linux/drivers/staging/lustre/lustre/ptlrpc/gss/gss_keyring.c
<<
>>
Prefs
   1/*
   2 * GPL HEADER START
   3 *
   4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 only,
   8 * as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 for more details (a copy is included
  14 * in the LICENSE file that accompanied this code).
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * version 2 along with this program; If not, see
  18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
  19 *
  20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  21 * CA 95054 USA or visit www.sun.com if you need additional information or
  22 * have any questions.
  23 *
  24 * GPL HEADER END
  25 */
  26/*
  27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
  28 * Use is subject to license terms.
  29 *
  30 * Copyright (c) 2012, Intel Corporation.
  31 */
  32/*
  33 * This file is part of Lustre, http://www.lustre.org/
  34 * Lustre is a trademark of Sun Microsystems, Inc.
  35 *
  36 * lustre/ptlrpc/gss/gss_keyring.c
  37 *
  38 * Author: Eric Mei <ericm@clusterfs.com>
  39 */
  40
  41#define DEBUG_SUBSYSTEM S_SEC
  42#include <linux/init.h>
  43#include <linux/module.h>
  44#include <linux/slab.h>
  45#include <linux/dcache.h>
  46#include <linux/fs.h>
  47#include <linux/crypto.h>
  48#include <linux/key.h>
  49#include <linux/keyctl.h>
  50#include <linux/key-type.h>
  51#include <linux/mutex.h>
  52#include <asm/atomic.h>
  53
  54#include <obd.h>
  55#include <obd_class.h>
  56#include <obd_support.h>
  57#include <lustre/lustre_idl.h>
  58#include <lustre_sec.h>
  59#include <lustre_net.h>
  60#include <lustre_import.h>
  61
  62#include "gss_err.h"
  63#include "gss_internal.h"
  64#include "gss_api.h"
  65
  66static struct ptlrpc_sec_policy gss_policy_keyring;
  67static struct ptlrpc_ctx_ops gss_keyring_ctxops;
  68static struct key_type gss_key_type;
  69
  70static int sec_install_rctx_kr(struct ptlrpc_sec *sec,
  71                               struct ptlrpc_svc_ctx *svc_ctx);
  72
  73/*
  74 * the timeout is only for the case that upcall child process die abnormally.
  75 * in any other cases it should finally update kernel key.
  76 *
  77 * FIXME we'd better to incorporate the client & server side upcall timeouts
  78 * into the framework of Adaptive Timeouts, but we need to figure out how to
  79 * make sure that kernel knows the upcall processes is in-progress or died
  80 * unexpectedly.
  81 */
  82#define KEYRING_UPCALL_TIMEOUT  (obd_timeout + obd_timeout)
  83
  84/****************************************
  85 * internal helpers                  *
  86 ****************************************/
  87
  88#define DUMP_PROCESS_KEYRINGS(tsk)                                      \
  89{                                                                       \
  90        CWARN("DUMP PK: %s[%u,%u/%u](<-%s[%u,%u/%u]): "                 \
  91              "a %d, t %d, p %d, s %d, u %d, us %d, df %d\n",           \
  92              tsk->comm, tsk->pid, tsk->uid, tsk->fsuid,                \
  93              tsk->parent->comm, tsk->parent->pid,                      \
  94              tsk->parent->uid, tsk->parent->fsuid,                     \
  95              tsk->request_key_auth ?                                   \
  96              tsk->request_key_auth->serial : 0,                        \
  97              key_cred(tsk)->thread_keyring ?                           \
  98              key_cred(tsk)->thread_keyring->serial : 0,                \
  99              key_tgcred(tsk)->process_keyring ?                        \
 100              key_tgcred(tsk)->process_keyring->serial : 0,             \
 101              key_tgcred(tsk)->session_keyring ?                        \
 102              key_tgcred(tsk)->session_keyring->serial : 0,             \
 103              key_cred(tsk)->user->uid_keyring ?                        \
 104              key_cred(tsk)->user->uid_keyring->serial : 0,             \
 105              key_cred(tsk)->user->session_keyring ?                    \
 106              key_cred(tsk)->user->session_keyring->serial : 0,         \
 107              key_cred(tsk)->jit_keyring                                \
 108             );                                                         \
 109}
 110
 111#define DUMP_KEY(key)                                              \
 112{                                                                      \
 113        CWARN("DUMP KEY: %p(%d) ref %d u%u/g%u desc %s\n",            \
 114              key, key->serial, atomic_read(&key->usage),              \
 115              key->uid, key->gid,                                      \
 116              key->description ? key->description : "n/a"              \
 117             );                                                  \
 118}
 119
 120#define key_cred(tsk)   ((tsk)->cred)
 121#define key_tgcred(tsk) ((tsk)->cred->tgcred)
 122
 123static inline void keyring_upcall_lock(struct gss_sec_keyring *gsec_kr)
 124{
 125#ifdef HAVE_KEYRING_UPCALL_SERIALIZED
 126        mutex_lock(&gsec_kr->gsk_uc_lock);
 127#endif
 128}
 129
 130static inline void keyring_upcall_unlock(struct gss_sec_keyring *gsec_kr)
 131{
 132#ifdef HAVE_KEYRING_UPCALL_SERIALIZED
 133        mutex_unlock(&gsec_kr->gsk_uc_lock);
 134#endif
 135}
 136
 137static inline void key_revoke_locked(struct key *key)
 138{
 139        set_bit(KEY_FLAG_REVOKED, &key->flags);
 140}
 141
 142static void ctx_upcall_timeout_kr(unsigned long data)
 143{
 144        struct ptlrpc_cli_ctx *ctx = (struct ptlrpc_cli_ctx *) data;
 145        struct key          *key = ctx2gctx_keyring(ctx)->gck_key;
 146
 147        CWARN("ctx %p, key %p\n", ctx, key);
 148
 149        LASSERT(key);
 150
 151        cli_ctx_expire(ctx);
 152        key_revoke_locked(key);
 153}
 154
 155static
 156void ctx_start_timer_kr(struct ptlrpc_cli_ctx *ctx, long timeout)
 157{
 158        struct gss_cli_ctx_keyring *gctx_kr = ctx2gctx_keyring(ctx);
 159        struct timer_list         *timer = gctx_kr->gck_timer;
 160
 161        LASSERT(timer);
 162
 163        CDEBUG(D_SEC, "ctx %p: start timer %lds\n", ctx, timeout);
