linux/drivers/scsi/csiostor/csio_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio FCoE driver for Linux.
   3 *
   4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/pci.h>
  36#include <linux/pci_regs.h>
  37#include <linux/firmware.h>
  38#include <linux/stddef.h>
  39#include <linux/delay.h>
  40#include <linux/string.h>
  41#include <linux/compiler.h>
  42#include <linux/jiffies.h>
  43#include <linux/kernel.h>
  44#include <linux/log2.h>
  45
  46#include "csio_hw.h"
  47#include "csio_lnode.h"
  48#include "csio_rnode.h"
  49
  50int csio_force_master;
  51int csio_dbg_level = 0xFEFF;
  52unsigned int csio_port_mask = 0xf;
  53
  54/* Default FW event queue entries. */
  55static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
  56
  57/* Default MSI param level */
  58int csio_msi = 2;
  59
  60/* FCoE function instances */
  61static int dev_num;
  62
  63/* FCoE Adapter types & its description */
  64static const struct csio_adap_desc csio_t4_fcoe_adapters[] = {
  65        {"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"},
  66        {"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"},
  67        {"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"},
  68        {"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"},
  69        {"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"},
  70        {"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"},
  71        {"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"},
  72        {"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"},
  73        {"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"},
  74        {"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"},
  75        {"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"},
  76        {"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"},
  77        {"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"},
  78        {"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"},
  79        {"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"},
  80        {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
  81        {"HUAWEI T480 10G", "Chelsio HUAWEI T480 10G [FCoE]"},
  82        {"HUAWEI T440 10G", "Chelsio HUAWEI T440 10G [FCoE]"},
  83        {"HUAWEI STG 10G", "Chelsio HUAWEI STG 10G [FCoE]"},
  84        {"ACROMAG XAUI 10G", "Chelsio ACROMAG XAUI 10G [FCoE]"},
  85        {"ACROMAG SFP+ 10G", "Chelsio ACROMAG SFP+ 10G [FCoE]"},
  86        {"QUANTA SFP+ 10G", "Chelsio QUANTA SFP+ 10G [FCoE]"},
  87        {"HUAWEI 10Gbase-T", "Chelsio HUAWEI 10Gbase-T [FCoE]"},
  88        {"HUAWEI T4TOE 10G", "Chelsio HUAWEI T4TOE 10G [FCoE]"}
  89};
  90
  91static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
  92        {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
  93        {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
  94        {"T522-CR 10G/1G", "Chelsio T452-CR 10G/1G [FCoE]"},
  95        {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
  96        {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
  97        {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
  98        {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
  99        {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
 100        {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
 101        {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
 102        {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
 103        {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
 104        {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
 105        {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
 106        {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
 107        {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
 108        {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
 109        {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
 110        {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
 111        {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}
 112};
 113
 114static void csio_mgmtm_cleanup(struct csio_mgmtm *);
 115static void csio_hw_mbm_cleanup(struct csio_hw *);
 116
 117/* State machine forward declarations */
 118static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
 119static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
 120static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
 121static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
 122static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
 123static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
 124static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
 125static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
 126static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
 127
 128static void csio_hw_initialize(struct csio_hw *hw);
 129static void csio_evtq_stop(struct csio_hw *hw);
 130static void csio_evtq_start(struct csio_hw *hw);
 131
 132int csio_is_hw_ready(struct csio_hw *hw)
 133{
 134        return csio_match_state(hw, csio_hws_ready);
 135}
 136
 137int csio_is_hw_removing(struct csio_hw *hw)
 138{
 139        return csio_match_state(hw, csio_hws_removing);
 140}
 141
 142
 143/*
 144 *      csio_hw_wait_op_done_val - wait until an operation is completed
 145 *      @hw: the HW module
 146 *      @reg: the register to check for completion
 147 *      @mask: a single-bit field within @reg that indicates completion
 148 *      @polarity: the value of the field when the operation is completed
 149 *      @attempts: number of check iterations
 150 *      @delay: delay in usecs between iterations
 151 *      @valp: where to store the value of the register at completion time
 152 *
 153 *      Wait until an operation is completed by checking a bit in a register
 154 *      up to @attempts times.  If @valp is not NULL the value of the register
 155 *      at the time it indicated completion is stored there.  Returns 0 if the
 156 *      operation completes and -EAGAIN otherwise.
 157 */
 158int
 159csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
 160                         int polarity, int attempts, int delay, uint32_t *valp)
 161{
 162        uint32_t val;
 163        while (1) {
 164                val = csio_rd_reg32(hw, reg);
 165
 166                if (!!(val & mask) == polarity) {
 167                        if (valp)
 168                                *valp = val;
 169                        return 0;
 170                }
 171
 172                if (--attempts == 0)
 173                        return -EAGAIN;
 174                if (delay)
 175                        udelay(delay);
 176        }
 177}
 178
 179/*
 180 *      csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
 181 *      @hw: the adapter
 182 *      @addr: the indirect TP register address
 183 *      @mask: specifies the field within the register to modify
 184 *      @val: new value for the field
 185 *
 186 *      Sets a field of an indirect TP register to the given value.
 187 */
 188void
 189csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
 190                        unsigned int mask, unsigned int val)
 191{
 192        csio_wr_reg32(hw, addr, TP_PIO_ADDR);
 193        val |= csio_rd_reg32(hw, TP_PIO_DATA) & ~mask;
 194        csio_wr_reg32(hw, val, TP_PIO_DATA);
 195}
 196
 197void
 198csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
 199                   uint32_t value)
 200{
 201        uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
 202
 203        csio_wr_reg32(hw, val | value, reg);
 204        /* Flush */
 205        csio_rd_reg32(hw, reg);
 206
 207}
 208
 209static int
 210csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
 211{
 212        return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
 213                                            addr, len, buf, 0);
 214}
 215
 216/*
 217 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
 218 */
 219#define EEPROM_MAX_RD_POLL      40
 220#define EEPROM_MAX_WR_POLL      6
 221#define EEPROM_STAT_ADDR        0x7bfc
 222#define VPD_BASE                0x400
 223#define VPD_BASE_OLD            0
 224#define VPD_LEN                 1024
 225#define VPD_INFO_FLD_HDR_SIZE   3
 226
 227/*
 228 *      csio_hw_seeprom_read - read a serial EEPROM location
 229 *      @hw: hw to read
 230 *      @addr: EEPROM virtual address
 231 *      @data: where to store the read data
 232 *
 233 *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
 234 *      VPD capability.  Note that this function must be called with a virtual
 235 *      address.
 236 */
 237static int
 238csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
 239{
 240        uint16_t val = 0;
 241        int attempts = EEPROM_MAX_RD_POLL;
 242        uint32_t base = hw->params.pci.vpd_cap_addr;
 243
 244        if (addr >= EEPROMVSIZE || (addr & 3))
 245                return -EINVAL;
 246
 247        pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
 248
 249        do {
 250                udelay(10);
 251                pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
 252        } while (!(val & PCI_VPD_ADDR_F) && --attempts);
 253
 254        if (!(val & PCI_VPD_ADDR_F)) {
 255                csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
 256                return -EINVAL;
 257        }
 258
 259        pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
 260        *data = le32_to_cpu(*data);
 261
 262        return 0;
 263}
 264
 265/*
 266 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
 267 * VPD-R sections.
 268 */
 269struct t4_vpd_hdr {
 270        u8  id_tag;
 271        u8  id_len[2];
 272        u8  id_data[ID_LEN];
 273        u8  vpdr_tag;
 274        u8  vpdr_len[2];
 275};
 276
 277/*
 278 *      csio_hw_get_vpd_keyword_val - Locates an information field keyword in
 279 *                                    the VPD
 280 *      @v: Pointer to buffered vpd data structure
 281 *      @kw: The keyword to search for
 282 *
 283 *      Returns the value of the information field keyword or
 284 *      -EINVAL otherwise.
 285 */
 286static int
 287csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
 288{
 289        int32_t i;
 290        int32_t offset , len;
 291        const uint8_t *buf = &v->id_tag;
 292        const uint8_t *vpdr_len = &v->vpdr_tag;
 293        offset = sizeof(struct t4_vpd_hdr);
 294        len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
 295
 296        if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
 297                return -EINVAL;
 298
 299        for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
 300                if (memcmp(buf + i , kw, 2) == 0) {
 301                        i += VPD_INFO_FLD_HDR_SIZE;
 302                        return i;
 303                }
 304
 305                i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
 306        }
 307
 308        return -EINVAL;
 309}
 310
 311static int
 312csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
 313{
 314        *pos = pci_find_capability(pdev, cap);
 315        if (*pos)
 316                return 0;
 317
 318        return -1;
 319}
 320
 321/*
 322 *      csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
 323 *      @hw: HW module
 324 *      @p: where to store the parameters
 325 *
 326 *      Reads card parameters stored in VPD EEPROM.
 327 */
 328static int
 329csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
 330{
 331        int i, ret, ec, sn, addr;
 332        uint8_t *vpd, csum;
 333        const struct t4_vpd_hdr *v;
 334        /* To get around compilation warning from strstrip */
 335        char *s;
 336
 337        if (csio_is_valid_vpd(hw))
 338                return 0;
 339
 340        ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
 341                                  &hw->params.pci.vpd_cap_addr);
 342        if (ret)
 343                return -EINVAL;
 344
 345        vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
 346        if (vpd == NULL)
 347                return -ENOMEM;
 348
 349        /*
 350         * Card information normally starts at VPD_BASE but early cards had
 351         * it at 0.
 352         */
 353        ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
 354        addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
 355
 356        for (i = 0; i < VPD_LEN; i += 4) {
 357                ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
 358                if (ret) {
 359                        kfree(vpd);
 360                        return ret;
 361                }
 362        }
 363
 364        /* Reset the VPD flag! */
 365        hw->flags &= (~CSIO_HWF_VPD_VALID);
 366
 367        v = (const struct t4_vpd_hdr *)vpd;
 368
 369#define FIND_VPD_KW(var, name) do { \
 370        var = csio_hw_get_vpd_keyword_val(v, name); \
 371        if (var < 0) { \
 372                csio_err(hw, "missing VPD keyword " name "\n"); \
 373                kfree(vpd); \
 374                return -EINVAL; \
 375        } \
 376} while (0)
 377
 378        FIND_VPD_KW(i, "RV");
 379        for (csum = 0; i >= 0; i--)
 380                csum += vpd[i];
 381
 382        if (csum) {
 383                csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
 384                kfree(vpd);
 385                return -EINVAL;
 386        }
 387        FIND_VPD_KW(ec, "EC");
 388        FIND_VPD_KW(sn, "SN");
 389#undef FIND_VPD_KW
 390
 391        memcpy(p->id, v->id_data, ID_LEN);
 392        s = strstrip(p->id);
 393        memcpy(p->ec, vpd + ec, EC_LEN);
 394        s = strstrip(p->ec);
 395        i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
 396        memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
 397        s = strstrip(p->sn);
 398
 399        csio_valid_vpd_copied(hw);
 400
 401        kfree(vpd);
 402        return 0;
 403}
 404
 405/*
 406 *      csio_hw_sf1_read - read data from the serial flash
 407 *      @hw: the HW module
 408 *      @byte_cnt: number of bytes to read
 409 *      @cont: whether another operation will be chained
 410 *      @lock: whether to lock SF for PL access only
 411 *      @valp: where to store the read data
 412 *
 413 *      Reads up to 4 bytes of data from the serial flash.  The location of
 414 *      the read needs to be specified prior to calling this by issuing the
 415 *      appropriate commands to the serial flash.
 416 */
 417static int
 418csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
 419                 int32_t lock, uint32_t *valp)
 420{
 421        int ret;
 422
 423        if (!byte_cnt || byte_cnt > 4)
 424                return -EINVAL;
 425        if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
 426                return -EBUSY;
 427
 428        cont = cont ? SF_CONT : 0;
 429        lock = lock ? SF_LOCK : 0;
 430
 431        csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP);
 432        ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
 433                                         10, NULL);
 434        if (!ret)
 435                *valp = csio_rd_reg32(hw, SF_DATA);
 436        return ret;
 437}
 438
 439/*
 440 *      csio_hw_sf1_write - write data to the serial flash
 441 *      @hw: the HW module
 442 *      @byte_cnt: number of bytes to write
 443 *      @cont: whether another operation will be chained
 444 *      @lock: whether to lock SF for PL access only
 445 *      @val: value to write
 446 *
 447 *      Writes up to 4 bytes of data to the serial flash.  The location of
 448 *      the write needs to be specified prior to calling this by issuing the
 449 *      appropriate commands to the serial flash.
 450 */
 451static int
 452csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
 453                  int32_t lock, uint32_t val)
 454{
 455        if (!byte_cnt || byte_cnt > 4)
 456                return -EINVAL;
 457        if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
 458                return -EBUSY;
 459
 460        cont = cont ? SF_CONT : 0;
 461        lock = lock ? SF_LOCK : 0;
 462
 463        csio_wr_reg32(hw, val, SF_DATA);
 464        csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP);
 465
 466        return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
 467                                        10, NULL);
 468}
 469
 470/*
 471 *      csio_hw_flash_wait_op - wait for a flash operation to complete
 472 *      @hw: the HW module
 473 *      @attempts: max number of polls of the status register
 474 *      @delay: delay between polls in ms
 475 *
 476 *      Wait for a flash operation to complete by polling the status register.
 477 */
 478static int
 479csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
 480{
 481        int ret;
 482        uint32_t status;
 483
 484        while (1) {
 485                ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
 486                if (ret != 0)
 487                        return ret;
 488
 489                ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
 490                if (ret != 0)
 491                        return ret;
 492
 493                if (!(status & 1))
 494                        return 0;
 495                if (--attempts == 0)
 496                        return -EAGAIN;
 497                if (delay)
 498                        msleep(delay);
 499        }
 500}
 501
 502/*
 503 *      csio_hw_read_flash - read words from serial flash
 504 *      @hw: the HW module
 505 *      @addr: the start address for the read
 506 *      @nwords: how many 32-bit words to read
 507 *      @data: where to store the read data
 508 *      @byte_oriented: whether to store data as bytes or as words
 509 *
 510 *      Read the specified number of 32-bit words from the serial flash.
 511 *      If @byte_oriented is set the read data is stored as a byte array
 512 *      (i.e., big-endian), otherwise as 32-bit words in the platform's
 513 *      natural endianess.
 514 */
 515static int
 516csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
 517                  uint32_t *data, int32_t byte_oriented)
 518{
 519        int ret;
 520
 521        if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
 522                return -EINVAL;
 523
 524        addr = swab32(addr) | SF_RD_DATA_FAST;
 525
 526        ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
 527        if (ret != 0)
 528                return ret;
 529
 530        ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
 531        if (ret != 0)
 532                return ret;
 533
 534        for ( ; nwords; nwords--, data++) {
 535                ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
 536                if (nwords == 1)
 537                        csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
 538                if (ret)
 539                        return ret;
 540                if (byte_oriented)
 541                        *data = htonl(*data);
 542        }
 543        return 0;
 544}
 545
 546/*
 547 *      csio_hw_write_flash - write up to a page of data to the serial flash
 548 *      @hw: the hw
 549 *      @addr: the start address to write
 550 *      @n: length of data to write in bytes
 551 *      @data: the data to write
 552 *
 553 *      Writes up to a page of data (256 bytes) to the serial flash starting
 554 *      at the given address.  All the data must be written to the same page.
