linux/drivers/usb/gadget/s3c-hsotg.c
<<
>>
Prefs
   1/**
   2 * linux/drivers/usb/gadget/s3c-hsotg.c
   3 *
   4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   5 *              http://www.samsung.com
   6 *
   7 * Copyright 2008 Openmoko, Inc.
   8 * Copyright 2008 Simtec Electronics
   9 *      Ben Dooks <ben@simtec.co.uk>
  10 *      http://armlinux.simtec.co.uk/
  11 *
  12 * S3C USB2.0 High-speed / OtG driver
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License version 2 as
  16 * published by the Free Software Foundation.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/spinlock.h>
  22#include <linux/interrupt.h>
  23#include <linux/platform_device.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/debugfs.h>
  26#include <linux/seq_file.h>
  27#include <linux/delay.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/clk.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/of_platform.h>
  33
  34#include <linux/usb/ch9.h>
  35#include <linux/usb/gadget.h>
  36#include <linux/usb/phy.h>
  37#include <linux/platform_data/s3c-hsotg.h>
  38
  39#include <mach/map.h>
  40
  41#include "s3c-hsotg.h"
  42
  43static const char * const s3c_hsotg_supply_names[] = {
  44        "vusb_d",               /* digital USB supply, 1.2V */
  45        "vusb_a",               /* analog USB supply, 1.1V */
  46};
  47
  48/*
  49 * EP0_MPS_LIMIT
  50 *
  51 * Unfortunately there seems to be a limit of the amount of data that can
  52 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  53 * packets (which practically means 1 packet and 63 bytes of data) when the
  54 * MPS is set to 64.
  55 *
  56 * This means if we are wanting to move >127 bytes of data, we need to
  57 * split the transactions up, but just doing one packet at a time does
  58 * not work (this may be an implicit DATA0 PID on first packet of the
  59 * transaction) and doing 2 packets is outside the controller's limits.
  60 *
  61 * If we try to lower the MPS size for EP0, then no transfers work properly
  62 * for EP0, and the system will fail basic enumeration. As no cause for this
  63 * has currently been found, we cannot support any large IN transfers for
  64 * EP0.
  65 */
  66#define EP0_MPS_LIMIT   64
  67
  68struct s3c_hsotg;
  69struct s3c_hsotg_req;
  70
  71/**
  72 * struct s3c_hsotg_ep - driver endpoint definition.
  73 * @ep: The gadget layer representation of the endpoint.
  74 * @name: The driver generated name for the endpoint.
  75 * @queue: Queue of requests for this endpoint.
  76 * @parent: Reference back to the parent device structure.
  77 * @req: The current request that the endpoint is processing. This is
  78 *       used to indicate an request has been loaded onto the endpoint
  79 *       and has yet to be completed (maybe due to data move, or simply
  80 *       awaiting an ack from the core all the data has been completed).
  81 * @debugfs: File entry for debugfs file for this endpoint.
  82 * @lock: State lock to protect contents of endpoint.
  83 * @dir_in: Set to true if this endpoint is of the IN direction, which
  84 *          means that it is sending data to the Host.
  85 * @index: The index for the endpoint registers.
  86 * @name: The name array passed to the USB core.
  87 * @halted: Set if the endpoint has been halted.
  88 * @periodic: Set if this is a periodic ep, such as Interrupt
  89 * @sent_zlp: Set if we've sent a zero-length packet.
  90 * @total_data: The total number of data bytes done.
  91 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  92 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  93 * @last_load: The offset of data for the last start of request.
  94 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  95 *
  96 * This is the driver's state for each registered enpoint, allowing it
  97 * to keep track of transactions that need doing. Each endpoint has a
  98 * lock to protect the state, to try and avoid using an overall lock
  99 * for the host controller as much as possible.
 100 *
 101 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 102 * and keep track of the amount of data in the periodic FIFO for each
 103 * of these as we don't have a status register that tells us how much
 104 * is in each of them. (note, this may actually be useless information
 105 * as in shared-fifo mode periodic in acts like a single-frame packet
 106 * buffer than a fifo)
 107 */
 108struct s3c_hsotg_ep {
 109        struct usb_ep           ep;
 110        struct list_head        queue;
 111        struct s3c_hsotg        *parent;
 112        struct s3c_hsotg_req    *req;
 113        struct dentry           *debugfs;
 114
 115
 116        unsigned long           total_data;
 117        unsigned int            size_loaded;
 118        unsigned int            last_load;
 119        unsigned int            fifo_load;
 120        unsigned short          fifo_size;
 121
 122        unsigned char           dir_in;
 123        unsigned char           index;
 124
 125        unsigned int            halted:1;
 126        unsigned int            periodic:1;
 127        unsigned int            sent_zlp:1;
 128
 129        char                    name[10];
 130};
 131
 132/**
 133 * struct s3c_hsotg - driver state.
 134 * @dev: The parent device supplied to the probe function
 135 * @driver: USB gadget driver
 136 * @phy: The otg phy transceiver structure for phy control.
 137 * @plat: The platform specific configuration data. This can be removed once
 138 * all SoCs support usb transceiver.
 139 * @regs: The memory area mapped for accessing registers.
 140 * @irq: The IRQ number we are using
 141 * @supplies: Definition of USB power supplies
 142 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
 143 * @num_of_eps: Number of available EPs (excluding EP0)
 144 * @debug_root: root directrory for debugfs.
 145 * @debug_file: main status file for debugfs.
 146 * @debug_fifo: FIFO status file for debugfs.
 147 * @ep0_reply: Request used for ep0 reply.
 148 * @ep0_buff: Buffer for EP0 reply data, if needed.
 149 * @ctrl_buff: Buffer for EP0 control requests.
 150 * @ctrl_req: Request for EP0 control packets.
 151 * @setup: NAK management for EP0 SETUP
 152 * @last_rst: Time of last reset
 153 * @eps: The endpoints being supplied to the gadget framework
 154 */
 155struct s3c_hsotg {
 156        struct device            *dev;
 157        struct usb_gadget_driver *driver;
 158        struct usb_phy          *phy;
 159        struct s3c_hsotg_plat    *plat;
 160
 161        spinlock_t              lock;
 162
 163        void __iomem            *regs;
 164        int                     irq;
 165        struct clk              *clk;
 166
 167        struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
 168
 169        unsigned int            dedicated_fifos:1;
 170        unsigned char           num_of_eps;
 171
 172        struct dentry           *debug_root;
 173        struct dentry           *debug_file;
 174        struct dentry           *debug_fifo;
 175
 176        struct usb_request      *ep0_reply;
 177        struct usb_request      *ctrl_req;
 178        u8                      ep0_buff[8];
 179        u8                      ctrl_buff[8];
 180
 181        struct usb_gadget       gadget;
 182        unsigned int            setup;
 183        unsigned long           last_rst;
 184        struct s3c_hsotg_ep     *eps;
 185};
 186
 187/**
 188 * struct s3c_hsotg_req - data transfer request
 189 * @req: The USB gadget request
 190 * @queue: The list of requests for the endpoint this is queued for.
 191 * @in_progress: Has already had size/packets written to core
 192 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 193 */
 194struct s3c_hsotg_req {
 195        struct usb_request      req;
 196        struct list_head        queue;
 197        unsigned char           in_progress;
 198        unsigned char           mapped;
 199};
 200
 201/* conversion functions */
 202static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
 203{
 204        return container_of(req, struct s3c_hsotg_req, req);
 205}
 206
 207static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
 208{
 209        return container_of(ep, struct s3c_hsotg_ep, ep);
 210}
 211
 212static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
 213{
 214        return container_of(gadget, struct s3c_hsotg, gadget);
 215}
 216
 217static inline void __orr32(void __iomem *ptr, u32 val)
 218{
 219        writel(readl(ptr) | val, ptr);
 220}
 221
 222static inline void __bic32(void __iomem *ptr, u32 val)
 223{
 224        writel(readl(ptr) & ~val, ptr);
 225}
 226
 227/* forward decleration of functions */
 228static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
 229
 230/**
 231 * using_dma - return the DMA status of the driver.
 232 * @hsotg: The driver state.
 233 *
 234 * Return true if we're using DMA.
 235 *
 236 * Currently, we have the DMA support code worked into everywhere
 237 * that needs it, but the AMBA DMA implementation in the hardware can
 238 * only DMA from 32bit aligned addresses. This means that gadgets such
 239 * as the CDC Ethernet cannot work as they often pass packets which are
 240 * not 32bit aligned.
 241 *
 242 * Unfortunately the choice to use DMA or not is global to the controller
 243 * and seems to be only settable when the controller is being put through
 244 * a core reset. This means we either need to fix the gadgets to take
 245 * account of DMA alignment, or add bounce buffers (yuerk).
 246 *
 247 * Until this issue is sorted out, we always return 'false'.