 164        timeout = timeout * HZ + cfs_time_current();
 165
 166        init_timer(timer);
 167        timer->expires = timeout;
 168        timer->data = (unsigned long ) ctx;
 169        timer->function = ctx_upcall_timeout_kr;
 170
 171        add_timer(timer);
 172}
 173
 174/*
 175 * caller should make sure no race with other threads
 176 */
 177static
 178void ctx_clear_timer_kr(struct ptlrpc_cli_ctx *ctx)
 179{
 180        struct gss_cli_ctx_keyring *gctx_kr = ctx2gctx_keyring(ctx);
 181        struct timer_list         *timer = gctx_kr->gck_timer;
 182
 183        if (timer == NULL)
 184                return;
 185
 186        CDEBUG(D_SEC, "ctx %p, key %p\n", ctx, gctx_kr->gck_key);
 187
 188        gctx_kr->gck_timer = NULL;
 189
 190        del_singleshot_timer_sync(timer);
 191
 192        OBD_FREE_PTR(timer);
 193}
 194
 195static
 196struct ptlrpc_cli_ctx *ctx_create_kr(struct ptlrpc_sec *sec,
 197                                     struct vfs_cred *vcred)
 198{
 199        struct ptlrpc_cli_ctx      *ctx;
 200        struct gss_cli_ctx_keyring *gctx_kr;
 201
 202        OBD_ALLOC_PTR(gctx_kr);
 203        if (gctx_kr == NULL)
 204                return NULL;
 205
 206        OBD_ALLOC_PTR(gctx_kr->gck_timer);
 207        if (gctx_kr->gck_timer == NULL) {
 208                OBD_FREE_PTR(gctx_kr);
 209                return NULL;
 210        }
 211        init_timer(gctx_kr->gck_timer);
 212
 213        ctx = &gctx_kr->gck_base.gc_base;
 214
 215        if (gss_cli_ctx_init_common(sec, ctx, &gss_keyring_ctxops, vcred)) {
 216                OBD_FREE_PTR(gctx_kr->gck_timer);
 217                OBD_FREE_PTR(gctx_kr);
 218                return NULL;
 219        }
 220
 221        ctx->cc_expire = cfs_time_current_sec() + KEYRING_UPCALL_TIMEOUT;
 222        clear_bit(PTLRPC_CTX_NEW_BIT, &ctx->cc_flags);
 223        atomic_inc(&ctx->cc_refcount); /* for the caller */
 224
 225        return ctx;
 226}
 227
 228static void ctx_destroy_kr(struct ptlrpc_cli_ctx *ctx)
 229{
 230        struct ptlrpc_sec         *sec = ctx->cc_sec;
 231        struct gss_cli_ctx_keyring *gctx_kr = ctx2gctx_keyring(ctx);
 232
 233        CDEBUG(D_SEC, "destroying ctx %p\n", ctx);
 234
 235        /* at this time the association with key has been broken. */
 236        LASSERT(sec);
 237        LASSERT(atomic_read(&sec->ps_refcount) > 0);
 238        LASSERT(atomic_read(&sec->ps_nctx) > 0);
 239        LASSERT(test_bit(PTLRPC_CTX_CACHED_BIT, &ctx->cc_flags) == 0);
 240        LASSERT(gctx_kr->gck_key == NULL);
 241
 242        ctx_clear_timer_kr(ctx);
 243        LASSERT(gctx_kr->gck_timer == NULL);
 244
 245        if (gss_cli_ctx_fini_common(sec, ctx))
 246                return;
 247
 248        OBD_FREE_PTR(gctx_kr);
 249
 250        atomic_dec(&sec->ps_nctx);
 251        sptlrpc_sec_put(sec);
 252}
 253
 254static void ctx_release_kr(struct ptlrpc_cli_ctx *ctx, int sync)
 255{
 256        if (sync) {
 257                ctx_destroy_kr(ctx);
 258        } else {
 259                atomic_inc(&ctx->cc_refcount);
 260                sptlrpc_gc_add_ctx(ctx);
 261        }
 262}
 263
 264static void ctx_put_kr(struct ptlrpc_cli_ctx *ctx, int sync)
 265{
 266        LASSERT(atomic_read(&ctx->cc_refcount) > 0);
 267
 268        if (atomic_dec_and_test(&ctx->cc_refcount))
 269                ctx_release_kr(ctx, sync);
 270}
 271
 272/*
 273 * key <-> ctx association and rules:
 274 * - ctx might not bind with any key
 275 * - key/ctx binding is protected by key semaphore (if the key present)
 276 * - key and ctx each take a reference of the other
 277 * - ctx enlist/unlist is protected by ctx spinlock
 278 * - never enlist a ctx after it's been unlisted
 279 * - whoever do enlist should also do bind, lock key before enlist:
 280 *   - lock key -> lock ctx -> enlist -> unlock ctx -> bind -> unlock key
 281 * - whoever do unlist should also do unbind:
 282 *   - lock key -> lock ctx -> unlist -> unlock ctx -> unbind -> unlock key
 283 *   - lock ctx -> unlist -> unlock ctx -> lock key -> unbind -> unlock key
 284 */
 285
 286static inline void spin_lock_if(spinlock_t *lock, int condition)
 287{
 288        if (condition)
 289                spin_lock(lock);
 290}
 291
 292static inline void spin_unlock_if(spinlock_t *lock, int condition)
 293{
 294        if (condition)
 295                spin_unlock(lock);
 296}
 297
 298static void ctx_enlist_kr(struct ptlrpc_cli_ctx *ctx, int is_root, int locked)
 299{
 300        struct ptlrpc_sec      *sec = ctx->cc_sec;
 301        struct gss_sec_keyring *gsec_kr = sec2gsec_keyring(sec);
 302
 303        LASSERT(!test_bit(PTLRPC_CTX_CACHED_BIT, &ctx->cc_flags));
 304        LASSERT(atomic_read(&ctx->cc_refcount) > 0);
 305
 306        spin_lock_if(&sec->ps_lock, !locked);
 307
 308        atomic_inc(&ctx->cc_refcount);
 309        set_bit(PTLRPC_CTX_CACHED_BIT, &ctx->cc_flags);
 310        hlist_add_head(&ctx->cc_cache, &gsec_kr->gsk_clist);
 311        if (is_root)
 312                gsec_kr->gsk_root_ctx = ctx;
 313
 314        spin_unlock_if(&sec->ps_lock, !locked);
 315}
 316
 317/*
 318 * Note after this get called, caller should not access ctx again because
 319 * it might have been freed, unless caller hold at least one refcount of
 320 * the ctx.
 321 *
 322 * return non-zero if we indeed unlist this ctx.
 323 */
 324static int ctx_unlist_kr(struct ptlrpc_cli_ctx *ctx, int locked)
 325{
 326        struct ptlrpc_sec       *sec = ctx->cc_sec;
 327        struct gss_sec_keyring  *gsec_kr = sec2gsec_keyring(sec);
 328
 329        /* if hashed bit has gone, leave the job to somebody who is doing it */
 330        if (test_and_clear_bit(PTLRPC_CTX_CACHED_BIT, &ctx->cc_flags) == 0)
 331                return 0;
 332
 333        /* drop ref inside spin lock to prevent race with other operations */
 334        spin_lock_if(&sec->ps_lock, !locked);
 335
 336        if (gsec_kr->gsk_root_ctx == ctx)
 337                gsec_kr->gsk_root_ctx = NULL;
 338        hlist_del_init(&ctx->cc_cache);
 339        atomic_dec(&ctx->cc_refcount);
 340
 341        spin_unlock_if(&sec->ps_lock, !locked);
 342
 343        return 1;
 344}
 345
 346/*
 347 * bind a key with a ctx together.