 555 */
 556static int
 557csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
 558                    uint32_t n, const uint8_t *data)
 559{
 560        int ret = -EINVAL;
 561        uint32_t buf[64];
 562        uint32_t i, c, left, val, offset = addr & 0xff;
 563
 564        if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
 565                return -EINVAL;
 566
 567        val = swab32(addr) | SF_PROG_PAGE;
 568
 569        ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
 570        if (ret != 0)
 571                goto unlock;
 572
 573        ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
 574        if (ret != 0)
 575                goto unlock;
 576
 577        for (left = n; left; left -= c) {
 578                c = min(left, 4U);
 579                for (val = 0, i = 0; i < c; ++i)
 580                        val = (val << 8) + *data++;
 581
 582                ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
 583                if (ret)
 584                        goto unlock;
 585        }
 586        ret = csio_hw_flash_wait_op(hw, 8, 1);
 587        if (ret)
 588                goto unlock;
 589
 590        csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
 591
 592        /* Read the page to verify the write succeeded */
 593        ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
 594        if (ret)
 595                return ret;
 596
 597        if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
 598                csio_err(hw,
 599                         "failed to correctly write the flash page at %#x\n",
 600                         addr);
 601                return -EINVAL;
 602        }
 603
 604        return 0;
 605
 606unlock:
 607        csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
 608        return ret;
 609}
 610
 611/*
 612 *      csio_hw_flash_erase_sectors - erase a range of flash sectors
 613 *      @hw: the HW module
 614 *      @start: the first sector to erase
 615 *      @end: the last sector to erase
 616 *
 617 *      Erases the sectors in the given inclusive range.
 618 */
 619static int
 620csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
 621{
 622        int ret = 0;
 623
 624        while (start <= end) {
 625
 626                ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
 627                if (ret != 0)
 628                        goto out;
 629
 630                ret = csio_hw_sf1_write(hw, 4, 0, 1,
 631                                        SF_ERASE_SECTOR | (start << 8));
 632                if (ret != 0)
 633                        goto out;
 634
 635                ret = csio_hw_flash_wait_op(hw, 14, 500);
 636                if (ret != 0)
 637                        goto out;
 638
 639                start++;
 640        }
 641out:
 642        if (ret)
 643                csio_err(hw, "erase of flash sector %d failed, error %d\n",
 644                         start, ret);
 645        csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
 646        return 0;
 647}
 648
 649static void
 650csio_hw_print_fw_version(struct csio_hw *hw, char *str)
 651{
 652        csio_info(hw, "%s: %u.%u.%u.%u\n", str,
 653                    FW_HDR_FW_VER_MAJOR_GET(hw->fwrev),
 654                    FW_HDR_FW_VER_MINOR_GET(hw->fwrev),
 655                    FW_HDR_FW_VER_MICRO_GET(hw->fwrev),
 656                    FW_HDR_FW_VER_BUILD_GET(hw->fwrev));
 657}
 658
 659/*
 660 * csio_hw_get_fw_version - read the firmware version
 661 * @hw: HW module
 662 * @vers: where to place the version
 663 *
 664 * Reads the FW version from flash.
 665 */
 666static int
 667csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
 668{
 669        return csio_hw_read_flash(hw, FW_IMG_START +
 670                                  offsetof(struct fw_hdr, fw_ver), 1,
 671                                  vers, 0);
 672}
 673
 674/*
 675 *      csio_hw_get_tp_version - read the TP microcode version
 676 *      @hw: HW module
 677 *      @vers: where to place the version
 678 *
 679 *      Reads the TP microcode version from flash.
 680 */
 681static int
 682csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
 683{
 684        return csio_hw_read_flash(hw, FLASH_FW_START +
 685                        offsetof(struct fw_hdr, tp_microcode_ver), 1,
 686                        vers, 0);
 687}
 688
 689/*
 690 *      csio_hw_check_fw_version - check if the FW is compatible with
 691 *                                 this driver
 692 *      @hw: HW module
 693 *
 694 *      Checks if an adapter's FW is compatible with the driver.  Returns 0
 695 *      if there's exact match, a negative error if the version could not be
 696 *      read or there's a major/minor version mismatch/minor.
 697 */
 698static int
 699csio_hw_check_fw_version(struct csio_hw *hw)
 700{
 701        int ret, major, minor, micro;
 702
 703        ret = csio_hw_get_fw_version(hw, &hw->fwrev);
 704        if (!ret)
 705                ret = csio_hw_get_tp_version(hw, &hw->tp_vers);
 706        if (ret)
 707                return ret;
 708
 709        major = FW_HDR_FW_VER_MAJOR_GET(hw->fwrev);
 710        minor = FW_HDR_FW_VER_MINOR_GET(hw->fwrev);
 711        micro = FW_HDR_FW_VER_MICRO_GET(hw->fwrev);
 712
 713        if (major != FW_VERSION_MAJOR(hw)) {    /* major mismatch - fail */
 714                csio_err(hw, "card FW has major version %u, driver wants %u\n",
 715                         major, FW_VERSION_MAJOR(hw));
 716                return -EINVAL;
 717        }
 718
 719        if (minor == FW_VERSION_MINOR(hw) && micro == FW_VERSION_MICRO(hw))
 720                return 0;        /* perfect match */
 721
 722        /* Minor/micro version mismatch */
 723        return -EINVAL;
 724}
 725
 726/*
 727 * csio_hw_fw_dload - download firmware.
 728 * @hw: HW module
 729 * @fw_data: firmware image to write.
 730 * @size: image size
 731 *
 732 * Write the supplied firmware image to the card's serial flash.
 733 */
 734static int
 735csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
 736{
 737        uint32_t csum;
 738        int32_t addr;
 739        int ret;
 740        uint32_t i;
 741        uint8_t first_page[SF_PAGE_SIZE];
 742        const __be32 *p = (const __be32 *)fw_data;
 743        struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
 744        uint32_t sf_sec_size;
 745
 746        if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
 747                csio_err(hw, "Serial Flash data invalid\n");
 748                return -EINVAL;
 749        }
 750
 751        if (!size) {
 752                csio_err(hw, "FW image has no data\n");
 753                return -EINVAL;
 754        }
 755
 756        if (size & 511) {
 757                csio_err(hw, "FW image size not multiple of 512 bytes\n");
 758                return -EINVAL;
 759        }
 760
 761        if (ntohs(hdr->len512) * 512 != size) {
 762                csio_err(hw, "FW image size differs from size in FW header\n");
 763                return -EINVAL;
 764        }
 765
 766        if (size > FW_MAX_SIZE) {
 767                csio_err(hw, "FW image too large, max is %u bytes\n",
 768                            FW_MAX_SIZE);
 769                return -EINVAL;
 770        }
 771
 772        for (csum = 0, i = 0; i < size / sizeof(csum); i++)
 773                csum += ntohl(p[i]);
 774
 775        if (csum != 0xffffffff) {
 776                csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
 777                return -EINVAL;
 778        }
 779
 780        sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
 781        i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
 782
 783        csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
 784                          FW_START_SEC, FW_START_SEC + i - 1);
 785
 786        ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC,
 787                                          FW_START_SEC + i - 1);
 788        if (ret) {
 789                csio_err(hw, "Flash Erase failed\n");
 790                goto out;
 791        }
 792
 793        /*
 794         * We write the correct version at the end so the driver can see a bad
 795         * version if the FW write fails.  Start by writing a copy of the
 796         * first page with a bad version.
 797         */
 798        memcpy(first_page, fw_data, SF_PAGE_SIZE);
 799        ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
 800        ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page);
 801        if (ret)
 802                goto out;
 803
 804        csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
 805                    FW_IMG_START, FW_IMG_START + size);
 806
 807        addr = FW_IMG_START;
 808        for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
 809                addr += SF_PAGE_SIZE;
 810                fw_data += SF_PAGE_SIZE;
 811                ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
 812                if (ret)
 813                        goto out;
 814        }
 815
 816        ret = csio_hw_write_flash(hw,
 817                                  FW_IMG_START +
 818                                        offsetof(struct fw_hdr, fw_ver),
 819                                  sizeof(hdr->fw_ver),
 820                                  (const uint8_t *)&hdr->fw_ver);
 821
 822out:
 823        if (ret)
 824                csio_err(hw, "firmware download failed, error %d\n", ret);
 825        return ret;
 826}
 827
 828static int
 829csio_hw_get_flash_params(struct csio_hw *hw)
 830{
 831        int ret;
 832        uint32_t info = 0;
 833
 834        ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
 835        if (!ret)
 836                ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
 837        csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
 838        if (ret != 0)
 839                return ret;
 840
 841        if ((info & 0xff) != 0x20)              /* not a Numonix flash */
 842                return -EINVAL;
 843        info >>= 16;                            /* log2 of size */
 844        if (info >= 0x14 && info < 0x18)
 845                hw->params.sf_nsec = 1 << (info - 16);
 846        else if (info == 0x18)
 847                hw->params.sf_nsec = 64;
 848        else
 849                return -EINVAL;
 850        hw->params.sf_size = 1 << info;
 851
 852        return 0;
 853}
 854
 855static void
 856csio_set_pcie_completion_timeout(struct csio_hw *hw, u8 range)
 857{
 858        uint16_t val;
 859        int pcie_cap;
 860
 861        if (!csio_pci_capability(hw->pdev, PCI_CAP_ID_EXP, &pcie_cap)) {
 862                pci_read_config_word(hw->pdev,
 863                                     pcie_cap + PCI_EXP_DEVCTL2, &val);
 864                val &= 0xfff0;
 865                val |= range ;
 866                pci_write_config_word(hw->pdev,
 867                                      pcie_cap + PCI_EXP_DEVCTL2, val);
 868        }
 869}
 870
 871/*****************************************************************************/
 872/* HW State machine assists                                                  */
 873/*****************************************************************************/
 874
 875static int
 876csio_hw_dev_ready(struct csio_hw *hw)
 877{
 878        uint32_t reg;
 879        int cnt = 6;
 880
 881        while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) &&
 882                                                                (--cnt != 0))
 883                mdelay(100);
 884
 885        if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) ||
 886                            (SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) {
 887                csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
 888                return -EIO;
 889        }
 890
 891        hw->pfn = SOURCEPF_GET(reg);
 892
 893        return 0;
 894}
 895
 896/*
 897 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
 898 * @hw: HW module
 899 * @state: Device state
 900 *
 901 * FW_HELLO_CMD has to be polled for completion.
 902 */
 903static int
 904csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
 905{
 906        struct csio_mb  *mbp;
 907        int     rv = 0;
 908        enum csio_dev_master master;
 909        enum fw_retval retval;
 910        uint8_t mpfn;
 911        char state_str[16];
 912        int retries = FW_CMD_HELLO_RETRIES;
 913
 914        memset(state_str, 0, sizeof(state_str));
 915
 916        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 917        if (!mbp) {
 918                rv = -ENOMEM;
 919                CSIO_INC_STATS(hw, n_err_nomem);
 920                goto out;
 921        }
 922
 923        master = csio_force_master ? CSIO_MASTER_MUST : CSIO_MASTER_MAY;
 924
 925retry:
 926        csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
 927                      hw->pfn, master, NULL);
 928
 929        rv = csio_mb_issue(hw, mbp);
 930        if (rv) {
 931                csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
 932                goto out_free_mb;
 933        }
 934
 935        csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
 936        if (retval != FW_SUCCESS) {
 937                csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
 938                rv = -EINVAL;
 939                goto out_free_mb;
 940        }
 941
 942        /* Firmware has designated us to be master */
 943        if (hw->pfn == mpfn) {
 944                hw->flags |= CSIO_HWF_MASTER;
 945        } else if (*state == CSIO_DEV_STATE_UNINIT) {
 946                /*
 947                 * If we're not the Master PF then we need to wait around for
 948                 * the Master PF Driver to finish setting up the adapter.
 949                 *
 950                 * Note that we also do this wait if we're a non-Master-capable
 951                 * PF and there is no current Master PF; a Master PF may show up
 952                 * momentarily and we wouldn't want to fail pointlessly.  (This
 953                 * can happen when an OS loads lots of different drivers rapidly
 954                 * at the same time). In this case, the Master PF returned by
 955                 * the firmware will be PCIE_FW_MASTER_MASK so the test below
 956                 * will work ...
 957                 */
 958
 959                int waiting = FW_CMD_HELLO_TIMEOUT;
 960
 961                /*
 962                 * Wait for the firmware to either indicate an error or
 963                 * initialized state.  If we see either of these we bail out
 964                 * and report the issue to the caller.  If we exhaust the
 965                 * "hello timeout" and we haven't exhausted our retries, try
 966                 * again.  Otherwise bail with a timeout error.
 967                 */
 968                for (;;) {
 969                        uint32_t pcie_fw;
 970
 971                        spin_unlock_irq(&hw->lock);
 972                        msleep(50);
 973                        spin_lock_irq(&hw->lock);
 974                        waiting -= 50;
 975
 976                        /*
 977                         * If neither Error nor Initialialized are indicated
 978                         * by the firmware keep waiting till we exaust our
 979                         * timeout ... and then retry if we haven't exhausted
 980                         * our retries ...
 981                         */
 982                        pcie_fw = csio_rd_reg32(hw, PCIE_FW);
 983                        if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
 984                                if (waiting <= 0) {
 985                                        if (retries-- > 0)
 986                                                goto retry;
 987
 988                                        rv = -ETIMEDOUT;
 989                                        break;
 990                                }
 991                                continue;
 992                        }
 993
 994                        /*
 995                         * We either have an Error or Initialized condition
 996                         * report errors preferentially.
 997                         */
 998                        if (state) {
 999                                if (pcie_fw & PCIE_FW_ERR) {
1000                                        *state = CSIO_DEV_STATE_ERR;
1001                                        rv = -ETIMEDOUT;
1002                                } else if (pcie_fw & PCIE_FW_INIT)
1003                                        *state = CSIO_DEV_STATE_INIT;
1004                        }
1005
1006                        /*
1007                         * If we arrived before a Master PF was selected and
1008                         * there's not a valid Master PF, grab its identity
1009                         * for our caller.