 248 */
 249static inline bool using_dma(struct s3c_hsotg *hsotg)
 250{
 251        return false;   /* support is not complete */
 252}
 253
 254/**
 255 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 256 * @hsotg: The device state
 257 * @ints: A bitmask of the interrupts to enable
 258 */
 259static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
 260{
 261        u32 gsintmsk = readl(hsotg->regs + GINTMSK);
 262        u32 new_gsintmsk;
 263
 264        new_gsintmsk = gsintmsk | ints;
 265
 266        if (new_gsintmsk != gsintmsk) {
 267                dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 268                writel(new_gsintmsk, hsotg->regs + GINTMSK);
 269        }
 270}
 271
 272/**
 273 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 274 * @hsotg: The device state
 275 * @ints: A bitmask of the interrupts to enable
 276 */
 277static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
 278{
 279        u32 gsintmsk = readl(hsotg->regs + GINTMSK);
 280        u32 new_gsintmsk;
 281
 282        new_gsintmsk = gsintmsk & ~ints;
 283
 284        if (new_gsintmsk != gsintmsk)
 285                writel(new_gsintmsk, hsotg->regs + GINTMSK);
 286}
 287
 288/**
 289 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 290 * @hsotg: The device state
 291 * @ep: The endpoint index
 292 * @dir_in: True if direction is in.
 293 * @en: The enable value, true to enable
 294 *
 295 * Set or clear the mask for an individual endpoint's interrupt
 296 * request.
 297 */
 298static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
 299                                 unsigned int ep, unsigned int dir_in,
 300                                 unsigned int en)
 301{
 302        unsigned long flags;
 303        u32 bit = 1 << ep;
 304        u32 daint;
 305
 306        if (!dir_in)
 307                bit <<= 16;
 308
 309        local_irq_save(flags);
 310        daint = readl(hsotg->regs + DAINTMSK);
 311        if (en)
 312                daint |= bit;
 313        else
 314                daint &= ~bit;
 315        writel(daint, hsotg->regs + DAINTMSK);
 316        local_irq_restore(flags);
 317}
 318
 319/**
 320 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 321 * @hsotg: The device instance.
 322 */
 323static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
 324{
 325        unsigned int ep;
 326        unsigned int addr;
 327        unsigned int size;
 328        int timeout;
 329        u32 val;
 330
 331        /* set FIFO sizes to 2048/1024 */
 332
 333        writel(2048, hsotg->regs + GRXFSIZ);
 334        writel(GNPTXFSIZ_NPTxFStAddr(2048) |
 335               GNPTXFSIZ_NPTxFDep(1024),
 336               hsotg->regs + GNPTXFSIZ);
 337
 338        /*
 339         * arange all the rest of the TX FIFOs, as some versions of this
 340         * block have overlapping default addresses. This also ensures
 341         * that if the settings have been changed, then they are set to
 342         * known values.
 343         */
 344
 345        /* start at the end of the GNPTXFSIZ, rounded up */
 346        addr = 2048 + 1024;
 347        size = 768;
 348
 349        /*
 350         * currently we allocate TX FIFOs for all possible endpoints,
 351         * and assume that they are all the same size.
 352         */
 353
 354        for (ep = 1; ep <= 15; ep++) {
 355                val = addr;
 356                val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
 357                addr += size;
 358
 359                writel(val, hsotg->regs + DPTXFSIZn(ep));
 360        }
 361
 362        /*
 363         * according to p428 of the design guide, we need to ensure that
 364         * all fifos are flushed before continuing
 365         */
 366
 367        writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
 368               GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
 369
 370        /* wait until the fifos are both flushed */
 371        timeout = 100;
 372        while (1) {
 373                val = readl(hsotg->regs + GRSTCTL);
 374
 375                if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
 376                        break;
 377
 378                if (--timeout == 0) {
 379                        dev_err(hsotg->dev,
 380                                "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 381                                __func__, val);
 382                }
 383
 384                udelay(1);
 385        }
 386
 387        dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 388}
 389
 390/**
 391 * @ep: USB endpoint to allocate request for.
 392 * @flags: Allocation flags
 393 *
 394 * Allocate a new USB request structure appropriate for the specified endpoint
 395 */
 396static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
 397                                                      gfp_t flags)
 398{
 399        struct s3c_hsotg_req *req;
 400
 401        req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
 402        if (!req)
 403                return NULL;
 404
 405        INIT_LIST_HEAD(&req->queue);
 406
 407        return &req->req;
 408}
 409
 410/**
 411 * is_ep_periodic - return true if the endpoint is in periodic mode.
 412 * @hs_ep: The endpoint to query.
 413 *
 414 * Returns true if the endpoint is in periodic mode, meaning it is being
 415 * used for an Interrupt or ISO transfer.
 416 */
 417static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
 418{
 419        return hs_ep->periodic;
 420}
 421
 422/**
 423 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 424 * @hsotg: The device state.
 425 * @hs_ep: The endpoint for the request
 426 * @hs_req: The request being processed.
 427 *
 428 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 429 * of a request to ensure the buffer is ready for access by the caller.
 430 */
 431static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
 432                                struct s3c_hsotg_ep *hs_ep,
 433                                struct s3c_hsotg_req *hs_req)
 434{
 435        struct usb_request *req = &hs_req->req;
 436
 437        /* ignore this if we're not moving any data */
 438        if (hs_req->req.length == 0)
 439                return;
 440
 441        usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 442}
 443
 444/**
 445 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 446 * @hsotg: The controller state.
 447 * @hs_ep: The endpoint we're going to write for.
 448 * @hs_req: The request to write data for.
 449 *
 450 * This is called when the TxFIFO has some space in it to hold a new
 451 * transmission and we have something to give it. The actual setup of
 452 * the data size is done elsewhere, so all we have to do is to actually
 453 * write the data.
 454 *
 455 * The return value is zero if there is more space (or nothing was done)
 456 * otherwise -ENOSPC is returned if the FIFO space was used up.
 457 *
 458 * This routine is only needed for PIO
 459 */
 460static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
 461                                struct s3c_hsotg_ep *hs_ep,
 462                                struct s3c_hsotg_req *hs_req)
 463{
 464        bool periodic = is_ep_periodic(hs_ep);
 465        u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
 466        int buf_pos = hs_req->req.actual;
 467        int to_write = hs_ep->size_loaded;
 468        void *data;
 469        int can_write;
 470        int pkt_round;
 471
 472        to_write -= (buf_pos - hs_ep->last_load);
 473
 474        /* if there's nothing to write, get out early */
 475        if (to_write == 0)
 476                return 0;
 477
 478        if (periodic && !hsotg->dedicated_fifos) {
 479                u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 480                int size_left;
 481                int size_done;
 482
 483                /*
 484                 * work out how much data was loaded so we can calculate
 485                 * how much data is left in the fifo.
 486                 */
 487
 488                size_left = DxEPTSIZ_XferSize_GET(epsize);
 489
 490                /*
 491                 * if shared fifo, we cannot write anything until the
 492                 * previous data has been completely sent.
 493                 */
 494                if (hs_ep->fifo_load != 0) {
 495                        s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
 496                        return -ENOSPC;
 497                }
 498
 499                dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 500                        __func__, size_left,
 501                        hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 502
 503                /* how much of the data has moved */
 504                size_done = hs_ep->size_loaded - size_left;
 505
 506                /* how much data is left in the fifo */
 507                can_write = hs_ep->fifo_load - size_done;
 508                dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 509                        __func__, can_write);
 510
 511                can_write = hs_ep->fifo_size - can_write;
 512                dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 513                        __func__, can_write);
 514
 515                if (can_write <= 0) {
 516                        s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
 517                        return -ENOSPC;
 518                }
 519        } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 520                can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
 521
 522                can_write &= 0xffff;
 523                can_write *= 4;
 524        } else {
 525                if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
 526                        dev_dbg(hsotg->dev,
 527                                "%s: no queue slots available (0x%08x)\n",
 528                                __func__, gnptxsts);
 529
 530                        s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
 531                        return -ENOSPC;
 532                }
 533
 534                can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
 535                can_write *= 4; /* fifo size is in 32bit quantities. */
 536        }
 537
 538        dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
 539                 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
 540
 541        /*
 542         * limit to 512 bytes of data, it seems at least on the non-periodic
 543         * FIFO, requests of >512 cause the endpoint to get stuck with a
 544         * fragment of the end of the transfer in it.
 545         */
 546        if (can_write > 512 && !periodic)
 547                can_write = 512;
 548
 549        /*
 550         * limit the write to one max-packet size worth of data, but allow
 551         * the transfer to return that it did not run out of fifo space
 552         * doing it.
 553         */
 554        if (to_write > hs_ep->ep.maxpacket) {
 555                to_write = hs_ep->ep.maxpacket;
 556
 557                s3c_hsotg_en_gsint(hsotg,
 558                                   periodic ? GINTSTS_PTxFEmp :
 559                                   GINTSTS_NPTxFEmp);
 560        }
 561
 562        /* see if we can write data */
 563
 564        if (to_write > can_write) {
 565                to_write = can_write;
 566                pkt_round = to_write % hs_ep->ep.maxpacket;
 567
 568                /*
 569                 * Round the write down to an
 570                 * exact number of packets.
