linux/drivers/usb/core/message.c
<<
>>
Prefs
   1/*
   2 * message.c - synchronous message handling
   3 */
   4
   5#include <linux/pci.h>  /* for scatterlist macros */
   6#include <linux/usb.h>
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/timer.h>
  12#include <linux/ctype.h>
  13#include <linux/nls.h>
  14#include <linux/device.h>
  15#include <linux/scatterlist.h>
  16#include <linux/usb/quirks.h>
  17#include <linux/usb/hcd.h>      /* for usbcore internals */
  18#include <asm/byteorder.h>
  19
  20#include "usb.h"
  21
  22static void cancel_async_set_config(struct usb_device *udev);
  23
  24struct api_context {
  25        struct completion       done;
  26        int                     status;
  27};
  28
  29static void usb_api_blocking_completion(struct urb *urb)
  30{
  31        struct api_context *ctx = urb->context;
  32
  33        ctx->status = urb->status;
  34        complete(&ctx->done);
  35}
  36
  37
  38/*
  39 * Starts urb and waits for completion or timeout. Note that this call
  40 * is NOT interruptible. Many device driver i/o requests should be
  41 * interruptible and therefore these drivers should implement their
  42 * own interruptible routines.
  43 */
  44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  45{
  46        struct api_context ctx;
  47        unsigned long expire;
  48        int retval;
  49
  50        init_completion(&ctx.done);
  51        urb->context = &ctx;
  52        urb->actual_length = 0;
  53        retval = usb_submit_urb(urb, GFP_NOIO);
  54        if (unlikely(retval))
  55                goto out;
  56
  57        expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  58        if (!wait_for_completion_timeout(&ctx.done, expire)) {
  59                usb_kill_urb(urb);
  60                retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  61
  62                dev_dbg(&urb->dev->dev,
  63                        "%s timed out on ep%d%s len=%u/%u\n",
  64                        current->comm,
  65                        usb_endpoint_num(&urb->ep->desc),
  66                        usb_urb_dir_in(urb) ? "in" : "out",
  67                        urb->actual_length,
  68                        urb->transfer_buffer_length);
  69        } else
  70                retval = ctx.status;
  71out:
  72        if (actual_length)
  73                *actual_length = urb->actual_length;
  74
  75        usb_free_urb(urb);
  76        return retval;
  77}
  78
  79/*-------------------------------------------------------------------*/
  80/* returns status (negative) or length (positive) */
  81static int usb_internal_control_msg(struct usb_device *usb_dev,
  82                                    unsigned int pipe,
  83                                    struct usb_ctrlrequest *cmd,
  84                                    void *data, int len, int timeout)
  85{
  86        struct urb *urb;
  87        int retv;
  88        int length;
  89
  90        urb = usb_alloc_urb(0, GFP_NOIO);
  91        if (!urb)
  92                return -ENOMEM;
  93
  94        usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
  95                             len, usb_api_blocking_completion, NULL);
  96
  97        retv = usb_start_wait_urb(urb, timeout, &length);
  98        if (retv < 0)
  99                return retv;
 100        else
 101                return length;
 102}
 103
 104/**
 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 106 * @dev: pointer to the usb device to send the message to
 107 * @pipe: endpoint "pipe" to send the message to
 108 * @request: USB message request value
 109 * @requesttype: USB message request type value
 110 * @value: USB message value
 111 * @index: USB message index value
 112 * @data: pointer to the data to send
 113 * @size: length in bytes of the data to send
 114 * @timeout: time in msecs to wait for the message to complete before timing
 115 *      out (if 0 the wait is forever)
 116 *
 117 * Context: !in_interrupt ()
 118 *
 119 * This function sends a simple control message to a specified endpoint and
 120 * waits for the message to complete, or timeout.
 121 *
 122 * Don't use this function from within an interrupt context, like a bottom half
 123 * handler.  If you need an asynchronous message, or need to send a message
 124 * from within interrupt context, use usb_submit_urb().
 125 * If a thread in your driver uses this call, make sure your disconnect()
 126 * method can wait for it to complete.  Since you don't have a handle on the
 127 * URB used, you can't cancel the request.
 128 *
 129 * Return: If successful, the number of bytes transferred. Otherwise, a negative
 130 * error number.
 131 */
 132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 133                    __u8 requesttype, __u16 value, __u16 index, void *data,
 134                    __u16 size, int timeout)
 135{
 136        struct usb_ctrlrequest *dr;
 137        int ret;
 138
 139        dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 140        if (!dr)
 141                return -ENOMEM;
 142
 143        dr->bRequestType = requesttype;
 144        dr->bRequest = request;
 145        dr->wValue = cpu_to_le16(value);
 146        dr->wIndex = cpu_to_le16(index);
 147        dr->wLength = cpu_to_le16(size);
 148
 149        ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 150
 151        kfree(dr);
 152
 153        return ret;
 154}
 155EXPORT_SYMBOL_GPL(usb_control_msg);
 156
 157/**
 158 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 159 * @usb_dev: pointer to the usb device to send the message to
 160 * @pipe: endpoint "pipe" to send the message to
 161 * @data: pointer to the data to send
 162 * @len: length in bytes of the data to send
 163 * @actual_length: pointer to a location to put the actual length transferred
 164 *      in bytes
 165 * @timeout: time in msecs to wait for the message to complete before
 166 *      timing out (if 0 the wait is forever)
 167 *
 168 * Context: !in_interrupt ()
 169 *
 170 * This function sends a simple interrupt message to a specified endpoint and
 171 * waits for the message to complete, or timeout.
 172 *
 173 * Don't use this function from within an interrupt context, like a bottom half
 174 * handler.  If you need an asynchronous message, or need to send a message
 175 * from within interrupt context, use usb_submit_urb() If a thread in your
 176 * driver uses this call, make sure your disconnect() method can wait for it to
 177 * complete.  Since you don't have a handle on the URB used, you can't cancel
 178 * the request.
 179 *
 180 * Return:
 181 * If successful, 0. Otherwise a negative error number. The number of actual
 182 * bytes transferred will be stored in the @actual_length paramater.
 183 */
 184int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 185                      void *data, int len, int *actual_length, int timeout)
 186{
 187        return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 188}
 189EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 190
 191/**
 192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 193 * @usb_dev: pointer to the usb device to send the message to
 194 * @pipe: endpoint "pipe" to send the message to
 195 * @data: pointer to the data to send
 196 * @len: length in bytes of the data to send
 197 * @actual_length: pointer to a location to put the actual length transferred
 198 *      in bytes
 199 * @timeout: time in msecs to wait for the message to complete before
 200 *      timing out (if 0 the wait is forever)
 201 *
 202 * Context: !in_interrupt ()
 203 *
 204 * This function sends a simple bulk message to a specified endpoint
 205 * and waits for the message to complete, or timeout.
 206 *
 207 * Don't use this function from within an interrupt context, like a bottom half
 208 * handler.  If you need an asynchronous message, or need to send a message
 209 * from within interrupt context, use usb_submit_urb() If a thread in your
 210 * driver uses this call, make sure your disconnect() method can wait for it to
 211 * complete.  Since you don't have a handle on the URB used, you can't cancel
 212 * the request.
 213 *
 214 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 215 * users are forced to abuse this routine by using it to submit URBs for
 216 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 217 * (with the default interval) if the target is an interrupt endpoint.
 218 *
 219 * Return:
 220 * If successful, 0. Otherwise a negative error number. The number of actual
 221 * bytes transferred will be stored in the @actual_length paramater.
 222 *
 223 */
 224int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 225                 void *data, int len, int *actual_length, int timeout)
 226{
 227        struct urb *urb;
 228        struct usb_host_endpoint *ep;
 229
 230        ep = usb_pipe_endpoint(usb_dev, pipe);
 231        if (!ep || len < 0)
 232                return -EINVAL;
 233
 234        urb = usb_alloc_urb(0, GFP_KERNEL);
 235        if (!urb)
 236                return -ENOMEM;
 237
 238        if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 239                        USB_ENDPOINT_XFER_INT) {
 240                pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 241                usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 242                                usb_api_blocking_completion, NULL,
 243                                ep->desc.bInterval);
 244        } else
 245                usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 246                                usb_api_blocking_completion, NULL);
 247
 248        return usb_start_wait_urb(urb, timeout, actual_length);
 249}
 250EXPORT_SYMBOL_GPL(usb_bulk_msg);
 251
 252/*-------------------------------------------------------------------*/
 253
 254static void sg_clean(struct usb_sg_request *io)
 255{
 256        if (io->urbs) {
 257                while (io->entries--)
 258                        usb_free_urb(io->urbs[io->entries]);
 259                kfree(io->urbs);
 260                io->urbs = NULL;
 261        }
 262        io->dev = NULL;
 263}
 264
 265static void sg_complete(struct urb *urb)
 266{
 267        struct usb_sg_request *io = urb->context;
 268        int status = urb->status;
 269
 270        spin_lock(&io->lock);
 271
 272        /* In 2.5 we require hcds' endpoint queues not to progress after fault
 273         * reports, until the completion callback (this!) returns.  That lets
 274         * device driver code (like this routine) unlink queued urbs first,
 275         * if it needs to, since the HC won't work on them at all.  So it's
 276         * not possible for page N+1 to overwrite page N, and so on.
