linux/drivers/spi/spi-ep93xx.c
<<
>>
Prefs
   1/*
   2 * Driver for Cirrus Logic EP93xx SPI controller.
   3 *
   4 * Copyright (C) 2010-2011 Mika Westerberg
   5 *
   6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
   7 *
   8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
   9 *
  10 * For more information about the SPI controller see documentation on Cirrus
  11 * Logic web site:
  12 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License version 2 as
  16 * published by the Free Software Foundation.
  17 */
  18
  19#include <linux/io.h>
  20#include <linux/clk.h>
  21#include <linux/err.h>
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/bitops.h>
  26#include <linux/interrupt.h>
  27#include <linux/module.h>
  28#include <linux/platform_device.h>
  29#include <linux/sched.h>
  30#include <linux/scatterlist.h>
  31#include <linux/spi/spi.h>
  32
  33#include <linux/platform_data/dma-ep93xx.h>
  34#include <linux/platform_data/spi-ep93xx.h>
  35
  36#define SSPCR0                  0x0000
  37#define SSPCR0_MODE_SHIFT       6
  38#define SSPCR0_SCR_SHIFT        8
  39
  40#define SSPCR1                  0x0004
  41#define SSPCR1_RIE              BIT(0)
  42#define SSPCR1_TIE              BIT(1)
  43#define SSPCR1_RORIE            BIT(2)
  44#define SSPCR1_LBM              BIT(3)
  45#define SSPCR1_SSE              BIT(4)
  46#define SSPCR1_MS               BIT(5)
  47#define SSPCR1_SOD              BIT(6)
  48
  49#define SSPDR                   0x0008
  50
  51#define SSPSR                   0x000c
  52#define SSPSR_TFE               BIT(0)
  53#define SSPSR_TNF               BIT(1)
  54#define SSPSR_RNE               BIT(2)
  55#define SSPSR_RFF               BIT(3)
  56#define SSPSR_BSY               BIT(4)
  57#define SSPCPSR                 0x0010
  58
  59#define SSPIIR                  0x0014
  60#define SSPIIR_RIS              BIT(0)
  61#define SSPIIR_TIS              BIT(1)
  62#define SSPIIR_RORIS            BIT(2)
  63#define SSPICR                  SSPIIR
  64
  65/* timeout in milliseconds */
  66#define SPI_TIMEOUT             5
  67/* maximum depth of RX/TX FIFO */
  68#define SPI_FIFO_SIZE           8
  69
  70/**
  71 * struct ep93xx_spi - EP93xx SPI controller structure
  72 * @pdev: pointer to platform device
  73 * @clk: clock for the controller
  74 * @regs_base: pointer to ioremap()'d registers
  75 * @sspdr_phys: physical address of the SSPDR register
  76 * @min_rate: minimum clock rate (in Hz) supported by the controller
  77 * @max_rate: maximum clock rate (in Hz) supported by the controller
  78 * @wait: wait here until given transfer is completed
  79 * @current_msg: message that is currently processed (or %NULL if none)
  80 * @tx: current byte in transfer to transmit
  81 * @rx: current byte in transfer to receive
  82 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
  83 *              frame decreases this level and sending one frame increases it.
