI device whose resources are to be reserved
2682 *      @bar: BAR to be reserved
2683 *      @res_name: Name to be associated with resource.
2684 *
2685 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2686 *      being reserved by owner @res_name.  Do not access any
2687 *      address inside the PCI regions unless this call returns
2688 *      successfully.
2689 *
2690 *      Returns 0 on success, or %EBUSY on error.  A warning
2691 *      message is also printed on failure.
2692 *
2693 *      The key difference that _exclusive makes it that userspace is
2694 *      explicitly not allowed to map the resource via /dev/mem or
2695 *      sysfs.
2696 */
2697int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2698{
2699        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2700}
2701/**
2702 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2703 * @pdev: PCI device whose resources were previously reserved
2704 * @bars: Bitmask of BARs to be released
2705 *
2706 * Release selected PCI I/O and memory resources previously reserved.
2707 * Call this function only after all use of the PCI regions has ceased.
2708 */
2709void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2710{
2711        int i;
2712
2713        for (i = 0; i < 6; i++)
2714                if (bars & (1 << i))
2715                        pci_release_region(pdev, i);
2716}
2717
2718static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2719                                 const char *res_name, int excl)
2720{
2721        int i;
2722
2723        for (i = 0; i < 6; i++)
2724                if (bars & (1 << i))
2725                        if (__pci_request_region(pdev, i, res_name, excl))
2726                                goto err_out;
2727        return 0;
2728
2729err_out:
2730        while(--i >= 0)
2731                if (bars & (1 << i))
2732                        pci_release_region(pdev, i);
2733
2734        return -EBUSY;
2735}
2736
2737
2738/**
2739 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2740 * @pdev: PCI device whose resources are to be reserved
2741 * @bars: Bitmask of BARs to be requested
2742 * @res_name: Name to be associated with resource
2743 */
2744int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2745                                 const char *res_name)
2746{
2747        return __pci_request_selected_regions(pdev, bars, res_name, 0);
2748}
2749
2750int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2751                                 int bars, const char *res_name)
2752{
2753        return __pci_request_selected_regions(pdev, bars, res_name,
2754                        IORESOURCE_EXCLUSIVE);
2755}
2756
2757/**
2758 *      pci_release_regions - Release reserved PCI I/O and memory resources
2759 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
2760 *
2761 *      Releases all PCI I/O and memory resources previously reserved by a
2762 *      successful call to pci_request_regions.  Call this function only
2763 *      after all use of the PCI regions has ceased.
2764 */
2765
2766void pci_release_regions(struct pci_dev *pdev)
2767{
2768        pci_release_selected_regions(pdev, (1 << 6) - 1);
2769}
2770
2771/**
2772 *      pci_request_regions - Reserved PCI I/O and memory resources
2773 *      @pdev: PCI device whose resources are to be reserved
2774 *      @res_name: Name to be associated with resource.
2775 *
2776 *      Mark all PCI regions associated with PCI device @pdev as
2777 *      being reserved by owner @res_name.  Do not access any
2778 *      address inside the PCI regions unless this call returns
2779 *      successfully.
2780 *
2781 *      Returns 0 on success, or %EBUSY on error.  A warning
2782 *      message is also printed on failure.
2783 */
2784int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2785{
2786        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2787}
2788
2789/**
2790 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2791 *      @pdev: PCI device whose resources are to be reserved
2792 *      @res_name: Name to be associated with resource.
2793 *
2794 *      Mark all PCI regions associated with PCI device @pdev as
2795 *      being reserved by owner @res_name.  Do not access any
2796 *      address inside the PCI regions unless this call returns
2797 *      successfully.
2798 *
2799 *      pci_request_regions_exclusive() will mark the region so that
2800 *      /dev/mem and the sysfs MMIO access will not be allowed.
2801 *
2802 *      Returns 0 on success, or %EBUSY on error.  A warning
2803 *      message is also printed on failure.
2804 */
2805int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2806{
2807        return pci_request_selected_regions_exclusive(pdev,
2808                                        ((1 << 6) - 1), res_name);
2809}
2810
2811static void __pci_set_master(struct pci_dev *dev, bool enable)
2812{
2813        u16 old_cmd, cmd;
2814
2815        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2816        if (enable)
2817                cmd = old_cmd | PCI_COMMAND_MASTER;
2818        else
2819                cmd = old_cmd & ~PCI_COMMAND_MASTER;
2820        if (cmd != old_cmd) {
2821                dev_dbg(&dev->dev, "%s bus mastering\n",
2822                        enable ? "enabling" : "disabling");
2823                pci_write_config_word(dev, PCI_COMMAND, cmd);
2824        }
2825        dev->is_busmaster = enable;
2826}
2827
2828/**
2829 * pcibios_setup - process "pci=" kernel boot arguments
2830 * @str: string used to pass in "pci=" kernel boot arguments
2831 *
2832 * Process kernel boot arguments.  This is the default implementation.
2833 * Architecture specific implementations can override this as necessary.
2834 */
2835char * __weak __init pcibios_setup(char *str)
2836{
2837        return str;
2838}
2839
2840/**
2841 * pcibios_set_master - enable PCI bus-mastering for device dev
2842 * @dev: the PCI device to enable
2843 *
2844 * Enables PCI bus-mastering for the device.  This is the default
2845 * implementation.  Architecture specific implementations can override
2846 * this if necessary.
2847 */
2848void __weak pcibios_set_master(struct pci_dev *dev)
2849{
2850        u8 lat;
2851
2852        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2853        if (pci_is_pcie(dev))
2854                return;
2855
2856        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2857        if (lat < 16)
2858                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2859        else if (lat > pcibios_max_latency)
2860                lat = pcibios_max_latency;
2861        else
2862                return;
2863        dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2864        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2865}
2866
2867/**
2868 * pci_set_master - enables bus-mastering for device dev
2869 * @dev: the PCI device to enable
2870 *
2871 * Enables bus-mastering on the device and calls pcibios_set_master()
2872 * to do the needed arch specific settings.
2873 */
2874void pci_set_master(struct pci_dev *dev)
2875{
2876        __pci_set_master(dev, true);
2877        pcibios_set_master(dev);
2878}
2879
2880/**
2881 * pci_clear_master - disables bus-mastering for device dev
2882 * @dev: the PCI device to disable
2883 */
2884void pci_clear_master(struct pci_dev *dev)
2885{
2886        __pci_set_master(dev, false);
2887}
2888
2889/**
2890 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2891 * @dev: the PCI device for which MWI is to be enabled
2892 *
2893 * Helper function for pci_set_mwi.