 571                 *
 572                 * Note, we do not currently check to see if we can ever
 573                 * write a full packet or not to the FIFO.
 574                 */
 575
 576                if (pkt_round)
 577                        to_write -= pkt_round;
 578
 579                /*
 580                 * enable correct FIFO interrupt to alert us when there
 581                 * is more room left.
 582                 */
 583
 584                s3c_hsotg_en_gsint(hsotg,
 585                                   periodic ? GINTSTS_PTxFEmp :
 586                                   GINTSTS_NPTxFEmp);
 587        }
 588
 589        dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 590                 to_write, hs_req->req.length, can_write, buf_pos);
 591
 592        if (to_write <= 0)
 593                return -ENOSPC;
 594
 595        hs_req->req.actual = buf_pos + to_write;
 596        hs_ep->total_data += to_write;
 597
 598        if (periodic)
 599                hs_ep->fifo_load += to_write;
 600
 601        to_write = DIV_ROUND_UP(to_write, 4);
 602        data = hs_req->req.buf + buf_pos;
 603
 604        writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 605
 606        return (to_write >= can_write) ? -ENOSPC : 0;
 607}
 608
 609/**
 610 * get_ep_limit - get the maximum data legnth for this endpoint
 611 * @hs_ep: The endpoint
 612 *
 613 * Return the maximum data that can be queued in one go on a given endpoint
 614 * so that transfers that are too long can be split.
 615 */
 616static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
 617{
 618        int index = hs_ep->index;
 619        unsigned maxsize;
 620        unsigned maxpkt;
 621
 622        if (index != 0) {
 623                maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
 624                maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
 625        } else {
 626                maxsize = 64+64;
 627                if (hs_ep->dir_in)
 628                        maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
 629                else
 630                        maxpkt = 2;
 631        }
 632
 633        /* we made the constant loading easier above by using +1 */
 634        maxpkt--;
 635        maxsize--;
 636
 637        /*
 638         * constrain by packet count if maxpkts*pktsize is greater
 639         * than the length register size.
 640         */
 641
 642        if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 643                maxsize = maxpkt * hs_ep->ep.maxpacket;
 644
 645        return maxsize;
 646}
 647
 648/**
 649 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 650 * @hsotg: The controller state.
 651 * @hs_ep: The endpoint to process a request for
 652 * @hs_req: The request to start.
 653 * @continuing: True if we are doing more for the current request.
 654 *
 655 * Start the given request running by setting the endpoint registers
 656 * appropriately, and writing any data to the FIFOs.
 657 */
 658static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
 659                                struct s3c_hsotg_ep *hs_ep,
 660                                struct s3c_hsotg_req *hs_req,
 661                                bool continuing)
 662{
 663        struct usb_request *ureq = &hs_req->req;
 664        int index = hs_ep->index;
 665        int dir_in = hs_ep->dir_in;
 666        u32 epctrl_reg;
 667        u32 epsize_reg;
 668        u32 epsize;
 669        u32 ctrl;
 670        unsigned length;
 671        unsigned packets;
 672        unsigned maxreq;
 673
 674        if (index != 0) {
 675                if (hs_ep->req && !continuing) {
 676                        dev_err(hsotg->dev, "%s: active request\n", __func__);
 677                        WARN_ON(1);
 678                        return;
 679                } else if (hs_ep->req != hs_req && continuing) {
 680                        dev_err(hsotg->dev,
 681                                "%s: continue different req\n", __func__);
 682                        WARN_ON(1);
 683                        return;
 684                }
 685        }
 686
 687        epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 688        epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 689
 690        dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 691                __func__, readl(hsotg->regs + epctrl_reg), index,
 692                hs_ep->dir_in ? "in" : "out");
 693
 694        /* If endpoint is stalled, we will restart request later */
 695        ctrl = readl(hsotg->regs + epctrl_reg);
 696
 697        if (ctrl & DxEPCTL_Stall) {
 698                dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 699                return;
 700        }
 701
 702        length = ureq->length - ureq->actual;
 703        dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 704                ureq->length, ureq->actual);
 705        if (0)
 706                dev_dbg(hsotg->dev,
 707                        "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
 708                        ureq->buf, length, ureq->dma,
 709                        ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
 710
 711        maxreq = get_ep_limit(hs_ep);
 712        if (length > maxreq) {
 713                int round = maxreq % hs_ep->ep.maxpacket;
 714
 715                dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 716                        __func__, length, maxreq, round);
 717
 718                /* round down to multiple of packets */
 719                if (round)
 720                        maxreq -= round;
 721
 722                length = maxreq;
 723        }
 724
 725        if (length)
 726                packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 727        else
 728                packets = 1;    /* send one packet if length is zero. */
 729
 730        if (dir_in && index != 0)
 731                epsize = DxEPTSIZ_MC(1);
 732        else
 733                epsize = 0;
 734
 735        if (index != 0 && ureq->zero) {
 736                /*
 737                 * test for the packets being exactly right for the
 738                 * transfer
 739                 */
 740
 741                if (length == (packets * hs_ep->ep.maxpacket))
 742                        packets++;
 743        }
 744
 745        epsize |= DxEPTSIZ_PktCnt(packets);
 746        epsize |= DxEPTSIZ_XferSize(length);
 747
 748        dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 749                __func__, packets, length, ureq->length, epsize, epsize_reg);
 750
 751        /* store the request as the current one we're doing */
 752        hs_ep->req = hs_req;
 753
 754        /* write size / packets */
 755        writel(epsize, hsotg->regs + epsize_reg);
 756
 757        if (using_dma(hsotg) && !continuing) {
 758                unsigned int dma_reg;
 759
 760                /*
 761                 * write DMA address to control register, buffer already
 762                 * synced by s3c_hsotg_ep_queue().
 763                 */
 764
 765                dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 766                writel(ureq->dma, hsotg->regs + dma_reg);
 767
 768                dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
 769                        __func__, ureq->dma, dma_reg);
 770        }
 771
 772        ctrl |= DxEPCTL_EPEna;  /* ensure ep enabled */
 773        ctrl |= DxEPCTL_USBActEp;
 774
 775        dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
 776
 777        /* For Setup request do not clear NAK */
 778        if (hsotg->setup && index == 0)
 779                hsotg->setup = 0;
 780        else
 781                ctrl |= DxEPCTL_CNAK;   /* clear NAK set by core */
 782
 783
 784        dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
 785        writel(ctrl, hsotg->regs + epctrl_reg);
 786
 787        /*
 788         * set these, it seems that DMA support increments past the end
 789         * of the packet buffer so we need to calculate the length from
 790         * this information.
 791         */
 792        hs_ep->size_loaded = length;
 793        hs_ep->last_load = ureq->actual;
 794
 795        if (dir_in && !using_dma(hsotg)) {
 796                /* set these anyway, we may need them for non-periodic in */
 797                hs_ep->fifo_load = 0;
 798
 799                s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
 800        }
 801
 802        /*
 803         * clear the INTknTXFEmpMsk when we start request, more as a aide
 804         * to debugging to see what is going on.
 805         */
 806        if (dir_in)
 807                writel(DIEPMSK_INTknTXFEmpMsk,
 808                       hsotg->regs + DIEPINT(index));
 809
 810        /*
 811         * Note, trying to clear the NAK here causes problems with transmit
 812         * on the S3C6400 ending up with the TXFIFO becoming full.
 813         */
 814
 815        /* check ep is enabled */
 816        if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
 817                dev_warn(hsotg->dev,
 818                         "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
 819                         index, readl(hsotg->regs + epctrl_reg));
 820
 821        dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
 822                __func__, readl(hsotg->regs + epctrl_reg));
 823}
 824
 825/**
 826 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 827 * @hsotg: The device state.
 828 * @hs_ep: The endpoint the request is on.
 829 * @req: The request being processed.
 830 *
 831 * We've been asked to queue a request, so ensure that the memory buffer
 832 * is correctly setup for DMA. If we've been passed an extant DMA address
 833 * then ensure the buffer has been synced to memory. If our buffer has no
 834 * DMA memory, then we map the memory and mark our request to allow us to
 835 * cleanup on completion.