  84 * @dma_rx: RX DMA channel
  85 * @dma_tx: TX DMA channel
  86 * @dma_rx_data: RX parameters passed to the DMA engine
  87 * @dma_tx_data: TX parameters passed to the DMA engine
  88 * @rx_sgt: sg table for RX transfers
  89 * @tx_sgt: sg table for TX transfers
  90 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
  91 *            the client
  92 */
  93struct ep93xx_spi {
  94        const struct platform_device    *pdev;
  95        struct clk                      *clk;
  96        void __iomem                    *regs_base;
  97        unsigned long                   sspdr_phys;
  98        unsigned long                   min_rate;
  99        unsigned long                   max_rate;
 100        struct completion               wait;
 101        struct spi_message              *current_msg;
 102        size_t                          tx;
 103        size_t                          rx;
 104        size_t                          fifo_level;
 105        struct dma_chan                 *dma_rx;
 106        struct dma_chan                 *dma_tx;
 107        struct ep93xx_dma_data          dma_rx_data;
 108        struct ep93xx_dma_data          dma_tx_data;
 109        struct sg_table                 rx_sgt;
 110        struct sg_table                 tx_sgt;
 111        void                            *zeropage;
 112};
 113
 114/**
 115 * struct ep93xx_spi_chip - SPI device hardware settings
 116 * @spi: back pointer to the SPI device
 117 * @ops: private chip operations
 118 */
 119struct ep93xx_spi_chip {
 120        const struct spi_device         *spi;
 121        struct ep93xx_spi_chip_ops      *ops;
 122};
 123
 124/* converts bits per word to CR0.DSS value */
 125#define bits_per_word_to_dss(bpw)       ((bpw) - 1)
 126
 127static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
 128                                u16 reg, u8 value)
 129{
 130        writeb(value, espi->regs_base + reg);
 131}
 132
 133static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
 134{
 135        return readb(spi->regs_base + reg);
 136}
 137
 138static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
 139                                 u16 reg, u16 value)
 140{
 141        writew(value, espi->regs_base + reg);
 142}
 143
 144static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
 145{
 146        return readw(spi->regs_base + reg);
 147}
 148
 149static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
 150{
 151        u8 regval;
 152        int err;
 153
 154        err = clk_enable(espi->clk);
 155        if (err)
 156                return err;
 157
 158        regval = ep93xx_spi_read_u8(espi, SSPCR1);
 159        regval |= SSPCR1_SSE;
 160        ep93xx_spi_write_u8(espi, SSPCR1, regval);
 161
 162        return 0;
 163}
 164
 165static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
 166{
 167        u8 regval;
 168
 169        regval = ep93xx_spi_read_u8(espi, SSPCR1);
 170        regval &= ~SSPCR1_SSE;
 171        ep93xx_spi_write_u8(espi, SSPCR1, regval);
 172
 173        clk_disable(espi->clk);
 174}
 175
 176static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
 177{
 178        u8 regval;
 179
 180        regval = ep93xx_spi_read_u8(espi, SSPCR1);
 181        regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 182        ep93xx_spi_write_u8(espi, SSPCR1, regval);
 183}
 184
 185static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
 186{
 187        u8 regval;
 188
 189        regval = ep93xx_spi_read_u8(espi, SSPCR1);
 190        regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 191        ep93xx_spi_write_u8(espi, SSPCR1, regval);
 192}
 193
 194/**
 195 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
 196 * @espi: ep93xx SPI controller struct
 197 * @rate: desired SPI output clock rate
 198 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
 199 * @div_scr: pointer to return the scr divider
 200 */
 201static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
 202                                    unsigned long rate,
 203                                    u8 *div_cpsr, u8 *div_scr)
 204{
 205        unsigned long spi_clk_rate = clk_get_rate(espi->clk);
 206        int cpsr, scr;
 207
 208        /*
 209         * Make sure that max value is between values supported by the
 210         * controller. Note that minimum value is already checked in
 211         * ep93xx_spi_transfer_one_message().
 212         */
 213        rate = clamp(rate, espi->min_rate, espi->max_rate);
 214
 215        /*
 216         * Calculate divisors so that we can get speed according the
 217         * following formula:
 218         *      rate = spi_clock_rate / (cpsr * (1 + scr))
 219         *
 220         * cpsr must be even number and starts from 2, scr can be any number
 221         * between 0 and 255.