2894 * Originally copied from drivers/net/acenic.c.
2895 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2896 *
2897 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2898 */
2899int pci_set_cacheline_size(struct pci_dev *dev)
2900{
2901        u8 cacheline_size;
2902
2903        if (!pci_cache_line_size)
2904                return -EINVAL;
2905
2906        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2907           equal to or multiple of the right value. */
2908        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2909        if (cacheline_size >= pci_cache_line_size &&
2910            (cacheline_size % pci_cache_line_size) == 0)
2911                return 0;
2912
2913        /* Write the correct value. */
2914        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2915        /* Read it back. */
2916        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2917        if (cacheline_size == pci_cache_line_size)
2918                return 0;
2919
2920        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2921                   "supported\n", pci_cache_line_size << 2);
2922
2923        return -EINVAL;
2924}
2925EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2926
2927#ifdef PCI_DISABLE_MWI
2928int pci_set_mwi(struct pci_dev *dev)
2929{
2930        return 0;
2931}
2932
2933int pci_try_set_mwi(struct pci_dev *dev)
2934{
2935        return 0;
2936}
2937
2938void pci_clear_mwi(struct pci_dev *dev)
2939{
2940}
2941
2942#else
2943
2944/**
2945 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2946 * @dev: the PCI device for which MWI is enabled
2947 *
2948 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2949 *
2950 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2951 */
2952int
2953pci_set_mwi(struct pci_dev *dev)
2954{
2955        int rc;
2956        u16 cmd;
2957
2958        rc = pci_set_cacheline_size(dev);
2959        if (rc)
2960                return rc;
2961
2962        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2963        if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2964                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2965                cmd |= PCI_COMMAND_INVALIDATE;
2966                pci_write_config_word(dev, PCI_COMMAND, cmd);
2967        }
2968        
2969        return 0;
2970}
2971
2972/**
2973 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2974 * @dev: the PCI device for which MWI is enabled
2975 *
2976 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2977 * Callers are not required to check the return value.
2978 *
2979 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2980 */
2981int pci_try_set_mwi(struct pci_dev *dev)
2982{
2983        int rc = pci_set_mwi(dev);
2984        return rc;
2985}
2986
2987/**
2988 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2989 * @dev: the PCI device to disable
2990 *
2991 * Disables PCI Memory-Write-Invalidate transaction on the device
2992 */
2993void
2994pci_clear_mwi(struct pci_dev *dev)
2995{
2996        u16 cmd;
2997
2998        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2999        if (cmd & PCI_COMMAND_INVALIDATE) {
3000                cmd &= ~PCI_COMMAND_INVALIDATE;
3001                pci_write_config_word(dev, PCI_COMMAND, cmd);
3002        }
3003}
3004#endif /* ! PCI_DISABLE_MWI */
3005
3006/**
3007 * pci_intx - enables/disables PCI INTx for device dev
3008 * @pdev: the PCI device to operate on
3009 * @enable: boolean: whether to enable or disable PCI INTx
3010 *
3011 * Enables/disables PCI INTx for device dev
3012 */
3013void
3014pci_intx(struct pci_dev *pdev, int enable)
3015{
3016        u16 pci_command, new;
3017
3018        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3019
3020        if (enable) {
3021                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3022        } else {
3023                new = pci_command | PCI_COMMAND_INTX_DISABLE;
3024        }
3025
3026        if (new != pci_command) {
3027                struct pci_devres *dr;
3028
3029                pci_write_config_word(pdev, PCI_COMMAND, new);
3030
3031                dr = find_pci_dr(pdev);
3032                if (dr && !dr->restore_intx) {
3033                        dr->restore_intx = 1;
3034                        dr->orig_intx = !enable;
3035                }
3036        }
3037}
3038
3039/**
3040 * pci_intx_mask_supported - probe for INTx masking support
3041 * @dev: the PCI device to operate on
3042 *
3043 * Check if the device dev support INTx masking via the config space
3044 * command word.
3045 */
3046bool pci_intx_mask_supported(struct pci_dev *dev)
3047{
3048        bool mask_supported = false;
3049        u16 orig, new;
3050
3051        if (dev->broken_intx_masking)
3052                return false;
3053
3054        pci_cfg_access_lock(dev);
3055
3056        pci_read_config_word(dev, PCI_COMMAND, &orig);
3057        pci_write_config_word(dev, PCI_COMMAND,
3058                              orig ^ PCI_COMMAND_INTX_DISABLE);
3059        pci_read_config_word(dev, PCI_COMMAND, &new);
3060
3061        /*
3062         * There's no way to protect against hardware bugs or detect them
3063         * reliably, but as long as we know what the value should be, let's
3064         * go ahead and check it.
3065         */
3066        if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3067                dev_err(&dev->dev, "Command register changed from "
3068                        "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
3069        } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3070                mask_supported = true;
3071                pci_write_config_word(dev, PCI_COMMAND, orig);
3072        }
3073
3074        pci_cfg_access_unlock(dev);
3075        return mask_supported;
3076}
3077EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3078
3079static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3080{
3081        struct pci_bus *bus = dev->bus;
3082        bool mask_updated = true;
3083        u32 cmd_status_dword;
3084        u16 origcmd, newcmd;
3085        unsigned long flags;
3086        bool irq_pending;
3087
3088        /*
3089         * We do a single dword read to retrieve both command and status.
3090         * Document assumptions that make this possible.
3091         */
3092        BUILD_BUG_ON(PCI_COMMAND % 4);
3093        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3094
3095        raw_spin_lock_irqsave(&pci_lock, flags);
3096
3097        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3098
3099        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3100
3101        /*
3102         * Check interrupt status register to see whether our device
3103         * triggered the interrupt (when masking) or the next IRQ is
3104         * already pending (when unmasking).
3105         */
3106        if (mask != irq_pending) {
3107                mask_updated = false;
3108                goto done;
3109        }
3110
3111        origcmd = cmd_status_dword;
3112        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3113        if (mask)
3114                newcmd |= PCI_COMMAND_INTX_DISABLE;
3115        if (newcmd != origcmd)
3116                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3117
3118done:
3119        raw_spin_unlock_irqrestore(&pci_lock, flags);
3120
3121        return mask_updated;
3122}
3123
3124/**
3125 * pci_check_and_mask_intx - mask INTx on pending interrupt
3126 * @dev: the PCI device to operate on
3127 *
3128 * Check if the device dev has its INTx line asserted, mask it and
3129 * return true in that case. False is returned if not interrupt was
3130 * pending.