 348 * caller must hold write lock of the key, as well as ref on key & ctx.
 349 */
 350static void bind_key_ctx(struct key *key, struct ptlrpc_cli_ctx *ctx)
 351{
 352        LASSERT(atomic_read(&ctx->cc_refcount) > 0);
 353        LASSERT(atomic_read(&key->usage) > 0);
 354        LASSERT(ctx2gctx_keyring(ctx)->gck_key == NULL);
 355        LASSERT(key->payload.data == NULL);
 356
 357        /* at this time context may or may not in list. */
 358        key_get(key);
 359        atomic_inc(&ctx->cc_refcount);
 360        ctx2gctx_keyring(ctx)->gck_key = key;
 361        key->payload.data = ctx;
 362}
 363
 364/*
 365 * unbind a key and a ctx.
 366 * caller must hold write lock, as well as a ref of the key.
 367 */
 368static void unbind_key_ctx(struct key *key, struct ptlrpc_cli_ctx *ctx)
 369{
 370        LASSERT(key->payload.data == ctx);
 371        LASSERT(test_bit(PTLRPC_CTX_CACHED_BIT, &ctx->cc_flags) == 0);
 372
 373        /* must revoke the key, or others may treat it as newly created */
 374        key_revoke_locked(key);
 375
 376        key->payload.data = NULL;
 377        ctx2gctx_keyring(ctx)->gck_key = NULL;
 378
 379        /* once ctx get split from key, the timer is meaningless */
 380        ctx_clear_timer_kr(ctx);
 381
 382        ctx_put_kr(ctx, 1);
 383        key_put(key);
 384}
 385
 386/*
 387 * given a ctx, unbind with its coupled key, if any.
 388 * unbind could only be called once, so we don't worry the key be released
 389 * by someone else.
 390 */
 391static void unbind_ctx_kr(struct ptlrpc_cli_ctx *ctx)
 392{
 393        struct key      *key = ctx2gctx_keyring(ctx)->gck_key;
 394
 395        if (key) {
 396                LASSERT(key->payload.data == ctx);
 397
 398                key_get(key);
 399                down_write(&key->sem);
 400                unbind_key_ctx(key, ctx);
 401                up_write(&key->sem);
 402                key_put(key);
 403        }
 404}
 405
 406/*
 407 * given a key, unbind with its coupled ctx, if any.
 408 * caller must hold write lock, as well as a ref of the key.
 409 */
 410static void unbind_key_locked(struct key *key)
 411{
 412        struct ptlrpc_cli_ctx   *ctx = key->payload.data;
 413
 414        if (ctx)
 415                unbind_key_ctx(key, ctx);
 416}
 417
 418/*
 419 * unlist a ctx, and unbind from coupled key
 420 */
 421static void kill_ctx_kr(struct ptlrpc_cli_ctx *ctx)
 422{
 423        if (ctx_unlist_kr(ctx, 0))
 424                unbind_ctx_kr(ctx);
 425}
 426
 427/*
 428 * given a key, unlist and unbind with the coupled ctx (if any).
 429 * caller must hold write lock, as well as a ref of the key.
 430 */
 431static void kill_key_locked(struct key *key)
 432{
 433        struct ptlrpc_cli_ctx *ctx = key->payload.data;
 434
 435        if (ctx && ctx_unlist_kr(ctx, 0))
 436                unbind_key_locked(key);
 437}
 438
 439/*
 440 * caller should hold one ref on contexts in freelist.
 441 */
 442static void dispose_ctx_list_kr(struct hlist_head *freelist)
 443{
 444        struct hlist_node      *next;
 445        struct ptlrpc_cli_ctx  *ctx;
 446        struct gss_cli_ctx     *gctx;
 447
 448        hlist_for_each_entry_safe(ctx, next, freelist, cc_cache) {
 449                hlist_del_init(&ctx->cc_cache);
 450
 451                /* reverse ctx: update current seq to buddy svcctx if exist.
 452                 * ideally this should be done at gss_cli_ctx_finalize(), but
 453                 * the ctx destroy could be delayed by:
 454                 *  1) ctx still has reference;
 455                 *  2) ctx destroy is asynchronous;
 456                 * and reverse import call inval_all_ctx() require this be done
 457                 *_immediately_ otherwise newly created reverse ctx might copy
 458                 * the very old sequence number from svcctx. */
 459                gctx = ctx2gctx(ctx);
 460                if (!rawobj_empty(&gctx->gc_svc_handle) &&
 461                    sec_is_reverse(gctx->gc_base.cc_sec)) {
 462                        gss_svc_upcall_update_sequence(&gctx->gc_svc_handle,
 463                                        (__u32) atomic_read(&gctx->gc_seq));
 464                }
 465
 466                /* we need to wakeup waiting reqs here. the context might
 467                 * be forced released before upcall finished, then the
 468                 * late-arrived downcall can't find the ctx even. */
 469                sptlrpc_cli_ctx_wakeup(ctx);
 470
 471                unbind_ctx_kr(ctx);
 472                ctx_put_kr(ctx, 0);
 473        }
 474}
 475
 476/*
 477 * lookup a root context directly in a sec, return root ctx with a
 478 * reference taken or NULL.
 479 */
 480static
 481struct ptlrpc_cli_ctx * sec_lookup_root_ctx_kr(struct ptlrpc_sec *sec)
 482{
 483        struct gss_sec_keyring  *gsec_kr = sec2gsec_keyring(sec);
 484        struct ptlrpc_cli_ctx   *ctx = NULL;
 485
 486        spin_lock(&sec->ps_lock);
 487
 488        ctx = gsec_kr->gsk_root_ctx;
 489
 490        if (ctx == NULL && unlikely(sec_is_reverse(sec))) {
 491                struct ptlrpc_cli_ctx  *tmp;
 492
 493                /* reverse ctx, search root ctx in list, choose the one
 494                 * with shortest expire time, which is most possibly have
 495                 * an established peer ctx at client side. */
 496                hlist_for_each_entry(tmp, &gsec_kr->gsk_clist, cc_cache) {
 497                        if (ctx == NULL || ctx->cc_expire == 0 ||
 498                            ctx->cc_expire > tmp->cc_expire) {
 499                                ctx = tmp;
 500                                /* promote to be root_ctx */
 501                                gsec_kr->gsk_root_ctx = ctx;
 502                        }
 503                }
 504        }
 505
 506        if (ctx) {
 507                LASSERT(atomic_read(&ctx->cc_refcount) > 0);
 508                LASSERT(!hlist_empty(&gsec_kr->gsk_clist));
 509                atomic_inc(&ctx->cc_refcount);
 510        }
 511
 512        spin_unlock(&sec->ps_lock);
 513
 514        return ctx;
 515}
 516
 517#define RVS_CTX_EXPIRE_NICE    (10)
 518
 519static
 520void rvs_sec_install_root_ctx_kr(struct ptlrpc_sec *sec,
 521                                 struct ptlrpc_cli_ctx *new_ctx,
 522                                 struct key *key)
 523{
 524        struct gss_sec_keyring *gsec_kr = sec2gsec_keyring(sec);
 525        struct ptlrpc_cli_ctx  *ctx;
 526        cfs_time_t            now;
 527
 528        LASSERT(sec_is_reverse(sec));
 529
 530        spin_lock(&sec->ps_lock);
 531
 532        now = cfs_time_current_sec();
 533
 534        /* set all existing ctxs short expiry */
 535        hlist_for_each_entry(ctx, &gsec_kr->gsk_clist, cc_cache) {
 536                if (ctx->cc_expire > now + RVS_CTX_EXPIRE_NICE) {
 537                        ctx->cc_early_expire = 1;
 538                        ctx->cc_expire = now + RVS_CTX_EXPIRE_NICE;
 539                }
 540        }
 541
 542        /* if there's root_ctx there, instead obsolete the current
 543         * immediately, we leave it continue operating for a little while.