 277         *
 278         * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 279         * complete before the HCD can get requests away from hardware,
 280         * though never during cleanup after a hard fault.
 281         */
 282        if (io->status
 283                        && (io->status != -ECONNRESET
 284                                || status != -ECONNRESET)
 285                        && urb->actual_length) {
 286                dev_err(io->dev->bus->controller,
 287                        "dev %s ep%d%s scatterlist error %d/%d\n",
 288                        io->dev->devpath,
 289                        usb_endpoint_num(&urb->ep->desc),
 290                        usb_urb_dir_in(urb) ? "in" : "out",
 291                        status, io->status);
 292                /* BUG (); */
 293        }
 294
 295        if (io->status == 0 && status && status != -ECONNRESET) {
 296                int i, found, retval;
 297
 298                io->status = status;
 299
 300                /* the previous urbs, and this one, completed already.
 301                 * unlink pending urbs so they won't rx/tx bad data.
 302                 * careful: unlink can sometimes be synchronous...
 303                 */
 304                spin_unlock(&io->lock);
 305                for (i = 0, found = 0; i < io->entries; i++) {
 306                        if (!io->urbs[i] || !io->urbs[i]->dev)
 307                                continue;
 308                        if (found) {
 309                                retval = usb_unlink_urb(io->urbs[i]);
 310                                if (retval != -EINPROGRESS &&
 311                                    retval != -ENODEV &&
 312                                    retval != -EBUSY &&
 313                                    retval != -EIDRM)
 314                                        dev_err(&io->dev->dev,
 315                                                "%s, unlink --> %d\n",
 316                                                __func__, retval);
 317                        } else if (urb == io->urbs[i])
 318                                found = 1;
 319                }
 320                spin_lock(&io->lock);
 321        }
 322
 323        /* on the last completion, signal usb_sg_wait() */
 324        io->bytes += urb->actual_length;
 325        io->count--;
 326        if (!io->count)
 327                complete(&io->complete);
 328
 329        spin_unlock(&io->lock);
 330}
 331
 332
 333/**
 334 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 335 * @io: request block being initialized.  until usb_sg_wait() returns,
 336 *      treat this as a pointer to an opaque block of memory,
 337 * @dev: the usb device that will send or receive the data
 338 * @pipe: endpoint "pipe" used to transfer the data
 339 * @period: polling rate for interrupt endpoints, in frames or
 340 *      (for high speed endpoints) microframes; ignored for bulk
 341 * @sg: scatterlist entries
 342 * @nents: how many entries in the scatterlist
 343 * @length: how many bytes to send from the scatterlist, or zero to
 344 *      send every byte identified in the list.
 345 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 346 *
 347 * This initializes a scatter/gather request, allocating resources such as
 348 * I/O mappings and urb memory (except maybe memory used by USB controller
 349 * drivers).
 350 *
 351 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 352 * complete (or to be canceled) and then cleans up all resources allocated by
 353 * usb_sg_init().
 354 *
 355 * The request may be canceled with usb_sg_cancel(), either before or after
 356 * usb_sg_wait() is called.
 357 *
 358 * Return: Zero for success, else a negative errno value.
 359 */
 360int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 361                unsigned pipe, unsigned period, struct scatterlist *sg,
 362                int nents, size_t length, gfp_t mem_flags)
 363{
 364        int i;
 365        int urb_flags;
 366        int use_sg;
 367
 368        if (!io || !dev || !sg
 369                        || usb_pipecontrol(pipe)
 370                        || usb_pipeisoc(pipe)
 371                        || nents <= 0)
 372                return -EINVAL;
 373
 374        spin_lock_init(&io->lock);
 375        io->dev = dev;
 376        io->pipe = pipe;
 377
 378        if (dev->bus->sg_tablesize > 0) {
 379                use_sg = true;
 380                io->entries = 1;
 381        } else {
 382                use_sg = false;
 383                io->entries = nents;
 384        }
 385
 386        /* initialize all the urbs we'll use */
 387        io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
 388        if (!io->urbs)
 389                goto nomem;
 390
 391        urb_flags = URB_NO_INTERRUPT;
 392        if (usb_pipein(pipe))
 393                urb_flags |= URB_SHORT_NOT_OK;
 394
 395        for_each_sg(sg, sg, io->entries, i) {
 396                struct urb *urb;
 397                unsigned len;
 398
 399                urb = usb_alloc_urb(0, mem_flags);
 400                if (!urb) {
 401                        io->entries = i;
 402                        goto nomem;
 403                }
 404                io->urbs[i] = urb;
 405
 406                urb->dev = NULL;
 407                urb->pipe = pipe;
 408                urb->interval = period;
 409                urb->transfer_flags = urb_flags;
 410                urb->complete = sg_complete;
 411                urb->context = io;
 412                urb->sg = sg;
 413
 414                if (use_sg) {
 415                        /* There is no single transfer buffer */
 416                        urb->transfer_buffer = NULL;
 417                        urb->num_sgs = nents;
 418
 419                        /* A length of zero means transfer the whole sg list */
 420                        len = length;
 421                        if (len == 0) {
 422                                struct scatterlist      *sg2;
 423                                int                     j;
 424
 425                                for_each_sg(sg, sg2, nents, j)
 426                                        len += sg2->length;
 427                        }
 428                } else {
 429                        /*
 430                         * Some systems can't use DMA; they use PIO instead.
 431                         * For their sakes, transfer_buffer is set whenever
 432                         * possible.
 433                         */
 434                        if (!PageHighMem(sg_page(sg)))
 435                                urb->transfer_buffer = sg_virt(sg);
 436                        else
 437                                urb->transfer_buffer = NULL;
 438
 439                        len = sg->length;
 440                        if (length) {
 441                                len = min_t(size_t, len, length);
 442                                length -= len;
 443                                if (length == 0)
 444                                        io->entries = i + 1;
 445                        }
 446                }
 447                urb->transfer_buffer_length = len;
 448        }
 449        io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 450
 451        /* transaction state */
 452        io->count = io->entries;
 453        io->status = 0;
 454        io->bytes = 0;
 455        init_completion(&io->complete);
 456        return 0;
 457
 458nomem:
 459        sg_clean(io);
 460        return -ENOMEM;
 461}
 462EXPORT_SYMBOL_GPL(usb_sg_init);
 463
 464/**
 465 * usb_sg_wait - synchronously execute scatter/gather request
 466 * @io: request block handle, as initialized with usb_sg_init().
 467 *      some fields become accessible when this call returns.
 468 * Context: !in_interrupt ()
 469 *
 470 * This function blocks until the specified I/O operation completes.  It
 471 * leverages the grouping of the related I/O requests to get good transfer
 472 * rates, by queueing the requests.  At higher speeds, such queuing can
 473 * significantly improve USB throughput.
 474 *
 475 * There are three kinds of completion for this function.
 476 * (1) success, where io->status is zero.  The number of io->bytes
 477 *     transferred is as requested.
 478 * (2) error, where io->status is a negative errno value.  The number
 479 *     of io->bytes transferred before the error is usually less
 480 *     than requested, and can be nonzero.
 481 * (3) cancellation, a type of error with status -ECONNRESET that
 482 *     is initiated by usb_sg_cancel().
 483 *
 484 * When this function returns, all memory allocated through usb_sg_init() or
 485 * this call will have been freed.  The request block parameter may still be
 486 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 487 * reinitialized and then reused.
 488 *
 489 * Data Transfer Rates:
 490 *
 491 * Bulk transfers are valid for full or high speed endpoints.
 492 * The best full speed data rate is 19 packets of 64 bytes each
 493 * per frame, or 1216 bytes per millisecond.
 494 * The best high speed data rate is 13 packets of 512 bytes each
 495 * per microframe, or 52 KBytes per millisecond.
 496 *
 497 * The reason to use interrupt transfers through this API would most likely
 498 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 499 * could be transferred.  That capability is less useful for low or full
 500 * speed interrupt endpoints, which allow at most one packet per millisecond,
 501 * of at most 8 or 64 bytes (respectively).
 502 *
 503 * It is not necessary to call this function to reserve bandwidth for devices
 504 * under an xHCI host controller, as the bandwidth is reserved when the
 505 * configuration or interface alt setting is selected.