 836 */
 837static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
 838                             struct s3c_hsotg_ep *hs_ep,
 839                             struct usb_request *req)
 840{
 841        struct s3c_hsotg_req *hs_req = our_req(req);
 842        int ret;
 843
 844        /* if the length is zero, ignore the DMA data */
 845        if (hs_req->req.length == 0)
 846                return 0;
 847
 848        ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
 849        if (ret)
 850                goto dma_error;
 851
 852        return 0;
 853
 854dma_error:
 855        dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
 856                __func__, req->buf, req->length);
 857
 858        return -EIO;
 859}
 860
 861static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
 862                              gfp_t gfp_flags)
 863{
 864        struct s3c_hsotg_req *hs_req = our_req(req);
 865        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
 866        struct s3c_hsotg *hs = hs_ep->parent;
 867        bool first;
 868
 869        dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
 870                ep->name, req, req->length, req->buf, req->no_interrupt,
 871                req->zero, req->short_not_ok);
 872
 873        /* initialise status of the request */
 874        INIT_LIST_HEAD(&hs_req->queue);
 875        req->actual = 0;
 876        req->status = -EINPROGRESS;
 877
 878        /* if we're using DMA, sync the buffers as necessary */
 879        if (using_dma(hs)) {
 880                int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
 881                if (ret)
 882                        return ret;
 883        }
 884
 885        first = list_empty(&hs_ep->queue);
 886        list_add_tail(&hs_req->queue, &hs_ep->queue);
 887
 888        if (first)
 889                s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
 890
 891        return 0;
 892}
 893
 894static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
 895                              gfp_t gfp_flags)
 896{
 897        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
 898        struct s3c_hsotg *hs = hs_ep->parent;
 899        unsigned long flags = 0;
 900        int ret = 0;
 901
 902        spin_lock_irqsave(&hs->lock, flags);
 903        ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
 904        spin_unlock_irqrestore(&hs->lock, flags);
 905
 906        return ret;
 907}
 908
 909static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
 910                                      struct usb_request *req)
 911{
 912        struct s3c_hsotg_req *hs_req = our_req(req);
 913
 914        kfree(hs_req);
 915}
 916
 917/**
 918 * s3c_hsotg_complete_oursetup - setup completion callback
 919 * @ep: The endpoint the request was on.
 920 * @req: The request completed.
 921 *
 922 * Called on completion of any requests the driver itself
 923 * submitted that need cleaning up.
 924 */
 925static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
 926                                        struct usb_request *req)
 927{
 928        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
 929        struct s3c_hsotg *hsotg = hs_ep->parent;
 930
 931        dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
 932
 933        s3c_hsotg_ep_free_request(ep, req);
 934}
 935
 936/**
 937 * ep_from_windex - convert control wIndex value to endpoint
 938 * @hsotg: The driver state.
 939 * @windex: The control request wIndex field (in host order).
 940 *
 941 * Convert the given wIndex into a pointer to an driver endpoint
 942 * structure, or return NULL if it is not a valid endpoint.
 943 */
 944static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
 945                                           u32 windex)
 946{
 947        struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
 948        int dir = (windex & USB_DIR_IN) ? 1 : 0;
 949        int idx = windex & 0x7F;
 950
 951        if (windex >= 0x100)
 952                return NULL;
 953
 954        if (idx > hsotg->num_of_eps)
 955                return NULL;
 956
 957        if (idx && ep->dir_in != dir)
 958                return NULL;
 959
 960        return ep;
 961}
 962
 963/**
 964 * s3c_hsotg_send_reply - send reply to control request
 965 * @hsotg: The device state
 966 * @ep: Endpoint 0
 967 * @buff: Buffer for request
 968 * @length: Length of reply.
 969 *
 970 * Create a request and queue it on the given endpoint. This is useful as
 971 * an internal method of sending replies to certain control requests, etc.
 972 */
 973static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
 974                                struct s3c_hsotg_ep *ep,
 975                                void *buff,
 976                                int length)
 977{
 978        struct usb_request *req;
 979        int ret;
 980
 981        dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
 982
 983        req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
 984        hsotg->ep0_reply = req;
 985        if (!req) {
 986                dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
 987                return -ENOMEM;
 988        }
 989
 990        req->buf = hsotg->ep0_buff;
 991        req->length = length;
 992        req->zero = 1; /* always do zero-length final transfer */
 993        req->complete = s3c_hsotg_complete_oursetup;
 994
 995        if (length)
 996                memcpy(req->buf, buff, length);
 997        else
 998                ep->sent_zlp = 1;
 999
1000        ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1001        if (ret) {
1002                dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1003                return ret;
1004        }
1005
1006        return 0;
1007}
1008
1009/**
1010 * s3c_hsotg_process_req_status - process request GET_STATUS
1011 * @hsotg: The device state
1012 * @ctrl: USB control request
1013 */
1014static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1015                                        struct usb_ctrlrequest *ctrl)
1016{
1017        struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1018        struct s3c_hsotg_ep *ep;
1019        __le16 reply;
1020        int ret;
1021
1022        dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1023
1024        if (!ep0->dir_in) {
1025                dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1026                return -EINVAL;
1027        }
1028
1029        switch (ctrl->bRequestType & USB_RECIP_MASK) {
1030        case USB_RECIP_DEVICE:
1031                reply = cpu_to_le16(0); /* bit 0 => self powered,
1032                                         * bit 1 => remote wakeup */
1033                break;
1034
1035        case USB_RECIP_INTERFACE:
1036                /* currently, the data result should be zero */
1037                reply = cpu_to_le16(0);
1038                break;
1039
1040        case USB_RECIP_ENDPOINT:
1041                ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1042                if (!ep)
1043                        return -ENOENT;
1044
1045                reply = cpu_to_le16(ep->halted ? 1 : 0);
1046                break;
1047
1048        default:
1049                return 0;
1050        }
1051
1052        if (le16_to_cpu(ctrl->wLength) != 2)
1053                return -EINVAL;
1054
1055        ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1056        if (ret) {
1057                dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1058                return ret;
1059        }
1060
1061        return 1;
1062}
1063
1064static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1065
1066/**
1067 * get_ep_head - return the first request on the endpoint
1068 * @hs_ep: The controller endpoint to get
1069 *
1070 * Get the first request on the endpoint.
1071 */
1072static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1073{
1074        if (list_empty(&hs_ep->queue))
1075                return NULL;
1076
1077        return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1078}
1079
1080/**
1081 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1082 * @hsotg: The device state
1083 * @ctrl: USB control request
1084 */
1085static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1086                                         struct usb_ctrlrequest *ctrl)
1087{
1088        struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1089        struct s3c_hsotg_req *hs_req;
1090        bool restart;
1091        bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1092        struct s3c_hsotg_ep *ep;
1093        int ret;
1094
1095        dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1096                __func__, set ? "SET" : "CLEAR");
1097
1098        if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1099                ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1100                if (!ep) {
1101                        dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1102                                __func__, le16_to_cpu(ctrl->wIndex));
1103                        return -ENOENT;
1104                }
1105
1106                switch (le16_to_cpu(ctrl->wValue)) {
1107                case USB_ENDPOINT_HALT:
1108                        s3c_hsotg_ep_sethalt(&ep->ep, set);
1109
1110                        ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1111                        if (ret) {
1112                                dev_err(hsotg->dev,
1113                                        "%s: failed to send reply\n", __func__);
1114                                return ret;
1115                        }
1116
1117                        if (!set) {
1118                                /*
1119                                 * If we have request in progress,
1120                                 * then complete it
1121                                 */
1122                                if (ep->req) {
1123                                        hs_req = ep->req;
1124                                        ep->req = NULL;
1125                                        list_del_init(&hs_req->queue);
1126                                        hs_req->req.complete(&ep->ep,
1127                                                             &hs_req->req);
1128                                }
1129
1130                                /* If we have pending request, then start it */
1131                                restart = !list_empty(&ep->queue);
1132                                if (restart) {
1133                                        hs_req = get_ep_head(ep);
1134                                        s3c_hsotg_start_req(hsotg, ep,
1135                                                            hs_req, false);
1136                                }
1137                        }
1138
1139                        break;
1140
1141                default:
1142                        return -ENOENT;
1143                }
1144        } else
1145                return -ENOENT;  /* currently only deal with endpoint */
1146
1147        return 1;
1148}
1149
1150/**
1151 * s3c_hsotg_process_control - process a control request
1152 * @hsotg: The device state
1153 * @ctrl: The control request received
1154 *
1155 * The controller has received the SETUP phase of a control request, and
1156 * needs to work out what to do next (and whether to pass it on to the
1157 * gadget driver).
1158 */
1159static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1160                                      struct usb_ctrlrequest *ctrl)
1161{
1162        struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1163        int ret = 0;
1164        u32 dcfg;
1165
1166        ep0->sent_zlp = 0;
1167
1168        dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1169                 ctrl->bRequest, ctrl->bRequestType,
1170                 ctrl->wValue, ctrl->wLength);
1171
1172        /*
1173         * record the direction of the request, for later use when enquing
1174         * packets onto EP0.
1175         */
1176
1177        ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1178        dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1179
1180        /*
1181         * if we've no data with this request, then the last part of the
1182         * transaction is going to implicitly be IN.