3131 */
3132bool pci_check_and_mask_intx(struct pci_dev *dev)
3133{
3134        return pci_check_and_set_intx_mask(dev, true);
3135}
3136EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3137
3138/**
3139 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3140 * @dev: the PCI device to operate on
3141 *
3142 * Check if the device dev has its INTx line asserted, unmask it if not
3143 * and return true. False is returned and the mask remains active if
3144 * there was still an interrupt pending.
3145 */
3146bool pci_check_and_unmask_intx(struct pci_dev *dev)
3147{
3148        return pci_check_and_set_intx_mask(dev, false);
3149}
3150EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3151
3152/**
3153 * pci_msi_off - disables any MSI or MSI-X capabilities
3154 * @dev: the PCI device to operate on
3155 *
3156 * If you want to use MSI, see pci_enable_msi() and friends.
3157 * This is a lower-level primitive that allows us to disable
3158 * MSI operation at the device level.
3159 */
3160void pci_msi_off(struct pci_dev *dev)
3161{
3162        int pos;
3163        u16 control;
3164
3165        /*
3166         * This looks like it could go in msi.c, but we need it even when
3167         * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3168         * dev->msi_cap or dev->msix_cap here.
3169         */
3170        pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3171        if (pos) {
3172                pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3173                control &= ~PCI_MSI_FLAGS_ENABLE;
3174                pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3175        }
3176        pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3177        if (pos) {
3178                pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3179                control &= ~PCI_MSIX_FLAGS_ENABLE;
3180                pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3181        }
3182}
3183EXPORT_SYMBOL_GPL(pci_msi_off);
3184
3185int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3186{
3187        return dma_set_max_seg_size(&dev->dev, size);
3188}
3189EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3190
3191int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3192{
3193        return dma_set_seg_boundary(&dev->dev, mask);
3194}
3195EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3196
3197/**
3198 * pci_wait_for_pending_transaction - waits for pending transaction
3199 * @dev: the PCI device to operate on
3200 *
3201 * Return 0 if transaction is pending 1 otherwise.
3202 */
3203int pci_wait_for_pending_transaction(struct pci_dev *dev)
3204{
3205        int i;
3206        u16 status;
3207
3208        /* Wait for Transaction Pending bit clean */
3209        for (i = 0; i < 4; i++) {
3210                if (i)
3211                        msleep((1 << (i - 1)) * 100);
3212
3213                pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3214                if (!(status & PCI_EXP_DEVSTA_TRPND))
3215                        return 1;
3216        }
3217
3218        return 0;
3219}
3220EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3221
3222static int pcie_flr(struct pci_dev *dev, int probe)
3223{
3224        u32 cap;
3225
3226        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3227        if (!(cap & PCI_EXP_DEVCAP_FLR))
3228                return -ENOTTY;
3229
3230        if (probe)
3231                return 0;
3232
3233        if (!pci_wait_for_pending_transaction(dev))
3234                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3235
3236        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3237
3238        msleep(100);
3239
3240        return 0;
3241}
3242
3243static int pci_af_flr(struct pci_dev *dev, int probe)
3244{
3245        int i;
3246        int pos;
3247        u8 cap;
3248        u8 status;
3249
3250        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3251        if (!pos)
3252                return -ENOTTY;
3253
3254        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3255        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3256                return -ENOTTY;
3257
3258        if (probe)
3259                return 0;
3260
3261        /* Wait for Transaction Pending bit clean */
3262        for (i = 0; i < 4; i++) {
3263                if (i)
3264                        msleep((1 << (i - 1)) * 100);
3265
3266                pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3267                if (!(status & PCI_AF_STATUS_TP))
3268                        goto clear;
3269        }
3270
3271        dev_err(&dev->dev, "transaction is not cleared; "
3272                        "proceeding with reset anyway\n");
3273
3274clear:
3275        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3276        msleep(100);
3277
3278        return 0;
3279}
3280
3281/**
3282 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3283 * @dev: Device to reset.
3284 * @probe: If set, only check if the device can be reset this way.
3285 *
3286 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3287 * unset, it will be reinitialized internally when going from PCI_D3hot to
3288 * PCI_D0.  If that's the case and the device is not in a low-power state
3289 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3290 *
3291 * NOTE: This causes the caller to sleep for twice the device power transition
3292 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3293 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3294 * Moreover, only devices in D0 can be reset by this function.
3295 */
3296static int pci_pm_reset(struct pci_dev *dev, int probe)
3297{
3298        u16 csr;
3299
3300        if (!dev->pm_cap)
3301                return -ENOTTY;
3302
3303        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3304        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3305                return -ENOTTY;
3306
3307        if (probe)
3308                return 0;
3309
3310        if (dev->current_state != PCI_D0)
3311                return -EINVAL;
3312
3313        csr &= ~PCI_PM_CTRL_STATE_MASK;
3314        csr |= PCI_D3hot;
3315        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3316        pci_dev_d3_sleep(dev);
3317
3318        csr &= ~PCI_PM_CTRL_STATE_MASK;
3319        csr |= PCI_D0;
3320        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3321        pci_dev_d3_sleep(dev);
3322
3323        return 0;
3324}
3325
3326/**
3327 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3328 * @dev: Bridge device
3329 *
3330 * Use the bridge control register to assert reset on the secondary bus.
3331 * Devices on the secondary bus are left in power-on state.
3332 */
3333void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3334{
3335        u16 ctrl;
3336
3337        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3338        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3339        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3340        /*
3341         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3342         * this to 2ms to ensure that we meet the minium requirement.
3343         */
3344        msleep(2);
3345
3346        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3347        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3348
3349        /*
3350         * Trhfa for conventional PCI is 2^25 clock cycles.
3351         * Assuming a minimum 33MHz clock this results in a 1s
3352         * delay before we can consider subordinate devices to
3353         * be re-initialized.  PCIe has some ways to shorten this,
3354         * but we don't make use of them yet.