 506 */
 507void usb_sg_wait(struct usb_sg_request *io)
 508{
 509        int i;
 510        int entries = io->entries;
 511
 512        /* queue the urbs.  */
 513        spin_lock_irq(&io->lock);
 514        i = 0;
 515        while (i < entries && !io->status) {
 516                int retval;
 517
 518                io->urbs[i]->dev = io->dev;
 519                retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
 520
 521                /* after we submit, let completions or cancelations fire;
 522                 * we handshake using io->status.
 523                 */
 524                spin_unlock_irq(&io->lock);
 525                switch (retval) {
 526                        /* maybe we retrying will recover */
 527                case -ENXIO:    /* hc didn't queue this one */
 528                case -EAGAIN:
 529                case -ENOMEM:
 530                        retval = 0;
 531                        yield();
 532                        break;
 533
 534                        /* no error? continue immediately.
 535                         *
 536                         * NOTE: to work better with UHCI (4K I/O buffer may
 537                         * need 3K of TDs) it may be good to limit how many
 538                         * URBs are queued at once; N milliseconds?
 539                         */
 540                case 0:
 541                        ++i;
 542                        cpu_relax();
 543                        break;
 544
 545                        /* fail any uncompleted urbs */
 546                default:
 547                        io->urbs[i]->status = retval;
 548                        dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 549                                __func__, retval);
 550                        usb_sg_cancel(io);
 551                }
 552                spin_lock_irq(&io->lock);
 553                if (retval && (io->status == 0 || io->status == -ECONNRESET))
 554                        io->status = retval;
 555        }
 556        io->count -= entries - i;
 557        if (io->count == 0)
 558                complete(&io->complete);
 559        spin_unlock_irq(&io->lock);
 560
 561        /* OK, yes, this could be packaged as non-blocking.
 562         * So could the submit loop above ... but it's easier to
 563         * solve neither problem than to solve both!
 564         */
 565        wait_for_completion(&io->complete);
 566
 567        sg_clean(io);
 568}
 569EXPORT_SYMBOL_GPL(usb_sg_wait);
 570
 571/**
 572 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 573 * @io: request block, initialized with usb_sg_init()
 574 *
 575 * This stops a request after it has been started by usb_sg_wait().
 576 * It can also prevents one initialized by usb_sg_init() from starting,
 577 * so that call just frees resources allocated to the request.
 578 */
 579void usb_sg_cancel(struct usb_sg_request *io)
 580{
 581        unsigned long flags;
 582
 583        spin_lock_irqsave(&io->lock, flags);
 584
 585        /* shut everything down, if it didn't already */
 586        if (!io->status) {
 587                int i;
 588
 589                io->status = -ECONNRESET;
 590                spin_unlock(&io->lock);
 591                for (i = 0; i < io->entries; i++) {
 592                        int retval;
 593
 594                        if (!io->urbs[i]->dev)
 595                                continue;
 596                        retval = usb_unlink_urb(io->urbs[i]);
 597                        if (retval != -EINPROGRESS
 598                                        && retval != -ENODEV
 599                                        && retval != -EBUSY
 600                                        && retval != -EIDRM)
 601                                dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 602                                        __func__, retval);
 603                }
 604                spin_lock(&io->lock);
 605        }
 606        spin_unlock_irqrestore(&io->lock, flags);
 607}
 608EXPORT_SYMBOL_GPL(usb_sg_cancel);
 609
 610/*-------------------------------------------------------------------*/
 611
 612/**
 613 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 614 * @dev: the device whose descriptor is being retrieved
 615 * @type: the descriptor type (USB_DT_*)
 616 * @index: the number of the descriptor
 617 * @buf: where to put the descriptor
 618 * @size: how big is "buf"?
 619 * Context: !in_interrupt ()
 620 *
 621 * Gets a USB descriptor.  Convenience functions exist to simplify
 622 * getting some types of descriptors.  Use
 623 * usb_get_string() or usb_string() for USB_DT_STRING.
 624 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 625 * are part of the device structure.
 626 * In addition to a number of USB-standard descriptors, some
 627 * devices also use class-specific or vendor-specific descriptors.
 628 *
 629 * This call is synchronous, and may not be used in an interrupt context.
 630 *
 631 * Return: The number of bytes received on success, or else the status code
 632 * returned by the underlying usb_control_msg() call.
 633 */
 634int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 635                       unsigned char index, void *buf, int size)
 636{
 637        int i;
 638        int result;
 639
 640        memset(buf, 0, size);   /* Make sure we parse really received data */
 641
 642        for (i = 0; i < 3; ++i) {
 643                /* retry on length 0 or error; some devices are flakey */
 644                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 645                                USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 646                                (type << 8) + index, 0, buf, size,
 647                                USB_CTRL_GET_TIMEOUT);
 648                if (result <= 0 && result != -ETIMEDOUT)
 649                        continue;
 650                if (result > 1 && ((u8 *)buf)[1] != type) {
 651                        result = -ENODATA;
 652                        continue;
 653                }
 654                break;
 655        }
 656        return result;
 657}
 658EXPORT_SYMBOL_GPL(usb_get_descriptor);
 659
 660/**
 661 * usb_get_string - gets a string descriptor
 662 * @dev: the device whose string descriptor is being retrieved
 663 * @langid: code for language chosen (from string descriptor zero)
 664 * @index: the number of the descriptor
 665 * @buf: where to put the string
 666 * @size: how big is "buf"?
 667 * Context: !in_interrupt ()
 668 *
 669 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 670 * in little-endian byte order).
 671 * The usb_string() function will often be a convenient way to turn
 672 * these strings into kernel-printable form.
 673 *
 674 * Strings may be referenced in device, configuration, interface, or other
 675 * descriptors, and could also be used in vendor-specific ways.
 676 *
 677 * This call is synchronous, and may not be used in an interrupt context.
 678 *
 679 * Return: The number of bytes received on success, or else the status code
 680 * returned by the underlying usb_control_msg() call.
 681 */
 682static int usb_get_string(struct usb_device *dev, unsigned short langid,
 683                          unsigned char index, void *buf, int size)
 684{
 685        int i;
 686        int result;
 687
 688        for (i = 0; i < 3; ++i) {
 689                /* retry on length 0 or stall; some devices are flakey */
 690                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 691                        USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 692                        (USB_DT_STRING << 8) + index, langid, buf, size,
 693                        USB_CTRL_GET_TIMEOUT);
 694                if (result == 0 || result == -EPIPE)
 695                        continue;
 696                if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 697                        result = -ENODATA;
 698                        continue;
 699                }
 700                break;
 701        }
 702        return result;
 703}
 704
 705static void usb_try_string_workarounds(unsigned char *buf, int *length)
 706{
 707        int newlength, oldlength = *length;
 708
 709        for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 710                if (!isprint(buf[newlength]) || buf[newlength + 1])
 711                        break;
 712
 713        if (newlength > 2) {
 714                buf[0] = newlength;
 715                *length = newlength;
 716        }
 717}
 718
 719static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 720                          unsigned int index, unsigned char *buf)
 721{
 722        int rc;
 723
 724        /* Try to read the string descriptor by asking for the maximum
 725         * possible number of bytes */
 726        if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 727                rc = -EIO;
 728        else
 729                rc = usb_get_string(dev, langid, index, buf, 255);
 730
 731        /* If that failed try to read the descriptor length, then
 732         * ask for just that many bytes */
 733        if (rc < 2) {
 734                rc = usb_get_string(dev, langid, index, buf, 2);
 735                if (rc == 2)
 736                        rc = usb_get_string(dev, langid, index, buf, buf[0]);
 737        }
 738
 739        if (rc >= 2) {
 740                if (!buf[0] && !buf[1])
 741                        usb_try_string_workarounds(buf, &rc);
 742
 743                /* There might be extra junk at the end of the descriptor */
 744                if (buf[0] < rc)
 745                        rc = buf[0];
 746
 747                rc = rc - (rc & 1); /* force a multiple of two */
 748        }
 749
 750        if (rc < 2)
 751                rc = (rc < 0 ? rc : -EINVAL);
 752
 753        return rc;
 754}
 755
 756static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 757{
 758        int err;
 759
 760        if (dev->have_langid)
 761                return 0;
 762
 763        if (dev->string_langid < 0)
 764                return -EPIPE;
 765
 766        err = usb_string_sub(dev, 0, 0, tbuf);
 767
 768        /* If the string was reported but is malformed, default to english
 769         * (0x0409) */
 770        if (err == -ENODATA || (err > 0 && err < 4)) {
 771                dev->string_langid = 0x0409;
 772                dev->have_langid = 1;
 773                dev_err(&dev->dev,
 774                        "string descriptor 0 malformed (err = %d), "
 775                        "defaulting to 0x%04x\n",
 776                                err, dev->string_langid);
 777                return 0;
 778        }
 779
 780        /* In case of all other errors, we assume the device is not able to
 781         * deal with strings at all. Set string_langid to -1 in order to
 782         * prevent any string to be retrieved from the device */
 783        if (err < 0) {
 784                dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
 785                                        err);
 786                dev->string_langid = -1;
 787                return -EPIPE;
 788        }
 789
 790        /* always use the first langid listed */
 791        dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 792        dev->have_langid = 1;
 793        dev_dbg(&dev->dev, "default language 0x%04x\n",
 794                                dev->string_langid);
 795        return 0;
 796}
 797
 798/**
 799 * usb_string - returns UTF-8 version of a string descriptor
 800 * @dev: the device whose string descriptor is being retrieved
 801 * @index: the number of the descriptor
 802 * @buf: where to put the string
 803 * @size: how big is "buf"?