 544         * hopefully when the first backward rpc with newest ctx send out,
 545         * the client side already have the peer ctx well established. */
 546        ctx_enlist_kr(new_ctx, gsec_kr->gsk_root_ctx ? 0 : 1, 1);
 547
 548        if (key)
 549                bind_key_ctx(key, new_ctx);
 550
 551        spin_unlock(&sec->ps_lock);
 552}
 553
 554static void construct_key_desc(void *buf, int bufsize,
 555                               struct ptlrpc_sec *sec, uid_t uid)
 556{
 557        snprintf(buf, bufsize, "%d@%x", uid, sec->ps_id);
 558        ((char *)buf)[bufsize - 1] = '\0';
 559}
 560
 561/****************************************
 562 * sec apis                          *
 563 ****************************************/
 564
 565static
 566struct ptlrpc_sec * gss_sec_create_kr(struct obd_import *imp,
 567                                      struct ptlrpc_svc_ctx *svcctx,
 568                                      struct sptlrpc_flavor *sf)
 569{
 570        struct gss_sec_keyring  *gsec_kr;
 571
 572        OBD_ALLOC(gsec_kr, sizeof(*gsec_kr));
 573        if (gsec_kr == NULL)
 574                return NULL;
 575
 576        INIT_HLIST_HEAD(&gsec_kr->gsk_clist);
 577        gsec_kr->gsk_root_ctx = NULL;
 578        mutex_init(&gsec_kr->gsk_root_uc_lock);
 579#ifdef HAVE_KEYRING_UPCALL_SERIALIZED
 580        mutex_init(&gsec_kr->gsk_uc_lock);
 581#endif
 582
 583        if (gss_sec_create_common(&gsec_kr->gsk_base, &gss_policy_keyring,
 584                                  imp, svcctx, sf))
 585                goto err_free;
 586
 587        if (svcctx != NULL &&
 588            sec_install_rctx_kr(&gsec_kr->gsk_base.gs_base, svcctx)) {
 589                gss_sec_destroy_common(&gsec_kr->gsk_base);
 590                goto err_free;
 591        }
 592
 593        return &gsec_kr->gsk_base.gs_base;
 594
 595err_free:
 596        OBD_FREE(gsec_kr, sizeof(*gsec_kr));
 597        return NULL;
 598}
 599
 600static
 601void gss_sec_destroy_kr(struct ptlrpc_sec *sec)
 602{
 603        struct gss_sec    *gsec = sec2gsec(sec);
 604        struct gss_sec_keyring  *gsec_kr = sec2gsec_keyring(sec);
 605
 606        CDEBUG(D_SEC, "destroy %s@%p\n", sec->ps_policy->sp_name, sec);
 607
 608        LASSERT(hlist_empty(&gsec_kr->gsk_clist));
 609        LASSERT(gsec_kr->gsk_root_ctx == NULL);
 610
 611        gss_sec_destroy_common(gsec);
 612
 613        OBD_FREE(gsec_kr, sizeof(*gsec_kr));
 614}
 615
 616static inline int user_is_root(struct ptlrpc_sec *sec, struct vfs_cred *vcred)
 617{
 618        /* except the ROOTONLY flag, treat it as root user only if real uid
 619         * is 0, euid/fsuid being 0 are handled as setuid scenarios */
 620        if (sec_is_rootonly(sec) || (vcred->vc_uid == 0))
 621                return 1;
 622        else
 623                return 0;
 624}
 625
 626/*
 627 * unlink request key from it's ring, which is linked during request_key().
 628 * sadly, we have to 'guess' which keyring it's linked to.
 629 *
 630 * FIXME this code is fragile, depend on how request_key_link() is implemented.
 631 */
 632static void request_key_unlink(struct key *key)
 633{
 634        struct task_struct *tsk = current;
 635        struct key *ring;
 636
 637        switch (key_cred(tsk)->jit_keyring) {
 638        case KEY_REQKEY_DEFL_DEFAULT:
 639        case KEY_REQKEY_DEFL_THREAD_KEYRING:
 640                ring = key_get(key_cred(tsk)->thread_keyring);
 641                if (ring)
 642                        break;
 643        case KEY_REQKEY_DEFL_PROCESS_KEYRING:
 644                ring = key_get(key_tgcred(tsk)->process_keyring);
 645                if (ring)
 646                        break;
 647        case KEY_REQKEY_DEFL_SESSION_KEYRING:
 648                rcu_read_lock();
 649                ring = key_get(rcu_dereference(key_tgcred(tsk)
 650                                               ->session_keyring));
 651                rcu_read_unlock();
 652                if (ring)
 653                        break;
 654        case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
 655                ring = key_get(key_cred(tsk)->user->session_keyring);
 656                break;
 657        case KEY_REQKEY_DEFL_USER_KEYRING:
 658                ring = key_get(key_cred(tsk)->user->uid_keyring);
 659                break;
 660        case KEY_REQKEY_DEFL_GROUP_KEYRING:
 661        default:
 662                LBUG();
 663        }
 664
 665        LASSERT(ring);
 666        key_unlink(ring, key);
 667        key_put(ring);
 668}
 669
 670static
 671struct ptlrpc_cli_ctx * gss_sec_lookup_ctx_kr(struct ptlrpc_sec *sec,
 672                                              struct vfs_cred *vcred,
 673                                              int create, int remove_dead)
 674{
 675        struct obd_import       *imp = sec->ps_import;
 676        struct gss_sec_keyring  *gsec_kr = sec2gsec_keyring(sec);
 677        struct ptlrpc_cli_ctx   *ctx = NULL;
 678        unsigned int         is_root = 0, create_new = 0;
 679        struct key            *key;
 680        char                 desc[24];
 681        char                *coinfo;
 682        int                   coinfo_size;
 683        char                *co_flags = "";
 684
 685        LASSERT(imp != NULL);
 686
 687        is_root = user_is_root(sec, vcred);
 688
 689        /* a little bit optimization for root context */
 690        if (is_root) {
 691                ctx = sec_lookup_root_ctx_kr(sec);
 692                /*
 693                 * Only lookup directly for REVERSE sec, which should
 694                 * always succeed.