3355         */
3356        ssleep(1);
3357}
3358EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3359
3360static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3361{
3362        struct pci_dev *pdev;
3363
3364        if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3365                return -ENOTTY;
3366
3367        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3368                if (pdev != dev)
3369                        return -ENOTTY;
3370
3371        if (probe)
3372                return 0;
3373
3374        pci_reset_bridge_secondary_bus(dev->bus->self);
3375
3376        return 0;
3377}
3378
3379static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3380{
3381        int rc = -ENOTTY;
3382
3383        if (!hotplug || !try_module_get(hotplug->ops->owner))
3384                return rc;
3385
3386        if (hotplug->ops->reset_slot)
3387                rc = hotplug->ops->reset_slot(hotplug, probe);
3388
3389        module_put(hotplug->ops->owner);
3390
3391        return rc;
3392}
3393
3394static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3395{
3396        struct pci_dev *pdev;
3397
3398        if (dev->subordinate || !dev->slot)
3399                return -ENOTTY;
3400
3401        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3402                if (pdev != dev && pdev->slot == dev->slot)
3403                        return -ENOTTY;
3404
3405        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3406}
3407
3408static int __pci_dev_reset(struct pci_dev *dev, int probe)
3409{
3410        int rc;
3411
3412        might_sleep();
3413
3414        rc = pci_dev_specific_reset(dev, probe);
3415        if (rc != -ENOTTY)
3416                goto done;
3417
3418        rc = pcie_flr(dev, probe);
3419        if (rc != -ENOTTY)
3420                goto done;
3421
3422        rc = pci_af_flr(dev, probe);
3423        if (rc != -ENOTTY)
3424                goto done;
3425
3426        rc = pci_pm_reset(dev, probe);
3427        if (rc != -ENOTTY)
3428                goto done;
3429
3430        rc = pci_dev_reset_slot_function(dev, probe);
3431        if (rc != -ENOTTY)
3432                goto done;
3433
3434        rc = pci_parent_bus_reset(dev, probe);
3435done:
3436        return rc;
3437}
3438
3439static void pci_dev_lock(struct pci_dev *dev)
3440{
3441        pci_cfg_access_lock(dev);
3442        /* block PM suspend, driver probe, etc. */
3443        device_lock(&dev->dev);
3444}
3445
3446static void pci_dev_unlock(struct pci_dev *dev)
3447{
3448        device_unlock(&dev->dev);
3449        pci_cfg_access_unlock(dev);
3450}
3451
3452static void pci_dev_save_and_disable(struct pci_dev *dev)
3453{
3454        /*
3455         * Wake-up device prior to save.  PM registers default to D0 after
3456         * reset and a simple register restore doesn't reliably return
3457         * to a non-D0 state anyway.
3458         */
3459        pci_set_power_state(dev, PCI_D0);
3460
3461        pci_save_state(dev);
3462        /*
3463         * Disable the device by clearing the Command register, except for
3464         * INTx-disable which is set.  This not only disables MMIO and I/O port
3465         * BARs, but also prevents the device from being Bus Master, preventing
3466         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3467         * compliant devices, INTx-disable prevents legacy interrupts.
3468         */
3469        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3470}
3471
3472static void pci_dev_restore(struct pci_dev *dev)
3473{
3474        pci_restore_state(dev);
3475}
3476
3477static int pci_dev_reset(struct pci_dev *dev, int probe)
3478{
3479        int rc;
3480
3481        if (!probe)
3482                pci_dev_lock(dev);
3483
3484        rc = __pci_dev_reset(dev, probe);
3485
3486        if (!probe)
3487                pci_dev_unlock(dev);
3488
3489        return rc;
3490}
3491/**
3492 * __pci_reset_function - reset a PCI device function
3493 * @dev: PCI device to reset
3494 *
3495 * Some devices allow an individual function to be reset without affecting
3496 * other functions in the same device.  The PCI device must be responsive
3497 * to PCI config space in order to use this function.
3498 *
3499 * The device function is presumed to be unused when this function is called.
3500 * Resetting the device will make the contents of PCI configuration space
3501 * random, so any caller of this must be prepared to reinitialise the
3502 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3503 * etc.
3504 *
3505 * Returns 0 if the device function was successfully reset or negative if the
3506 * device doesn't support resetting a single function.
3507 */
3508int __pci_reset_function(struct pci_dev *dev)
3509{
3510        return pci_dev_reset(dev, 0);
3511}
3512EXPORT_SYMBOL_GPL(__pci_reset_function);
3513
3514/**
3515 * __pci_reset_function_locked - reset a PCI device function while holding
3516 * the @dev mutex lock.
3517 * @dev: PCI device to reset
3518 *
3519 * Some devices allow an individual function to be reset without affecting
3520 * other functions in the same device.  The PCI device must be responsive
3521 * to PCI config space in order to use this function.
3522 *
3523 * The device function is presumed to be unused and the caller is holding
3524 * the device mutex lock when this function is called.
3525 * Resetting the device will make the contents of PCI configuration space
3526 * random, so any caller of this must be prepared to reinitialise the
3527 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3528 * etc.
3529 *
3530 * Returns 0 if the device function was successfully reset or negative if the
3531 * device doesn't support resetting a single function.
3532 */
3533int __pci_reset_function_locked(struct pci_dev *dev)
3534{
3535        return __pci_dev_reset(dev, 0);
3536}
3537EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3538
3539/**
3540 * pci_probe_reset_function - check whether the device can be safely reset
3541 * @dev: PCI device to reset
3542 *
3543 * Some devices allow an individual function to be reset without affecting
3544 * other functions in the same device.  The PCI device must be responsive
3545 * to PCI config space in order to use this function.
3546 *
3547 * Returns 0 if the device function can be reset or negative if the
3548 * device doesn't support resetting a single function.
3549 */
3550int pci_probe_reset_function(struct pci_dev *dev)
3551{
3552        return pci_dev_reset(dev, 1);
3553}
3554
3555/**
3556 * pci_reset_function - quiesce and reset a PCI device function
3557 * @dev: PCI device to reset
3558 *
3559 * Some devices allow an individual function to be reset without affecting
3560 * other functions in the same device.  The PCI device must be responsive
3561 * to PCI config space in order to use this function.
3562 *
3563 * This function does not just reset the PCI portion of a device, but
3564 * clears all the state associated with the device.  This function differs
3565 * from __pci_reset_function in that it saves and restores device state
3566 * over the reset.
3567 *
3568 * Returns 0 if the device function was successfully reset or negative if the
3569 * device doesn't support resetting a single function.