 804 * Context: !in_interrupt ()
 805 *
 806 * This converts the UTF-16LE encoded strings returned by devices, from
 807 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 808 * that are more usable in most kernel contexts.  Note that this function
 809 * chooses strings in the first language supported by the device.
 810 *
 811 * This call is synchronous, and may not be used in an interrupt context.
 812 *
 813 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
 814 */
 815int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 816{
 817        unsigned char *tbuf;
 818        int err;
 819
 820        if (dev->state == USB_STATE_SUSPENDED)
 821                return -EHOSTUNREACH;
 822        if (size <= 0 || !buf || !index)
 823                return -EINVAL;
 824        buf[0] = 0;
 825        tbuf = kmalloc(256, GFP_NOIO);
 826        if (!tbuf)
 827                return -ENOMEM;
 828
 829        err = usb_get_langid(dev, tbuf);
 830        if (err < 0)
 831                goto errout;
 832
 833        err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 834        if (err < 0)
 835                goto errout;
 836
 837        size--;         /* leave room for trailing NULL char in output buffer */
 838        err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 839                        UTF16_LITTLE_ENDIAN, buf, size);
 840        buf[err] = 0;
 841
 842        if (tbuf[1] != USB_DT_STRING)
 843                dev_dbg(&dev->dev,
 844                        "wrong descriptor type %02x for string %d (\"%s\")\n",
 845                        tbuf[1], index, buf);
 846
 847 errout:
 848        kfree(tbuf);
 849        return err;
 850}
 851EXPORT_SYMBOL_GPL(usb_string);
 852
 853/* one UTF-8-encoded 16-bit character has at most three bytes */
 854#define MAX_USB_STRING_SIZE (127 * 3 + 1)
 855
 856/**
 857 * usb_cache_string - read a string descriptor and cache it for later use
 858 * @udev: the device whose string descriptor is being read
 859 * @index: the descriptor index
 860 *
 861 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
 862 * or %NULL if the index is 0 or the string could not be read.
 863 */
 864char *usb_cache_string(struct usb_device *udev, int index)
 865{
 866        char *buf;
 867        char *smallbuf = NULL;
 868        int len;
 869
 870        if (index <= 0)
 871                return NULL;
 872
 873        buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
 874        if (buf) {
 875                len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 876                if (len > 0) {
 877                        smallbuf = kmalloc(++len, GFP_NOIO);
 878                        if (!smallbuf)
 879                                return buf;
 880                        memcpy(smallbuf, buf, len);
 881                }
 882                kfree(buf);
 883        }
 884        return smallbuf;
 885}
 886
 887/*
 888 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 889 * @dev: the device whose device descriptor is being updated
 890 * @size: how much of the descriptor to read
 891 * Context: !in_interrupt ()
 892 *
 893 * Updates the copy of the device descriptor stored in the device structure,
 894 * which dedicates space for this purpose.
 895 *
 896 * Not exported, only for use by the core.  If drivers really want to read
 897 * the device descriptor directly, they can call usb_get_descriptor() with
 898 * type = USB_DT_DEVICE and index = 0.
 899 *
 900 * This call is synchronous, and may not be used in an interrupt context.
 901 *
 902 * Return: The number of bytes received on success, or else the status code
 903 * returned by the underlying usb_control_msg() call.
 904 */
 905int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 906{
 907        struct usb_device_descriptor *desc;
 908        int ret;
 909
 910        if (size > sizeof(*desc))
 911                return -EINVAL;
 912        desc = kmalloc(sizeof(*desc), GFP_NOIO);
 913        if (!desc)
 914                return -ENOMEM;
 915
 916        ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 917        if (ret >= 0)
 918                memcpy(&dev->descriptor, desc, size);
 919        kfree(desc);
 920        return ret;
 921}
 922
 923/**
 924 * usb_get_status - issues a GET_STATUS call
 925 * @dev: the device whose status is being checked
 926 * @type: USB_RECIP_*; for device, interface, or endpoint
 927 * @target: zero (for device), else interface or endpoint number
 928 * @data: pointer to two bytes of bitmap data
 929 * Context: !in_interrupt ()
 930 *
 931 * Returns device, interface, or endpoint status.  Normally only of
 932 * interest to see if the device is self powered, or has enabled the
 933 * remote wakeup facility; or whether a bulk or interrupt endpoint
 934 * is halted ("stalled").
 935 *
 936 * Bits in these status bitmaps are set using the SET_FEATURE request,
 937 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 938 * function should be used to clear halt ("stall") status.
 939 *
 940 * This call is synchronous, and may not be used in an interrupt context.
 941 *
 942 * Returns 0 and the status value in *@data (in host byte order) on success,
 943 * or else the status code from the underlying usb_control_msg() call.
 944 */
 945int usb_get_status(struct usb_device *dev, int type, int target, void *data)
 946{
 947        int ret;
 948        __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
 949
 950        if (!status)
 951                return -ENOMEM;
 952
 953        ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 954                USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
 955                sizeof(*status), USB_CTRL_GET_TIMEOUT);
 956
 957        if (ret == 2) {
 958                *(u16 *) data = le16_to_cpu(*status);
 959                ret = 0;
 960        } else if (ret >= 0) {
 961                ret = -EIO;
 962        }
 963        kfree(status);
 964        return ret;
 965}
 966EXPORT_SYMBOL_GPL(usb_get_status);
 967
 968/**
 969 * usb_clear_halt - tells device to clear endpoint halt/stall condition
 970 * @dev: device whose endpoint is halted
 971 * @pipe: endpoint "pipe" being cleared
 972 * Context: !in_interrupt ()
 973 *
 974 * This is used to clear halt conditions for bulk and interrupt endpoints,
 975 * as reported by URB completion status.  Endpoints that are halted are
 976 * sometimes referred to as being "stalled".  Such endpoints are unable
 977 * to transmit or receive data until the halt status is cleared.  Any URBs
 978 * queued for such an endpoint should normally be unlinked by the driver
 979 * before clearing the halt condition, as described in sections 5.7.5
 980 * and 5.8.5 of the USB 2.0 spec.
 981 *
 982 * Note that control and isochronous endpoints don't halt, although control
 983 * endpoints report "protocol stall" (for unsupported requests) using the
 984 * same status code used to report a true stall.
 985 *
 986 * This call is synchronous, and may not be used in an interrupt context.
 987 *
 988 * Return: Zero on success, or else the status code returned by the
 989 * underlying usb_control_msg() call.
 990 */
 991int usb_clear_halt(struct usb_device *dev, int pipe)
 992{
 993        int result;
 994        int endp = usb_pipeendpoint(pipe);
 995
 996        if (usb_pipein(pipe))
 997                endp |= USB_DIR_IN;
 998
 999        /* we don't care if it wasn't halted first. in fact some devices
1000         * (like some ibmcam model 1 units) seem to expect hosts to make
1001         * this request for iso endpoints, which can't halt!
1002         */
1003        result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1004                USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1005                USB_ENDPOINT_HALT, endp, NULL, 0,
1006                USB_CTRL_SET_TIMEOUT);
1007
1008        /* don't un-halt or force to DATA0 except on success */
1009        if (result < 0)
1010                return result;
1011
1012        /* NOTE:  seems like Microsoft and Apple don't bother verifying
1013         * the clear "took", so some devices could lock up if you check...
1014         * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1015         *
1016         * NOTE:  make sure the logic here doesn't diverge much from
1017         * the copy in usb-storage, for as long as we need two copies.