 222         */
 223        for (cpsr = 2; cpsr <= 254; cpsr += 2) {
 224                for (scr = 0; scr <= 255; scr++) {
 225                        if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
 226                                *div_scr = (u8)scr;
 227                                *div_cpsr = (u8)cpsr;
 228                                return 0;
 229                        }
 230                }
 231        }
 232
 233        return -EINVAL;
 234}
 235
 236static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
 237{
 238        struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
 239        int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
 240
 241        if (chip->ops && chip->ops->cs_control)
 242                chip->ops->cs_control(spi, value);
 243}
 244
 245/**
 246 * ep93xx_spi_setup() - setup an SPI device
 247 * @spi: SPI device to setup
 248 *
 249 * This function sets up SPI device mode, speed etc. Can be called multiple
 250 * times for a single device. Returns %0 in case of success, negative error in
 251 * case of failure. When this function returns success, the device is
 252 * deselected.
 253 */
 254static int ep93xx_spi_setup(struct spi_device *spi)
 255{
 256        struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
 257        struct ep93xx_spi_chip *chip;
 258
 259        chip = spi_get_ctldata(spi);
 260        if (!chip) {
 261                dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
 262                        spi->modalias);
 263
 264                chip = kzalloc(sizeof(*chip), GFP_KERNEL);
 265                if (!chip)
 266                        return -ENOMEM;
 267
 268                chip->spi = spi;
 269                chip->ops = spi->controller_data;
 270
 271                if (chip->ops && chip->ops->setup) {
 272                        int ret = chip->ops->setup(spi);
 273                        if (ret) {
 274                                kfree(chip);
 275                                return ret;
 276                        }
 277                }
 278
 279                spi_set_ctldata(spi, chip);
 280        }
 281
 282        ep93xx_spi_cs_control(spi, false);
 283        return 0;
 284}
 285
 286/**
 287 * ep93xx_spi_cleanup() - cleans up master controller specific state
 288 * @spi: SPI device to cleanup
 289 *
 290 * This function releases master controller specific state for given @spi
 291 * device.
 292 */
 293static void ep93xx_spi_cleanup(struct spi_device *spi)
 294{
 295        struct ep93xx_spi_chip *chip;
 296
 297        chip = spi_get_ctldata(spi);
 298        if (chip) {
 299                if (chip->ops && chip->ops->cleanup)
 300                        chip->ops->cleanup(spi);
 301                spi_set_ctldata(spi, NULL);
 302                kfree(chip);
 303        }
 304}
 305
 306/**
 307 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
 308 * @espi: ep93xx SPI controller struct
 309 * @chip: chip specific settings
 310 * @speed_hz: transfer speed
 311 * @bits_per_word: transfer bits_per_word
 312 */
 313static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
 314                                 const struct ep93xx_spi_chip *chip,
 315                                 u32 speed_hz, u8 bits_per_word)
 316{
 317        u8 dss = bits_per_word_to_dss(bits_per_word);
 318        u8 div_cpsr = 0;
 319        u8 div_scr = 0;
 320        u16 cr0;
 321        int err;
 322
 323        err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
 324        if (err)
 325                return err;
 326
 327        cr0 = div_scr << SSPCR0_SCR_SHIFT;
 328        cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
 329        cr0 |= dss;
 330
 331        dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
 332                chip->spi->mode, div_cpsr, div_scr, dss);
 333        dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
 334
 335        ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
 336        ep93xx_spi_write_u16(espi, SSPCR0, cr0);
 337
 338        return 0;
 339}
 340
 341static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
 342{
 343        if (t->bits_per_word > 8) {
 344                u16 tx_val = 0;
 345
 346                if (t->tx_buf)
 347                        tx_val = ((u16 *)t->tx_buf)[espi->tx];
 348                ep93xx_spi_write_u16(espi, SSPDR, tx_val);
 349                espi->tx += sizeof(tx_val);
 350        } else {
 351                u8 tx_val = 0;
 352
 353                if (t->tx_buf)
 354                        tx_val = ((u8 *)t->tx_buf)[espi->tx];
 355                ep93xx_spi_write_u8(espi, SSPDR, tx_val);
 356                espi->tx += sizeof(tx_val);
 357        }
 358}
 359
 360static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
 361{
 362        if (t->bits_per_word > 8) {
 363                u16 rx_val;
 364
 365                rx_val = ep93xx_spi_read_u16(espi, SSPDR);
 366                if (t->rx_buf)
 367                        ((u16 *)t->rx_buf)[espi->rx] = rx_val;
 368                espi->rx += sizeof(rx_val);
 369        } else {
 370                u8 rx_val;
 371
 372                rx_val = ep93xx_spi_read_u8(espi, SSPDR);
 373                if (t->rx_buf)
 374                        ((u8 *)t->rx_buf)[espi->rx] = rx_val;
 375                espi->rx += sizeof(rx_val);
 376        }
 377}
 378
 379/**
 380 * ep93xx_spi_read_write() - perform next RX/TX transfer
 381 * @espi: ep93xx SPI controller struct
 382 *
 383 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
 384 * called several times, the whole transfer will be completed. Returns
 385 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
 386 *
 387 * When this function is finished, RX FIFO should be empty and TX FIFO should be
 388 * full.