 695                 */
 696                if (ctx || sec_is_reverse(sec))
 697                        return ctx;
 698        }
 699
 700        LASSERT(create != 0);
 701
 702        /* for root context, obtain lock and check again, this time hold
 703         * the root upcall lock, make sure nobody else populated new root
 704         * context after last check. */
 705        if (is_root) {
 706                mutex_lock(&gsec_kr->gsk_root_uc_lock);
 707
 708                ctx = sec_lookup_root_ctx_kr(sec);
 709                if (ctx)
 710                        goto out;
 711
 712                /* update reverse handle for root user */
 713                sec2gsec(sec)->gs_rvs_hdl = gss_get_next_ctx_index();
 714
 715                switch (sec->ps_part) {
 716                case LUSTRE_SP_MDT:
 717                        co_flags = "m";
 718                        break;
 719                case LUSTRE_SP_OST:
 720                        co_flags = "o";
 721                        break;
 722                case LUSTRE_SP_MGC:
 723                        co_flags = "rmo";
 724                        break;
 725                case LUSTRE_SP_CLI:
 726                        co_flags = "r";
 727                        break;
 728                case LUSTRE_SP_MGS:
 729                default:
 730                        LBUG();
 731                }
 732        }
 733
 734        /* in case of setuid, key will be constructed as owner of fsuid/fsgid,
 735         * but we do authentication based on real uid/gid. the key permission
 736         * bits will be exactly as POS_ALL, so only processes who subscribed
 737         * this key could have the access, although the quota might be counted
 738         * on others (fsuid/fsgid).
 739         *
 740         * keyring will use fsuid/fsgid as upcall parameters, so we have to
 741         * encode real uid/gid into callout info.
 742         */
 743
 744        construct_key_desc(desc, sizeof(desc), sec, vcred->vc_uid);
 745
 746        /* callout info format:
 747         * secid:mech:uid:gid:flags:svc_type:peer_nid:target_uuid
 748         */
 749        coinfo_size = sizeof(struct obd_uuid) + MAX_OBD_NAME + 64;
 750        OBD_ALLOC(coinfo, coinfo_size);
 751        if (coinfo == NULL)
 752                goto out;
 753
 754        snprintf(coinfo, coinfo_size, "%d:%s:%u:%u:%s:%d:"LPX64":%s",
 755                 sec->ps_id, sec2gsec(sec)->gs_mech->gm_name,
 756                 vcred->vc_uid, vcred->vc_gid,
 757                 co_flags, import_to_gss_svc(imp),
 758                 imp->imp_connection->c_peer.nid, imp->imp_obd->obd_name);
 759
 760        CDEBUG(D_SEC, "requesting key for %s\n", desc);
 761
 762        keyring_upcall_lock(gsec_kr);
 763        key = request_key(&gss_key_type, desc, coinfo);
 764        keyring_upcall_unlock(gsec_kr);
 765
 766        OBD_FREE(coinfo, coinfo_size);
 767
 768        if (IS_ERR(key)) {
 769                CERROR("failed request key: %ld\n", PTR_ERR(key));
 770                goto out;
 771        }
 772        CDEBUG(D_SEC, "obtained key %08x for %s\n", key->serial, desc);
 773
 774        /* once payload.data was pointed to a ctx, it never changes until
 775         * we de-associate them; but parallel request_key() may return
 776         * a key with payload.data == NULL at the same time. so we still
 777         * need wirtelock of key->sem to serialize them. */
 778        down_write(&key->sem);
 779
 780        if (likely(key->payload.data != NULL)) {
 781                ctx = key->payload.data;
 782
 783                LASSERT(atomic_read(&ctx->cc_refcount) >= 1);
 784                LASSERT(ctx2gctx_keyring(ctx)->gck_key == key);
 785                LASSERT(atomic_read(&key->usage) >= 2);
 786
 787                /* simply take a ref and return. it's upper layer's
 788                 * responsibility to detect & replace dead ctx. */
 789                atomic_inc(&ctx->cc_refcount);
 790        } else {
 791                /* pre initialization with a cli_ctx. this can't be done in
 792                 * key_instantiate() because we'v no enough information
 793                 * there. */
 794                ctx = ctx_create_kr(sec, vcred);
 795                if (ctx != NULL) {
 796                        ctx_enlist_kr(ctx, is_root, 0);
 797                        bind_key_ctx(key, ctx);
 798
 799                        ctx_start_timer_kr(ctx, KEYRING_UPCALL_TIMEOUT);
 800
 801                        CDEBUG(D_SEC, "installed key %p <-> ctx %p (sec %p)\n",
 802                               key, ctx, sec);
 803                } else {
 804                        /* we'd prefer to call key_revoke(), but we more like
 805                         * to revoke it within this key->sem locked period. */
 806                        key_revoke_locked(key);
 807                }
 808
 809                create_new = 1;
 810        }
 811
 812        up_write(&key->sem);
 813
 814        if (is_root && create_new)
 815                request_key_unlink(key);
 816
 817        key_put(key);
 818out:
 819        if (is_root)
 820                mutex_unlock(&gsec_kr->gsk_root_uc_lock);
 821        return ctx;
 822}
 823
 824static
 825void gss_sec_release_ctx_kr(struct ptlrpc_sec *sec,
 826                            struct ptlrpc_cli_ctx *ctx,
 827                            int sync)
 828{
 829        LASSERT(atomic_read(&sec->ps_refcount) > 0);
 830        LASSERT(atomic_read(&ctx->cc_refcount) == 0);
 831        ctx_release_kr(ctx, sync);
 832}
 833
 834/*
 835 * flush context of normal user, we must resort to keyring itself to find out
 836 * contexts which belong to me.
 837 *
 838 * Note here we suppose only to flush _my_ context, the "uid" will
 839 * be ignored in the search.
 840 */
 841static
 842void flush_user_ctx_cache_kr(struct ptlrpc_sec *sec,
 843                             uid_t uid,
 844                             int grace, int force)
 845{
 846        struct key            *key;
 847        char                 desc[24];
 848
 849        /* nothing to do for reverse or rootonly sec */
 850        if (sec_is_reverse(sec) || sec_is_rootonly(sec))
 851                return;
 852
 853        construct_key_desc(desc, sizeof(desc), sec, uid);
 854
 855        /* there should be only one valid key, but we put it in the
 856         * loop in case of any weird cases */
 857        for (;;) {
 858                key = request_key(&gss_key_type, desc, NULL);
 859                if (IS_ERR(key)) {
 860                        CDEBUG(D_SEC, "No more key found for current user\n");
 861                        break;
 862                }
 863
 864                down_write(&key->sem);
 865
 866                kill_key_locked(key);
 867
 868                /* kill_key_locked() should usually revoke the key, but we
 869                 * revoke it again to make sure, e.g. some case the key may
 870                 * not well coupled with a context. */
 871                key_revoke_locked(key);
 872
 873                up_write(&key->sem);
 874
 875                key_put(key);
 876        }
 877}
 878
 879/*
 880 * flush context of root or all, we iterate through the list.