1183         */
1184        if (ctrl->wLength == 0)
1185                ep0->dir_in = 1;
1186
1187        if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1188                switch (ctrl->bRequest) {
1189                case USB_REQ_SET_ADDRESS:
1190                        dcfg = readl(hsotg->regs + DCFG);
1191                        dcfg &= ~DCFG_DevAddr_MASK;
1192                        dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
1193                        writel(dcfg, hsotg->regs + DCFG);
1194
1195                        dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1196
1197                        ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1198                        return;
1199
1200                case USB_REQ_GET_STATUS:
1201                        ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1202                        break;
1203
1204                case USB_REQ_CLEAR_FEATURE:
1205                case USB_REQ_SET_FEATURE:
1206                        ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1207                        break;
1208                }
1209        }
1210
1211        /* as a fallback, try delivering it to the driver to deal with */
1212
1213        if (ret == 0 && hsotg->driver) {
1214                ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1215                if (ret < 0)
1216                        dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1217        }
1218
1219        /*
1220         * the request is either unhandlable, or is not formatted correctly
1221         * so respond with a STALL for the status stage to indicate failure.
1222         */
1223
1224        if (ret < 0) {
1225                u32 reg;
1226                u32 ctrl;
1227
1228                dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1229                reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1230
1231                /*
1232                 * DxEPCTL_Stall will be cleared by EP once it has
1233                 * taken effect, so no need to clear later.
1234                 */
1235
1236                ctrl = readl(hsotg->regs + reg);
1237                ctrl |= DxEPCTL_Stall;
1238                ctrl |= DxEPCTL_CNAK;
1239                writel(ctrl, hsotg->regs + reg);
1240
1241                dev_dbg(hsotg->dev,
1242                        "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1243                        ctrl, reg, readl(hsotg->regs + reg));
1244
1245                /*
1246                 * don't believe we need to anything more to get the EP
1247                 * to reply with a STALL packet
1248                 */
1249        }
1250}
1251
1252static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1253
1254/**
1255 * s3c_hsotg_complete_setup - completion of a setup transfer
1256 * @ep: The endpoint the request was on.
1257 * @req: The request completed.
1258 *
1259 * Called on completion of any requests the driver itself submitted for
1260 * EP0 setup packets
1261 */
1262static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1263                                     struct usb_request *req)
1264{
1265        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1266        struct s3c_hsotg *hsotg = hs_ep->parent;
1267
1268        if (req->status < 0) {
1269                dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1270                return;
1271        }
1272
1273        if (req->actual == 0)
1274                s3c_hsotg_enqueue_setup(hsotg);
1275        else
1276                s3c_hsotg_process_control(hsotg, req->buf);
1277}
1278
1279/**
1280 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1281 * @hsotg: The device state.
1282 *
1283 * Enqueue a request on EP0 if necessary to received any SETUP packets
1284 * received from the host.
1285 */
1286static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1287{
1288        struct usb_request *req = hsotg->ctrl_req;
1289        struct s3c_hsotg_req *hs_req = our_req(req);
1290        int ret;
1291
1292        dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1293
1294        req->zero = 0;
1295        req->length = 8;
1296        req->buf = hsotg->ctrl_buff;
1297        req->complete = s3c_hsotg_complete_setup;
1298
1299        if (!list_empty(&hs_req->queue)) {
1300                dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1301                return;
1302        }
1303
1304        hsotg->eps[0].dir_in = 0;
1305
1306        ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1307        if (ret < 0) {
1308                dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1309                /*
1310                 * Don't think there's much we can do other than watch the
1311                 * driver fail.
1312                 */
1313        }
1314}
1315
1316/**
1317 * s3c_hsotg_complete_request - complete a request given to us
1318 * @hsotg: The device state.
1319 * @hs_ep: The endpoint the request was on.
1320 * @hs_req: The request to complete.
1321 * @result: The result code (0 => Ok, otherwise errno)
1322 *
1323 * The given request has finished, so call the necessary completion
1324 * if it has one and then look to see if we can start a new request
1325 * on the endpoint.
1326 *
1327 * Note, expects the ep to already be locked as appropriate.
1328 */
1329static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1330                                       struct s3c_hsotg_ep *hs_ep,
1331                                       struct s3c_hsotg_req *hs_req,
1332                                       int result)
1333{
1334        bool restart;
1335
1336        if (!hs_req) {
1337                dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1338                return;
1339        }
1340
1341        dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1342                hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1343
1344        /*
1345         * only replace the status if we've not already set an error
1346         * from a previous transaction
1347         */
1348
1349        if (hs_req->req.status == -EINPROGRESS)
1350                hs_req->req.status = result;
1351
1352        hs_ep->req = NULL;
1353        list_del_init(&hs_req->queue);
1354
1355        if (using_dma(hsotg))
1356                s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1357
1358        /*
1359         * call the complete request with the locks off, just in case the
1360         * request tries to queue more work for this endpoint.
1361         */
1362
1363        if (hs_req->req.complete) {
1364                spin_unlock(&hsotg->lock);
1365                hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1366                spin_lock(&hsotg->lock);
1367        }
1368
1369        /*
1370         * Look to see if there is anything else to do. Note, the completion
1371         * of the previous request may have caused a new request to be started
1372         * so be careful when doing this.
1373         */
1374
1375        if (!hs_ep->req && result >= 0) {
1376                restart = !list_empty(&hs_ep->queue);
1377                if (restart) {
1378                        hs_req = get_ep_head(hs_ep);
1379                        s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1380                }
1381        }
1382}
1383
1384/**
1385 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1386 * @hsotg: The device state.
1387 * @ep_idx: The endpoint index for the data
1388 * @size: The size of data in the fifo, in bytes
1389 *
1390 * The FIFO status shows there is data to read from the FIFO for a given
1391 * endpoint, so sort out whether we need to read the data into a request
1392 * that has been made for that endpoint.
1393 */
1394static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1395{
1396        struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1397        struct s3c_hsotg_req *hs_req = hs_ep->req;
1398        void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1399        int to_read;
1400        int max_req;
1401        int read_ptr;
1402
1403
1404        if (!hs_req) {
1405                u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1406                int ptr;
1407
1408                dev_warn(hsotg->dev,
1409                         "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1410                         __func__, size, ep_idx, epctl);
1411
1412                /* dump the data from the FIFO, we've nothing we can do */
1413                for (ptr = 0; ptr < size; ptr += 4)
1414                        (void)readl(fifo);
1415
1416                return;
1417        }
1418
1419        to_read = size;
1420        read_ptr = hs_req->req.actual;
1421        max_req = hs_req->req.length - read_ptr;
1422
1423        dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1424                __func__, to_read, max_req, read_ptr, hs_req->req.length);
1425
1426        if (to_read > max_req) {
1427                /*
1428                 * more data appeared than we where willing
1429                 * to deal with in this request.
1430                 */
1431
1432                /* currently we don't deal this */
1433                WARN_ON_ONCE(1);
1434        }
1435
1436        hs_ep->total_data += to_read;
1437        hs_req->req.actual += to_read;
1438        to_read = DIV_ROUND_UP(to_read, 4);
1439
1440        /*
1441         * note, we might over-write the buffer end by 3 bytes depending on
1442         * alignment of the data.
1443         */
1444        readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1445}
1446
1447/**
1448 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1449 * @hsotg: The device instance
1450 * @req: The request currently on this endpoint
1451 *
1452 * Generate a zero-length IN packet request for terminating a SETUP
1453 * transaction.
1454 *
1455 * Note, since we don't write any data to the TxFIFO, then it is
1456 * currently believed that we do not need to wait for any space in
1457 * the TxFIFO.
1458 */
1459static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1460                               struct s3c_hsotg_req *req)
1461{
1462        u32 ctrl;
1463
1464        if (!req) {
1465                dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1466                return;
1467        }
1468
1469        if (req->req.length == 0) {
1470                hsotg->eps[0].sent_zlp = 1;
1471                s3c_hsotg_enqueue_setup(hsotg);
1472                return;
1473        }
1474
1475        hsotg->eps[0].dir_in = 1;
1476        hsotg->eps[0].sent_zlp = 1;
1477
1478        dev_dbg(hsotg->dev, "sending zero-length packet\n");
1479
1480        /* issue a zero-sized packet to terminate this */
1481        writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1482               DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1483
1484        ctrl = readl(hsotg->regs + DIEPCTL0);
1485        ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
1486        ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
1487        ctrl |= DxEPCTL_USBActEp;
1488        writel(ctrl, hsotg->regs + DIEPCTL0);
1489}
1490
1491/**
1492 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1493 * @hsotg: The device instance
1494 * @epnum: The endpoint received from
1495 * @was_setup: Set if processing a SetupDone event.
1496 *
1497 * The RXFIFO has delivered an OutDone event, which means that the data
1498 * transfer for an OUT endpoint has been completed, either by a short
1499 * packet or by the finish of a transfer.
1500 */
1501static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1502                                     int epnum, bool was_setup)
1503{
1504        u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1505        struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1506        struct s3c_hsotg_req *hs_req = hs_ep->req;
1507        struct usb_request *req = &hs_req->req;
1508        unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1509        int result = 0;
1510
1511        if (!hs_req) {
1512                dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1513                return;
1514        }
1515
1516        if (using_dma(hsotg)) {
1517                unsigned size_done;
1518
1519                /*
1520                 * Calculate the size of the transfer by checking how much
1521                 * is left in the endpoint size register and then working it
1522                 * out from the amount we loaded for the transfer.