 389 */
 390static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
 391{
 392        struct spi_message *msg = espi->current_msg;
 393        struct spi_transfer *t = msg->state;
 394
 395        /* read as long as RX FIFO has frames in it */
 396        while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
 397                ep93xx_do_read(espi, t);
 398                espi->fifo_level--;
 399        }
 400
 401        /* write as long as TX FIFO has room */
 402        while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
 403                ep93xx_do_write(espi, t);
 404                espi->fifo_level++;
 405        }
 406
 407        if (espi->rx == t->len)
 408                return 0;
 409
 410        return -EINPROGRESS;
 411}
 412
 413static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
 414{
 415        /*
 416         * Now everything is set up for the current transfer. We prime the TX
 417         * FIFO, enable interrupts, and wait for the transfer to complete.
 418         */
 419        if (ep93xx_spi_read_write(espi)) {
 420                ep93xx_spi_enable_interrupts(espi);
 421                wait_for_completion(&espi->wait);
 422        }
 423}
 424
 425/**
 426 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
 427 * @espi: ep93xx SPI controller struct
 428 * @dir: DMA transfer direction
 429 *
 430 * Function configures the DMA, maps the buffer and prepares the DMA
 431 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
 432 * in case of failure.
 433 */
 434static struct dma_async_tx_descriptor *
 435ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
 436{
 437        struct spi_transfer *t = espi->current_msg->state;
 438        struct dma_async_tx_descriptor *txd;
 439        enum dma_slave_buswidth buswidth;
 440        struct dma_slave_config conf;
 441        struct scatterlist *sg;
 442        struct sg_table *sgt;
 443        struct dma_chan *chan;
 444        const void *buf, *pbuf;
 445        size_t len = t->len;
 446        int i, ret, nents;
 447
 448        if (t->bits_per_word > 8)
 449                buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
 450        else
 451                buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
 452
 453        memset(&conf, 0, sizeof(conf));
 454        conf.direction = dir;
 455
 456        if (dir == DMA_DEV_TO_MEM) {
 457                chan = espi->dma_rx;
 458                buf = t->rx_buf;
 459                sgt = &espi->rx_sgt;
 460
 461                conf.src_addr = espi->sspdr_phys;
 462                conf.src_addr_width = buswidth;
 463        } else {
 464                chan = espi->dma_tx;
 465                buf = t->tx_buf;
 466                sgt = &espi->tx_sgt;
 467
 468                conf.dst_addr = espi->sspdr_phys;
 469                conf.dst_addr_width = buswidth;
 470        }
 471
 472        ret = dmaengine_slave_config(chan, &conf);
 473        if (ret)
 474                return ERR_PTR(ret);
 475
 476        /*
 477         * We need to split the transfer into PAGE_SIZE'd chunks. This is
 478         * because we are using @espi->zeropage to provide a zero RX buffer
 479         * for the TX transfers and we have only allocated one page for that.