1018         */
1019
1020        usb_reset_endpoint(dev, endp);
1021
1022        return 0;
1023}
1024EXPORT_SYMBOL_GPL(usb_clear_halt);
1025
1026static int create_intf_ep_devs(struct usb_interface *intf)
1027{
1028        struct usb_device *udev = interface_to_usbdev(intf);
1029        struct usb_host_interface *alt = intf->cur_altsetting;
1030        int i;
1031
1032        if (intf->ep_devs_created || intf->unregistering)
1033                return 0;
1034
1035        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1036                (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1037        intf->ep_devs_created = 1;
1038        return 0;
1039}
1040
1041static void remove_intf_ep_devs(struct usb_interface *intf)
1042{
1043        struct usb_host_interface *alt = intf->cur_altsetting;
1044        int i;
1045
1046        if (!intf->ep_devs_created)
1047                return;
1048
1049        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1050                usb_remove_ep_devs(&alt->endpoint[i]);
1051        intf->ep_devs_created = 0;
1052}
1053
1054/**
1055 * usb_disable_endpoint -- Disable an endpoint by address
1056 * @dev: the device whose endpoint is being disabled
1057 * @epaddr: the endpoint's address.  Endpoint number for output,
1058 *      endpoint number + USB_DIR_IN for input
1059 * @reset_hardware: flag to erase any endpoint state stored in the
1060 *      controller hardware
1061 *
1062 * Disables the endpoint for URB submission and nukes all pending URBs.
1063 * If @reset_hardware is set then also deallocates hcd/hardware state
1064 * for the endpoint.
1065 */
1066void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1067                bool reset_hardware)
1068{
1069        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1070        struct usb_host_endpoint *ep;
1071
1072        if (!dev)
1073                return;
1074
1075        if (usb_endpoint_out(epaddr)) {
1076                ep = dev->ep_out[epnum];
1077                if (reset_hardware)
1078                        dev->ep_out[epnum] = NULL;
1079        } else {
1080                ep = dev->ep_in[epnum];
1081                if (reset_hardware)
1082                        dev->ep_in[epnum] = NULL;
1083        }
1084        if (ep) {
1085                ep->enabled = 0;
1086                usb_hcd_flush_endpoint(dev, ep);
1087                if (reset_hardware)
1088                        usb_hcd_disable_endpoint(dev, ep);
1089        }
1090}
1091
1092/**
1093 * usb_reset_endpoint - Reset an endpoint's state.
1094 * @dev: the device whose endpoint is to be reset
1095 * @epaddr: the endpoint's address.  Endpoint number for output,
1096 *      endpoint number + USB_DIR_IN for input
1097 *
1098 * Resets any host-side endpoint state such as the toggle bit,
1099 * sequence number or current window.
1100 */
1101void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1102{
1103        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1104        struct usb_host_endpoint *ep;
1105
1106        if (usb_endpoint_out(epaddr))
1107                ep = dev->ep_out[epnum];
1108        else
1109                ep = dev->ep_in[epnum];
1110        if (ep)
1111                usb_hcd_reset_endpoint(dev, ep);
1112}
1113EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1114
1115
1116/**
1117 * usb_disable_interface -- Disable all endpoints for an interface
1118 * @dev: the device whose interface is being disabled
1119 * @intf: pointer to the interface descriptor
1120 * @reset_hardware: flag to erase any endpoint state stored in the
1121 *      controller hardware
1122 *
1123 * Disables all the endpoints for the interface's current altsetting.
1124 */
1125void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1126                bool reset_hardware)
1127{
1128        struct usb_host_interface *alt = intf->cur_altsetting;
1129        int i;
1130
1131        for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1132                usb_disable_endpoint(dev,
1133                                alt->endpoint[i].desc.bEndpointAddress,
1134                                reset_hardware);
1135        }
1136}
1137
1138/**
1139 * usb_disable_device - Disable all the endpoints for a USB device
1140 * @dev: the device whose endpoints are being disabled
1141 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1142 *
1143 * Disables all the device's endpoints, potentially including endpoint 0.
1144 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1145 * pending urbs) and usbcore state for the interfaces, so that usbcore
1146 * must usb_set_configuration() before any interfaces could be used.
1147 */
1148void usb_disable_device(struct usb_device *dev, int skip_ep0)
1149{
1150        int i;
1151        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1152
1153        /* getting rid of interfaces will disconnect
1154         * any drivers bound to them (a key side effect)
1155         */
1156        if (dev->actconfig) {
1157                /*
1158                 * FIXME: In order to avoid self-deadlock involving the
1159                 * bandwidth_mutex, we have to mark all the interfaces
1160                 * before unregistering any of them.
1161                 */
1162                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1163                        dev->actconfig->interface[i]->unregistering = 1;
1164
1165                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1166                        struct usb_interface    *interface;
1167
1168                        /* remove this interface if it has been registered */
1169                        interface = dev->actconfig->interface[i];
1170                        if (!device_is_registered(&interface->dev))
1171                                continue;
1172                        dev_dbg(&dev->dev, "unregistering interface %s\n",
1173                                dev_name(&interface->dev));
1174                        remove_intf_ep_devs(interface);
1175                        device_del(&interface->dev);
1176                }
1177
1178                /* Now that the interfaces are unbound, nobody should
1179                 * try to access them.
1180                 */
1181                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1182                        put_device(&dev->actconfig->interface[i]->dev);
1183                        dev->actconfig->interface[i] = NULL;
1184                }
1185                usb_unlocked_disable_lpm(dev);
1186                usb_disable_ltm(dev);
1187                dev->actconfig = NULL;
1188                if (dev->state == USB_STATE_CONFIGURED)
1189                        usb_set_device_state(dev, USB_STATE_ADDRESS);
1190        }
1191
1192        dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1193                skip_ep0 ? "non-ep0" : "all");
1194        if (hcd->driver->check_bandwidth) {
1195                /* First pass: Cancel URBs, leave endpoint pointers intact. */
1196                for (i = skip_ep0; i < 16; ++i) {
1197                        usb_disable_endpoint(dev, i, false);
1198                        usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1199                }
1200                /* Remove endpoints from the host controller internal state */
1201                mutex_lock(hcd->bandwidth_mutex);
1202                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1203                mutex_unlock(hcd->bandwidth_mutex);
1204                /* Second pass: remove endpoint pointers */
1205        }
1206        for (i = skip_ep0; i < 16; ++i) {
1207                usb_disable_endpoint(dev, i, true);
1208                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1209        }
1210}
1211
1212/**
1213 * usb_enable_endpoint - Enable an endpoint for USB communications
1214 * @dev: the device whose interface is being enabled
1215 * @ep: the endpoint
1216 * @reset_ep: flag to reset the endpoint state
1217 *
1218 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1219 * For control endpoints, both the input and output sides are handled.
1220 */
1221void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1222                bool reset_ep)
1223{
1224        int epnum = usb_endpoint_num(&ep->desc);
1225        int is_out = usb_endpoint_dir_out(&ep->desc);
1226        int is_control = usb_endpoint_xfer_control(&ep->desc);
1227
1228        if (reset_ep)
1229                usb_hcd_reset_endpoint(dev, ep);
1230        if (is_out || is_control)
1231                dev->ep_out[epnum] = ep;
1232        if (!is_out || is_control)
1233                dev->ep_in[epnum] = ep;
1234        ep->enabled = 1;
1235}
1236
1237/**
1238 * usb_enable_interface - Enable all the endpoints for an interface
1239 * @dev: the device whose interface is being enabled
1240 * @intf: pointer to the interface descriptor
1241 * @reset_eps: flag to reset the endpoints' state
1242 *
1243 * Enables all the endpoints for the interface's current altsetting.
1244 */
1245void usb_enable_interface(struct usb_device *dev,
1246                struct usb_interface *intf, bool reset_eps)
1247{
1248        struct usb_host_interface *alt = intf->cur_altsetting;
1249        int i;
1250
1251        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1252                usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1253}
1254
1255/**
1256 * usb_set_interface - Makes a particular alternate setting be current
1257 * @dev: the device whose interface is being updated
1258 * @interface: the interface being updated
1259 * @alternate: the setting being chosen.
1260 * Context: !in_interrupt ()
1261 *
1262 * This is used to enable data transfers on interfaces that may not
1263 * be enabled by default.  Not all devices support such configurability.
1264 * Only the driver bound to an interface may change its setting.
1265 *
1266 * Within any given configuration, each interface may have several
1267 * alternative settings.  These are often used to control levels of
1268 * bandwidth consumption.  For example, the default setting for a high
1269 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1270 * while interrupt transfers of up to 3KBytes per microframe are legal.
1271 * Also, isochronous endpoints may never be part of an
1272 * interface's default setting.  To access such bandwidth, alternate
1273 * interface settings must be made current.
1274 *
1275 * Note that in the Linux USB subsystem, bandwidth associated with
1276 * an endpoint in a given alternate setting is not reserved until an URB
1277 * is submitted that needs that bandwidth.  Some other operating systems
1278 * allocate bandwidth early, when a configuration is chosen.
1279 *
1280 * This call is synchronous, and may not be used in an interrupt context.
1281 * Also, drivers must not change altsettings while urbs are scheduled for
1282 * endpoints in that interface; all such urbs must first be completed
1283 * (perhaps forced by unlinking).
1284 *
1285 * Return: Zero on success, or else the status code returned by the
1286 * underlying usb_control_msg() call.