1010                         */
1011                        if (mpfn == PCIE_FW_MASTER_MASK &&
1012                            (pcie_fw & PCIE_FW_MASTER_VLD))
1013                                mpfn = PCIE_FW_MASTER_GET(pcie_fw);
1014                        break;
1015                }
1016                hw->flags &= ~CSIO_HWF_MASTER;
1017        }
1018
1019        switch (*state) {
1020        case CSIO_DEV_STATE_UNINIT:
1021                strcpy(state_str, "Initializing");
1022                break;
1023        case CSIO_DEV_STATE_INIT:
1024                strcpy(state_str, "Initialized");
1025                break;
1026        case CSIO_DEV_STATE_ERR:
1027                strcpy(state_str, "Error");
1028                break;
1029        default:
1030                strcpy(state_str, "Unknown");
1031                break;
1032        }
1033
1034        if (hw->pfn == mpfn)
1035                csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1036                        hw->pfn, state_str);
1037        else
1038                csio_info(hw,
1039                    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1040                    hw->pfn, mpfn, state_str);
1041
1042out_free_mb:
1043        mempool_free(mbp, hw->mb_mempool);
1044out:
1045        return rv;
1046}
1047
1048/*
1049 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1050 * @hw: HW module
1051 *
1052 */
1053static int
1054csio_do_bye(struct csio_hw *hw)
1055{
1056        struct csio_mb  *mbp;
1057        enum fw_retval retval;
1058
1059        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1060        if (!mbp) {
1061                CSIO_INC_STATS(hw, n_err_nomem);
1062                return -ENOMEM;
1063        }
1064
1065        csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1066
1067        if (csio_mb_issue(hw, mbp)) {
1068                csio_err(hw, "Issue of BYE command failed\n");
1069                mempool_free(mbp, hw->mb_mempool);
1070                return -EINVAL;
1071        }
1072
1073        retval = csio_mb_fw_retval(mbp);
1074        if (retval != FW_SUCCESS) {
1075                mempool_free(mbp, hw->mb_mempool);
1076                return -EINVAL;
1077        }
1078
1079        mempool_free(mbp, hw->mb_mempool);
1080
1081        return 0;
1082}
1083
1084/*
1085 * csio_do_reset- Perform the device reset.
1086 * @hw: HW module
1087 * @fw_rst: FW reset
1088 *
1089 * If fw_rst is set, issues FW reset mbox cmd otherwise
1090 * does PIO reset.
1091 * Performs reset of the function.
1092 */
1093static int
1094csio_do_reset(struct csio_hw *hw, bool fw_rst)
1095{
1096        struct csio_mb  *mbp;
1097        enum fw_retval retval;
1098
1099        if (!fw_rst) {
1100                /* PIO reset */
1101                csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1102                mdelay(2000);
1103                return 0;
1104        }
1105
1106        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1107        if (!mbp) {
1108                CSIO_INC_STATS(hw, n_err_nomem);
1109                return -ENOMEM;
1110        }
1111
1112        csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1113                      PIORSTMODE | PIORST, 0, NULL);
1114
1115        if (csio_mb_issue(hw, mbp)) {
1116                csio_err(hw, "Issue of RESET command failed.n");
1117                mempool_free(mbp, hw->mb_mempool);
1118                return -EINVAL;
1119        }
1120
1121        retval = csio_mb_fw_retval(mbp);
1122        if (retval != FW_SUCCESS) {
1123                csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1124                mempool_free(mbp, hw->mb_mempool);
1125                return -EINVAL;
1126        }
1127
1128        mempool_free(mbp, hw->mb_mempool);
1129
1130        return 0;
1131}
1132
1133static int
1134csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1135{
1136        struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1137        uint16_t caps;
1138
1139        caps = ntohs(rsp->fcoecaps);
1140
1141        if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1142                csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1143                return -EINVAL;
1144        }
1145
1146        if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1147                csio_err(hw, "No FCoE Control Offload capability\n");
1148                return -EINVAL;
1149        }
1150
1151        return 0;
1152}
1153
1154/*
1155 *      csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1156 *      @hw: the HW module
1157 *      @mbox: mailbox to use for the FW RESET command (if desired)
1158 *      @force: force uP into RESET even if FW RESET command fails
1159 *
1160 *      Issues a RESET command to firmware (if desired) with a HALT indication
1161 *      and then puts the microprocessor into RESET state.  The RESET command
1162 *      will only be issued if a legitimate mailbox is provided (mbox <=
1163 *      PCIE_FW_MASTER_MASK).
1164 *
1165 *      This is generally used in order for the host to safely manipulate the
1166 *      adapter without fear of conflicting with whatever the firmware might
1167 *      be doing.  The only way out of this state is to RESTART the firmware
1168 *      ...
1169 */
1170static int
1171csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1172{
1173        enum fw_retval retval = 0;
1174
1175        /*
1176         * If a legitimate mailbox is provided, issue a RESET command
1177         * with a HALT indication.
1178         */
1179        if (mbox <= PCIE_FW_MASTER_MASK) {
1180                struct csio_mb  *mbp;
1181
1182                mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1183                if (!mbp) {
1184                        CSIO_INC_STATS(hw, n_err_nomem);
1185                        return -ENOMEM;
1186                }
1187
1188                csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1189                              PIORSTMODE | PIORST, FW_RESET_CMD_HALT(1),
1190                              NULL);
1191
1192                if (csio_mb_issue(hw, mbp)) {
1193                        csio_err(hw, "Issue of RESET command failed!\n");
1194                        mempool_free(mbp, hw->mb_mempool);
1195                        return -EINVAL;
1196                }
1197
1198                retval = csio_mb_fw_retval(mbp);
1199                mempool_free(mbp, hw->mb_mempool);
1200        }
1201
1202        /*
1203         * Normally we won't complete the operation if the firmware RESET
1204         * command fails but if our caller insists we'll go ahead and put the
1205         * uP into RESET.  This can be useful if the firmware is hung or even
1206         * missing ...  We'll have to take the risk of putting the uP into
1207         * RESET without the cooperation of firmware in that case.
1208         *
1209         * We also force the firmware's HALT flag to be on in case we bypassed
1210         * the firmware RESET command above or we're dealing with old firmware
1211         * which doesn't have the HALT capability.  This will serve as a flag
1212         * for the incoming firmware to know that it's coming out of a HALT
1213         * rather than a RESET ... if it's new enough to understand that ...
1214         */
1215        if (retval == 0 || force) {
1216                csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST);
1217                csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT);
1218        }
1219
1220        /*
1221         * And we always return the result of the firmware RESET command
1222         * even when we force the uP into RESET ...
1223         */
1224        return retval ? -EINVAL : 0;
1225}
1226
1227/*
1228 *      csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1229 *      @hw: the HW module
1230 *      @reset: if we want to do a RESET to restart things
1231 *
1232 *      Restart firmware previously halted by csio_hw_fw_halt().  On successful
1233 *      return the previous PF Master remains as the new PF Master and there
1234 *      is no need to issue a new HELLO command, etc.
1235 *
1236 *      We do this in two ways:
1237 *
1238 *       1. If we're dealing with newer firmware we'll simply want to take
1239 *          the chip's microprocessor out of RESET.  This will cause the
1240 *          firmware to start up from its start vector.  And then we'll loop
1241 *          until the firmware indicates it's started again (PCIE_FW.HALT
1242 *          reset to 0) or we timeout.
1243 *
1244 *       2. If we're dealing with older firmware then we'll need to RESET
1245 *          the chip since older firmware won't recognize the PCIE_FW.HALT
1246 *          flag and automatically RESET itself on startup.
1247 */
1248static int
1249csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1250{
1251        if (reset) {
1252                /*
1253                 * Since we're directing the RESET instead of the firmware
1254                 * doing it automatically, we need to clear the PCIE_FW.HALT
1255                 * bit.
1256                 */
1257                csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0);
1258
1259                /*
1260                 * If we've been given a valid mailbox, first try to get the
1261                 * firmware to do the RESET.  If that works, great and we can
1262                 * return success.  Otherwise, if we haven't been given a
1263                 * valid mailbox or the RESET command failed, fall back to
1264                 * hitting the chip with a hammer.
1265                 */
1266                if (mbox <= PCIE_FW_MASTER_MASK) {
1267                        csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1268                        msleep(100);
1269                        if (csio_do_reset(hw, true) == 0)
1270                                return 0;
1271                }
1272
1273                csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1274                msleep(2000);
1275        } else {
1276                int ms;
1277
1278                csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1279                for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1280                        if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT))
1281                                return 0;
1282                        msleep(100);
1283                        ms += 100;
1284                }
1285                return -ETIMEDOUT;
1286        }
1287        return 0;
1288}
1289
1290/*
1291 *      csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1292 *      @hw: the HW module
1293 *      @mbox: mailbox to use for the FW RESET command (if desired)
1294 *      @fw_data: the firmware image to write
1295 *      @size: image size
1296 *      @force: force upgrade even if firmware doesn't cooperate
1297 *
1298 *      Perform all of the steps necessary for upgrading an adapter's
1299 *      firmware image.  Normally this requires the cooperation of the
1300 *      existing firmware in order to halt all existing activities
1301 *      but if an invalid mailbox token is passed in we skip that step
1302 *      (though we'll still put the adapter microprocessor into RESET in
1303 *      that case).
1304 *
1305 *      On successful return the new firmware will have been loaded and
1306 *      the adapter will have been fully RESET losing all previous setup
1307 *      state.  On unsuccessful return the adapter may be completely hosed ...
1308 *      positive errno indicates that the adapter is ~probably~ intact, a
1309 *      negative errno indicates that things are looking bad ...
1310 */
1311static int
1312csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1313                  const u8 *fw_data, uint32_t size, int32_t force)
1314{
1315        const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1316        int reset, ret;
1317
1318        ret = csio_hw_fw_halt(hw, mbox, force);
1319        if (ret != 0 && !force)
1320                return ret;
1321
1322        ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1323        if (ret != 0)
1324                return ret;
1325
1326        /*
1327         * Older versions of the firmware don't understand the new
1328         * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1329         * restart.  So for newly loaded older firmware we'll have to do the
1330         * RESET for it so it starts up on a clean slate.  We can tell if
1331         * the newly loaded firmware will handle this right by checking
1332         * its header flags to see if it advertises the capability.
1333         */
1334        reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1335        return csio_hw_fw_restart(hw, mbox, reset);
1336}
1337
1338
1339/*
1340 *      csio_hw_fw_config_file - setup an adapter via a Configuration File
1341 *      @hw: the HW module
1342 *      @mbox: mailbox to use for the FW command
1343 *      @mtype: the memory type where the Configuration File is located
1344 *      @maddr: the memory address where the Configuration File is located
1345 *      @finiver: return value for CF [fini] version
1346 *      @finicsum: return value for CF [fini] checksum
1347 *      @cfcsum: return value for CF computed checksum
1348 *
1349 *      Issue a command to get the firmware to process the Configuration
1350 *      File located at the specified mtype/maddress.  If the Configuration
1351 *      File is processed successfully and return value pointers are
1352 *      provided, the Configuration File "[fini] section version and
1353 *      checksum values will be returned along with the computed checksum.
1354 *      It's up to the caller to decide how it wants to respond to the
1355 *      checksums not matching but it recommended that a prominant warning
1356 *      be emitted in order to help people rapidly identify changed or
1357 *      corrupted Configuration Files.
1358 *
1359 *      Also note that it's possible to modify things like "niccaps",
1360 *      "toecaps",etc. between processing the Configuration File and telling
1361 *      the firmware to use the new configuration.  Callers which want to
1362 *      do this will need to "hand-roll" their own CAPS_CONFIGS commands for
1363 *      Configuration Files if they want to do this.
1364 */
1365static int
1366csio_hw_fw_config_file(struct csio_hw *hw,
1367                      unsigned int mtype, unsigned int maddr,
1368                      uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum)
1369{
1370        struct csio_mb  *mbp;
1371        struct fw_caps_config_cmd *caps_cmd;
1372        int rv = -EINVAL;
1373        enum fw_retval ret;
1374
1375        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1376        if (!mbp) {
1377                CSIO_INC_STATS(hw, n_err_nomem);
1378                return -ENOMEM;
1379        }
1380        /*
1381         * Tell the firmware to process the indicated Configuration File.
1382         * If there are no errors and the caller has provided return value
1383         * pointers for the [fini] section version, checksum and computed
1384         * checksum, pass those back to the caller.
1385         */
1386        caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1387        CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1388        caps_cmd->op_to_write =
1389                htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1390                      FW_CMD_REQUEST |
1391                      FW_CMD_READ);
1392        caps_cmd->cfvalid_to_len16 =
1393                htonl(FW_CAPS_CONFIG_CMD_CFVALID |
1394                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1395                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1396                      FW_LEN16(*caps_cmd));
1397
1398        if (csio_mb_issue(hw, mbp)) {
1399                csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1400                goto out;
1401        }
1402
1403        ret = csio_mb_fw_retval(mbp);
1404        if (ret != FW_SUCCESS) {
1405                csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1406                goto out;
1407        }
1408
1409        if (finiver)
1410                *finiver = ntohl(caps_cmd->finiver);
1411        if (finicsum)
1412                *finicsum = ntohl(caps_cmd->finicsum);
1413        if (cfcsum)
1414                *cfcsum = ntohl(caps_cmd->cfcsum);
1415
1416        /* Validate device capabilities */
1417        if (csio_hw_validate_caps(hw, mbp)) {
1418                rv = -ENOENT;
1419                goto out;
1420        }
1421
1422        /*
1423         * And now tell the firmware to use the configuration we just loaded.
1424         */
1425        caps_cmd->op_to_write =
1426                htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1427                      FW_CMD_REQUEST |
1428                      FW_CMD_WRITE);
1429        caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1430
1431        if (csio_mb_issue(hw, mbp)) {
1432                csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1433                goto out;
1434        }
1435
1436        ret = csio_mb_fw_retval(mbp);
1437        if (ret != FW_SUCCESS) {
1438                csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1439                goto out;
1440        }
1441
1442        rv = 0;
1443out:
1444        mempool_free(mbp, hw->mb_mempool);
1445        return rv;
1446}
1447
1448/*
1449 * csio_get_device_params - Get device parameters.