3570 */
3571int pci_reset_function(struct pci_dev *dev)
3572{
3573        int rc;
3574
3575        rc = pci_dev_reset(dev, 1);
3576        if (rc)
3577                return rc;
3578
3579        pci_dev_save_and_disable(dev);
3580
3581        rc = pci_dev_reset(dev, 0);
3582
3583        pci_dev_restore(dev);
3584
3585        return rc;
3586}
3587EXPORT_SYMBOL_GPL(pci_reset_function);
3588
3589/* Lock devices from the top of the tree down */
3590static void pci_bus_lock(struct pci_bus *bus)
3591{
3592        struct pci_dev *dev;
3593
3594        list_for_each_entry(dev, &bus->devices, bus_list) {
3595                pci_dev_lock(dev);
3596                if (dev->subordinate)
3597                        pci_bus_lock(dev->subordinate);
3598        }
3599}
3600
3601/* Unlock devices from the bottom of the tree up */
3602static void pci_bus_unlock(struct pci_bus *bus)
3603{
3604        struct pci_dev *dev;
3605
3606        list_for_each_entry(dev, &bus->devices, bus_list) {
3607                if (dev->subordinate)
3608                        pci_bus_unlock(dev->subordinate);
3609                pci_dev_unlock(dev);
3610        }
3611}
3612
3613/* Lock devices from the top of the tree down */
3614static void pci_slot_lock(struct pci_slot *slot)
3615{
3616        struct pci_dev *dev;
3617
3618        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3619                if (!dev->slot || dev->slot != slot)
3620                        continue;
3621                pci_dev_lock(dev);
3622                if (dev->subordinate)
3623                        pci_bus_lock(dev->subordinate);
3624        }
3625}
3626
3627/* Unlock devices from the bottom of the tree up */
3628static void pci_slot_unlock(struct pci_slot *slot)
3629{
3630        struct pci_dev *dev;
3631
3632        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3633                if (!dev->slot || dev->slot != slot)
3634                        continue;
3635                if (dev->subordinate)
3636                        pci_bus_unlock(dev->subordinate);
3637                pci_dev_unlock(dev);
3638        }
3639}
3640
3641/* Save and disable devices from the top of the tree down */
3642static void pci_bus_save_and_disable(struct pci_bus *bus)
3643{
3644        struct pci_dev *dev;
3645
3646        list_for_each_entry(dev, &bus->devices, bus_list) {
3647                pci_dev_save_and_disable(dev);
3648                if (dev->subordinate)
3649                        pci_bus_save_and_disable(dev->subordinate);
3650        }
3651}
3652
3653/*
3654 * Restore devices from top of the tree down - parent bridges need to be
3655 * restored before we can get to subordinate devices.
3656 */
3657static void pci_bus_restore(struct pci_bus *bus)
3658{
3659        struct pci_dev *dev;
3660
3661        list_for_each_entry(dev, &bus->devices, bus_list) {
3662                pci_dev_restore(dev);
3663                if (dev->subordinate)
3664                        pci_bus_restore(dev->subordinate);
3665        }
3666}
3667
3668/* Save and disable devices from the top of the tree down */
3669static void pci_slot_save_and_disable(struct pci_slot *slot)
3670{
3671        struct pci_dev *dev;
3672
3673        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3674                if (!dev->slot || dev->slot != slot)
3675                        continue;
3676                pci_dev_save_and_disable(dev);
3677                if (dev->subordinate)
3678                        pci_bus_save_and_disable(dev->subordinate);
3679        }
3680}
3681
3682/*
3683 * Restore devices from top of the tree down - parent bridges need to be
3684 * restored before we can get to subordinate devices.
3685 */
3686static void pci_slot_restore(struct pci_slot *slot)
3687{
3688        struct pci_dev *dev;
3689
3690        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3691                if (!dev->slot || dev->slot != slot)
3692                        continue;
3693                pci_dev_restore(dev);
3694                if (dev->subordinate)
3695                        pci_bus_restore(dev->subordinate);
3696        }
3697}
3698
3699static int pci_slot_reset(struct pci_slot *slot, int probe)
3700{
3701        int rc;
3702
3703        if (!slot)
3704                return -ENOTTY;
3705
3706        if (!probe)
3707                pci_slot_lock(slot);
3708
3709        might_sleep();
3710
3711        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3712
3713        if (!probe)
3714                pci_slot_unlock(slot);
3715
3716        return rc;
3717}
3718
3719/**
3720 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3721 * @slot: PCI slot to probe
3722 *
3723 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3724 */
3725int pci_probe_reset_slot(struct pci_slot *slot)
3726{
3727        return pci_slot_reset(slot, 1);
3728}
3729EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3730
3731/**
3732 * pci_reset_slot - reset a PCI slot
3733 * @slot: PCI slot to reset
3734 *
3735 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3736 * independent of other slots.  For instance, some slots may support slot power
3737 * control.  In the case of a 1:1 bus to slot architecture, this function may
3738 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3739 * Generally a slot reset should be attempted before a bus reset.  All of the
3740 * function of the slot and any subordinate buses behind the slot are reset
3741 * through this function.  PCI config space of all devices in the slot and
3742 * behind the slot is saved before and restored after reset.
3743 *
3744 * Return 0 on success, non-zero on error.
3745 */
3746int pci_reset_slot(struct pci_slot *slot)
3747{
3748        int rc;
3749
3750        rc = pci_slot_reset(slot, 1);
3751        if (rc)
3752                return rc;
3753
3754        pci_slot_save_and_disable(slot);
3755
3756        rc = pci_slot_reset(slot, 0);
3757
3758        pci_slot_restore(slot);
3759
3760        return rc;
3761}
3762EXPORT_SYMBOL_GPL(pci_reset_slot);
3763
3764static int pci_bus_reset(struct pci_bus *bus, int probe)
3765{
3766        if (!bus->self)
3767                return -ENOTTY;
3768
3769        if (probe)
3770                return 0;
3771
3772        pci_bus_lock(bus);
3773
3774        might_sleep();
3775
3776        pci_reset_bridge_secondary_bus(bus->self);
3777
3778        pci_bus_unlock(bus);
3779
3780        return 0;
3781}
3782
3783/**
3784 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3785 * @bus: PCI bus to probe
3786 *
3787 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3788 */
3789int pci_probe_reset_bus(struct pci_bus *bus)
3790{
3791        return pci_bus_reset(bus, 1);
3792}
3793EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3794
3795/**
3796 * pci_reset_bus - reset a PCI bus
3797 * @bus: top level PCI bus to reset
3798 *
3799 * Do a bus reset on the given bus and any subordinate buses, saving
3800 * and restoring state of all devices.
3801 *
3802 * Return 0 on success, non-zero on error.