1287 */
1288int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1289{
1290        struct usb_interface *iface;
1291        struct usb_host_interface *alt;
1292        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1293        int ret;
1294        int manual = 0;
1295        unsigned int epaddr;
1296        unsigned int pipe;
1297
1298        if (dev->state == USB_STATE_SUSPENDED)
1299                return -EHOSTUNREACH;
1300
1301        iface = usb_ifnum_to_if(dev, interface);
1302        if (!iface) {
1303                dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304                        interface);
1305                return -EINVAL;
1306        }
1307        if (iface->unregistering)
1308                return -ENODEV;
1309
1310        alt = usb_altnum_to_altsetting(iface, alternate);
1311        if (!alt) {
1312                dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313                         alternate);
1314                return -EINVAL;
1315        }
1316
1317        /* Make sure we have enough bandwidth for this alternate interface.
1318         * Remove the current alt setting and add the new alt setting.
1319         */
1320        mutex_lock(hcd->bandwidth_mutex);
1321        /* Disable LPM, and re-enable it once the new alt setting is installed,
1322         * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323         */
1324        if (usb_disable_lpm(dev)) {
1325                dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326                mutex_unlock(hcd->bandwidth_mutex);
1327                return -ENOMEM;
1328        }
1329        ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1330        if (ret < 0) {
1331                dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1332                                alternate);
1333                usb_enable_lpm(dev);
1334                mutex_unlock(hcd->bandwidth_mutex);
1335                return ret;
1336        }
1337
1338        if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1339                ret = -EPIPE;
1340        else
1341                ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1342                                   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1343                                   alternate, interface, NULL, 0, 5000);
1344
1345        /* 9.4.10 says devices don't need this and are free to STALL the
1346         * request if the interface only has one alternate setting.
1347         */
1348        if (ret == -EPIPE && iface->num_altsetting == 1) {
1349                dev_dbg(&dev->dev,
1350                        "manual set_interface for iface %d, alt %d\n",
1351                        interface, alternate);
1352                manual = 1;
1353        } else if (ret < 0) {
1354                /* Re-instate the old alt setting */
1355                usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1356                usb_enable_lpm(dev);
1357                mutex_unlock(hcd->bandwidth_mutex);
1358                return ret;
1359        }
1360        mutex_unlock(hcd->bandwidth_mutex);
1361
1362        /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1363         * when they implement async or easily-killable versions of this or
1364         * other "should-be-internal" functions (like clear_halt).
1365         * should hcd+usbcore postprocess control requests?
1366         */
1367
1368        /* prevent submissions using previous endpoint settings */
1369        if (iface->cur_altsetting != alt) {
1370                remove_intf_ep_devs(iface);
1371                usb_remove_sysfs_intf_files(iface);
1372        }
1373        usb_disable_interface(dev, iface, true);
1374
1375        iface->cur_altsetting = alt;
1376
1377        /* Now that the interface is installed, re-enable LPM. */
1378        usb_unlocked_enable_lpm(dev);
1379
1380        /* If the interface only has one altsetting and the device didn't
1381         * accept the request, we attempt to carry out the equivalent action
1382         * by manually clearing the HALT feature for each endpoint in the
1383         * new altsetting.
1384         */
1385        if (manual) {
1386                int i;
1387
1388                for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1389                        epaddr = alt->endpoint[i].desc.bEndpointAddress;
1390                        pipe = __create_pipe(dev,
1391                                        USB_ENDPOINT_NUMBER_MASK & epaddr) |
1392                                        (usb_endpoint_out(epaddr) ?
1393                                        USB_DIR_OUT : USB_DIR_IN);
1394
1395                        usb_clear_halt(dev, pipe);
1396                }
1397        }
1398
1399        /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1400         *
1401         * Note:
1402         * Despite EP0 is always present in all interfaces/AS, the list of
1403         * endpoints from the descriptor does not contain EP0. Due to its
1404         * omnipresence one might expect EP0 being considered "affected" by
1405         * any SetInterface request and hence assume toggles need to be reset.
1406         * However, EP0 toggles are re-synced for every individual transfer
1407         * during the SETUP stage - hence EP0 toggles are "don't care" here.
1408         * (Likewise, EP0 never "halts" on well designed devices.)
1409         */
1410        usb_enable_interface(dev, iface, true);
1411        if (device_is_registered(&iface->dev)) {
1412                usb_create_sysfs_intf_files(iface);
1413                create_intf_ep_devs(iface);
1414        }
1415        return 0;
1416}
1417EXPORT_SYMBOL_GPL(usb_set_interface);
1418
1419/**
1420 * usb_reset_configuration - lightweight device reset
1421 * @dev: the device whose configuration is being reset
1422 *
1423 * This issues a standard SET_CONFIGURATION request to the device using
1424 * the current configuration.  The effect is to reset most USB-related
1425 * state in the device, including interface altsettings (reset to zero),
1426 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1427 * endpoints).  Other usbcore state is unchanged, including bindings of
1428 * usb device drivers to interfaces.
1429 *
1430 * Because this affects multiple interfaces, avoid using this with composite
1431 * (multi-interface) devices.  Instead, the driver for each interface may
1432 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1433 * some devices don't support the SET_INTERFACE request, and others won't
1434 * reset all the interface state (notably endpoint state).  Resetting the whole
1435 * configuration would affect other drivers' interfaces.
1436 *
1437 * The caller must own the device lock.
1438 *
1439 * Return: Zero on success, else a negative error code.
1440 */
1441int usb_reset_configuration(struct usb_device *dev)
1442{
1443        int                     i, retval;
1444        struct usb_host_config  *config;
1445        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1446
1447        if (dev->state == USB_STATE_SUSPENDED)
1448                return -EHOSTUNREACH;
1449
1450        /* caller must have locked the device and must own
1451         * the usb bus readlock (so driver bindings are stable);
1452         * calls during probe() are fine
1453         */
1454
1455        for (i = 1; i < 16; ++i) {
1456                usb_disable_endpoint(dev, i, true);
1457                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1458        }
1459
1460        config = dev->actconfig;
1461        retval = 0;
1462        mutex_lock(hcd->bandwidth_mutex);
1463        /* Disable LPM, and re-enable it once the configuration is reset, so
1464         * that the xHCI driver can recalculate the U1/U2 timeouts.
1465         */
1466        if (usb_disable_lpm(dev)) {
1467                dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1468                mutex_unlock(hcd->bandwidth_mutex);
1469                return -ENOMEM;
1470        }
1471        /* Make sure we have enough bandwidth for each alternate setting 0 */
1472        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1473                struct usb_interface *intf = config->interface[i];
1474                struct usb_host_interface *alt;
1475
1476                alt = usb_altnum_to_altsetting(intf, 0);
1477                if (!alt)
1478                        alt = &intf->altsetting[0];
1479                if (alt != intf->cur_altsetting)
1480                        retval = usb_hcd_alloc_bandwidth(dev, NULL,
1481                                        intf->cur_altsetting, alt);
1482                if (retval < 0)
1483                        break;
1484        }
1485        /* If not, reinstate the old alternate settings */
1486        if (retval < 0) {
1487reset_old_alts:
1488                for (i--; i >= 0; i--) {
1489                        struct usb_interface *intf = config->interface[i];
1490                        struct usb_host_interface *alt;
1491
1492                        alt = usb_altnum_to_altsetting(intf, 0);
1493                        if (!alt)
1494                                alt = &intf->altsetting[0];
1495                        if (alt != intf->cur_altsetting)
1496                                usb_hcd_alloc_bandwidth(dev, NULL,
1497                                                alt, intf->cur_altsetting);
1498                }
1499                usb_enable_lpm(dev);
1500                mutex_unlock(hcd->bandwidth_mutex);
1501                return retval;
1502        }
1503        retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1504                        USB_REQ_SET_CONFIGURATION, 0,
1505                        config->desc.bConfigurationValue, 0,
1506                        NULL, 0, USB_CTRL_SET_TIMEOUT);
1507        if (retval < 0)
1508                goto reset_old_alts;
1509        mutex_unlock(hcd->bandwidth_mutex);
1510
1511        /* re-init hc/hcd interface/endpoint state */
1512        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1513                struct usb_interface *intf = config->interface[i];
1514                struct usb_host_interface *alt;
1515
1516                alt = usb_altnum_to_altsetting(intf, 0);
1517
1518                /* No altsetting 0?  We'll assume the first altsetting.
1519                 * We could use a GetInterface call, but if a device is
1520                 * so non-compliant that it doesn't have altsetting 0
1521                 * then I wouldn't trust its reply anyway.