1450 * @hw: HW module
1451 *
1452 */
1453static int
1454csio_get_device_params(struct csio_hw *hw)
1455{
1456        struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
1457        struct csio_mb  *mbp;
1458        enum fw_retval retval;
1459        u32 param[6];
1460        int i, j = 0;
1461
1462        /* Initialize portids to -1 */
1463        for (i = 0; i < CSIO_MAX_PPORTS; i++)
1464                hw->pport[i].portid = -1;
1465
1466        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1467        if (!mbp) {
1468                CSIO_INC_STATS(hw, n_err_nomem);
1469                return -ENOMEM;
1470        }
1471
1472        /* Get port vec information. */
1473        param[0] = FW_PARAM_DEV(PORTVEC);
1474
1475        /* Get Core clock. */
1476        param[1] = FW_PARAM_DEV(CCLK);
1477
1478        /* Get EQ id start and end. */
1479        param[2] = FW_PARAM_PFVF(EQ_START);
1480        param[3] = FW_PARAM_PFVF(EQ_END);
1481
1482        /* Get IQ id start and end. */
1483        param[4] = FW_PARAM_PFVF(IQFLINT_START);
1484        param[5] = FW_PARAM_PFVF(IQFLINT_END);
1485
1486        csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1487                       ARRAY_SIZE(param), param, NULL, false, NULL);
1488        if (csio_mb_issue(hw, mbp)) {
1489                csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1490                mempool_free(mbp, hw->mb_mempool);
1491                return -EINVAL;
1492        }
1493
1494        csio_mb_process_read_params_rsp(hw, mbp, &retval,
1495                        ARRAY_SIZE(param), param);
1496        if (retval != FW_SUCCESS) {
1497                csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1498                                retval);
1499                mempool_free(mbp, hw->mb_mempool);
1500                return -EINVAL;
1501        }
1502
1503        /* cache the information. */
1504        hw->port_vec = param[0];
1505        hw->vpd.cclk = param[1];
1506        wrm->fw_eq_start = param[2];
1507        wrm->fw_iq_start = param[4];
1508
1509        /* Using FW configured max iqs & eqs */
1510        if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1511                !csio_is_hw_master(hw)) {
1512                hw->cfg_niq = param[5] - param[4] + 1;
1513                hw->cfg_neq = param[3] - param[2] + 1;
1514                csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1515                        hw->cfg_niq, hw->cfg_neq);
1516        }
1517
1518        hw->port_vec &= csio_port_mask;
1519
1520        hw->num_pports  = hweight32(hw->port_vec);
1521
1522        csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1523                    hw->port_vec, hw->num_pports);
1524
1525        for (i = 0; i < hw->num_pports; i++) {
1526                while ((hw->port_vec & (1 << j)) == 0)
1527                        j++;
1528                hw->pport[i].portid = j++;
1529                csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1530        }
1531        mempool_free(mbp, hw->mb_mempool);
1532
1533        return 0;
1534}
1535
1536
1537/*
1538 * csio_config_device_caps - Get and set device capabilities.
1539 * @hw: HW module
1540 *
1541 */
1542static int
1543csio_config_device_caps(struct csio_hw *hw)
1544{
1545        struct csio_mb  *mbp;
1546        enum fw_retval retval;
1547        int rv = -EINVAL;
1548
1549        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1550        if (!mbp) {
1551                CSIO_INC_STATS(hw, n_err_nomem);
1552                return -ENOMEM;
1553        }
1554
1555        /* Get device capabilities */
1556        csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1557
1558        if (csio_mb_issue(hw, mbp)) {
1559                csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1560                goto out;
1561        }
1562
1563        retval = csio_mb_fw_retval(mbp);
1564        if (retval != FW_SUCCESS) {
1565                csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1566                goto out;
1567        }
1568
1569        /* Validate device capabilities */
1570        if (csio_hw_validate_caps(hw, mbp))
1571                goto out;
1572
1573        /* Don't config device capabilities if already configured */
1574        if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1575                rv = 0;
1576                goto out;
1577        }
1578
1579        /* Write back desired device capabilities */
1580        csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1581                            false, true, NULL);
1582
1583        if (csio_mb_issue(hw, mbp)) {
1584                csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1585                goto out;
1586        }
1587
1588        retval = csio_mb_fw_retval(mbp);
1589        if (retval != FW_SUCCESS) {
1590                csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1591                goto out;
1592        }
1593
1594        rv = 0;
1595out:
1596        mempool_free(mbp, hw->mb_mempool);
1597        return rv;
1598}
1599
1600/*
1601 * csio_enable_ports - Bring up all available ports.
1602 * @hw: HW module.
1603 *
1604 */
1605static int
1606csio_enable_ports(struct csio_hw *hw)
1607{
1608        struct csio_mb  *mbp;
1609        enum fw_retval retval;
1610        uint8_t portid;
1611        int i;
1612
1613        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1614        if (!mbp) {
1615                CSIO_INC_STATS(hw, n_err_nomem);
1616                return -ENOMEM;
1617        }
1618
1619        for (i = 0; i < hw->num_pports; i++) {
1620                portid = hw->pport[i].portid;
1621
1622                /* Read PORT information */
1623                csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1624                             false, 0, 0, NULL);
1625
1626                if (csio_mb_issue(hw, mbp)) {
1627                        csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1628                                 portid);
1629                        mempool_free(mbp, hw->mb_mempool);
1630                        return -EINVAL;
1631                }
1632
1633                csio_mb_process_read_port_rsp(hw, mbp, &retval,
1634                                              &hw->pport[i].pcap);
1635                if (retval != FW_SUCCESS) {
1636                        csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1637                                 portid, retval);
1638                        mempool_free(mbp, hw->mb_mempool);
1639                        return -EINVAL;
1640                }
1641
1642                /* Write back PORT information */
1643                csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1644                             (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1645
1646                if (csio_mb_issue(hw, mbp)) {
1647                        csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1648                                 portid);
1649                        mempool_free(mbp, hw->mb_mempool);
1650                        return -EINVAL;
1651                }
1652
1653                retval = csio_mb_fw_retval(mbp);
1654                if (retval != FW_SUCCESS) {
1655                        csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1656                                 portid, retval);
1657                        mempool_free(mbp, hw->mb_mempool);
1658                        return -EINVAL;
1659                }
1660
1661        } /* For all ports */
1662
1663        mempool_free(mbp, hw->mb_mempool);
1664
1665        return 0;
1666}
1667
1668/*
1669 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1670 * @hw: HW module
1671 * Issued with lock held.
1672 */
1673static int
1674csio_get_fcoe_resinfo(struct csio_hw *hw)
1675{
1676        struct csio_fcoe_res_info *res_info = &hw->fres_info;
1677        struct fw_fcoe_res_info_cmd *rsp;
1678        struct csio_mb  *mbp;
1679        enum fw_retval retval;
1680
1681        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1682        if (!mbp) {
1683                CSIO_INC_STATS(hw, n_err_nomem);
1684                return -ENOMEM;
1685        }
1686
1687        /* Get FCoE FW resource information */
1688        csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1689
1690        if (csio_mb_issue(hw, mbp)) {
1691                csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1692                mempool_free(mbp, hw->mb_mempool);
1693                return -EINVAL;
1694        }
1695
1696        rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1697        retval = FW_CMD_RETVAL_GET(ntohl(rsp->retval_len16));
1698        if (retval != FW_SUCCESS) {
1699                csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1700                         retval);
1701                mempool_free(mbp, hw->mb_mempool);
1702                return -EINVAL;
1703        }
1704
1705        res_info->e_d_tov = ntohs(rsp->e_d_tov);
1706        res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1707        res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1708        res_info->r_r_tov = ntohs(rsp->r_r_tov);
1709        res_info->max_xchgs = ntohl(rsp->max_xchgs);
1710        res_info->max_ssns = ntohl(rsp->max_ssns);
1711        res_info->used_xchgs = ntohl(rsp->used_xchgs);
1712        res_info->used_ssns = ntohl(rsp->used_ssns);
1713        res_info->max_fcfs = ntohl(rsp->max_fcfs);
1714        res_info->max_vnps = ntohl(rsp->max_vnps);
1715        res_info->used_fcfs = ntohl(rsp->used_fcfs);
1716        res_info->used_vnps = ntohl(rsp->used_vnps);
1717
1718        csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1719                                                  res_info->max_xchgs);
1720        mempool_free(mbp, hw->mb_mempool);
1721
1722        return 0;
1723}
1724
1725static int
1726csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1727{
1728        struct csio_mb  *mbp;
1729        enum fw_retval retval;
1730        u32 _param[1];
1731
1732        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1733        if (!mbp) {
1734                CSIO_INC_STATS(hw, n_err_nomem);
1735                return -ENOMEM;
1736        }
1737
1738        /*
1739         * Find out whether we're dealing with a version of
1740         * the firmware which has configuration file support.
1741         */
1742        _param[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1743                     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
1744
1745        csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1746                       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1747        if (csio_mb_issue(hw, mbp)) {
1748                csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1749                mempool_free(mbp, hw->mb_mempool);
1750                return -EINVAL;
1751        }
1752
1753        csio_mb_process_read_params_rsp(hw, mbp, &retval,
1754                        ARRAY_SIZE(_param), _param);
1755        if (retval != FW_SUCCESS) {
1756                csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1757                                retval);
1758                mempool_free(mbp, hw->mb_mempool);
1759                return -EINVAL;
1760        }
1761
1762        mempool_free(mbp, hw->mb_mempool);
1763        *param = _param[0];
1764
1765        return 0;
1766}
1767
1768static int
1769csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1770{
1771        int ret = 0;
1772        const struct firmware *cf;
1773        struct pci_dev *pci_dev = hw->pdev;
1774        struct device *dev = &pci_dev->dev;
1775        unsigned int mtype = 0, maddr = 0;
1776        uint32_t *cfg_data;
1777        int value_to_add = 0;
1778
1779        if (request_firmware(&cf, CSIO_CF_FNAME(hw), dev) < 0) {
1780                csio_err(hw, "could not find config file %s, err: %d\n",
1781                         CSIO_CF_FNAME(hw), ret);
1782                return -ENOENT;
1783        }
1784
1785        if (cf->size%4 != 0)
1786                value_to_add = 4 - (cf->size % 4);
1787
1788        cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1789        if (cfg_data == NULL) {
1790                ret = -ENOMEM;
1791                goto leave;
1792        }
1793
1794        memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1795        if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1796                ret = -EINVAL;
1797                goto leave;
1798        }
1799
1800        mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
1801        maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
1802
1803        ret = csio_memory_write(hw, mtype, maddr,
1804                                cf->size + value_to_add, cfg_data);
1805
1806        if ((ret == 0) && (value_to_add != 0)) {
1807                union {
1808                        u32 word;
1809                        char buf[4];
1810                } last;
1811                size_t size = cf->size & ~0x3;
1812                int i;
1813
1814                last.word = cfg_data[size >> 2];
1815                for (i = value_to_add; i < 4; i++)
1816                        last.buf[i] = 0;
1817                ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1818        }
1819        if (ret == 0) {
1820                csio_info(hw, "config file upgraded to %s\n",
1821                          CSIO_CF_FNAME(hw));
1822                snprintf(path, 64, "%s%s", "/lib/firmware/", CSIO_CF_FNAME(hw));
1823        }
1824
1825leave:
1826        kfree(cfg_data);
1827        release_firmware(cf);
1828        return ret;
1829}
1830
1831/*
1832 * HW initialization: contact FW, obtain config, perform basic init.
1833 *
1834 * If the firmware we're dealing with has Configuration File support, then
1835 * we use that to perform all configuration -- either using the configuration
1836 * file stored in flash on the adapter or using a filesystem-local file
1837 * if available.
1838 *
1839 * If we don't have configuration file support in the firmware, then we'll
1840 * have to set things up the old fashioned way with hard-coded register
1841 * writes and firmware commands ...
1842 */
1843
1844/*
1845 * Attempt to initialize the HW via a Firmware Configuration File.
1846 */
1847static int
1848csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1849{
1850        unsigned int mtype, maddr;
1851        int rv;
1852        uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1853        int using_flash;
1854        char path[64];
1855
1856        /*
1857         * Reset device if necessary
1858         */
1859        if (reset) {
1860                rv = csio_do_reset(hw, true);
1861                if (rv != 0)
1862                        goto bye;
1863        }
1864
1865        /*
1866         * If we have a configuration file in host ,
1867         * then use that.  Otherwise, use the configuration file stored
1868         * in the HW flash ...
1869         */
1870        spin_unlock_irq(&hw->lock);
1871        rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1872        spin_lock_irq(&hw->lock);
1873        if (rv != 0) {
1874                if (rv == -ENOENT) {
1875                        /*
1876                         * config file was not found. Use default
1877                         * config file from flash.
1878                         */
1879                        mtype = FW_MEMTYPE_CF_FLASH;
1880                        maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1881                        using_flash = 1;
1882                } else {
1883                        /*
1884                         * we revert back to the hardwired config if
1885                         * flashing failed.
1886                         */
1887                        goto bye;
1888                }
1889        } else {
1890                mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
1891                maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
1892                using_flash = 0;
1893        }
1894
1895        hw->cfg_store = (uint8_t)mtype;
1896
1897        /*
1898         * Issue a Capability Configuration command to the firmware to get it
1899         * to parse the Configuration File.
1900         */
1901        rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver,
1902                &finicsum, &cfcsum);
1903        if (rv != 0)
1904                goto bye;
1905
1906        hw->cfg_finiver         = finiver;
1907        hw->cfg_finicsum        = finicsum;
1908        hw->cfg_cfcsum          = cfcsum;
1909        hw->cfg_csum_status     = true;
1910
1911        if (finicsum != cfcsum) {
1912                csio_warn(hw,
1913                      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1914                      finicsum, cfcsum);
1915
1916                hw->cfg_csum_status = false;
1917        }
1918
1919        /*
1920         * Note that we're operating with parameters
1921         * not supplied by the driver, rather than from hard-wired
1922         * initialization constants buried in the driver.
1923         */
1924        hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1925
1926        /* device parameters */
1927        rv = csio_get_device_params(hw);
1928        if (rv != 0)
1929                goto bye;
1930
1931        /* Configure SGE */
1932        csio_wr_sge_init(hw);
1933
1934        /*
1935         * And finally tell the firmware to initialize itself using the
1936         * parameters from the Configuration File.
1937         */
1938        /* Post event to notify completion of configuration */
1939        csio_post_event(&hw->sm, CSIO_HWE_INIT);
1940
1941        csio_info(hw,
1942         "Firmware Configuration File %s, version %#x, computed checksum %#x\n",
1943                  (using_flash ? "in device FLASH" : path), finiver, cfcsum);
1944
1945        return 0;
1946
1947        /*
1948         * Something bad happened.  Return the error ...
1949         */
1950bye:
1951        hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1952        csio_dbg(hw, "Configuration file error %d\n", rv);
1953        return rv;
1954}
1955
1956/*
1957 * Attempt to initialize the adapter via hard-coded, driver supplied
1958 * parameters ...