1523                 *
1524                 * We need to do this as DMA pointers are always 32bit aligned
1525                 * so may overshoot/undershoot the transfer.
1526                 */
1527
1528                size_done = hs_ep->size_loaded - size_left;
1529                size_done += hs_ep->last_load;
1530
1531                req->actual = size_done;
1532        }
1533
1534        /* if there is more request to do, schedule new transfer */
1535        if (req->actual < req->length && size_left == 0) {
1536                s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1537                return;
1538        } else if (epnum == 0) {
1539                /*
1540                 * After was_setup = 1 =>
1541                 * set CNAK for non Setup requests
1542                 */
1543                hsotg->setup = was_setup ? 0 : 1;
1544        }
1545
1546        if (req->actual < req->length && req->short_not_ok) {
1547                dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1548                        __func__, req->actual, req->length);
1549
1550                /*
1551                 * todo - what should we return here? there's no one else
1552                 * even bothering to check the status.
1553                 */
1554        }
1555
1556        if (epnum == 0) {
1557                /*
1558                 * Condition req->complete != s3c_hsotg_complete_setup says:
1559                 * send ZLP when we have an asynchronous request from gadget
1560                 */
1561                if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1562                        s3c_hsotg_send_zlp(hsotg, hs_req);
1563        }
1564
1565        s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1566}
1567
1568/**
1569 * s3c_hsotg_read_frameno - read current frame number
1570 * @hsotg: The device instance
1571 *
1572 * Return the current frame number
1573 */
1574static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1575{
1576        u32 dsts;
1577
1578        dsts = readl(hsotg->regs + DSTS);
1579        dsts &= DSTS_SOFFN_MASK;
1580        dsts >>= DSTS_SOFFN_SHIFT;
1581
1582        return dsts;
1583}
1584
1585/**
1586 * s3c_hsotg_handle_rx - RX FIFO has data
1587 * @hsotg: The device instance
1588 *
1589 * The IRQ handler has detected that the RX FIFO has some data in it
1590 * that requires processing, so find out what is in there and do the
1591 * appropriate read.
1592 *
1593 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1594 * chunks, so if you have x packets received on an endpoint you'll get x
1595 * FIFO events delivered, each with a packet's worth of data in it.
1596 *
1597 * When using DMA, we should not be processing events from the RXFIFO
1598 * as the actual data should be sent to the memory directly and we turn
1599 * on the completion interrupts to get notifications of transfer completion.
1600 */
1601static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1602{
1603        u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1604        u32 epnum, status, size;
1605
1606        WARN_ON(using_dma(hsotg));
1607
1608        epnum = grxstsr & GRXSTS_EPNum_MASK;
1609        status = grxstsr & GRXSTS_PktSts_MASK;
1610
1611        size = grxstsr & GRXSTS_ByteCnt_MASK;
1612        size >>= GRXSTS_ByteCnt_SHIFT;
1613
1614        if (1)
1615                dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1616                        __func__, grxstsr, size, epnum);
1617
1618#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1619
1620        switch (status >> GRXSTS_PktSts_SHIFT) {
1621        case __status(GRXSTS_PktSts_GlobalOutNAK):
1622                dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1623                break;
1624
1625        case __status(GRXSTS_PktSts_OutDone):
1626                dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1627                        s3c_hsotg_read_frameno(hsotg));
1628
1629                if (!using_dma(hsotg))
1630                        s3c_hsotg_handle_outdone(hsotg, epnum, false);
1631                break;
1632
1633        case __status(GRXSTS_PktSts_SetupDone):
1634                dev_dbg(hsotg->dev,
1635                        "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1636                        s3c_hsotg_read_frameno(hsotg),
1637                        readl(hsotg->regs + DOEPCTL(0)));
1638
1639                s3c_hsotg_handle_outdone(hsotg, epnum, true);
1640                break;
1641
1642        case __status(GRXSTS_PktSts_OutRX):
1643                s3c_hsotg_rx_data(hsotg, epnum, size);
1644                break;
1645
1646        case __status(GRXSTS_PktSts_SetupRX):
1647                dev_dbg(hsotg->dev,
1648                        "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1649                        s3c_hsotg_read_frameno(hsotg),
1650                        readl(hsotg->regs + DOEPCTL(0)));
1651
1652                s3c_hsotg_rx_data(hsotg, epnum, size);
1653                break;
1654
1655        default:
1656                dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1657                         __func__, grxstsr);
1658
1659                s3c_hsotg_dump(hsotg);
1660                break;
1661        }
1662}
1663
1664/**
1665 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1666 * @mps: The maximum packet size in bytes.
1667 */
1668static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1669{
1670        switch (mps) {
1671        case 64:
1672                return D0EPCTL_MPS_64;
1673        case 32:
1674                return D0EPCTL_MPS_32;
1675        case 16:
1676                return D0EPCTL_MPS_16;
1677        case 8:
1678                return D0EPCTL_MPS_8;
1679        }
1680
1681        /* bad max packet size, warn and return invalid result */
1682        WARN_ON(1);
1683        return (u32)-1;
1684}
1685
1686/**
1687 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1688 * @hsotg: The driver state.
1689 * @ep: The index number of the endpoint
1690 * @mps: The maximum packet size in bytes
1691 *
1692 * Configure the maximum packet size for the given endpoint, updating
1693 * the hardware control registers to reflect this.
1694 */
1695static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1696                                       unsigned int ep, unsigned int mps)
1697{
1698        struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1699        void __iomem *regs = hsotg->regs;
1700        u32 mpsval;
1701        u32 reg;
1702
1703        if (ep == 0) {
1704                /* EP0 is a special case */
1705                mpsval = s3c_hsotg_ep0_mps(mps);
1706                if (mpsval > 3)
1707                        goto bad_mps;
1708        } else {
1709                if (mps >= DxEPCTL_MPS_LIMIT+1)
1710                        goto bad_mps;
1711
1712                mpsval = mps;
1713        }
1714
1715        hs_ep->ep.maxpacket = mps;
1716
1717        /*
1718         * update both the in and out endpoint controldir_ registers, even
1719         * if one of the directions may not be in use.
1720         */
1721
1722        reg = readl(regs + DIEPCTL(ep));
1723        reg &= ~DxEPCTL_MPS_MASK;
1724        reg |= mpsval;
1725        writel(reg, regs + DIEPCTL(ep));
1726
1727        if (ep) {
1728                reg = readl(regs + DOEPCTL(ep));
1729                reg &= ~DxEPCTL_MPS_MASK;
1730                reg |= mpsval;
1731                writel(reg, regs + DOEPCTL(ep));
1732        }
1733
1734        return;
1735
1736bad_mps:
1737        dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1738}
1739
1740/**
1741 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1742 * @hsotg: The driver state
1743 * @idx: The index for the endpoint (0..15)
1744 */
1745static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1746{
1747        int timeout;
1748        int val;
1749
1750        writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
1751                hsotg->regs + GRSTCTL);
1752
1753        /* wait until the fifo is flushed */
1754        timeout = 100;
1755
1756        while (1) {
1757                val = readl(hsotg->regs + GRSTCTL);
1758
1759                if ((val & (GRSTCTL_TxFFlsh)) == 0)
1760                        break;
1761
1762                if (--timeout == 0) {
1763                        dev_err(hsotg->dev,
1764                                "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1765                                __func__, val);
1766                }
1767
1768                udelay(1);
1769        }
1770}
1771
1772/**
1773 * s3c_hsotg_trytx - check to see if anything needs transmitting
1774 * @hsotg: The driver state
1775 * @hs_ep: The driver endpoint to check.
1776 *
1777 * Check to see if there is a request that has data to send, and if so
1778 * make an attempt to write data into the FIFO.
1779 */
1780static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1781                           struct s3c_hsotg_ep *hs_ep)
1782{
1783        struct s3c_hsotg_req *hs_req = hs_ep->req;
1784
1785        if (!hs_ep->dir_in || !hs_req)
1786                return 0;
1787
1788        if (hs_req->req.actual < hs_req->req.length) {
1789                dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1790                        hs_ep->index);
1791                return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1792        }
1793
1794        return 0;
1795}
1796
1797/**
1798 * s3c_hsotg_complete_in - complete IN transfer
1799 * @hsotg: The device state.
1800 * @hs_ep: The endpoint that has just completed.
1801 *
1802 * An IN transfer has been completed, update the transfer's state and then
1803 * call the relevant completion routines.