3803 */
3804int pci_reset_bus(struct pci_bus *bus)
3805{
3806        int rc;
3807
3808        rc = pci_bus_reset(bus, 1);
3809        if (rc)
3810                return rc;
3811
3812        pci_bus_save_and_disable(bus);
3813
3814        rc = pci_bus_reset(bus, 0);
3815
3816        pci_bus_restore(bus);
3817
3818        return rc;
3819}
3820EXPORT_SYMBOL_GPL(pci_reset_bus);
3821
3822/**
3823 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3824 * @dev: PCI device to query
3825 *
3826 * Returns mmrbc: maximum designed memory read count in bytes
3827 *    or appropriate error value.
3828 */
3829int pcix_get_max_mmrbc(struct pci_dev *dev)
3830{
3831        int cap;
3832        u32 stat;
3833
3834        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3835        if (!cap)
3836                return -EINVAL;
3837
3838        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3839                return -EINVAL;
3840
3841        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3842}
3843EXPORT_SYMBOL(pcix_get_max_mmrbc);
3844
3845/**
3846 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3847 * @dev: PCI device to query
3848 *
3849 * Returns mmrbc: maximum memory read count in bytes
3850 *    or appropriate error value.
3851 */
3852int pcix_get_mmrbc(struct pci_dev *dev)
3853{
3854        int cap;
3855        u16 cmd;
3856
3857        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3858        if (!cap)
3859                return -EINVAL;
3860
3861        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3862                return -EINVAL;
3863
3864        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3865}
3866EXPORT_SYMBOL(pcix_get_mmrbc);
3867
3868/**
3869 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3870 * @dev: PCI device to query
3871 * @mmrbc: maximum memory read count in bytes
3872 *    valid values are 512, 1024, 2048, 4096
3873 *
3874 * If possible sets maximum memory read byte count, some bridges have erratas
3875 * that prevent this.
3876 */
3877int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3878{
3879        int cap;
3880        u32 stat, v, o;
3881        u16 cmd;
3882
3883        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3884                return -EINVAL;
3885
3886        v = ffs(mmrbc) - 10;
3887
3888        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3889        if (!cap)
3890                return -EINVAL;
3891
3892        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3893                return -EINVAL;
3894
3895        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3896                return -E2BIG;
3897
3898        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3899                return -EINVAL;
3900
3901        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3902        if (o != v) {
3903                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3904                        return -EIO;
3905
3906                cmd &= ~PCI_X_CMD_MAX_READ;
3907                cmd |= v << 2;
3908                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3909                        return -EIO;
3910        }
3911        return 0;
3912}
3913EXPORT_SYMBOL(pcix_set_mmrbc);
3914
3915/**
3916 * pcie_get_readrq - get PCI Express read request size
3917 * @dev: PCI device to query
3918 *
3919 * Returns maximum memory read request in bytes
3920 *    or appropriate error value.
3921 */
3922int pcie_get_readrq(struct pci_dev *dev)
3923{
3924        u16 ctl;
3925
3926        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3927
3928        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3929}
3930EXPORT_SYMBOL(pcie_get_readrq);
3931
3932/**
3933 * pcie_set_readrq - set PCI Express maximum memory read request
3934 * @dev: PCI device to query
3935 * @rq: maximum memory read count in bytes
3936 *    valid values are 128, 256, 512, 1024, 2048, 4096
3937 *
3938 * If possible sets maximum memory read request in bytes
3939 */
3940int pcie_set_readrq(struct pci_dev *dev, int rq)
3941{
3942        u16 v;
3943
3944        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3945                return -EINVAL;
3946
3947        /*
3948         * If using the "performance" PCIe config, we clamp the
3949         * read rq size to the max packet size to prevent the
3950         * host bridge generating requests larger than we can
3951         * cope with
3952         */
3953        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3954                int mps = pcie_get_mps(dev);
3955
3956                if (mps < rq)
3957                        rq = mps;
3958        }
3959
3960        v = (ffs(rq) - 8) << 12;
3961
3962        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3963                                                  PCI_EXP_DEVCTL_READRQ, v);
3964}
3965EXPORT_SYMBOL(pcie_set_readrq);
3966
3967/**
3968 * pcie_get_mps - get PCI Express maximum payload size
3969 * @dev: PCI device to query
3970 *
3971 * Returns maximum payload size in bytes
3972 */
3973int pcie_get_mps(struct pci_dev *dev)
3974{
3975        u16 ctl;
3976
3977        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3978
3979        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3980}
3981
3982/**
3983 * pcie_set_mps - set PCI Express maximum payload size
3984 * @dev: PCI device to query
3985 * @mps: maximum payload size in bytes
3986 *    valid values are 128, 256, 512, 1024, 2048, 4096
3987 *
3988 * If possible sets maximum payload size
3989 */
3990int pcie_set_mps(struct pci_dev *dev, int mps)
3991{
3992        u16 v;
3993
3994        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3995                return -EINVAL;
3996
3997        v = ffs(mps) - 8;
3998        if (v > dev->pcie_mpss) 
3999                return -EINVAL;
4000        v <<= 5;
4001
4002        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4003                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
4004}
4005
4006/**
4007 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4008 * @dev: PCI device to query
4009 * @speed: storage for minimum speed
4010 * @width: storage for minimum width
4011 *
4012 * This function will walk up the PCI device chain and determine the minimum
4013 * link width and speed of the device.
4014 */
4015int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4016                          enum pcie_link_width *width)
4017{
4018        int ret;
4019
4020        *speed = PCI_SPEED_UNKNOWN;
4021        *width = PCIE_LNK_WIDTH_UNKNOWN;
4022
4023        while (dev) {
4024                u16 lnksta;
4025                enum pci_bus_speed next_speed;
4026                enum pcie_link_width next_width;
4027
4028                ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4029                if (ret)
4030                        return ret;
4031
4032                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4033                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4034                        PCI_EXP_LNKSTA_NLW_SHIFT;
4035
4036                if (next_speed < *speed)
4037                        *speed = next_speed;
4038
4039                if (next_width < *width)
4040                        *width = next_width;
4041
4042                dev = dev->bus->self;
4043        }
4044
4045        return 0;
4046}
4047EXPORT_SYMBOL(pcie_get_minimum_link);
4048
4049/**
4050 * pci_select_bars - Make BAR mask from the type of resource
4051 * @dev: the PCI device for which BAR mask is made
4052 * @flags: resource type mask to be selected
4053 *
4054 * This helper routine makes bar mask from the type of resource.