1959 */
1960static int
1961csio_hw_no_fwconfig(struct csio_hw *hw, int reset)
1962{
1963        int             rv;
1964        /*
1965         * Reset device if necessary
1966         */
1967        if (reset) {
1968                rv = csio_do_reset(hw, true);
1969                if (rv != 0)
1970                        goto out;
1971        }
1972
1973        /* Get and set device capabilities */
1974        rv = csio_config_device_caps(hw);
1975        if (rv != 0)
1976                goto out;
1977
1978        /* device parameters */
1979        rv = csio_get_device_params(hw);
1980        if (rv != 0)
1981                goto out;
1982
1983        /* Configure SGE */
1984        csio_wr_sge_init(hw);
1985
1986        /* Post event to notify completion of configuration */
1987        csio_post_event(&hw->sm, CSIO_HWE_INIT);
1988
1989out:
1990        return rv;
1991}
1992
1993/*
1994 * Returns -EINVAL if attempts to flash the firmware failed
1995 * else returns 0,
1996 * if flashing was not attempted because the card had the
1997 * latest firmware ECANCELED is returned
1998 */
1999static int
2000csio_hw_flash_fw(struct csio_hw *hw)
2001{
2002        int ret = -ECANCELED;
2003        const struct firmware *fw;
2004        const struct fw_hdr *hdr;
2005        u32 fw_ver;
2006        struct pci_dev *pci_dev = hw->pdev;
2007        struct device *dev = &pci_dev->dev ;
2008
2009        if (request_firmware(&fw, CSIO_FW_FNAME(hw), dev) < 0) {
2010                csio_err(hw, "could not find firmware image %s, err: %d\n",
2011                         CSIO_FW_FNAME(hw), ret);
2012                return -EINVAL;
2013        }
2014
2015        hdr = (const struct fw_hdr *)fw->data;
2016        fw_ver = ntohl(hdr->fw_ver);
2017        if (FW_HDR_FW_VER_MAJOR_GET(fw_ver) != FW_VERSION_MAJOR(hw))
2018                return -EINVAL;      /* wrong major version, won't do */
2019
2020        /*
2021         * If the flash FW is unusable or we found something newer, load it.
2022         */
2023        if (FW_HDR_FW_VER_MAJOR_GET(hw->fwrev) != FW_VERSION_MAJOR(hw) ||
2024            fw_ver > hw->fwrev) {
2025                ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size,
2026                                    /*force=*/false);
2027                if (!ret)
2028                        csio_info(hw,
2029                                  "firmware upgraded to version %pI4 from %s\n",
2030                                  &hdr->fw_ver, CSIO_FW_FNAME(hw));
2031                else
2032                        csio_err(hw, "firmware upgrade failed! err=%d\n", ret);
2033        } else
2034                ret = -EINVAL;
2035
2036        release_firmware(fw);
2037
2038        return ret;
2039}
2040
2041
2042/*
2043 * csio_hw_configure - Configure HW
2044 * @hw - HW module
2045 *
2046 */
2047static void
2048csio_hw_configure(struct csio_hw *hw)
2049{
2050        int reset = 1;
2051        int rv;
2052        u32 param[1];
2053
2054        rv = csio_hw_dev_ready(hw);
2055        if (rv != 0) {
2056                CSIO_INC_STATS(hw, n_err_fatal);
2057                csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2058                goto out;
2059        }
2060
2061        /* HW version */
2062        hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV);
2063
2064        /* Needed for FW download */
2065        rv = csio_hw_get_flash_params(hw);
2066        if (rv != 0) {
2067                csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2068                csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2069                goto out;
2070        }
2071
2072        /* Set pci completion timeout value to 4 seconds. */
2073        csio_set_pcie_completion_timeout(hw, 0xd);
2074
2075        hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2076
2077        rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2078        if (rv != 0)
2079                goto out;
2080
2081        csio_hw_print_fw_version(hw, "Firmware revision");
2082
2083        rv = csio_do_hello(hw, &hw->fw_state);
2084        if (rv != 0) {
2085                CSIO_INC_STATS(hw, n_err_fatal);
2086                csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2087                goto out;
2088        }
2089
2090        /* Read vpd */
2091        rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2092        if (rv != 0)
2093                goto out;
2094
2095        if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2096                rv = csio_hw_check_fw_version(hw);
2097                if (rv == -EINVAL) {
2098
2099                        /* Do firmware update */
2100                        spin_unlock_irq(&hw->lock);
2101                        rv = csio_hw_flash_fw(hw);
2102                        spin_lock_irq(&hw->lock);
2103
2104                        if (rv == 0) {
2105                                reset = 0;
2106                                /*
2107                                 * Note that the chip was reset as part of the
2108                                 * firmware upgrade so we don't reset it again
2109                                 * below and grab the new firmware version.
2110                                 */
2111                                rv = csio_hw_check_fw_version(hw);
2112                        }
2113                }
2114                /*
2115                 * If the firmware doesn't support Configuration
2116                 * Files, use the old Driver-based, hard-wired
2117                 * initialization.  Otherwise, try using the
2118                 * Configuration File support and fall back to the
2119                 * Driver-based initialization if there's no
2120                 * Configuration File found.
2121                 */
2122                if (csio_hw_check_fwconfig(hw, param) == 0) {
2123                        rv = csio_hw_use_fwconfig(hw, reset, param);
2124                        if (rv == -ENOENT)
2125                                goto out;
2126                        if (rv != 0) {
2127                                csio_info(hw,
2128                                    "No Configuration File present "
2129                                    "on adapter.  Using hard-wired "
2130                                    "configuration parameters.\n");
2131                                rv = csio_hw_no_fwconfig(hw, reset);
2132                        }
2133                } else {
2134                        rv = csio_hw_no_fwconfig(hw, reset);
2135                }
2136
2137                if (rv != 0)
2138                        goto out;
2139
2140        } else {
2141                if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2142
2143                        hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2144
2145                        /* device parameters */
2146                        rv = csio_get_device_params(hw);
2147                        if (rv != 0)
2148                                goto out;
2149
2150                        /* Get device capabilities */
2151                        rv = csio_config_device_caps(hw);
2152                        if (rv != 0)
2153                                goto out;
2154
2155                        /* Configure SGE */
2156                        csio_wr_sge_init(hw);
2157
2158                        /* Post event to notify completion of configuration */
2159                        csio_post_event(&hw->sm, CSIO_HWE_INIT);
2160                        goto out;
2161                }
2162        } /* if not master */
2163
2164out:
2165        return;
2166}
2167
2168/*
2169 * csio_hw_initialize - Initialize HW
2170 * @hw - HW module
2171 *
2172 */
2173static void
2174csio_hw_initialize(struct csio_hw *hw)
2175{
2176        struct csio_mb  *mbp;
2177        enum fw_retval retval;
2178        int rv;
2179        int i;
2180
2181        if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2182                mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2183                if (!mbp)
2184                        goto out;
2185
2186                csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2187
2188                if (csio_mb_issue(hw, mbp)) {
2189                        csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2190                        goto free_and_out;
2191                }
2192
2193                retval = csio_mb_fw_retval(mbp);
2194                if (retval != FW_SUCCESS) {
2195                        csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2196                                 retval);
2197                        goto free_and_out;
2198                }
2199
2200                mempool_free(mbp, hw->mb_mempool);
2201        }
2202
2203        rv = csio_get_fcoe_resinfo(hw);
2204        if (rv != 0) {
2205                csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2206                goto out;
2207        }
2208
2209        spin_unlock_irq(&hw->lock);
2210        rv = csio_config_queues(hw);
2211        spin_lock_irq(&hw->lock);
2212
2213        if (rv != 0) {
2214                csio_err(hw, "Config of queues failed!: %d\n", rv);
2215                goto out;
2216        }
2217
2218        for (i = 0; i < hw->num_pports; i++)
2219                hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2220
2221        if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2222                rv = csio_enable_ports(hw);
2223                if (rv != 0) {
2224                        csio_err(hw, "Failed to enable ports: %d\n", rv);
2225                        goto out;
2226                }
2227        }
2228
2229        csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2230        return;
2231
2232free_and_out:
2233        mempool_free(mbp, hw->mb_mempool);
2234out:
2235        return;
2236}
2237
2238#define PF_INTR_MASK (PFSW | PFCIM)
2239
2240/*
2241 * csio_hw_intr_enable - Enable HW interrupts
2242 * @hw: Pointer to HW module.
2243 *
2244 * Enable interrupts in HW registers.
2245 */
2246static void
2247csio_hw_intr_enable(struct csio_hw *hw)
2248{
2249        uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2250        uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2251        uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE);
2252
2253        /*
2254         * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2255         * by FW, so do nothing for INTX.
2256         */
2257        if (hw->intr_mode == CSIO_IM_MSIX)
2258                csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2259                                   AIVEC(AIVEC_MASK), vec);
2260        else if (hw->intr_mode == CSIO_IM_MSI)
2261                csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2262                                   AIVEC(AIVEC_MASK), 0);
2263
2264        csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE));
2265
2266        /* Turn on MB interrupts - this will internally flush PIO as well */
2267        csio_mb_intr_enable(hw);
2268
2269        /* These are common registers - only a master can modify them */
2270        if (csio_is_hw_master(hw)) {
2271                /*
2272                 * Disable the Serial FLASH interrupt, if enabled!
2273                 */
2274                pl &= (~SF);
2275                csio_wr_reg32(hw, pl, PL_INT_ENABLE);
2276
2277                csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE |
2278                              EGRESS_SIZE_ERR | ERR_INVALID_CIDX_INC |
2279                              ERR_CPL_OPCODE_0 | ERR_DROPPED_DB |
2280                              ERR_DATA_CPL_ON_HIGH_QID1 |
2281                              ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
2282                              ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
2283                              ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
2284                              ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR,
2285                              SGE_INT_ENABLE3);
2286                csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf);
2287        }
2288
2289        hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2290
2291}
2292
2293/*
2294 * csio_hw_intr_disable - Disable HW interrupts
2295 * @hw: Pointer to HW module.
2296 *
2297 * Turn off Mailbox and PCI_PF_CFG interrupts.
2298 */
2299void
2300csio_hw_intr_disable(struct csio_hw *hw)
2301{
2302        uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2303
2304        if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2305                return;
2306
2307        hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2308
2309        csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE));
2310        if (csio_is_hw_master(hw))
2311                csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0);
2312
2313        /* Turn off MB interrupts */
2314        csio_mb_intr_disable(hw);
2315
2316}
2317
2318void
2319csio_hw_fatal_err(struct csio_hw *hw)
2320{
2321        csio_set_reg_field(hw, SGE_CONTROL, GLOBALENABLE, 0);
2322        csio_hw_intr_disable(hw);
2323
2324        /* Do not reset HW, we may need FW state for debugging */
2325        csio_fatal(hw, "HW Fatal error encountered!\n");
2326}
2327
2328/*****************************************************************************/
2329/* START: HW SM                                                              */
2330/*****************************************************************************/
2331/*
2332 * csio_hws_uninit - Uninit state
2333 * @hw - HW module
2334 * @evt - Event
2335 *
2336 */
2337static void
2338csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2339{
2340        hw->prev_evt = hw->cur_evt;
2341        hw->cur_evt = evt;
2342        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2343
2344        switch (evt) {
2345        case CSIO_HWE_CFG:
2346                csio_set_state(&hw->sm, csio_hws_configuring);
2347                csio_hw_configure(hw);
2348                break;
2349
2350        default:
2351                CSIO_INC_STATS(hw, n_evt_unexp);
2352                break;
2353        }
2354}
2355
2356/*
2357 * csio_hws_configuring - Configuring state
2358 * @hw - HW module
2359 * @evt - Event
2360 *
2361 */
2362static void
2363csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2364{
2365        hw->prev_evt = hw->cur_evt;
2366        hw->cur_evt = evt;
2367        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2368
2369        switch (evt) {
2370        case CSIO_HWE_INIT:
2371                csio_set_state(&hw->sm, csio_hws_initializing);
2372                csio_hw_initialize(hw);
2373                break;
2374
2375        case CSIO_HWE_INIT_DONE:
2376                csio_set_state(&hw->sm, csio_hws_ready);
2377                /* Fan out event to all lnode SMs */
2378                csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2379                break;
2380
2381        case CSIO_HWE_FATAL:
2382                csio_set_state(&hw->sm, csio_hws_uninit);
2383                break;
2384
2385        case CSIO_HWE_PCI_REMOVE:
2386                csio_do_bye(hw);
2387                break;
2388        default:
2389                CSIO_INC_STATS(hw, n_evt_unexp);
2390                break;
2391        }
2392}
2393
2394/*
2395 * csio_hws_initializing - Initialiazing state
2396 * @hw - HW module
2397 * @evt - Event
2398 *
2399 */
2400static void
2401csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2402{
2403        hw->prev_evt = hw->cur_evt;
2404        hw->cur_evt = evt;
2405        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2406
2407        switch (evt) {
2408        case CSIO_HWE_INIT_DONE:
2409                csio_set_state(&hw->sm, csio_hws_ready);
2410
2411                /* Fan out event to all lnode SMs */
2412                csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2413
2414                /* Enable interrupts */
2415                csio_hw_intr_enable(hw);
2416                break;
2417
2418        case CSIO_HWE_FATAL:
2419                csio_set_state(&hw->sm, csio_hws_uninit);
2420                break;
2421
2422        case CSIO_HWE_PCI_REMOVE:
2423                csio_do_bye(hw);
2424                break;
2425
2426        default:
2427                CSIO_INC_STATS(hw, n_evt_unexp);
2428                break;
2429        }
2430}
2431
2432/*
2433 * csio_hws_ready - Ready state
2434 * @hw - HW module
2435 * @evt - Event
2436 *
2437 */
2438static void
2439csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2440{
2441        /* Remember the event */
2442        hw->evtflag = evt;
2443
2444        hw->prev_evt = hw->cur_evt;
2445        hw->cur_evt = evt;
2446        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2447
2448        switch (evt) {
2449        case CSIO_HWE_HBA_RESET:
2450        case CSIO_HWE_FW_DLOAD:
2451        case CSIO_HWE_SUSPEND:
2452        case CSIO_HWE_PCI_REMOVE:
2453        case CSIO_HWE_PCIERR_DETECTED:
2454                csio_set_state(&hw->sm, csio_hws_quiescing);
2455                /* cleanup all outstanding cmds */
2456                if (evt == CSIO_HWE_HBA_RESET ||
2457                    evt == CSIO_HWE_PCIERR_DETECTED)
2458                        csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2459                else
2460                        csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2461
2462                csio_hw_intr_disable(hw);
2463                csio_hw_mbm_cleanup(hw);
2464                csio_evtq_stop(hw);
2465                csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2466                csio_evtq_flush(hw);
2467                csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2468                csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2469                break;
2470
2471        case CSIO_HWE_FATAL:
2472                csio_set_state(&hw->sm, csio_hws_uninit);
2473                break;
2474
2475        default:
2476                CSIO_INC_STATS(hw, n_evt_unexp);
2477                break;
2478        }
2479}
2480
2481/*
2482 * csio_hws_quiescing - Quiescing state
2483 * @hw - HW module
2484 * @evt - Event
2485 *
2486 */
2487static void
2488csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2489{
2490        hw->prev_evt = hw->cur_evt;
2491        hw->cur_evt = evt;
2492        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2493
2494        switch (evt) {
2495        case CSIO_HWE_QUIESCED:
2496                switch (hw->evtflag) {
2497                case CSIO_HWE_FW_DLOAD:
2498                        csio_set_state(&hw->sm, csio_hws_resetting);
2499                        /* Download firmware */
2500                        /* Fall through */
2501
2502                case CSIO_HWE_HBA_RESET:
2503                        csio_set_state(&hw->sm, csio_hws_resetting);
2504                        /* Start reset of the HBA */
2505                        csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2506                        csio_wr_destroy_queues(hw, false);
2507                        csio_do_reset(hw, false);
2508                        csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2509                        break;
2510
2511                case CSIO_HWE_PCI_REMOVE:
2512                        csio_set_state(&hw->sm, csio_hws_removing);
2513                        csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2514                        csio_wr_destroy_queues(hw, true);
2515                        /* Now send the bye command */
2516                        csio_do_bye(hw);
2517                        break;
2518
2519                case CSIO_HWE_SUSPEND:
2520                        csio_set_state(&hw->sm, csio_hws_quiesced);
2521                        break;
2522
2523                case CSIO_HWE_PCIERR_DETECTED:
2524                        csio_set_state(&hw->sm, csio_hws_pcierr);
2525                        csio_wr_destroy_queues(hw, false);
2526                        break;
2527
2528                default:
2529                        CSIO_INC_STATS(hw, n_evt_unexp);
2530                        break;
2531
2532                }
2533                break;
2534
2535        default:
2536                CSIO_INC_STATS(hw, n_evt_unexp);
2537                break;
2538        }
2539}
2540
2541/*
2542 * csio_hws_quiesced - Quiesced state
2543 * @hw - HW module
2544 * @evt - Event
2545 *
2546 */
2547static void
2548csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2549{
2550        hw->prev_evt = hw->cur_evt;
2551        hw->cur_evt = evt;
2552        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2553
2554        switch (evt) {
2555        case CSIO_HWE_RESUME:
2556                csio_set_state(&hw->sm, csio_hws_configuring);
2557                csio_hw_configure(hw);
2558                break;
2559
2560        default:
2561                CSIO_INC_STATS(hw, n_evt_unexp);
2562                break;
2563        }
2564}
2565
2566/*
2567 * csio_hws_resetting - HW Resetting state
2568 * @hw - HW module
2569 * @evt - Event
2570 *
2571 */
2572static void
2573csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2574{
2575        hw->prev_evt = hw->cur_evt;
2576        hw->cur_evt = evt;
2577        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2578
2579        switch (evt) {
2580        case CSIO_HWE_HBA_RESET_DONE:
2581                csio_evtq_start(hw);
2582                csio_set_state(&hw->sm, csio_hws_configuring);
2583                csio_hw_configure(hw);
2584                break;
2585
2586        default:
2587                CSIO_INC_STATS(hw, n_evt_unexp);
2588                break;
2589        }
2590}
2591
2592/*
2593 * csio_hws_removing - PCI Hotplug removing state
2594 * @hw - HW module
2595 * @evt - Event
2596 *
2597 */
2598static void
2599csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2600{
2601        hw->prev_evt = hw->cur_evt;
2602        hw->cur_evt = evt;
2603        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2604
2605        switch (evt) {
2606        case CSIO_HWE_HBA_RESET:
2607                if (!csio_is_hw_master(hw))
2608                        break;
2609                /*
2610                 * The BYE should have alerady been issued, so we cant
2611                 * use the mailbox interface. Hence we use the PL_RST
2612                 * register directly.