1804 */
1805static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1806                                  struct s3c_hsotg_ep *hs_ep)
1807{
1808        struct s3c_hsotg_req *hs_req = hs_ep->req;
1809        u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1810        int size_left, size_done;
1811
1812        if (!hs_req) {
1813                dev_dbg(hsotg->dev, "XferCompl but no req\n");
1814                return;
1815        }
1816
1817        /* Finish ZLP handling for IN EP0 transactions */
1818        if (hsotg->eps[0].sent_zlp) {
1819                dev_dbg(hsotg->dev, "zlp packet received\n");
1820                s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1821                return;
1822        }
1823
1824        /*
1825         * Calculate the size of the transfer by checking how much is left
1826         * in the endpoint size register and then working it out from
1827         * the amount we loaded for the transfer.
1828         *
1829         * We do this even for DMA, as the transfer may have incremented
1830         * past the end of the buffer (DMA transfers are always 32bit
1831         * aligned).
1832         */
1833
1834        size_left = DxEPTSIZ_XferSize_GET(epsize);
1835
1836        size_done = hs_ep->size_loaded - size_left;
1837        size_done += hs_ep->last_load;
1838
1839        if (hs_req->req.actual != size_done)
1840                dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1841                        __func__, hs_req->req.actual, size_done);
1842
1843        hs_req->req.actual = size_done;
1844        dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1845                hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1846
1847        /*
1848         * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1849         * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1850         * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1851         * inform the host that no more data is available.
1852         * The state of req.zero member is checked to be sure that the value to
1853         * send is smaller than wValue expected from host.
1854         * Check req.length to NOT send another ZLP when the current one is
1855         * under completion (the one for which this completion has been called).
1856         */
1857        if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1858            hs_req->req.length == hs_req->req.actual &&
1859            !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1860
1861                dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1862                s3c_hsotg_send_zlp(hsotg, hs_req);
1863
1864                return;
1865        }
1866
1867        if (!size_left && hs_req->req.actual < hs_req->req.length) {
1868                dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1869                s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1870        } else
1871                s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1872}
1873
1874/**
1875 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1876 * @hsotg: The driver state
1877 * @idx: The index for the endpoint (0..15)
1878 * @dir_in: Set if this is an IN endpoint
1879 *
1880 * Process and clear any interrupt pending for an individual endpoint
1881 */
1882static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1883                            int dir_in)
1884{
1885        struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1886        u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1887        u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1888        u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1889        u32 ints;
1890
1891        ints = readl(hsotg->regs + epint_reg);
1892
1893        /* Clear endpoint interrupts */
1894        writel(ints, hsotg->regs + epint_reg);
1895
1896        dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1897                __func__, idx, dir_in ? "in" : "out", ints);
1898
1899        if (ints & DxEPINT_XferCompl) {
1900                dev_dbg(hsotg->dev,
1901                        "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1902                        __func__, readl(hsotg->regs + epctl_reg),
1903                        readl(hsotg->regs + epsiz_reg));
1904
1905                /*
1906                 * we get OutDone from the FIFO, so we only need to look
1907                 * at completing IN requests here
1908                 */
1909                if (dir_in) {
1910                        s3c_hsotg_complete_in(hsotg, hs_ep);
1911
1912                        if (idx == 0 && !hs_ep->req)
1913                                s3c_hsotg_enqueue_setup(hsotg);
1914                } else if (using_dma(hsotg)) {
1915                        /*
1916                         * We're using DMA, we need to fire an OutDone here
1917                         * as we ignore the RXFIFO.
1918                         */
1919
1920                        s3c_hsotg_handle_outdone(hsotg, idx, false);
1921                }
1922        }
1923
1924        if (ints & DxEPINT_EPDisbld) {
1925                dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1926
1927                if (dir_in) {
1928                        int epctl = readl(hsotg->regs + epctl_reg);
1929
1930                        s3c_hsotg_txfifo_flush(hsotg, idx);
1931
1932                        if ((epctl & DxEPCTL_Stall) &&
1933                                (epctl & DxEPCTL_EPType_Bulk)) {
1934                                int dctl = readl(hsotg->regs + DCTL);
1935
1936                                dctl |= DCTL_CGNPInNAK;
1937                                writel(dctl, hsotg->regs + DCTL);
1938                        }
1939                }
1940        }
1941
1942        if (ints & DxEPINT_AHBErr)
1943                dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1944
1945        if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1946                dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1947
1948                if (using_dma(hsotg) && idx == 0) {
1949                        /*
1950                         * this is the notification we've received a
1951                         * setup packet. In non-DMA mode we'd get this
1952                         * from the RXFIFO, instead we need to process
1953                         * the setup here.
1954                         */
1955
1956                        if (dir_in)
1957                                WARN_ON_ONCE(1);
1958                        else
1959                                s3c_hsotg_handle_outdone(hsotg, 0, true);
1960                }
1961        }
1962
1963        if (ints & DxEPINT_Back2BackSetup)
1964                dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1965
1966        if (dir_in) {
1967                /* not sure if this is important, but we'll clear it anyway */
1968                if (ints & DIEPMSK_INTknTXFEmpMsk) {
1969                        dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1970                                __func__, idx);
1971                }
1972
1973                /* this probably means something bad is happening */
1974                if (ints & DIEPMSK_INTknEPMisMsk) {
1975                        dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1976                                 __func__, idx);
1977                }
1978
1979                /* FIFO has space or is empty (see GAHBCFG) */
1980                if (hsotg->dedicated_fifos &&
1981                    ints & DIEPMSK_TxFIFOEmpty) {
1982                        dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1983                                __func__, idx);
1984                        if (!using_dma(hsotg))
1985                                s3c_hsotg_trytx(hsotg, hs_ep);
1986                }
1987        }
1988}
1989
1990/**
1991 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1992 * @hsotg: The device state.
1993 *
1994 * Handle updating the device settings after the enumeration phase has
1995 * been completed.
1996 */
1997static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1998{
1999        u32 dsts = readl(hsotg->regs + DSTS);
2000        int ep0_mps = 0, ep_mps;
2001
2002        /*
2003         * This should signal the finish of the enumeration phase
2004         * of the USB handshaking, so we should now know what rate
2005         * we connected at.
2006         */
2007
2008        dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2009
2010        /*
2011         * note, since we're limited by the size of transfer on EP0, and
2012         * it seems IN transfers must be a even number of packets we do
2013         * not advertise a 64byte MPS on EP0.
2014         */
2015
2016        /* catch both EnumSpd_FS and EnumSpd_FS48 */
2017        switch (dsts & DSTS_EnumSpd_MASK) {
2018        case DSTS_EnumSpd_FS:
2019        case DSTS_EnumSpd_FS48:
2020                hsotg->gadget.speed = USB_SPEED_FULL;
2021                ep0_mps = EP0_MPS_LIMIT;
2022                ep_mps = 64;
2023                break;
2024
2025        case DSTS_EnumSpd_HS:
2026                hsotg->gadget.speed = USB_SPEED_HIGH;
2027                ep0_mps = EP0_MPS_LIMIT;
2028                ep_mps = 512;
2029                break;
2030
2031        case DSTS_EnumSpd_LS:
2032                hsotg->gadget.speed = USB_SPEED_LOW;
2033                /*
2034                 * note, we don't actually support LS in this driver at the
2035                 * moment, and the documentation seems to imply that it isn't
2036                 * supported by the PHYs on some of the devices.
2037                 */
2038                break;
2039        }
2040        dev_info(hsotg->dev, "new device is %s\n",
2041                 usb_speed_string(hsotg->gadget.speed));
2042
2043        /*
2044         * we should now know the maximum packet size for an
2045         * endpoint, so set the endpoints to a default value.
2046         */
2047
2048        if (ep0_mps) {
2049                int i;
2050                s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2051                for (i = 1; i < hsotg->num_of_eps; i++)
2052                        s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2053        }
2054
2055        /* ensure after enumeration our EP0 is active */
2056
2057        s3c_hsotg_enqueue_setup(hsotg);
2058
2059        dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2060                readl(hsotg->regs + DIEPCTL0),
2061                readl(hsotg->regs + DOEPCTL0));
2062}
2063
2064/**
2065 * kill_all_requests - remove all requests from the endpoint's queue
2066 * @hsotg: The device state.
2067 * @ep: The endpoint the requests may be on.
2068 * @result: The result code to use.
2069 * @force: Force removal of any current requests
2070 *
2071 * Go through the requests on the given endpoint and mark them
2072 * completed with the given result code.
2073 */
2074static void kill_all_requests(struct s3c_hsotg *hsotg,
2075                              struct s3c_hsotg_ep *ep,
2076                              int result, bool force)
2077{
2078        struct s3c_hsotg_req *req, *treq;
2079
2080        list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2081                /*
2082                 * currently, we can't do much about an already
2083                 * running request on an in endpoint
2084                 */
2085
2086                if (ep->req == req && ep->dir_in && !force)
2087                        continue;
2088
2089                s3c_hsotg_complete_request(hsotg, ep, req,
2090                                           result);
2091        }
2092}
2093
2094#define call_gadget(_hs, _entry) \
2095        if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2096            (_hs)->driver && (_hs)->driver->_entry) { \
2097                spin_unlock(&_hs->lock); \
2098                (_hs)->driver->_entry(&(_hs)->gadget); \
2099                spin_lock(&_hs->lock); \
2100                }
2101
2102/**
2103 * s3c_hsotg_disconnect - disconnect service
2104 * @hsotg: The device state.