 881 */
 882static
 883void flush_spec_ctx_cache_kr(struct ptlrpc_sec *sec,
 884                             uid_t uid,
 885                             int grace, int force)
 886{
 887        struct gss_sec_keyring *gsec_kr;
 888        struct hlist_head       freelist = HLIST_HEAD_INIT;
 889        struct hlist_node      *next;
 890        struct ptlrpc_cli_ctx  *ctx;
 891
 892        gsec_kr = sec2gsec_keyring(sec);
 893
 894        spin_lock(&sec->ps_lock);
 895        hlist_for_each_entry_safe(ctx, next,
 896                                      &gsec_kr->gsk_clist, cc_cache) {
 897                LASSERT(atomic_read(&ctx->cc_refcount) > 0);
 898
 899                if (uid != -1 && uid != ctx->cc_vcred.vc_uid)
 900                        continue;
 901
 902                /* at this moment there's at least 2 base reference:
 903                 * key association and in-list. */
 904                if (atomic_read(&ctx->cc_refcount) > 2) {
 905                        if (!force)
 906                                continue;
 907                        CWARN("flush busy ctx %p(%u->%s, extra ref %d)\n",
 908                              ctx, ctx->cc_vcred.vc_uid,
 909                              sec2target_str(ctx->cc_sec),
 910                              atomic_read(&ctx->cc_refcount) - 2);
 911                }
 912
 913                set_bit(PTLRPC_CTX_DEAD_BIT, &ctx->cc_flags);
 914                if (!grace)
 915                        clear_bit(PTLRPC_CTX_UPTODATE_BIT, &ctx->cc_flags);
 916
 917                atomic_inc(&ctx->cc_refcount);
 918
 919                if (ctx_unlist_kr(ctx, 1)) {
 920                        hlist_add_head(&ctx->cc_cache, &freelist);
 921                } else {
 922                        LASSERT(atomic_read(&ctx->cc_refcount) >= 2);
 923                        atomic_dec(&ctx->cc_refcount);
 924                }
 925        }
 926        spin_unlock(&sec->ps_lock);
 927
 928        dispose_ctx_list_kr(&freelist);
 929}
 930
 931static
 932int gss_sec_flush_ctx_cache_kr(struct ptlrpc_sec *sec,
 933                               uid_t uid, int grace, int force)
 934{
 935        CDEBUG(D_SEC, "sec %p(%d, nctx %d), uid %d, grace %d, force %d\n",
 936               sec, atomic_read(&sec->ps_refcount),
 937               atomic_read(&sec->ps_nctx),
 938               uid, grace, force);
 939
 940        if (uid != -1 && uid != 0)
 941                flush_user_ctx_cache_kr(sec, uid, grace, force);
 942        else
 943                flush_spec_ctx_cache_kr(sec, uid, grace, force);
 944
 945        return 0;
 946}
 947
 948static
 949void gss_sec_gc_ctx_kr(struct ptlrpc_sec *sec)
 950{
 951        struct gss_sec_keyring *gsec_kr = sec2gsec_keyring(sec);
 952        struct hlist_head       freelist = HLIST_HEAD_INIT;
 953        struct hlist_node      *next;
 954        struct ptlrpc_cli_ctx  *ctx;
 955
 956        CWARN("running gc\n");
 957
 958        spin_lock(&sec->ps_lock);
 959        hlist_for_each_entry_safe(ctx, next,
 960                                      &gsec_kr->gsk_clist, cc_cache) {
 961                LASSERT(atomic_read(&ctx->cc_refcount) > 0);
 962
 963                atomic_inc(&ctx->cc_refcount);
 964
 965                if (cli_ctx_check_death(ctx) && ctx_unlist_kr(ctx, 1)) {
 966                        hlist_add_head(&ctx->cc_cache, &freelist);
 967                        CWARN("unhashed ctx %p\n", ctx);
 968                } else {
 969                        LASSERT(atomic_read(&ctx->cc_refcount) >= 2);
 970                        atomic_dec(&ctx->cc_refcount);
 971                }
 972        }
 973        spin_unlock(&sec->ps_lock);
 974
 975        dispose_ctx_list_kr(&freelist);
 976}
 977
 978static
 979int gss_sec_display_kr(struct ptlrpc_sec *sec, struct seq_file *seq)
 980{
 981        struct gss_sec_keyring *gsec_kr = sec2gsec_keyring(sec);
 982        struct hlist_node      *next;
 983        struct ptlrpc_cli_ctx  *ctx;
 984        struct gss_cli_ctx     *gctx;
 985        time_t            now = cfs_time_current_sec();
 986
 987        spin_lock(&sec->ps_lock);
 988        hlist_for_each_entry_safe(ctx, next,
 989                                  &gsec_kr->gsk_clist, cc_cache) {
 990                struct key           *key;
 991                char                flags_str[40];
 992                char                mech[40];
 993
 994                gctx = ctx2gctx(ctx);
 995                key = ctx2gctx_keyring(ctx)->gck_key;
 996
 997                gss_cli_ctx_flags2str(ctx->cc_flags,
 998                                      flags_str, sizeof(flags_str));
 999
1000                if (gctx->gc_mechctx)
1001                        lgss_display(gctx->gc_mechctx, mech, sizeof(mech));
1002                else
1003                        snprintf(mech, sizeof(mech), "N/A");
1004                mech[sizeof(mech) - 1] = '\0';
1005
1006                seq_printf(seq, "%p: uid %u, ref %d, expire %ld(%+ld), fl %s, "
1007                           "seq %d, win %u, key %08x(ref %d), "
1008                           "hdl "LPX64":"LPX64", mech: %s\n",
1009                           ctx, ctx->cc_vcred.vc_uid,
1010                           atomic_read(&ctx->cc_refcount),
1011                           ctx->cc_expire,
1012                           ctx->cc_expire ?  ctx->cc_expire - now : 0,
1013                           flags_str,
1014                           atomic_read(&gctx->gc_seq),
1015                           gctx->gc_win,
1016                           key ? key->serial : 0,
1017                           key ? atomic_read(&key->usage) : 0,
1018                           gss_handle_to_u64(&gctx->gc_handle),
1019                           gss_handle_to_u64(&gctx->gc_svc_handle),
1020                           mech);
1021        }
1022        spin_unlock(&sec->ps_lock);
1023
1024        return 0;
1025}
1026
1027/****************************************
1028 * cli_ctx apis                  *
1029 ****************************************/
1030
1031static
1032int gss_cli_ctx_refresh_kr(struct ptlrpc_cli_ctx *ctx)
1033{
1034        /* upcall is already on the way */
1035        return 0;
1036}
1037
1038static
1039int gss_cli_ctx_validate_kr(struct ptlrpc_cli_ctx *ctx)
1040{
1041        LASSERT(atomic_read(&ctx->cc_refcount) > 0);
1042        LASSERT(ctx->cc_sec);
1043
1044        if (cli_ctx_check_death(ctx)) {
1045                kill_ctx_kr(ctx);
1046                return 1;
1047        }
1048
1049        if (cli_ctx_is_ready(ctx))
1050                return 0;
1051        return 1;
1052}
1053
1054static
1055void gss_cli_ctx_die_kr(struct ptlrpc_cli_ctx *ctx, int grace)
1056{
1057        LASSERT(atomic_read(&ctx->cc_refcount) > 0);
1058        LASSERT(ctx->cc_sec);
1059
1060        cli_ctx_expire(ctx);
1061        kill_ctx_kr(ctx);
1062}
1063
1064/****************************************
1065 * (reverse) service                *
1066 ****************************************/
1067
1068/*
1069 * reverse context could have nothing to do with keyrings. here we still keep
1070 * the version which bind to a key, for future reference.