2613                 */
2614                csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2615                csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
2616                mdelay(2000);
2617                break;
2618
2619        /* Should never receive any new events */
2620        default:
2621                CSIO_INC_STATS(hw, n_evt_unexp);
2622                break;
2623
2624        }
2625}
2626
2627/*
2628 * csio_hws_pcierr - PCI Error state
2629 * @hw - HW module
2630 * @evt - Event
2631 *
2632 */
2633static void
2634csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2635{
2636        hw->prev_evt = hw->cur_evt;
2637        hw->cur_evt = evt;
2638        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2639
2640        switch (evt) {
2641        case CSIO_HWE_PCIERR_SLOT_RESET:
2642                csio_evtq_start(hw);
2643                csio_set_state(&hw->sm, csio_hws_configuring);
2644                csio_hw_configure(hw);
2645                break;
2646
2647        default:
2648                CSIO_INC_STATS(hw, n_evt_unexp);
2649                break;
2650        }
2651}
2652
2653/*****************************************************************************/
2654/* END: HW SM                                                                */
2655/*****************************************************************************/
2656
2657/*
2658 *      csio_handle_intr_status - table driven interrupt handler
2659 *      @hw: HW instance
2660 *      @reg: the interrupt status register to process
2661 *      @acts: table of interrupt actions
2662 *
2663 *      A table driven interrupt handler that applies a set of masks to an
2664 *      interrupt status word and performs the corresponding actions if the
2665 *      interrupts described by the mask have occured.  The actions include
2666 *      optionally emitting a warning or alert message. The table is terminated
2667 *      by an entry specifying mask 0.  Returns the number of fatal interrupt
2668 *      conditions.
2669 */
2670int
2671csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2672                                 const struct intr_info *acts)
2673{
2674        int fatal = 0;
2675        unsigned int mask = 0;
2676        unsigned int status = csio_rd_reg32(hw, reg);
2677
2678        for ( ; acts->mask; ++acts) {
2679                if (!(status & acts->mask))
2680                        continue;
2681                if (acts->fatal) {
2682                        fatal++;
2683                        csio_fatal(hw, "Fatal %s (0x%x)\n",
2684                                    acts->msg, status & acts->mask);
2685                } else if (acts->msg)
2686                        csio_info(hw, "%s (0x%x)\n",
2687                                    acts->msg, status & acts->mask);
2688                mask |= acts->mask;
2689        }
2690        status &= mask;
2691        if (status)                           /* clear processed interrupts */
2692                csio_wr_reg32(hw, status, reg);
2693        return fatal;
2694}
2695
2696/*
2697 * TP interrupt handler.
2698 */
2699static void csio_tp_intr_handler(struct csio_hw *hw)
2700{
2701        static struct intr_info tp_intr_info[] = {
2702                { 0x3fffffff, "TP parity error", -1, 1 },
2703                { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2704                { 0, NULL, 0, 0 }
2705        };
2706
2707        if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info))
2708                csio_hw_fatal_err(hw);
2709}
2710
2711/*
2712 * SGE interrupt handler.
2713 */
2714static void csio_sge_intr_handler(struct csio_hw *hw)
2715{
2716        uint64_t v;
2717
2718        static struct intr_info sge_intr_info[] = {
2719                { ERR_CPL_EXCEED_IQE_SIZE,
2720                  "SGE received CPL exceeding IQE size", -1, 1 },
2721                { ERR_INVALID_CIDX_INC,
2722                  "SGE GTS CIDX increment too large", -1, 0 },
2723                { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
2724                { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
2725                { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
2726                  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2727                { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
2728                  0 },
2729                { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
2730                  0 },
2731                { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
2732                  0 },
2733                { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
2734                  0 },
2735                { ERR_ING_CTXT_PRIO,
2736                  "SGE too many priority ingress contexts", -1, 0 },
2737                { ERR_EGR_CTXT_PRIO,
2738                  "SGE too many priority egress contexts", -1, 0 },
2739                { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
2740                { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
2741                { 0, NULL, 0, 0 }
2742        };
2743
2744        v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1) |
2745            ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2) << 32);
2746        if (v) {
2747                csio_fatal(hw, "SGE parity error (%#llx)\n",
2748                            (unsigned long long)v);
2749                csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2750                                                SGE_INT_CAUSE1);
2751                csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2);
2752        }
2753
2754        v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info);
2755
2756        if (csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info) ||
2757            v != 0)
2758                csio_hw_fatal_err(hw);
2759}
2760
2761#define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\
2762                      OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR)
2763#define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\
2764                      IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR)
2765
2766/*
2767 * CIM interrupt handler.
2768 */
2769static void csio_cim_intr_handler(struct csio_hw *hw)
2770{
2771        static struct intr_info cim_intr_info[] = {
2772                { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2773                { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2774                { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2775                { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2776                { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2777                { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2778                { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2779                { 0, NULL, 0, 0 }
2780        };
2781        static struct intr_info cim_upintr_info[] = {
2782                { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2783                { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2784                { ILLWRINT, "CIM illegal write", -1, 1 },
2785                { ILLRDINT, "CIM illegal read", -1, 1 },
2786                { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2787                { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2788                { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2789                { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2790                { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2791                { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2792                { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2793                { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2794                { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2795                { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2796                { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2797                { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2798                { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2799                { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2800                { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2801                { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2802                { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2803                { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2804                { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2805                { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2806                { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2807                { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2808                { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2809                { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2810                { 0, NULL, 0, 0 }
2811        };
2812
2813        int fat;
2814
2815        fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE,
2816                                    cim_intr_info) +
2817              csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE,
2818                                    cim_upintr_info);
2819        if (fat)
2820                csio_hw_fatal_err(hw);
2821}
2822
2823/*
2824 * ULP RX interrupt handler.
2825 */
2826static void csio_ulprx_intr_handler(struct csio_hw *hw)
2827{
2828        static struct intr_info ulprx_intr_info[] = {
2829                { 0x1800000, "ULPRX context error", -1, 1 },
2830                { 0x7fffff, "ULPRX parity error", -1, 1 },
2831                { 0, NULL, 0, 0 }
2832        };
2833
2834        if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info))
2835                csio_hw_fatal_err(hw);
2836}
2837
2838/*
2839 * ULP TX interrupt handler.
2840 */
2841static void csio_ulptx_intr_handler(struct csio_hw *hw)
2842{
2843        static struct intr_info ulptx_intr_info[] = {
2844                { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2845                  0 },
2846                { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2847                  0 },
2848                { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2849                  0 },
2850                { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2851                  0 },
2852                { 0xfffffff, "ULPTX parity error", -1, 1 },
2853                { 0, NULL, 0, 0 }
2854        };
2855
2856        if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info))
2857                csio_hw_fatal_err(hw);
2858}
2859
2860/*
2861 * PM TX interrupt handler.
2862 */
2863static void csio_pmtx_intr_handler(struct csio_hw *hw)
2864{
2865        static struct intr_info pmtx_intr_info[] = {
2866                { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2867                { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2868                { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2869                { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2870                { 0xffffff0, "PMTX framing error", -1, 1 },
2871                { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2872                { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2873                  1 },
2874                { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2875                { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2876                { 0, NULL, 0, 0 }
2877        };
2878
2879        if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info))
2880                csio_hw_fatal_err(hw);
2881}
2882
2883/*
2884 * PM RX interrupt handler.
2885 */
2886static void csio_pmrx_intr_handler(struct csio_hw *hw)
2887{
2888        static struct intr_info pmrx_intr_info[] = {
2889                { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2890                { 0x3ffff0, "PMRX framing error", -1, 1 },
2891                { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2892                { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2893                  1 },
2894                { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2895                { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2896                { 0, NULL, 0, 0 }
2897        };
2898
2899        if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info))
2900                csio_hw_fatal_err(hw);
2901}
2902
2903/*
2904 * CPL switch interrupt handler.
2905 */
2906static void csio_cplsw_intr_handler(struct csio_hw *hw)
2907{
2908        static struct intr_info cplsw_intr_info[] = {
2909                { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2910                { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2911                { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2912                { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2913                { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2914                { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2915                { 0, NULL, 0, 0 }
2916        };
2917
2918        if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info))
2919                csio_hw_fatal_err(hw);
2920}
2921
2922/*
2923 * LE interrupt handler.
2924 */
2925static void csio_le_intr_handler(struct csio_hw *hw)
2926{
2927        static struct intr_info le_intr_info[] = {
2928                { LIPMISS, "LE LIP miss", -1, 0 },
2929                { LIP0, "LE 0 LIP error", -1, 0 },
2930                { PARITYERR, "LE parity error", -1, 1 },
2931                { UNKNOWNCMD, "LE unknown command", -1, 1 },
2932                { REQQPARERR, "LE request queue parity error", -1, 1 },
2933                { 0, NULL, 0, 0 }
2934        };
2935
2936        if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info))
2937                csio_hw_fatal_err(hw);
2938}
2939
2940/*
2941 * MPS interrupt handler.
2942 */
2943static void csio_mps_intr_handler(struct csio_hw *hw)
2944{
2945        static struct intr_info mps_rx_intr_info[] = {
2946                { 0xffffff, "MPS Rx parity error", -1, 1 },
2947                { 0, NULL, 0, 0 }
2948        };
2949        static struct intr_info mps_tx_intr_info[] = {
2950                { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
2951                { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2952                { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
2953                { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
2954                { BUBBLE, "MPS Tx underflow", -1, 1 },
2955                { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2956                { FRMERR, "MPS Tx framing error", -1, 1 },
2957                { 0, NULL, 0, 0 }
2958        };
2959        static struct intr_info mps_trc_intr_info[] = {
2960                { FILTMEM, "MPS TRC filter parity error", -1, 1 },
2961                { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
2962                { MISCPERR, "MPS TRC misc parity error", -1, 1 },
2963                { 0, NULL, 0, 0 }
2964        };
2965        static struct intr_info mps_stat_sram_intr_info[] = {
2966                { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2967                { 0, NULL, 0, 0 }
2968        };
2969        static struct intr_info mps_stat_tx_intr_info[] = {
2970                { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2971                { 0, NULL, 0, 0 }
2972        };
2973        static struct intr_info mps_stat_rx_intr_info[] = {
2974                { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2975                { 0, NULL, 0, 0 }
2976        };
2977        static struct intr_info mps_cls_intr_info[] = {
2978                { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2979                { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2980                { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2981                { 0, NULL, 0, 0 }
2982        };
2983
2984        int fat;
2985
2986        fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE,
2987                                    mps_rx_intr_info) +
2988              csio_handle_intr_status(hw, MPS_TX_INT_CAUSE,
2989                                    mps_tx_intr_info) +
2990              csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE,
2991                                    mps_trc_intr_info) +
2992              csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM,
2993                                    mps_stat_sram_intr_info) +
2994              csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2995                                    mps_stat_tx_intr_info) +
2996              csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2997                                    mps_stat_rx_intr_info) +
2998              csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE,
2999                                    mps_cls_intr_info);
3000
3001        csio_wr_reg32(hw, 0, MPS_INT_CAUSE);
3002        csio_rd_reg32(hw, MPS_INT_CAUSE);                    /* flush */
3003        if (fat)
3004                csio_hw_fatal_err(hw);
3005}
3006
3007#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
3008
3009/*
3010 * EDC/MC interrupt handler.
3011 */
3012static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3013{
3014        static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3015
3016        unsigned int addr, cnt_addr, v;
3017
3018        if (idx <= MEM_EDC1) {
3019                addr = EDC_REG(EDC_INT_CAUSE, idx);
3020                cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
3021        } else {
3022                addr = MC_INT_CAUSE;
3023                cnt_addr = MC_ECC_STATUS;
3024        }
3025
3026        v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3027        if (v & PERR_INT_CAUSE)
3028                csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3029        if (v & ECC_CE_INT_CAUSE) {
3030                uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr));
3031
3032                csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr);
3033                csio_warn(hw, "%u %s correctable ECC data error%s\n",
3034                            cnt, name[idx], cnt > 1 ? "s" : "");
3035        }
3036        if (v & ECC_UE_INT_CAUSE)
3037                csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3038
3039        csio_wr_reg32(hw, v, addr);
3040        if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
3041                csio_hw_fatal_err(hw);
3042}
3043
3044/*
3045 * MA interrupt handler.