 480         *
 481         * For performance reasons we allocate a new sg_table only when
 482         * needed. Otherwise we will re-use the current one. Eventually the
 483         * last sg_table is released in ep93xx_spi_release_dma().
 484         */
 485
 486        nents = DIV_ROUND_UP(len, PAGE_SIZE);
 487        if (nents != sgt->nents) {
 488                sg_free_table(sgt);
 489
 490                ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
 491                if (ret)
 492                        return ERR_PTR(ret);
 493        }
 494
 495        pbuf = buf;
 496        for_each_sg(sgt->sgl, sg, sgt->nents, i) {
 497                size_t bytes = min_t(size_t, len, PAGE_SIZE);
 498
 499                if (buf) {
 500                        sg_set_page(sg, virt_to_page(pbuf), bytes,
 501                                    offset_in_page(pbuf));
 502                } else {
 503                        sg_set_page(sg, virt_to_page(espi->zeropage),
 504                                    bytes, 0);
 505                }
 506
 507                pbuf += bytes;
 508                len -= bytes;
 509        }
 510
 511        if (WARN_ON(len)) {
 512                dev_warn(&espi->pdev->dev, "len = %zu expected 0!", len);
 513                return ERR_PTR(-EINVAL);
 514        }
 515
 516        nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 517        if (!nents)
 518                return ERR_PTR(-ENOMEM);
 519
 520        txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
 521        if (!txd) {
 522                dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 523                return ERR_PTR(-ENOMEM);
 524        }
 525        return txd;
 526}
 527
 528/**
 529 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
 530 * @espi: ep93xx SPI controller struct
 531 * @dir: DMA transfer direction
 532 *
 533 * Function finishes with the DMA transfer. After this, the DMA buffer is
 534 * unmapped.
 535 */
 536static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
 537                                  enum dma_transfer_direction dir)
 538{
 539        struct dma_chan *chan;
 540        struct sg_table *sgt;
 541
 542        if (dir == DMA_DEV_TO_MEM) {
 543                chan = espi->dma_rx;
 544                sgt = &espi->rx_sgt;
 545        } else {
 546                chan = espi->dma_tx;
 547                sgt = &espi->tx_sgt;
 548        }
 549
 550        dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 551}
 552
 553static void ep93xx_spi_dma_callback(void *callback_param)
 554{
 555        complete(callback_param);
 556}
 557
 558static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
 559{
 560        struct spi_message *msg = espi->current_msg;
 561        struct dma_async_tx_descriptor *rxd, *txd;
 562
 563        rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
 564        if (IS_ERR(rxd)) {
 565                dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
 566                msg->status = PTR_ERR(rxd);
 567                return;
 568        }
 569
 570        txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
 571        if (IS_ERR(txd)) {
 572                ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
 573                dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
 574                msg->status = PTR_ERR(txd);
 575                return;
 576        }
 577
 578        /* We are ready when RX is done */
 579        rxd->callback = ep93xx_spi_dma_callback;
 580        rxd->callback_param = &espi->wait;
 581
 582        /* Now submit both descriptors and wait while they finish */
 583        dmaengine_submit(rxd);
 584        dmaengine_submit(txd);
 585
 586        dma_async_issue_pending(espi->dma_rx);
 587        dma_async_issue_pending(espi->dma_tx);
 588
 589        wait_for_completion(&espi->wait);
 590
 591        ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
 592        ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
 593}
 594
 595/**
 596 * ep93xx_spi_process_transfer() - processes one SPI transfer
 597 * @espi: ep93xx SPI controller struct
 598 * @msg: current message
 599 * @t: transfer to process
 600 *
 601 * This function processes one SPI transfer given in @t. Function waits until
 602 * transfer is complete (may sleep) and updates @msg->status based on whether
 603 * transfer was successfully processed or not.