1522                 */
1523                if (!alt)
1524                        alt = &intf->altsetting[0];
1525
1526                if (alt != intf->cur_altsetting) {
1527                        remove_intf_ep_devs(intf);
1528                        usb_remove_sysfs_intf_files(intf);
1529                }
1530                intf->cur_altsetting = alt;
1531                usb_enable_interface(dev, intf, true);
1532                if (device_is_registered(&intf->dev)) {
1533                        usb_create_sysfs_intf_files(intf);
1534                        create_intf_ep_devs(intf);
1535                }
1536        }
1537        /* Now that the interfaces are installed, re-enable LPM. */
1538        usb_unlocked_enable_lpm(dev);
1539        return 0;
1540}
1541EXPORT_SYMBOL_GPL(usb_reset_configuration);
1542
1543static void usb_release_interface(struct device *dev)
1544{
1545        struct usb_interface *intf = to_usb_interface(dev);
1546        struct usb_interface_cache *intfc =
1547                        altsetting_to_usb_interface_cache(intf->altsetting);
1548
1549        kref_put(&intfc->ref, usb_release_interface_cache);
1550        kfree(intf);
1551}
1552
1553static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1554{
1555        struct usb_device *usb_dev;
1556        struct usb_interface *intf;
1557        struct usb_host_interface *alt;
1558
1559        intf = to_usb_interface(dev);
1560        usb_dev = interface_to_usbdev(intf);
1561        alt = intf->cur_altsetting;
1562
1563        if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1564                   alt->desc.bInterfaceClass,
1565                   alt->desc.bInterfaceSubClass,
1566                   alt->desc.bInterfaceProtocol))
1567                return -ENOMEM;
1568
1569        if (add_uevent_var(env,
1570                   "MODALIAS=usb:"
1571                   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1572                   le16_to_cpu(usb_dev->descriptor.idVendor),
1573                   le16_to_cpu(usb_dev->descriptor.idProduct),
1574                   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1575                   usb_dev->descriptor.bDeviceClass,
1576                   usb_dev->descriptor.bDeviceSubClass,
1577                   usb_dev->descriptor.bDeviceProtocol,
1578                   alt->desc.bInterfaceClass,
1579                   alt->desc.bInterfaceSubClass,
1580                   alt->desc.bInterfaceProtocol,
1581                   alt->desc.bInterfaceNumber))
1582                return -ENOMEM;
1583
1584        return 0;
1585}
1586
1587struct device_type usb_if_device_type = {
1588        .name =         "usb_interface",
1589        .release =      usb_release_interface,
1590        .uevent =       usb_if_uevent,
1591};
1592
1593static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1594                                                struct usb_host_config *config,
1595                                                u8 inum)
1596{
1597        struct usb_interface_assoc_descriptor *retval = NULL;
1598        struct usb_interface_assoc_descriptor *intf_assoc;
1599        int first_intf;
1600        int last_intf;
1601        int i;
1602
1603        for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1604                intf_assoc = config->intf_assoc[i];
1605                if (intf_assoc->bInterfaceCount == 0)
1606                        continue;
1607
1608                first_intf = intf_assoc->bFirstInterface;
1609                last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1610                if (inum >= first_intf && inum <= last_intf) {
1611                        if (!retval)
1612                                retval = intf_assoc;
1613                        else
1614                                dev_err(&dev->dev, "Interface #%d referenced"
1615                                        " by multiple IADs\n", inum);
1616                }
1617        }
1618
1619        return retval;
1620}
1621
1622
1623/*
1624 * Internal function to queue a device reset
1625 *
1626 * This is initialized into the workstruct in 'struct
1627 * usb_device->reset_ws' that is launched by
1628 * message.c:usb_set_configuration() when initializing each 'struct
1629 * usb_interface'.
1630 *
1631 * It is safe to get the USB device without reference counts because
1632 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1633 * this function will be ran only if @iface is alive (and before
1634 * freeing it any scheduled instances of it will have been cancelled).
1635 *
1636 * We need to set a flag (usb_dev->reset_running) because when we call
1637 * the reset, the interfaces might be unbound. The current interface
1638 * cannot try to remove the queued work as it would cause a deadlock
1639 * (you cannot remove your work from within your executing
1640 * workqueue). This flag lets it know, so that
1641 * usb_cancel_queued_reset() doesn't try to do it.
1642 *
1643 * See usb_queue_reset_device() for more details
1644 */
1645static void __usb_queue_reset_device(struct work_struct *ws)
1646{
1647        int rc;
1648        struct usb_interface *iface =
1649                container_of(ws, struct usb_interface, reset_ws);
1650        struct usb_device *udev = interface_to_usbdev(iface);
1651
1652        rc = usb_lock_device_for_reset(udev, iface);
1653        if (rc >= 0) {
1654                iface->reset_running = 1;
1655                usb_reset_device(udev);
1656                iface->reset_running = 0;
1657                usb_unlock_device(udev);
1658        }
1659}
1660
1661
1662/*
1663 * usb_set_configuration - Makes a particular device setting be current
1664 * @dev: the device whose configuration is being updated
1665 * @configuration: the configuration being chosen.
1666 * Context: !in_interrupt(), caller owns the device lock
1667 *
1668 * This is used to enable non-default device modes.  Not all devices
1669 * use this kind of configurability; many devices only have one
1670 * configuration.
1671 *
1672 * @configuration is the value of the configuration to be installed.
1673 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1674 * must be non-zero; a value of zero indicates that the device in
1675 * unconfigured.  However some devices erroneously use 0 as one of their
1676 * configuration values.  To help manage such devices, this routine will
1677 * accept @configuration = -1 as indicating the device should be put in
1678 * an unconfigured state.
1679 *
1680 * USB device configurations may affect Linux interoperability,
1681 * power consumption and the functionality available.  For example,
1682 * the default configuration is limited to using 100mA of bus power,
1683 * so that when certain device functionality requires more power,
1684 * and the device is bus powered, that functionality should be in some
1685 * non-default device configuration.  Other device modes may also be
1686 * reflected as configuration options, such as whether two ISDN
1687 * channels are available independently; and choosing between open
1688 * standard device protocols (like CDC) or proprietary ones.
1689 *
1690 * Note that a non-authorized device (dev->authorized == 0) will only
1691 * be put in unconfigured mode.
1692 *
1693 * Note that USB has an additional level of device configurability,
1694 * associated with interfaces.  That configurability is accessed using
1695 * usb_set_interface().
1696 *
1697 * This call is synchronous. The calling context must be able to sleep,
1698 * must own the device lock, and must not hold the driver model's USB
1699 * bus mutex; usb interface driver probe() methods cannot use this routine.
1700 *
1701 * Returns zero on success, or else the status code returned by the
1702 * underlying call that failed.  On successful completion, each interface
1703 * in the original device configuration has been destroyed, and each one
1704 * in the new configuration has been probed by all relevant usb device
1705 * drivers currently known to the kernel.
1706 */
1707int usb_set_configuration(struct usb_device *dev, int configuration)
1708{
1709        int i, ret;
1710        struct usb_host_config *cp = NULL;
1711        struct usb_interface **new_interfaces = NULL;
1712        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1713        int n, nintf;
1714
1715        if (dev->authorized == 0 || configuration == -1)
1716                configuration = 0;
1717        else {
1718                for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1719                        if (dev->config[i].desc.bConfigurationValue ==
1720                                        configuration) {
1721                                cp = &dev->config[i];
1722                                break;
1723                        }
1724                }
1725        }
1726        if ((!cp && configuration != 0))
1727                return -EINVAL;
1728
1729        /* The USB spec says configuration 0 means unconfigured.
1730         * But if a device includes a configuration numbered 0,
1731         * we will accept it as a correctly configured state.
1732         * Use -1 if you really want to unconfigure the device.
1733         */
1734        if (cp && configuration == 0)
1735                dev_warn(&dev->dev, "config 0 descriptor??\n");
1736
1737        /* Allocate memory for new interfaces before doing anything else,
1738         * so that if we run out then nothing will have changed. */
1739        n = nintf = 0;
1740        if (cp) {
1741                nintf = cp->desc.bNumInterfaces;
1742                new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1743                                GFP_NOIO);
1744                if (!new_interfaces) {
1745                        dev_err(&dev->dev, "Out of memory\n");
1746                        return -ENOMEM;
1747                }
1748
1749                for (; n < nintf; ++n) {
1750                        new_interfaces[n] = kzalloc(
1751                                        sizeof(struct usb_interface),
1752                                        GFP_NOIO);
1753                        if (!new_interfaces[n]) {
1754                                dev_err(&dev->dev, "Out of memory\n");
1755                                ret = -ENOMEM;
1756free_interfaces:
1757                                while (--n >= 0)
1758                                        kfree(new_interfaces[n]);
1759                                kfree(new_interfaces);
1760                                return ret;
1761                        }
1762                }
1763
1764                i = dev->bus_mA - usb_get_max_power(dev, cp);
1765                if (i < 0)
1766                        dev_warn(&dev->dev, "new config #%d exceeds power "
1767                                        "limit by %dmA\n",
1768                                        configuration, -i);
1769        }
1770
1771        /* Wake up the device so we can send it the Set-Config request */
1772        ret = usb_autoresume_device(dev);
1773        if (ret)
1774                goto free_interfaces;
1775
1776        /* if it's already configured, clear out old state first.