3046 */
3047static void csio_ma_intr_handler(struct csio_hw *hw)
3048{
3049        uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE);
3050
3051        if (status & MEM_PERR_INT_CAUSE)
3052                csio_fatal(hw, "MA parity error, parity status %#x\n",
3053                            csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS));
3054        if (status & MEM_WRAP_INT_CAUSE) {
3055                v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS);
3056                csio_fatal(hw,
3057                   "MA address wrap-around error by client %u to address %#x\n",
3058                   MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4);
3059        }
3060        csio_wr_reg32(hw, status, MA_INT_CAUSE);
3061        csio_hw_fatal_err(hw);
3062}
3063
3064/*
3065 * SMB interrupt handler.
3066 */
3067static void csio_smb_intr_handler(struct csio_hw *hw)
3068{
3069        static struct intr_info smb_intr_info[] = {
3070                { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
3071                { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
3072                { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
3073                { 0, NULL, 0, 0 }
3074        };
3075
3076        if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info))
3077                csio_hw_fatal_err(hw);
3078}
3079
3080/*
3081 * NC-SI interrupt handler.
3082 */
3083static void csio_ncsi_intr_handler(struct csio_hw *hw)
3084{
3085        static struct intr_info ncsi_intr_info[] = {
3086                { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
3087                { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
3088                { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
3089                { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
3090                { 0, NULL, 0, 0 }
3091        };
3092
3093        if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info))
3094                csio_hw_fatal_err(hw);
3095}
3096
3097/*
3098 * XGMAC interrupt handler.
3099 */
3100static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3101{
3102        uint32_t v = csio_rd_reg32(hw, CSIO_MAC_INT_CAUSE_REG(hw, port));
3103
3104        v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
3105        if (!v)
3106                return;
3107
3108        if (v & TXFIFO_PRTY_ERR)
3109                csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3110        if (v & RXFIFO_PRTY_ERR)
3111                csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3112        csio_wr_reg32(hw, v, CSIO_MAC_INT_CAUSE_REG(hw, port));
3113        csio_hw_fatal_err(hw);
3114}
3115
3116/*
3117 * PL interrupt handler.
3118 */
3119static void csio_pl_intr_handler(struct csio_hw *hw)
3120{
3121        static struct intr_info pl_intr_info[] = {
3122                { FATALPERR, "T4 fatal parity error", -1, 1 },
3123                { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
3124                { 0, NULL, 0, 0 }
3125        };
3126
3127        if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info))
3128                csio_hw_fatal_err(hw);
3129}
3130
3131/*
3132 *      csio_hw_slow_intr_handler - control path interrupt handler
3133 *      @hw: HW module
3134 *
3135 *      Interrupt handler for non-data global interrupt events, e.g., errors.
3136 *      The designation 'slow' is because it involves register reads, while
3137 *      data interrupts typically don't involve any MMIOs.
3138 */
3139int
3140csio_hw_slow_intr_handler(struct csio_hw *hw)
3141{
3142        uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE);
3143
3144        if (!(cause & CSIO_GLBL_INTR_MASK)) {
3145                CSIO_INC_STATS(hw, n_plint_unexp);
3146                return 0;
3147        }
3148
3149        csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3150
3151        CSIO_INC_STATS(hw, n_plint_cnt);
3152
3153        if (cause & CIM)
3154                csio_cim_intr_handler(hw);
3155
3156        if (cause & MPS)
3157                csio_mps_intr_handler(hw);
3158
3159        if (cause & NCSI)
3160                csio_ncsi_intr_handler(hw);
3161
3162        if (cause & PL)
3163                csio_pl_intr_handler(hw);
3164
3165        if (cause & SMB)
3166                csio_smb_intr_handler(hw);
3167
3168        if (cause & XGMAC0)
3169                csio_xgmac_intr_handler(hw, 0);
3170
3171        if (cause & XGMAC1)
3172                csio_xgmac_intr_handler(hw, 1);
3173
3174        if (cause & XGMAC_KR0)
3175                csio_xgmac_intr_handler(hw, 2);
3176
3177        if (cause & XGMAC_KR1)
3178                csio_xgmac_intr_handler(hw, 3);
3179
3180        if (cause & PCIE)
3181                hw->chip_ops->chip_pcie_intr_handler(hw);
3182
3183        if (cause & MC)
3184                csio_mem_intr_handler(hw, MEM_MC);
3185
3186        if (cause & EDC0)
3187                csio_mem_intr_handler(hw, MEM_EDC0);
3188
3189        if (cause & EDC1)
3190                csio_mem_intr_handler(hw, MEM_EDC1);
3191
3192        if (cause & LE)
3193                csio_le_intr_handler(hw);
3194
3195        if (cause & TP)
3196                csio_tp_intr_handler(hw);
3197
3198        if (cause & MA)
3199                csio_ma_intr_handler(hw);
3200
3201        if (cause & PM_TX)
3202                csio_pmtx_intr_handler(hw);
3203
3204        if (cause & PM_RX)
3205                csio_pmrx_intr_handler(hw);
3206
3207        if (cause & ULP_RX)
3208                csio_ulprx_intr_handler(hw);
3209
3210        if (cause & CPL_SWITCH)
3211                csio_cplsw_intr_handler(hw);
3212
3213        if (cause & SGE)
3214                csio_sge_intr_handler(hw);
3215
3216        if (cause & ULP_TX)
3217                csio_ulptx_intr_handler(hw);
3218
3219        /* Clear the interrupts just processed for which we are the master. */
3220        csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE);
3221        csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */
3222
3223        return 1;
3224}
3225
3226/*****************************************************************************
3227 * HW <--> mailbox interfacing routines.
3228 ****************************************************************************/
3229/*
3230 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3231 *
3232 * @data: Private data pointer.
3233 *
3234 * Called from worker thread context.
3235 */
3236static void
3237csio_mberr_worker(void *data)
3238{
3239        struct csio_hw *hw = (struct csio_hw *)data;
3240        struct csio_mbm *mbm = &hw->mbm;
3241        LIST_HEAD(cbfn_q);
3242        struct csio_mb *mbp_next;
3243        int rv;
3244
3245        del_timer_sync(&mbm->timer);
3246
3247        spin_lock_irq(&hw->lock);
3248        if (list_empty(&mbm->cbfn_q)) {
3249                spin_unlock_irq(&hw->lock);
3250                return;
3251        }
3252
3253        list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3254        mbm->stats.n_cbfnq = 0;
3255
3256        /* Try to start waiting mailboxes */
3257        if (!list_empty(&mbm->req_q)) {
3258                mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3259                list_del_init(&mbp_next->list);
3260
3261                rv = csio_mb_issue(hw, mbp_next);
3262                if (rv != 0)
3263                        list_add_tail(&mbp_next->list, &mbm->req_q);
3264                else
3265                        CSIO_DEC_STATS(mbm, n_activeq);
3266        }
3267        spin_unlock_irq(&hw->lock);
3268
3269        /* Now callback completions */
3270        csio_mb_completions(hw, &cbfn_q);
3271}
3272
3273/*
3274 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3275 *
3276 * @data: private data pointer
3277 *
3278 **/
3279static void
3280csio_hw_mb_timer(uintptr_t data)
3281{
3282        struct csio_hw *hw = (struct csio_hw *)data;
3283        struct csio_mb *mbp = NULL;
3284
3285        spin_lock_irq(&hw->lock);
3286        mbp = csio_mb_tmo_handler(hw);
3287        spin_unlock_irq(&hw->lock);
3288
3289        /* Call back the function for the timed-out Mailbox */
3290        if (mbp)
3291                mbp->mb_cbfn(hw, mbp);
3292
3293}
3294
3295/*
3296 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3297 * @hw: HW module
3298 *
3299 * Called with lock held, should exit with lock held.
3300 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3301 * into a local queue. Drops lock and calls the completions. Holds
3302 * lock and returns.
3303 */
3304static void
3305csio_hw_mbm_cleanup(struct csio_hw *hw)
3306{
3307        LIST_HEAD(cbfn_q);
3308
3309        csio_mb_cancel_all(hw, &cbfn_q);
3310
3311        spin_unlock_irq(&hw->lock);
3312        csio_mb_completions(hw, &cbfn_q);
3313        spin_lock_irq(&hw->lock);
3314}
3315
3316/*****************************************************************************
3317 * Event handling
3318 ****************************************************************************/
3319int
3320csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3321                        uint16_t len)
3322{
3323        struct csio_evt_msg *evt_entry = NULL;
3324
3325        if (type >= CSIO_EVT_MAX)
3326                return -EINVAL;
3327
3328        if (len > CSIO_EVT_MSG_SIZE)
3329                return -EINVAL;
3330
3331        if (hw->flags & CSIO_HWF_FWEVT_STOP)
3332                return -EINVAL;
3333
3334        if (list_empty(&hw->evt_free_q)) {
3335                csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3336                         type, len);
3337                return -ENOMEM;
3338        }
3339
3340        evt_entry = list_first_entry(&hw->evt_free_q,
3341                                     struct csio_evt_msg, list);
3342        list_del_init(&evt_entry->list);
3343
3344        /* copy event msg and queue the event */
3345        evt_entry->type = type;
3346        memcpy((void *)evt_entry->data, evt_msg, len);
3347        list_add_tail(&evt_entry->list, &hw->evt_active_q);
3348
3349        CSIO_DEC_STATS(hw, n_evt_freeq);
3350        CSIO_INC_STATS(hw, n_evt_activeq);
3351
3352        return 0;
3353}
3354
3355static int
3356csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3357                        uint16_t len, bool msg_sg)
3358{
3359        struct csio_evt_msg *evt_entry = NULL;
3360        struct csio_fl_dma_buf *fl_sg;
3361        uint32_t off = 0;
3362        unsigned long flags;
3363        int n, ret = 0;
3364
3365        if (type >= CSIO_EVT_MAX)
3366                return -EINVAL;
3367
3368        if (len > CSIO_EVT_MSG_SIZE)
3369                return -EINVAL;
3370
3371        spin_lock_irqsave(&hw->lock, flags);
3372        if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3373                ret = -EINVAL;
3374                goto out;
3375        }
3376
3377        if (list_empty(&hw->evt_free_q)) {
3378                csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3379                         type, len);
3380                ret = -ENOMEM;
3381                goto out;
3382        }
3383
3384        evt_entry = list_first_entry(&hw->evt_free_q,
3385                                     struct csio_evt_msg, list);
3386        list_del_init(&evt_entry->list);
3387
3388        /* copy event msg and queue the event */
3389        evt_entry->type = type;
3390
3391        /* If Payload in SG list*/
3392        if (msg_sg) {
3393                fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3394                for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3395                        memcpy((void *)((uintptr_t)evt_entry->data + off),
3396                                fl_sg->flbufs[n].vaddr,
3397                                fl_sg->flbufs[n].len);
3398                        off += fl_sg->flbufs[n].len;
3399                }
3400        } else
3401                memcpy((void *)evt_entry->data, evt_msg, len);
3402
3403        list_add_tail(&evt_entry->list, &hw->evt_active_q);
3404        CSIO_DEC_STATS(hw, n_evt_freeq);
3405        CSIO_INC_STATS(hw, n_evt_activeq);
3406out:
3407        spin_unlock_irqrestore(&hw->lock, flags);
3408        return ret;
3409}
3410
3411static void
3412csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3413{
3414        if (evt_entry) {
3415                spin_lock_irq(&hw->lock);
3416                list_del_init(&evt_entry->list);
3417                list_add_tail(&evt_entry->list, &hw->evt_free_q);
3418                CSIO_DEC_STATS(hw, n_evt_activeq);
3419                CSIO_INC_STATS(hw, n_evt_freeq);
3420                spin_unlock_irq(&hw->lock);
3421        }
3422}
3423
3424void
3425csio_evtq_flush(struct csio_hw *hw)
3426{
3427        uint32_t count;
3428        count = 30;
3429        while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3430                spin_unlock_irq(&hw->lock);
3431                msleep(2000);
3432                spin_lock_irq(&hw->lock);
3433        }
3434
3435        CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3436}
3437
3438static void
3439csio_evtq_stop(struct csio_hw *hw)
3440{
3441        hw->flags |= CSIO_HWF_FWEVT_STOP;
3442}
3443
3444static void
3445csio_evtq_start(struct csio_hw *hw)
3446{
3447        hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3448}
3449
3450static void
3451csio_evtq_cleanup(struct csio_hw *hw)
3452{
3453        struct list_head *evt_entry, *next_entry;
3454
3455        /* Release outstanding events from activeq to freeq*/
3456        if (!list_empty(&hw->evt_active_q))
3457                list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3458
3459        hw->stats.n_evt_activeq = 0;
3460        hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3461
3462        /* Freeup event entry */
3463        list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3464                kfree(evt_entry);
3465                CSIO_DEC_STATS(hw, n_evt_freeq);
3466        }
3467
3468        hw->stats.n_evt_freeq = 0;
3469}
3470
3471
3472static void
3473csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3474                          struct csio_fl_dma_buf *flb, void *priv)
3475{
3476        __u8 op;
3477        void *msg = NULL;
3478        uint32_t msg_len = 0;
3479        bool msg_sg = 0;
3480
3481        op = ((struct rss_header *) wr)->opcode;
3482        if (op == CPL_FW6_PLD) {
3483                CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3484                if (!flb || !flb->totlen) {
3485                        CSIO_INC_STATS(hw, n_cpl_unexp);
3486                        return;
3487                }
3488
3489                msg = (void *) flb;
3490                msg_len = flb->totlen;
3491                msg_sg = 1;
3492        } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3493
3494                CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3495                /* skip RSS header */
3496                msg = (void *)((uintptr_t)wr + sizeof(__be64));
3497                msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3498                           sizeof(struct cpl_fw4_msg);
3499        } else {
3500                csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3501                CSIO_INC_STATS(hw, n_cpl_unexp);
3502                return;
3503        }
3504
3505        /*
3506         * Enqueue event to EventQ. Events processing happens
3507         * in Event worker thread context
3508         */
3509        if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3510                                  (uint16_t)msg_len, msg_sg))
3511                CSIO_INC_STATS(hw, n_evt_drop);
3512}
3513
3514void
3515csio_evtq_worker(struct work_struct *work)
3516{
3517        struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3518        struct list_head *evt_entry, *next_entry;
3519        LIST_HEAD(evt_q);
3520        struct csio_evt_msg     *evt_msg;
3521        struct cpl_fw6_msg *msg;
3522        struct csio_rnode *rn;
3523        int rv = 0;
3524        uint8_t evtq_stop = 0;
3525
3526        csio_dbg(hw, "event worker thread active evts#%d\n",
3527                 hw->stats.n_evt_activeq);
3528
3529        spin_lock_irq(&hw->lock);
3530        while (!list_empty(&hw->evt_active_q)) {
3531                list_splice_tail_init(&hw->evt_active_q, &evt_q);
3532                spin_unlock_irq(&hw->lock);
3533
3534                list_for_each_safe(evt_entry, next_entry, &evt_q) {
3535                        evt_msg = (struct csio_evt_msg *) evt_entry;
3536
3537                        /* Drop events if queue is STOPPED */
3538                        spin_lock_irq(&hw->lock);
3539                        if (hw->flags & CSIO_HWF_FWEVT_STOP)
3540                                evtq_stop = 1;
3541                        spin_unlock_irq(&hw->lock);
3542                        if (evtq_stop) {
3543                                CSIO_INC_STATS(hw, n_evt_drop);
3544                                goto free_evt;
3545                        }
3546
3547                        switch (evt_msg->type) {
3548                        case CSIO_EVT_FW:
3549                                msg = (struct cpl_fw6_msg *)(evt_msg->data);
3550
3551                                if ((msg->opcode == CPL_FW6_MSG ||
3552                                     msg->opcode == CPL_FW4_MSG) &&
3553                                    !msg->type) {
3554                                        rv = csio_mb_fwevt_handler(hw,
3555                                                                msg->data);
3556                                        if (!rv)
3557                                                break;
3558                                        /* Handle any remaining fw events */
3559                                        csio_fcoe_fwevt_handler(hw,
3560                                                        msg->opcode, msg->data);
3561                                } else if (msg->opcode == CPL_FW6_PLD) {
3562
3563                                        csio_fcoe_fwevt_handler(hw,
3564                                                        msg->opcode, msg->data);
3565                                } else {
3566                                        csio_warn(hw,
3567                                             "Unhandled FW msg op %x type %x\n",
3568                                                  msg->opcode, msg->type);
3569                                        CSIO_INC_STATS(hw, n_evt_drop);
3570                                }
3571                                break;
3572
3573                        case CSIO_EVT_MBX:
3574                                csio_mberr_worker(hw);
3575                                break;
3576
3577                        case CSIO_EVT_DEV_LOSS:
3578                                memcpy(&rn, evt_msg->data, sizeof(rn));
3579                                csio_rnode_devloss_handler(rn);
3580                                break;
3581
3582                        default:
3583                                csio_warn(hw, "Unhandled event %x on evtq\n",
3584                                          evt_msg->type);
3585                                CSIO_INC_STATS(hw, n_evt_unexp);
3586                                break;
3587                        }
3588free_evt:
3589                        csio_free_evt(hw, evt_msg);
3590                }
3591
3592                spin_lock_irq(&hw->lock);
3593        }
3594        hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3595        spin_unlock_irq(&hw->lock);
3596}
3597
3598int
3599csio_fwevtq_handler(struct csio_hw *hw)
3600{
3601        int rv;
3602
3603        if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3604                CSIO_INC_STATS(hw, n_int_stray);
3605                return -EINVAL;
3606        }
3607
3608        rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3609                           csio_process_fwevtq_entry, NULL);
3610        return rv;
3611}
3612
3613/****************************************************************************
3614 * Entry points
3615 ****************************************************************************/
3616
3617/* Management module */
3618/*
3619 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3620 * mgmt - mgmt module
3621 * @io_req - io request
3622 *
3623 * Return - 0:if given IO Req exists in active Q.