 604 */
 605static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
 606                                        struct spi_message *msg,
 607                                        struct spi_transfer *t)
 608{
 609        struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
 610        int err;
 611
 612        msg->state = t;
 613
 614        err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
 615        if (err) {
 616                dev_err(&espi->pdev->dev,
 617                        "failed to setup chip for transfer\n");
 618                msg->status = err;
 619                return;
 620        }
 621
 622        espi->rx = 0;
 623        espi->tx = 0;
 624
 625        /*
 626         * There is no point of setting up DMA for the transfers which will
 627         * fit into the FIFO and can be transferred with a single interrupt.
 628         * So in these cases we will be using PIO and don't bother for DMA.
 629         */
 630        if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
 631                ep93xx_spi_dma_transfer(espi);
 632        else
 633                ep93xx_spi_pio_transfer(espi);
 634
 635        /*
 636         * In case of error during transmit, we bail out from processing
 637         * the message.
 638         */
 639        if (msg->status)
 640                return;
 641
 642        msg->actual_length += t->len;
 643
 644        /*
 645         * After this transfer is finished, perform any possible
 646         * post-transfer actions requested by the protocol driver.
 647         */
 648        if (t->delay_usecs) {
 649                set_current_state(TASK_UNINTERRUPTIBLE);
 650                schedule_timeout(usecs_to_jiffies(t->delay_usecs));
 651        }
 652        if (t->cs_change) {
 653                if (!list_is_last(&t->transfer_list, &msg->transfers)) {
 654                        /*
 655                         * In case protocol driver is asking us to drop the
 656                         * chipselect briefly, we let the scheduler to handle
 657                         * any "delay" here.
 658                         */
 659                        ep93xx_spi_cs_control(msg->spi, false);
 660                        cond_resched();
 661                        ep93xx_spi_cs_control(msg->spi, true);
 662                }
 663        }
 664}
 665
 666/*
 667 * ep93xx_spi_process_message() - process one SPI message
 668 * @espi: ep93xx SPI controller struct
 669 * @msg: message to process
 670 *
 671 * This function processes a single SPI message. We go through all transfers in
 672 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
 673 * asserted during the whole message (unless per transfer cs_change is set).
 674 *
 675 * @msg->status contains %0 in case of success or negative error code in case of
 676 * failure.
 677 */
 678static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
 679                                       struct spi_message *msg)
 680{
 681        unsigned long timeout;
 682        struct spi_transfer *t;
 683        int err;
 684
 685        /*
 686         * Enable the SPI controller and its clock.
 687         */
 688        err = ep93xx_spi_enable(espi);
 689        if (err) {
 690                dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
 691                msg->status = err;
 692                return;
 693        }
 694
 695        /*
 696         * Just to be sure: flush any data from RX FIFO.
 697         */
 698        timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
 699        while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
 700                if (time_after(jiffies, timeout)) {
 701                        dev_warn(&espi->pdev->dev,
 702                                 "timeout while flushing RX FIFO\n");
 703                        msg->status = -ETIMEDOUT;
 704                        return;
 705                }
 706                ep93xx_spi_read_u16(espi, SSPDR);
 707        }
 708
 709        /*
 710         * We explicitly handle FIFO level. This way we don't have to check TX
 711         * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
 712         */
 713        espi->fifo_level = 0;
 714
 715        /*
 716         * Assert the chipselect.
 717         */
 718        ep93xx_spi_cs_control(msg->spi, true);
 719
 720        list_for_each_entry(t, &msg->transfers, transfer_list) {
 721                ep93xx_spi_process_transfer(espi, msg, t);
 722                if (msg->status)
 723                        break;
 724        }
 725
 726        /*
 727         * Now the whole message is transferred (or failed for some reason). We
 728         * deselect the device and disable the SPI controller.