1777         * getting rid of old interfaces means unbinding their drivers.
1778         */
1779        if (dev->state != USB_STATE_ADDRESS)
1780                usb_disable_device(dev, 1);     /* Skip ep0 */
1781
1782        /* Get rid of pending async Set-Config requests for this device */
1783        cancel_async_set_config(dev);
1784
1785        /* Make sure we have bandwidth (and available HCD resources) for this
1786         * configuration.  Remove endpoints from the schedule if we're dropping
1787         * this configuration to set configuration 0.  After this point, the
1788         * host controller will not allow submissions to dropped endpoints.  If
1789         * this call fails, the device state is unchanged.
1790         */
1791        mutex_lock(hcd->bandwidth_mutex);
1792        /* Disable LPM, and re-enable it once the new configuration is
1793         * installed, so that the xHCI driver can recalculate the U1/U2
1794         * timeouts.
1795         */
1796        if (dev->actconfig && usb_disable_lpm(dev)) {
1797                dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1798                mutex_unlock(hcd->bandwidth_mutex);
1799                ret = -ENOMEM;
1800                goto free_interfaces;
1801        }
1802        ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1803        if (ret < 0) {
1804                if (dev->actconfig)
1805                        usb_enable_lpm(dev);
1806                mutex_unlock(hcd->bandwidth_mutex);
1807                usb_autosuspend_device(dev);
1808                goto free_interfaces;
1809        }
1810
1811        /*
1812         * Initialize the new interface structures and the
1813         * hc/hcd/usbcore interface/endpoint state.
1814         */
1815        for (i = 0; i < nintf; ++i) {
1816                struct usb_interface_cache *intfc;
1817                struct usb_interface *intf;
1818                struct usb_host_interface *alt;
1819
1820                cp->interface[i] = intf = new_interfaces[i];
1821                intfc = cp->intf_cache[i];
1822                intf->altsetting = intfc->altsetting;
1823                intf->num_altsetting = intfc->num_altsetting;
1824                kref_get(&intfc->ref);
1825
1826                alt = usb_altnum_to_altsetting(intf, 0);
1827
1828                /* No altsetting 0?  We'll assume the first altsetting.
1829                 * We could use a GetInterface call, but if a device is
1830                 * so non-compliant that it doesn't have altsetting 0
1831                 * then I wouldn't trust its reply anyway.
1832                 */
1833                if (!alt)
1834                        alt = &intf->altsetting[0];
1835
1836                intf->intf_assoc =
1837                        find_iad(dev, cp, alt->desc.bInterfaceNumber);
1838                intf->cur_altsetting = alt;
1839                usb_enable_interface(dev, intf, true);
1840                intf->dev.parent = &dev->dev;
1841                intf->dev.driver = NULL;
1842                intf->dev.bus = &usb_bus_type;
1843                intf->dev.type = &usb_if_device_type;
1844                intf->dev.groups = usb_interface_groups;
1845                intf->dev.dma_mask = dev->dev.dma_mask;
1846                INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1847                intf->minor = -1;
1848                device_initialize(&intf->dev);
1849                pm_runtime_no_callbacks(&intf->dev);
1850                dev_set_name(&intf->dev, "%d-%s:%d.%d",
1851                        dev->bus->busnum, dev->devpath,
1852                        configuration, alt->desc.bInterfaceNumber);
1853        }
1854        kfree(new_interfaces);
1855
1856        ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1857                              USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1858                              NULL, 0, USB_CTRL_SET_TIMEOUT);
1859        if (ret < 0 && cp) {
1860                /*
1861                 * All the old state is gone, so what else can we do?
1862                 * The device is probably useless now anyway.
1863                 */
1864                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1865                for (i = 0; i < nintf; ++i) {
1866                        usb_disable_interface(dev, cp->interface[i], true);
1867                        put_device(&cp->interface[i]->dev);
1868                        cp->interface[i] = NULL;
1869                }
1870                cp = NULL;
1871        }
1872
1873        dev->actconfig = cp;
1874        mutex_unlock(hcd->bandwidth_mutex);
1875
1876        if (!cp) {
1877                usb_set_device_state(dev, USB_STATE_ADDRESS);
1878
1879                /* Leave LPM disabled while the device is unconfigured. */
1880                usb_autosuspend_device(dev);
1881                return ret;
1882        }
1883        usb_set_device_state(dev, USB_STATE_CONFIGURED);
1884
1885        if (cp->string == NULL &&
1886                        !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1887                cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1888
1889        /* Now that the interfaces are installed, re-enable LPM. */
1890        usb_unlocked_enable_lpm(dev);
1891        /* Enable LTM if it was turned off by usb_disable_device. */
1892        usb_enable_ltm(dev);
1893
1894        /* Now that all the interfaces are set up, register them
1895         * to trigger binding of drivers to interfaces.  probe()
1896         * routines may install different altsettings and may
1897         * claim() any interfaces not yet bound.  Many class drivers
1898         * need that: CDC, audio, video, etc.
1899         */
1900        for (i = 0; i < nintf; ++i) {
1901                struct usb_interface *intf = cp->interface[i];
1902
1903                dev_dbg(&dev->dev,
1904                        "adding %s (config #%d, interface %d)\n",
1905                        dev_name(&intf->dev), configuration,
1906                        intf->cur_altsetting->desc.bInterfaceNumber);
1907                device_enable_async_suspend(&intf->dev);
1908                ret = device_add(&intf->dev);
1909                if (ret != 0) {
1910                        dev_err(&dev->dev, "device_add(%s) --> %d\n",
1911                                dev_name(&intf->dev), ret);
1912                        continue;
1913                }
1914                create_intf_ep_devs(intf);
1915        }
1916
1917        usb_autosuspend_device(dev);
1918        return 0;
1919}
1920
1921static LIST_HEAD(set_config_list);
1922static DEFINE_SPINLOCK(set_config_lock);
1923
1924struct set_config_request {
1925        struct usb_device       *udev;
1926        int                     config;
1927        struct work_struct      work;
1928        struct list_head        node;
1929};
1930
1931/* Worker routine for usb_driver_set_configuration() */
1932static void driver_set_config_work(struct work_struct *work)
1933{
1934        struct set_config_request *req =
1935                container_of(work, struct set_config_request, work);
1936        struct usb_device *udev = req->udev;
1937
1938        usb_lock_device(udev);
1939        spin_lock(&set_config_lock);
1940        list_del(&req->node);
1941        spin_unlock(&set_config_lock);
1942
1943        if (req->config >= -1)          /* Is req still valid? */
1944                usb_set_configuration(udev, req->config);
1945        usb_unlock_device(udev);
1946        usb_put_dev(udev);
1947        kfree(req);
1948}
1949
1950/* Cancel pending Set-Config requests for a device whose configuration
1951 * was just changed
1952 */
1953static void cancel_async_set_config(struct usb_device *udev)
1954{
1955        struct set_config_request *req;
1956
1957        spin_lock(&set_config_lock);
1958        list_for_each_entry(req, &set_config_list, node) {
1959                if (req->udev == udev)
1960                        req->config = -999;     /* Mark as cancelled */
1961        }
1962        spin_unlock(&set_config_lock);
1963}
1964
1965/**
1966 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1967 * @udev: the device whose configuration is being updated
1968 * @config: the configuration being chosen.
1969 * Context: In process context, must be able to sleep
1970 *
1971 * Device interface drivers are not allowed to change device configurations.
1972 * This is because changing configurations will destroy the interface the
1973 * driver is bound to and create new ones; it would be like a floppy-disk
1974 * driver telling the computer to replace the floppy-disk drive with a
1975 * tape drive!
1976 *
1977 * Still, in certain specialized circumstances the need may arise.  This
1978 * routine gets around the normal restrictions by using a work thread to
1979 * submit the change-config request.
1980 *
1981 * Return: 0 if the request was successfully queued, error code otherwise.
1982 * The caller has no way to know whether the queued request will eventually
1983 * succeed.
1984 */
1985int usb_driver_set_configuration(struct usb_device *udev, int config)
1986{
1987        struct set_config_request *req;
1988
1989        req = kmalloc(sizeof(*req), GFP_KERNEL);
1990        if (!req)
1991                return -ENOMEM;
1992        req->udev = udev;
1993        req->config = config;
1994        INIT_WORK(&req->work, driver_set_config_work);
1995
1996        spin_lock(&set_config_lock);
1997        list_add(&req->node, &set_config_list);
1998        spin_unlock(&set_config_lock);
1999
2000        usb_get_dev(udev);
2001        schedule_work(&req->work);
2002        return 0;
2003}
2004EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2005