3624 *          -EINVAL  :if lookup fails.
3625 */
3626int
3627csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3628{
3629        struct list_head *tmp;
3630
3631        /* Lookup ioreq in the ACTIVEQ */
3632        list_for_each(tmp, &mgmtm->active_q) {
3633                if (io_req == (struct csio_ioreq *)tmp)
3634                        return 0;
3635        }
3636        return -EINVAL;
3637}
3638
3639#define ECM_MIN_TMO     1000    /* Minimum timeout value for req */
3640
3641/*
3642 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3643 * @data - Event data.
3644 *
3645 * Return - none.
3646 */
3647static void
3648csio_mgmt_tmo_handler(uintptr_t data)
3649{
3650        struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3651        struct list_head *tmp;
3652        struct csio_ioreq *io_req;
3653
3654        csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3655
3656        spin_lock_irq(&mgmtm->hw->lock);
3657
3658        list_for_each(tmp, &mgmtm->active_q) {
3659                io_req = (struct csio_ioreq *) tmp;
3660                io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3661
3662                if (!io_req->tmo) {
3663                        /* Dequeue the request from retry Q. */
3664                        tmp = csio_list_prev(tmp);
3665                        list_del_init(&io_req->sm.sm_list);
3666                        if (io_req->io_cbfn) {
3667                                /* io_req will be freed by completion handler */
3668                                io_req->wr_status = -ETIMEDOUT;
3669                                io_req->io_cbfn(mgmtm->hw, io_req);
3670                        } else {
3671                                CSIO_DB_ASSERT(0);
3672                        }
3673                }
3674        }
3675
3676        /* If retry queue is not empty, re-arm timer */
3677        if (!list_empty(&mgmtm->active_q))
3678                mod_timer(&mgmtm->mgmt_timer,
3679                          jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3680        spin_unlock_irq(&mgmtm->hw->lock);
3681}
3682
3683static void
3684csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3685{
3686        struct csio_hw *hw = mgmtm->hw;
3687        struct csio_ioreq *io_req;
3688        struct list_head *tmp;
3689        uint32_t count;
3690
3691        count = 30;
3692        /* Wait for all outstanding req to complete gracefully */
3693        while ((!list_empty(&mgmtm->active_q)) && count--) {
3694                spin_unlock_irq(&hw->lock);
3695                msleep(2000);
3696                spin_lock_irq(&hw->lock);
3697        }
3698
3699        /* release outstanding req from ACTIVEQ */
3700        list_for_each(tmp, &mgmtm->active_q) {
3701                io_req = (struct csio_ioreq *) tmp;
3702                tmp = csio_list_prev(tmp);
3703                list_del_init(&io_req->sm.sm_list);
3704                mgmtm->stats.n_active--;
3705                if (io_req->io_cbfn) {
3706                        /* io_req will be freed by completion handler */
3707                        io_req->wr_status = -ETIMEDOUT;
3708                        io_req->io_cbfn(mgmtm->hw, io_req);
3709                }
3710        }
3711}
3712
3713/*
3714 * csio_mgmt_init - Mgmt module init entry point
3715 * @mgmtsm - mgmt module
3716 * @hw   - HW module
3717 *
3718 * Initialize mgmt timer, resource wait queue, active queue,
3719 * completion q. Allocate Egress and Ingress
3720 * WR queues and save off the queue index returned by the WR
3721 * module for future use. Allocate and save off mgmt reqs in the
3722 * mgmt_req_freelist for future use. Make sure their SM is initialized
3723 * to uninit state.
3724 * Returns: 0 - on success
3725 *          -ENOMEM   - on error.
3726 */
3727static int
3728csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3729{
3730        struct timer_list *timer = &mgmtm->mgmt_timer;
3731
3732        init_timer(timer);
3733        timer->function = csio_mgmt_tmo_handler;
3734        timer->data = (unsigned long)mgmtm;
3735
3736        INIT_LIST_HEAD(&mgmtm->active_q);
3737        INIT_LIST_HEAD(&mgmtm->cbfn_q);
3738
3739        mgmtm->hw = hw;
3740        /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3741
3742        return 0;
3743}
3744
3745/*
3746 * csio_mgmtm_exit - MGMT module exit entry point
3747 * @mgmtsm - mgmt module
3748 *
3749 * This function called during MGMT module uninit.
3750 * Stop timers, free ioreqs allocated.
3751 * Returns: None
3752 *
3753 */
3754static void
3755csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3756{
3757        del_timer_sync(&mgmtm->mgmt_timer);
3758}
3759
3760
3761/**
3762 * csio_hw_start - Kicks off the HW State machine
3763 * @hw:         Pointer to HW module.
3764 *
3765 * It is assumed that the initialization is a synchronous operation.
3766 * So when we return afer posting the event, the HW SM should be in
3767 * the ready state, if there were no errors during init.
3768 */
3769int
3770csio_hw_start(struct csio_hw *hw)
3771{
3772        spin_lock_irq(&hw->lock);
3773        csio_post_event(&hw->sm, CSIO_HWE_CFG);
3774        spin_unlock_irq(&hw->lock);
3775
3776        if (csio_is_hw_ready(hw))
3777                return 0;
3778        else
3779                return -EINVAL;
3780}
3781
3782int
3783csio_hw_stop(struct csio_hw *hw)
3784{
3785        csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3786
3787        if (csio_is_hw_removing(hw))
3788                return 0;
3789        else
3790                return -EINVAL;
3791}
3792
3793/* Max reset retries */
3794#define CSIO_MAX_RESET_RETRIES  3
3795
3796/**
3797 * csio_hw_reset - Reset the hardware
3798 * @hw:         HW module.
3799 *
3800 * Caller should hold lock across this function.
3801 */
3802int
3803csio_hw_reset(struct csio_hw *hw)
3804{
3805        if (!csio_is_hw_master(hw))
3806                return -EPERM;
3807
3808        if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3809                csio_dbg(hw, "Max hw reset attempts reached..");
3810                return -EINVAL;
3811        }
3812
3813        hw->rst_retries++;
3814        csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3815
3816        if (csio_is_hw_ready(hw)) {
3817                hw->rst_retries = 0;
3818                hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3819                return 0;
3820        } else
3821                return -EINVAL;
3822}
3823
3824/*
3825 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3826 * @hw: HW module.
3827 */
3828static void
3829csio_hw_get_device_id(struct csio_hw *hw)
3830{
3831        /* Is the adapter device id cached already ?*/
3832        if (csio_is_dev_id_cached(hw))
3833                return;
3834
3835        /* Get the PCI vendor & device id */
3836        pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3837                             &hw->params.pci.vendor_id);
3838        pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3839                             &hw->params.pci.device_id);
3840
3841        csio_dev_id_cached(hw);
3842        hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3843
3844} /* csio_hw_get_device_id */
3845
3846/*
3847 * csio_hw_set_description - Set the model, description of the hw.
3848 * @hw: HW module.
3849 * @ven_id: PCI Vendor ID
3850 * @dev_id: PCI Device ID
3851 */
3852static void
3853csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3854{
3855        uint32_t adap_type, prot_type;
3856
3857        if (ven_id == CSIO_VENDOR_ID) {
3858                prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3859                adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3860
3861                if (prot_type == CSIO_T4_FCOE_ASIC) {
3862                        memcpy(hw->hw_ver,
3863                               csio_t4_fcoe_adapters[adap_type].model_no, 16);
3864                        memcpy(hw->model_desc,
3865                               csio_t4_fcoe_adapters[adap_type].description,
3866                               32);
3867                } else if (prot_type == CSIO_T5_FCOE_ASIC) {
3868                        memcpy(hw->hw_ver,
3869                               csio_t5_fcoe_adapters[adap_type].model_no, 16);
3870                        memcpy(hw->model_desc,
3871                               csio_t5_fcoe_adapters[adap_type].description,
3872                               32);
3873                } else {
3874                        char tempName[32] = "Chelsio FCoE Controller";
3875                        memcpy(hw->model_desc, tempName, 32);
3876                }
3877        }
3878} /* csio_hw_set_description */
3879
3880/**
3881 * csio_hw_init - Initialize HW module.
3882 * @hw:         Pointer to HW module.
3883 *
3884 * Initialize the members of the HW module.
3885 */
3886int
3887csio_hw_init(struct csio_hw *hw)
3888{
3889        int rv = -EINVAL;
3890        uint32_t i;
3891        uint16_t ven_id, dev_id;
3892        struct csio_evt_msg     *evt_entry;
3893
3894        INIT_LIST_HEAD(&hw->sm.sm_list);
3895        csio_init_state(&hw->sm, csio_hws_uninit);
3896        spin_lock_init(&hw->lock);
3897        INIT_LIST_HEAD(&hw->sln_head);
3898
3899        /* Get the PCI vendor & device id */
3900        csio_hw_get_device_id(hw);
3901
3902        strcpy(hw->name, CSIO_HW_NAME);
3903
3904        /* Initialize the HW chip ops with T4/T5 specific ops */
3905        hw->chip_ops = csio_is_t4(hw->chip_id) ? &t4_ops : &t5_ops;
3906
3907        /* Set the model & its description */
3908
3909        ven_id = hw->params.pci.vendor_id;
3910        dev_id = hw->params.pci.device_id;
3911
3912        csio_hw_set_description(hw, ven_id, dev_id);
3913
3914        /* Initialize default log level */
3915        hw->params.log_level = (uint32_t) csio_dbg_level;
3916
3917        csio_set_fwevt_intr_idx(hw, -1);
3918        csio_set_nondata_intr_idx(hw, -1);
3919
3920        /* Init all the modules: Mailbox, WorkRequest and Transport */
3921        if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3922                goto err;
3923
3924        rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3925        if (rv)
3926                goto err_mbm_exit;
3927
3928        rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3929        if (rv)
3930                goto err_wrm_exit;
3931
3932        rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3933        if (rv)
3934                goto err_scsim_exit;
3935        /* Pre-allocate evtq and initialize them */
3936        INIT_LIST_HEAD(&hw->evt_active_q);
3937        INIT_LIST_HEAD(&hw->evt_free_q);
3938        for (i = 0; i < csio_evtq_sz; i++) {
3939
3940                evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3941                if (!evt_entry) {
3942                        csio_err(hw, "Failed to initialize eventq");
3943                        goto err_evtq_cleanup;
3944                }
3945
3946                list_add_tail(&evt_entry->list, &hw->evt_free_q);
3947                CSIO_INC_STATS(hw, n_evt_freeq);
3948        }
3949
3950        hw->dev_num = dev_num;
3951        dev_num++;
3952
3953        return 0;
3954
3955err_evtq_cleanup:
3956        csio_evtq_cleanup(hw);
3957        csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3958err_scsim_exit:
3959        csio_scsim_exit(csio_hw_to_scsim(hw));
3960err_wrm_exit:
3961        csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3962err_mbm_exit:
3963        csio_mbm_exit(csio_hw_to_mbm(hw));
3964err:
3965        return rv;
3966}
3967
3968/**
3969 * csio_hw_exit - Un-initialize HW module.
3970 * @hw:         Pointer to HW module.
3971 *
3972 */
3973void
3974csio_hw_exit(struct csio_hw *hw)
3975{
3976        csio_evtq_cleanup(hw);
3977        csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3978        csio_scsim_exit(csio_hw_to_scsim(hw));
3979        csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3980        csio_mbm_exit(csio_hw_to_mbm(hw));
3981}
3982