 729         */
 730        ep93xx_spi_cs_control(msg->spi, false);
 731        ep93xx_spi_disable(espi);
 732}
 733
 734static int ep93xx_spi_transfer_one_message(struct spi_master *master,
 735                                           struct spi_message *msg)
 736{
 737        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 738        struct spi_transfer *t;
 739
 740        /* first validate each transfer */
 741        list_for_each_entry(t, &msg->transfers, transfer_list) {
 742                if (t->speed_hz < espi->min_rate)
 743                        return -EINVAL;
 744        }
 745
 746        msg->state = NULL;
 747        msg->status = 0;
 748        msg->actual_length = 0;
 749
 750        espi->current_msg = msg;
 751        ep93xx_spi_process_message(espi, msg);
 752        espi->current_msg = NULL;
 753
 754        spi_finalize_current_message(master);
 755
 756        return 0;
 757}
 758
 759static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
 760{
 761        struct ep93xx_spi *espi = dev_id;
 762        u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
 763
 764        /*
 765         * If we got ROR (receive overrun) interrupt we know that something is
 766         * wrong. Just abort the message.
 767         */
 768        if (unlikely(irq_status & SSPIIR_RORIS)) {
 769                /* clear the overrun interrupt */
 770                ep93xx_spi_write_u8(espi, SSPICR, 0);
 771                dev_warn(&espi->pdev->dev,
 772                         "receive overrun, aborting the message\n");
 773                espi->current_msg->status = -EIO;
 774        } else {
 775                /*
 776                 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
 777                 * simply execute next data transfer.
 778                 */
 779                if (ep93xx_spi_read_write(espi)) {
 780                        /*
 781                         * In normal case, there still is some processing left
 782                         * for current transfer. Let's wait for the next
 783                         * interrupt then.
 784                         */
 785                        return IRQ_HANDLED;
 786                }
 787        }
 788
 789        /*
 790         * Current transfer is finished, either with error or with success. In
 791         * any case we disable interrupts and notify the worker to handle
 792         * any post-processing of the message.
 793         */
 794        ep93xx_spi_disable_interrupts(espi);
 795        complete(&espi->wait);
 796        return IRQ_HANDLED;
 797}
 798
 799static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
 800{
 801        if (ep93xx_dma_chan_is_m2p(chan))
 802                return false;
 803
 804        chan->private = filter_param;
 805        return true;
 806}
 807
 808static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
 809{
 810        dma_cap_mask_t mask;
 811        int ret;
 812
 813        espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
 814        if (!espi->zeropage)
 815                return -ENOMEM;
 816
 817        dma_cap_zero(mask);
 818        dma_cap_set(DMA_SLAVE, mask);
 819
 820        espi->dma_rx_data.port = EP93XX_DMA_SSP;
 821        espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
 822        espi->dma_rx_data.name = "ep93xx-spi-rx";
 823
 824        espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 825                                           &espi->dma_rx_data);
 826        if (!espi->dma_rx) {
 827                ret = -ENODEV;
 828                goto fail_free_page;
 829        }
 830
 831        espi->dma_tx_data.port = EP93XX_DMA_SSP;
 832        espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
 833        espi->dma_tx_data.name = "ep93xx-spi-tx";
 834
 835        espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 836                                           &espi->dma_tx_data);
 837        if (!espi->dma_tx) {
 838                ret = -ENODEV;
 839                goto fail_release_rx;
 840        }
 841
 842        return 0;
 843
 844fail_release_rx:
 845        dma_release_channel(espi->dma_rx);
 846        espi->dma_rx = NULL;
 847fail_free_page:
 848        free_page((unsigned long)espi->zeropage);
 849
 850        return ret;
 851}
 852
 853static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
 854{
 855        if (espi->dma_rx) {
 856                dma_release_channel(espi->dma_rx);
 857                sg_free_table(&espi->rx_sgt);