1071 */
1072#define HAVE_REVERSE_CTX_NOKEY
1073
1074
1075static
1076int sec_install_rctx_kr(struct ptlrpc_sec *sec,
1077                        struct ptlrpc_svc_ctx *svc_ctx)
1078{
1079        struct ptlrpc_cli_ctx   *cli_ctx;
1080        struct vfs_cred   vcred = { 0, 0 };
1081        int                   rc;
1082
1083        LASSERT(sec);
1084        LASSERT(svc_ctx);
1085
1086        cli_ctx = ctx_create_kr(sec, &vcred);
1087        if (cli_ctx == NULL)
1088                return -ENOMEM;
1089
1090        rc = gss_copy_rvc_cli_ctx(cli_ctx, svc_ctx);
1091        if (rc) {
1092                CERROR("failed copy reverse cli ctx: %d\n", rc);
1093
1094                ctx_put_kr(cli_ctx, 1);
1095                return rc;
1096        }
1097
1098        rvs_sec_install_root_ctx_kr(sec, cli_ctx, NULL);
1099
1100        ctx_put_kr(cli_ctx, 1);
1101
1102        return 0;
1103}
1104
1105
1106/****************************************
1107 * service apis                  *
1108 ****************************************/
1109
1110static
1111int gss_svc_accept_kr(struct ptlrpc_request *req)
1112{
1113        return gss_svc_accept(&gss_policy_keyring, req);
1114}
1115
1116static
1117int gss_svc_install_rctx_kr(struct obd_import *imp,
1118                            struct ptlrpc_svc_ctx *svc_ctx)
1119{
1120        struct ptlrpc_sec *sec;
1121        int             rc;
1122
1123        sec = sptlrpc_import_sec_ref(imp);
1124        LASSERT(sec);
1125
1126        rc = sec_install_rctx_kr(sec, svc_ctx);
1127        sptlrpc_sec_put(sec);
1128
1129        return rc;
1130}
1131
1132/****************************************
1133 * key apis                          *
1134 ****************************************/
1135
1136static
1137int gss_kt_instantiate(struct key *key, const void *data, size_t datalen)
1138{
1139        int          rc;
1140
1141        if (data != NULL || datalen != 0) {
1142                CERROR("invalid: data %p, len %lu\n", data, (long)datalen);
1143                return -EINVAL;
1144        }
1145
1146        if (key->payload.data != 0) {
1147                CERROR("key already have payload\n");
1148                return -EINVAL;
1149        }
1150
1151        /* link the key to session keyring, so following context negotiation
1152         * rpc fired from user space could find this key. This will be unlinked
1153         * automatically when upcall processes die.
1154         *
1155         * we can't do this through keyctl from userspace, because the upcall
1156         * might be neither possessor nor owner of the key (setuid).
1157         *
1158         * the session keyring is created upon upcall, and don't change all
1159         * the way until upcall finished, so rcu lock is not needed here.
1160         */
1161        LASSERT(key_tgcred(current)->session_keyring);
1162
1163        lockdep_off();
1164        rc = key_link(key_tgcred(current)->session_keyring, key);
1165        lockdep_on();
1166        if (unlikely(rc)) {
1167                CERROR("failed to link key %08x to keyring %08x: %d\n",
1168                       key->serial,
1169                       key_tgcred(current)->session_keyring->serial, rc);
1170                return rc;
1171        }
1172
1173        CDEBUG(D_SEC, "key %p instantiated, ctx %p\n", key, key->payload.data);
1174        return 0;
1175}
1176
1177/*
1178 * called with key semaphore write locked. it means we can operate
1179 * on the context without fear of loosing refcount.
1180 */
1181static
1182int gss_kt_update(struct key *key, const void *data, size_t datalen)
1183{
1184        struct ptlrpc_cli_ctx   *ctx = key->payload.data;
1185        struct gss_cli_ctx      *gctx;
1186        rawobj_t                 tmpobj = RAWOBJ_EMPTY;
1187        __u32               datalen32 = (__u32) datalen;
1188        int                   rc;
1189
1190        if (data == NULL || datalen == 0) {
1191                CWARN("invalid: data %p, len %lu\n", data, (long)datalen);
1192                return -EINVAL;
1193        }
1194
1195        /* if upcall finished negotiation too fast (mostly likely because
1196         * of local error happened) and call kt_update(), the ctx
1197         * might be still NULL. but the key will finally be associate
1198         * with a context, or be revoked. if key status is fine, return
1199         * -EAGAIN to allow userspace sleep a while and call again. */
1200        if (ctx == NULL) {
1201                CDEBUG(D_SEC, "update too soon: key %p(%x) flags %lx\n",
1202                      key, key->serial, key->flags);
1203
1204                rc = key_validate(key);
1205                if (rc == 0)
1206                        return -EAGAIN;
1207                else
1208                        return rc;
1209        }
1210
1211        LASSERT(atomic_read(&ctx->cc_refcount) > 0);
1212        LASSERT(ctx->cc_sec);
1213
1214        ctx_clear_timer_kr(ctx);
1215
1216        /* don't proceed if already refreshed */
1217        if (cli_ctx_is_refreshed(ctx)) {
1218                CWARN("ctx already done refresh\n");
1219                return 0;
1220        }
1221
1222        sptlrpc_cli_ctx_get(ctx);
1223        gctx = ctx2gctx(ctx);
1224
1225        rc = buffer_extract_bytes(&data, &datalen32, &gctx->gc_win,
1226                                  sizeof(gctx->gc_win));
1227        if (rc) {
1228                CERROR("failed extract seq_win\n");
1229                goto out;
1230        }
1231
1232        if (gctx->gc_win == 0) {
1233                __u32   nego_rpc_err, nego_gss_err;
1234
1235                rc = buffer_extract_bytes(&data, &datalen32, &nego_rpc_err,
1236                                          sizeof(nego_rpc_err));
1237                if (rc) {
1238                        CERROR("failed to extrace rpc rc\n");
1239                        goto out;
1240                }
1241
1242                rc = buffer_extract_bytes(&data, &datalen32, &nego_gss_err,
1243                                          sizeof(nego_gss_err));
1244                if (rc) {
1245                        CERROR("failed to extrace gss rc\n");
1246                        goto out;