4055 */
4056int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4057{
4058        int i, bars = 0;
4059        for (i = 0; i < PCI_NUM_RESOURCES; i++)
4060                if (pci_resource_flags(dev, i) & flags)
4061                        bars |= (1 << i);
4062        return bars;
4063}
4064
4065/**
4066 * pci_resource_bar - get position of the BAR associated with a resource
4067 * @dev: the PCI device
4068 * @resno: the resource number
4069 * @type: the BAR type to be filled in
4070 *
4071 * Returns BAR position in config space, or 0 if the BAR is invalid.
4072 */
4073int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4074{
4075        int reg;
4076
4077        if (resno < PCI_ROM_RESOURCE) {
4078                *type = pci_bar_unknown;
4079                return PCI_BASE_ADDRESS_0 + 4 * resno;
4080        } else if (resno == PCI_ROM_RESOURCE) {
4081                *type = pci_bar_mem32;
4082                return dev->rom_base_reg;
4083        } else if (resno < PCI_BRIDGE_RESOURCES) {
4084                /* device specific resource */
4085                reg = pci_iov_resource_bar(dev, resno, type);
4086                if (reg)
4087                        return reg;
4088        }
4089
4090        dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4091        return 0;
4092}
4093
4094/* Some architectures require additional programming to enable VGA */
4095static arch_set_vga_state_t arch_set_vga_state;
4096
4097void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4098{
4099        arch_set_vga_state = func;      /* NULL disables */
4100}
4101
4102static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4103                      unsigned int command_bits, u32 flags)
4104{
4105        if (arch_set_vga_state)
4106                return arch_set_vga_state(dev, decode, command_bits,
4107                                                flags);
4108        return 0;
4109}
4110
4111/**
4112 * pci_set_vga_state - set VGA decode state on device and parents if requested
4113 * @dev: the PCI device
4114 * @decode: true = enable decoding, false = disable decoding
4115 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4116 * @flags: traverse ancestors and change bridges
4117 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4118 */
4119int pci_set_vga_state(struct pci_dev *dev, bool decode,
4120                      unsigned int command_bits, u32 flags)
4121{
4122        struct pci_bus *bus;
4123        struct pci_dev *bridge;
4124        u16 cmd;
4125        int rc;
4126
4127        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4128
4129        /* ARCH specific VGA enables */
4130        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4131        if (rc)
4132                return rc;
4133
4134        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4135                pci_read_config_word(dev, PCI_COMMAND, &cmd);
4136                if (decode == true)
4137                        cmd |= command_bits;
4138                else
4139                        cmd &= ~command_bits;
4140                pci_write_config_word(dev, PCI_COMMAND, cmd);
4141        }
4142
4143        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4144                return 0;
4145
4146        bus = dev->bus;
4147        while (bus) {
4148                bridge = bus->self;
4149                if (bridge) {
4150                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4151                                             &cmd);
4152                        if (decode == true)
4153                                cmd |= PCI_BRIDGE_CTL_VGA;
4154                        else
4155                                cmd &= ~PCI_BRIDGE_CTL_VGA;
4156                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4157                                              cmd);
4158                }
4159                bus = bus->parent;
4160        }
4161        return 0;
4162}
4163
4164#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4165static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4166static DEFINE_SPINLOCK(resource_alignment_lock);
4167
4168/**
4169 * pci_specified_resource_alignment - get resource alignment specified by user.
4170 * @dev: the PCI device to get
4171 *
4172 * RETURNS: Resource alignment if it is specified.
4173 *          Zero if it is not specified.
4174 */
4175static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4176{
4177        int seg, bus, slot, func, align_order, count;
4178        resource_size_t align = 0;
4179        char *p;
4180
4181        spin_lock(&resource_alignment_lock);
4182        p = resource_alignment_param;
4183        while (*p) {
4184                count = 0;
4185                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4186                                                        p[count] == '@') {
4187                        p += count + 1;
4188                } else {
4189                        align_order = -1;
4190                }
4191                if (sscanf(p, "%x:%x:%x.%x%n",
4192                        &seg, &bus, &slot, &func, &count) != 4) {
4193                        seg = 0;
4194                        if (sscanf(p, "%x:%x.%x%n",
4195                                        &bus, &slot, &func, &count) != 3) {
4196                                /* Invalid format */
4197                                printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4198                                        p);
4199                                break;
4200                        }
4201                }
4202                p += count;
4203                if (seg == pci_domain_nr(dev->bus) &&
4204                        bus == dev->bus->number &&
4205                        slot == PCI_SLOT(dev->devfn) &&
4206                        func == PCI_FUNC(dev->devfn)) {
4207                        if (align_order == -1) {
4208                                align = PAGE_SIZE;
4209                        } else {
4210                                align = 1 << align_order;
4211                        }
4212                        /* Found */
4213                        break;
4214                }
4215                if (*p != ';' && *p != ',') {
4216                        /* End of param or invalid format */
4217                        break;
4218                }
4219                p++;
4220        }
4221        spin_unlock(&resource_alignment_lock);
4222        return align;
4223}
4224
4225/*
4226 * This function disables memory decoding and releases memory resources
4227 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4228 * It also rounds up size to specified alignment.
4229 * Later on, the kernel will assign page-aligned memory resource back
4230 * to the device.
4231 */
4232void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4233{
4234        int i;
4235        struct resource *r;
4236        resource_size_t align, size;
4237        u16 command;
4238
4239        /* check if specified PCI is target device to reassign */
4240        align = pci_specified_resource_alignment(dev);
4241        if (!align)
4242                return;
4243
4244        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4245            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4246                dev_warn(&dev->dev,
4247                        "Can't reassign resources to host bridge.\n");
4248                return;
4249        }
4250
4251        dev_info(&dev->dev,
4252                "Disabling memory decoding and releasing memory resources.\n");
4253        pci_read_config_word(dev, PCI_COMMAND, &command);
4254        command &= ~PCI_COMMAND_MEMORY;
4255        pci_write_config_word(dev, PCI_COMMAND, command);
4256
4257        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4258                r = &dev->resource[i];
4259                if (!(r->flags & IORESOURCE_MEM))
4260                        continue;
4261                size = resource_size(r);
4262                if (size < align) {
4263                        size = align;
4264                        dev_info(&dev->dev,
4265                                "Rounding up size of resource #%d to %#llx.\n",
4266                                i, (unsigned long long)size);
4267                }
4268                r->end = size - 1;
4269                r->start = 0;
4270        }
4271        /* Need to disable bridge's resource window,
4272         * to enable the kernel to reassign new resource
4273         * window later on.