 858        }
 859        if (espi->dma_tx) {
 860                dma_release_channel(espi->dma_tx);
 861                sg_free_table(&espi->tx_sgt);
 862        }
 863
 864        if (espi->zeropage)
 865                free_page((unsigned long)espi->zeropage);
 866}
 867
 868static int ep93xx_spi_probe(struct platform_device *pdev)
 869{
 870        struct spi_master *master;
 871        struct ep93xx_spi_info *info;
 872        struct ep93xx_spi *espi;
 873        struct resource *res;
 874        int irq;
 875        int error;
 876
 877        info = dev_get_platdata(&pdev->dev);
 878
 879        irq = platform_get_irq(pdev, 0);
 880        if (irq < 0) {
 881                dev_err(&pdev->dev, "failed to get irq resources\n");
 882                return -EBUSY;
 883        }
 884
 885        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 886        if (!res) {
 887                dev_err(&pdev->dev, "unable to get iomem resource\n");
 888                return -ENODEV;
 889        }
 890
 891        master = spi_alloc_master(&pdev->dev, sizeof(*espi));
 892        if (!master)
 893                return -ENOMEM;
 894
 895        master->setup = ep93xx_spi_setup;
 896        master->transfer_one_message = ep93xx_spi_transfer_one_message;
 897        master->cleanup = ep93xx_spi_cleanup;
 898        master->bus_num = pdev->id;
 899        master->num_chipselect = info->num_chipselect;
 900        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 901        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 902
 903        platform_set_drvdata(pdev, master);
 904
 905        espi = spi_master_get_devdata(master);
 906
 907        espi->clk = devm_clk_get(&pdev->dev, NULL);
 908        if (IS_ERR(espi->clk)) {
 909                dev_err(&pdev->dev, "unable to get spi clock\n");
 910                error = PTR_ERR(espi->clk);
 911                goto fail_release_master;
 912        }
 913
 914        init_completion(&espi->wait);
 915
 916        /*
 917         * Calculate maximum and minimum supported clock rates
 918         * for the controller.
 919         */
 920        espi->max_rate = clk_get_rate(espi->clk) / 2;
 921        espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
 922        espi->pdev = pdev;
 923
 924        espi->sspdr_phys = res->start + SSPDR;
 925
 926        espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
 927        if (IS_ERR(espi->regs_base)) {
 928                error = PTR_ERR(espi->regs_base);
 929                goto fail_release_master;
 930        }
 931
 932        error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
 933                                0, "ep93xx-spi", espi);
 934        if (error) {
 935                dev_err(&pdev->dev, "failed to request irq\n");
 936                goto fail_release_master;
 937        }
 938
 939        if (info->use_dma && ep93xx_spi_setup_dma(espi))
 940                dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
 941
 942        /* make sure that the hardware is disabled */
 943        ep93xx_spi_write_u8(espi, SSPCR1, 0);
 944
 945        error = spi_register_master(master);
 946        if (error) {
 947                dev_err(&pdev->dev, "failed to register SPI master\n");
 948                goto fail_free_dma;
 949        }
 950
 951        dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
 952                 (unsigned long)res->start, irq);
 953
 954        return 0;
 955
 956fail_free_dma:
 957        ep93xx_spi_release_dma(espi);
 958fail_release_master:
 959        spi_master_put(master);
 960
 961        return error;
 962}
 963
 964static int ep93xx_spi_remove(struct platform_device *pdev)
 965{
 966        struct spi_master *master = platform_get_drvdata(pdev);
 967        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 968
 969        ep93xx_spi_release_dma(espi);
 970
 971        spi_unregister_master(master);
 972        return 0;
 973}
 974
 975static struct platform_driver ep93xx_spi_driver = {
 976        .driver         = {
 977                .name   = "ep93xx-spi",
 978                .owner  = THIS_MODULE,
 979        },
 980        .probe          = ep93xx_spi_probe,
 981        .remove         = ep93xx_spi_remove,
 982};
 983module_platform_driver(ep93xx_spi_driver);
 984
 985MODULE_DESCRIPTION("EP93xx SPI Controller driver");
 986MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
 987MODULE_LICENSE("GPL");
 988MODULE_ALIAS("platform:ep93xx-spi");
 989