1247                }
1248
1249                CERROR("negotiation: rpc err %d, gss err %x\n",
1250                       nego_rpc_err, nego_gss_err);
1251
1252                rc = nego_rpc_err ? nego_rpc_err : -EACCES;
1253        } else {
1254                rc = rawobj_extract_local_alloc(&gctx->gc_handle,
1255                                                (__u32 **) &data, &datalen32);
1256                if (rc) {
1257                        CERROR("failed extract handle\n");
1258                        goto out;
1259                }
1260
1261                rc = rawobj_extract_local(&tmpobj, (__u32 **) &data,&datalen32);
1262                if (rc) {
1263                        CERROR("failed extract mech\n");
1264                        goto out;
1265                }
1266
1267                rc = lgss_import_sec_context(&tmpobj,
1268                                             sec2gsec(ctx->cc_sec)->gs_mech,
1269                                             &gctx->gc_mechctx);
1270                if (rc != GSS_S_COMPLETE)
1271                        CERROR("failed import context\n");
1272                else
1273                        rc = 0;
1274        }
1275out:
1276        /* we don't care what current status of this ctx, even someone else
1277         * is operating on the ctx at the same time. we just add up our own
1278         * opinions here. */
1279        if (rc == 0) {
1280                gss_cli_ctx_uptodate(gctx);
1281        } else {
1282                /* this will also revoke the key. has to be done before
1283                 * wakeup waiters otherwise they can find the stale key */
1284                kill_key_locked(key);
1285
1286                cli_ctx_expire(ctx);
1287
1288                if (rc != -ERESTART)
1289                        set_bit(PTLRPC_CTX_ERROR_BIT, &ctx->cc_flags);
1290        }
1291
1292        /* let user space think it's a success */
1293        sptlrpc_cli_ctx_put(ctx, 1);
1294        return 0;
1295}
1296
1297static
1298int gss_kt_match(const struct key *key, const void *desc)
1299{
1300        return (strcmp(key->description, (const char *) desc) == 0);
1301}
1302
1303static
1304void gss_kt_destroy(struct key *key)
1305{
1306        LASSERT(key->payload.data == NULL);
1307        CDEBUG(D_SEC, "destroy key %p\n", key);
1308}
1309
1310static
1311void gss_kt_describe(const struct key *key, struct seq_file *s)
1312{
1313        if (key->description == NULL)
1314                seq_puts(s, "[null]");
1315        else
1316                seq_puts(s, key->description);
1317}
1318
1319static struct key_type gss_key_type =
1320{
1321        .name      = "lgssc",
1322        .def_datalen    = 0,
1323        .instantiate    = gss_kt_instantiate,
1324        .update  = gss_kt_update,
1325        .match    = gss_kt_match,
1326        .destroy        = gss_kt_destroy,
1327        .describe       = gss_kt_describe,
1328};
1329
1330/****************************************
1331 * lustre gss keyring policy        *
1332 ****************************************/
1333
1334static struct ptlrpc_ctx_ops gss_keyring_ctxops = {
1335        .match            = gss_cli_ctx_match,
1336        .refresh                = gss_cli_ctx_refresh_kr,
1337        .validate              = gss_cli_ctx_validate_kr,
1338        .die                = gss_cli_ctx_die_kr,
1339        .sign              = gss_cli_ctx_sign,
1340        .verify          = gss_cli_ctx_verify,
1341        .seal              = gss_cli_ctx_seal,
1342        .unseal          = gss_cli_ctx_unseal,
1343        .wrap_bulk            = gss_cli_ctx_wrap_bulk,
1344        .unwrap_bulk        = gss_cli_ctx_unwrap_bulk,
1345};
1346
1347static struct ptlrpc_sec_cops gss_sec_keyring_cops = {
1348        .create_sec          = gss_sec_create_kr,
1349        .destroy_sec        = gss_sec_destroy_kr,
1350        .kill_sec              = gss_sec_kill,
1351        .lookup_ctx          = gss_sec_lookup_ctx_kr,
1352        .release_ctx        = gss_sec_release_ctx_kr,
1353        .flush_ctx_cache        = gss_sec_flush_ctx_cache_kr,
1354        .gc_ctx          = gss_sec_gc_ctx_kr,
1355        .install_rctx      = gss_sec_install_rctx,
1356        .alloc_reqbuf      = gss_alloc_reqbuf,
1357        .free_reqbuf        = gss_free_reqbuf,
1358        .alloc_repbuf      = gss_alloc_repbuf,
1359        .free_repbuf        = gss_free_repbuf,
1360        .enlarge_reqbuf  = gss_enlarge_reqbuf,
1361        .display                = gss_sec_display_kr,
1362};
1363
1364static struct ptlrpc_sec_sops gss_sec_keyring_sops = {
1365        .accept          = gss_svc_accept_kr,
1366        .invalidate_ctx  = gss_svc_invalidate_ctx,
1367        .alloc_rs              = gss_svc_alloc_rs,
1368        .authorize            = gss_svc_authorize,
1369        .free_rs                = gss_svc_free_rs,
1370        .free_ctx              = gss_svc_free_ctx,
1371        .prep_bulk            = gss_svc_prep_bulk,
1372        .unwrap_bulk        = gss_svc_unwrap_bulk,
1373        .wrap_bulk            = gss_svc_wrap_bulk,
1374        .install_rctx      = gss_svc_install_rctx_kr,
1375};
1376
1377static struct ptlrpc_sec_policy gss_policy_keyring = {
1378        .sp_owner              = THIS_MODULE,
1379        .sp_name                = "gss.keyring",
1380        .sp_policy            = SPTLRPC_POLICY_GSS,
1381        .sp_cops                = &gss_sec_keyring_cops,
1382        .sp_sops                = &gss_sec_keyring_sops,
1383};
1384
1385
1386int __init gss_init_keyring(void)
1387{
1388        int rc;
1389
1390        rc = register_key_type(&gss_key_type);
1391        if (rc) {
1392                CERROR("failed to register keyring type: %d\n", rc);
1393                return rc;
1394        }
1395
1396        rc = sptlrpc_register_policy(&gss_policy_keyring);
1397        if (rc) {
1398                unregister_key_type(&gss_key_type);
1399                return rc;
1400        }
1401
1402        return 0;
1403}
1404
1405void __exit gss_exit_keyring(void)
1406{
1407        unregister_key_type(&gss_key_type);
1408        sptlrpc_unregister_policy(&gss_policy_keyring);
1409}
1410