4274         */
4275        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4276            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4277                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4278                        r = &dev->resource[i];
4279                        if (!(r->flags & IORESOURCE_MEM))
4280                                continue;
4281                        r->end = resource_size(r) - 1;
4282                        r->start = 0;
4283                }
4284                pci_disable_bridge_window(dev);
4285        }
4286}
4287
4288static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4289{
4290        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4291                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4292        spin_lock(&resource_alignment_lock);
4293        strncpy(resource_alignment_param, buf, count);
4294        resource_alignment_param[count] = '\0';
4295        spin_unlock(&resource_alignment_lock);
4296        return count;
4297}
4298
4299static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4300{
4301        size_t count;
4302        spin_lock(&resource_alignment_lock);
4303        count = snprintf(buf, size, "%s", resource_alignment_param);
4304        spin_unlock(&resource_alignment_lock);
4305        return count;
4306}
4307
4308static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4309{
4310        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4311}
4312
4313static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4314                                        const char *buf, size_t count)
4315{
4316        return pci_set_resource_alignment_param(buf, count);
4317}
4318
4319BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4320                                        pci_resource_alignment_store);
4321
4322static int __init pci_resource_alignment_sysfs_init(void)
4323{
4324        return bus_create_file(&pci_bus_type,
4325                                        &bus_attr_resource_alignment);
4326}
4327
4328late_initcall(pci_resource_alignment_sysfs_init);
4329
4330static void pci_no_domains(void)
4331{
4332#ifdef CONFIG_PCI_DOMAINS
4333        pci_domains_supported = 0;
4334#endif
4335}
4336
4337/**
4338 * pci_ext_cfg_avail - can we access extended PCI config space?
4339 *
4340 * Returns 1 if we can access PCI extended config space (offsets
4341 * greater than 0xff). This is the default implementation. Architecture
4342 * implementations can override this.
4343 */
4344int __weak pci_ext_cfg_avail(void)
4345{
4346        return 1;
4347}
4348
4349void __weak pci_fixup_cardbus(struct pci_bus *bus)
4350{
4351}
4352EXPORT_SYMBOL(pci_fixup_cardbus);
4353
4354static int __init pci_setup(char *str)
4355{
4356        while (str) {
4357                char *k = strchr(str, ',');
4358                if (k)
4359                        *k++ = 0;
4360                if (*str && (str = pcibios_setup(str)) && *str) {
4361                        if (!strcmp(str, "nomsi")) {
4362                                pci_no_msi();
4363                        } else if (!strcmp(str, "noaer")) {
4364                                pci_no_aer();
4365                        } else if (!strncmp(str, "realloc=", 8)) {
4366                                pci_realloc_get_opt(str + 8);
4367                        } else if (!strncmp(str, "realloc", 7)) {
4368                                pci_realloc_get_opt("on");
4369                        } else if (!strcmp(str, "nodomains")) {
4370                                pci_no_domains();
4371                        } else if (!strncmp(str, "noari", 5)) {
4372                                pcie_ari_disabled = true;
4373                        } else if (!strncmp(str, "cbiosize=", 9)) {
4374                                pci_cardbus_io_size = memparse(str + 9, &str);
4375                        } else if (!strncmp(str, "cbmemsize=", 10)) {
4376                                pci_cardbus_mem_size = memparse(str + 10, &str);
4377                        } else if (!strncmp(str, "resource_alignment=", 19)) {
4378                                pci_set_resource_alignment_param(str + 19,
4379                                                        strlen(str + 19));
4380                        } else if (!strncmp(str, "ecrc=", 5)) {
4381                                pcie_ecrc_get_policy(str + 5);
4382                        } else if (!strncmp(str, "hpiosize=", 9)) {
4383                                pci_hotplug_io_size = memparse(str + 9, &str);
4384                        } else if (!strncmp(str, "hpmemsize=", 10)) {
4385                                pci_hotplug_mem_size = memparse(str + 10, &str);
4386                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4387                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
4388                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4389                                pcie_bus_config = PCIE_BUS_SAFE;
4390                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4391                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
4392                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4393                                pcie_bus_config = PCIE_BUS_PEER2PEER;
4394                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
4395                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4396                        } else {
4397                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
4398                                                str);
4399                        }
4400                }
4401                str = k;
4402        }
4403        return 0;
4404}
4405early_param("pci", pci_setup);
4406
4407EXPORT_SYMBOL(pci_reenable_device);
4408EXPORT_SYMBOL(pci_enable_device_io);
4409EXPORT_SYMBOL(pci_enable_device_mem);
4410EXPORT_SYMBOL(pci_enable_device);
4411EXPORT_SYMBOL(pcim_enable_device);
4412EXPORT_SYMBOL(pcim_pin_device);
4413EXPORT_SYMBOL(pci_disable_device);
4414EXPORT_SYMBOL(pci_find_capability);
4415EXPORT_SYMBOL(pci_bus_find_capability);
4416EXPORT_SYMBOL(pci_release_regions);
4417EXPORT_SYMBOL(pci_request_regions);
4418EXPORT_SYMBOL(pci_request_regions_exclusive);
4419EXPORT_SYMBOL(pci_release_region);
4420EXPORT_SYMBOL(pci_request_region);
4421EXPORT_SYMBOL(pci_request_region_exclusive);
4422EXPORT_SYMBOL(pci_release_selected_regions);
4423EXPORT_SYMBOL(pci_request_selected_regions);
4424EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4425EXPORT_SYMBOL(pci_set_master);
4426EXPORT_SYMBOL(pci_clear_master);
4427EXPORT_SYMBOL(pci_set_mwi);
4428EXPORT_SYMBOL(pci_try_set_mwi);
4429EXPORT_SYMBOL(pci_clear_mwi);
4430EXPORT_SYMBOL_GPL(pci_intx);
4431EXPORT_SYMBOL(pci_assign_resource);
4432EXPORT_SYMBOL(pci_find_parent_resource);
4433EXPORT_SYMBOL(pci_select_bars);
4434
4435EXPORT_SYMBOL(pci_set_power_state);
4436EXPORT_SYMBOL(pci_save_state);
4437EXPORT_SYMBOL(pci_restore_state);
4438EXPORT_SYMBOL(pci_pme_capable);
4439EXPORT_SYMBOL(pci_pme_active);
4440EXPORT_SYMBOL(pci_wake_from_d3);
4441EXPORT_SYMBOL(pci_target_state);
4442EXPORT_SYMBOL(pci_prepare_to_sleep);
4443EXPORT_SYMBOL(pci_back_from_sleep);
4444EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
4445