2105 *
2106 * The device has been disconnected. Remove all current
2107 * transactions and signal the gadget driver that this
2108 * has happened.
2109 */
2110static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2111{
2112        unsigned ep;
2113
2114        for (ep = 0; ep < hsotg->num_of_eps; ep++)
2115                kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2116
2117        call_gadget(hsotg, disconnect);
2118}
2119
2120/**
2121 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2122 * @hsotg: The device state:
2123 * @periodic: True if this is a periodic FIFO interrupt
2124 */
2125static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2126{
2127        struct s3c_hsotg_ep *ep;
2128        int epno, ret;
2129
2130        /* look through for any more data to transmit */
2131
2132        for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2133                ep = &hsotg->eps[epno];
2134
2135                if (!ep->dir_in)
2136                        continue;
2137
2138                if ((periodic && !ep->periodic) ||
2139                    (!periodic && ep->periodic))
2140                        continue;
2141
2142                ret = s3c_hsotg_trytx(hsotg, ep);
2143                if (ret < 0)
2144                        break;
2145        }
2146}
2147
2148/* IRQ flags which will trigger a retry around the IRQ loop */
2149#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2150                        GINTSTS_PTxFEmp |  \
2151                        GINTSTS_RxFLvl)
2152
2153/**
2154 * s3c_hsotg_corereset - issue softreset to the core
2155 * @hsotg: The device state
2156 *
2157 * Issue a soft reset to the core, and await the core finishing it.
2158 */
2159static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2160{
2161        int timeout;
2162        u32 grstctl;
2163
2164        dev_dbg(hsotg->dev, "resetting core\n");
2165
2166        /* issue soft reset */
2167        writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2168
2169        timeout = 10000;
2170        do {
2171                grstctl = readl(hsotg->regs + GRSTCTL);
2172        } while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2173
2174        if (grstctl & GRSTCTL_CSftRst) {
2175                dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2176                return -EINVAL;
2177        }
2178
2179        timeout = 10000;
2180
2181        while (1) {
2182                u32 grstctl = readl(hsotg->regs + GRSTCTL);
2183
2184                if (timeout-- < 0) {
2185                        dev_info(hsotg->dev,
2186                                 "%s: reset failed, GRSTCTL=%08x\n",
2187                                 __func__, grstctl);
2188                        return -ETIMEDOUT;
2189                }
2190
2191                if (!(grstctl & GRSTCTL_AHBIdle))
2192                        continue;
2193
2194                break;          /* reset done */
2195        }
2196
2197        dev_dbg(hsotg->dev, "reset successful\n");
2198        return 0;
2199}
2200
2201/**
2202 * s3c_hsotg_core_init - issue softreset to the core
2203 * @hsotg: The device state
2204 *
2205 * Issue a soft reset to the core, and await the core finishing it.
2206 */
2207static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2208{
2209        s3c_hsotg_corereset(hsotg);
2210
2211        /*
2212         * we must now enable ep0 ready for host detection and then
2213         * set configuration.
2214         */
2215
2216        /* set the PLL on, remove the HNP/SRP and set the PHY */
2217        writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
2218               (0x5 << 10), hsotg->regs + GUSBCFG);
2219
2220        s3c_hsotg_init_fifo(hsotg);
2221
2222        __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2223
2224        writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2225
2226        /* Clear any pending OTG interrupts */
2227        writel(0xffffffff, hsotg->regs + GOTGINT);
2228
2229        /* Clear any pending interrupts */
2230        writel(0xffffffff, hsotg->regs + GINTSTS);
2231
2232        writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
2233               GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
2234               GINTSTS_ConIDStsChng | GINTSTS_USBRst |
2235               GINTSTS_EnumDone | GINTSTS_OTGInt |
2236               GINTSTS_USBSusp | GINTSTS_WkUpInt,
2237               hsotg->regs + GINTMSK);
2238
2239        if (using_dma(hsotg))
2240                writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
2241                       GAHBCFG_HBstLen_Incr4,
2242                       hsotg->regs + GAHBCFG);
2243        else
2244                writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2245
2246        /*
2247         * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2248         * up being flooded with interrupts if the host is polling the
2249         * endpoint to try and read data.
2250         */
2251
2252        writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
2253               DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
2254               DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2255               DIEPMSK_INTknEPMisMsk,
2256               hsotg->regs + DIEPMSK);
2257
2258        /*
2259         * don't need XferCompl, we get that from RXFIFO in slave mode. In
2260         * DMA mode we may need this.
2261         */
2262        writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
2263                                    DIEPMSK_TimeOUTMsk) : 0) |
2264               DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
2265               DOEPMSK_SetupMsk,
2266               hsotg->regs + DOEPMSK);
2267
2268        writel(0, hsotg->regs + DAINTMSK);
2269
2270        dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2271                readl(hsotg->regs + DIEPCTL0),
2272                readl(hsotg->regs + DOEPCTL0));
2273
2274        /* enable in and out endpoint interrupts */
2275        s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2276
2277        /*
2278         * Enable the RXFIFO when in slave mode, as this is how we collect
2279         * the data. In DMA mode, we get events from the FIFO but also
2280         * things we cannot process, so do not use it.
2281         */
2282        if (!using_dma(hsotg))
2283                s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2284
2285        /* Enable interrupts for EP0 in and out */
2286        s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2287        s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2288
2289        __orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2290        udelay(10);  /* see openiboot */
2291        __bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2292
2293        dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2294
2295        /*
2296         * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2297         * writing to the EPCTL register..
2298         */
2299
2300        /* set to read 1 8byte packet */
2301        writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2302               DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2303
2304        writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2305               DxEPCTL_CNAK | DxEPCTL_EPEna |
2306               DxEPCTL_USBActEp,
2307               hsotg->regs + DOEPCTL0);
2308
2309        /* enable, but don't activate EP0in */
2310        writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2311               DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2312
2313        s3c_hsotg_enqueue_setup(hsotg);
2314
2315        dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2316                readl(hsotg->regs + DIEPCTL0),
2317                readl(hsotg->regs + DOEPCTL0));
2318
2319        /* clear global NAKs */
2320        writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
2321               hsotg->regs + DCTL);
2322
2323        /* must be at-least 3ms to allow bus to see disconnect */
2324        mdelay(3);
2325
2326        /* remove the soft-disconnect and let's go */
2327        __bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2328}
2329
2330/**
2331 * s3c_hsotg_irq - handle device interrupt
2332 * @irq: The IRQ number triggered
2333 * @pw: The pw value when registered the handler.
2334 */
2335static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2336{
2337        struct s3c_hsotg *hsotg = pw;
2338        int retry_count = 8;
2339        u32 gintsts;
2340        u32 gintmsk;
2341
2342        spin_lock(&hsotg->lock);
2343irq_retry:
2344        gintsts = readl(hsotg->regs + GINTSTS);
2345        gintmsk = readl(hsotg->regs + GINTMSK);
2346
2347        dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2348                __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2349
2350        gintsts &= gintmsk;
2351
2352        if (gintsts & GINTSTS_OTGInt) {
2353                u32 otgint = readl(hsotg->regs + GOTGINT);
2354
2355                dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2356
2357                writel(otgint, hsotg->regs + GOTGINT);
2358        }
2359
2360        if (gintsts & GINTSTS_SessReqInt) {
2361                dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2362                writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2363        }
2364
2365        if (gintsts & GINTSTS_EnumDone) {
2366                writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2367
2368                s3c_hsotg_irq_enumdone(hsotg);
2369        }
2370
2371        if (gintsts & GINTSTS_ConIDStsChng) {
2372                dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2373                        readl(hsotg->regs + DSTS),
2374                        readl(hsotg->regs + GOTGCTL));
2375
2376                writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2377        }
2378
2379        if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
2380                u32 daint = readl(hsotg->regs + DAINT);
2381                u32 daint_out = daint >> DAINT_OutEP_SHIFT;
2382                u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2383                int ep;
2384
2385                dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2386
2387                for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2388                        if (daint_out & 1)
2389                                s3c_hsotg_epint(hsotg, ep, 0);
2390                }
2391
2392                for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2393                        if (daint_in & 1)
2394                                s3c_hsotg_epint(hsotg, ep, 1);
2395                }
2396        }
2397
2398        if (gintsts & GINTSTS_USBRst) {
2399
2400                u32 usb_status = readl(hsotg->regs + GOTGCTL);
2401
2402                dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2403                dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2404                        readl(hsotg->regs + GNPTXSTS));
2405
2406                writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2407
2408                if (usb_status & GOTGCTL_BSESVLD) {
2409                        if (time_after(jiffies, hsotg->last_rst +
2410                                       msecs_to_jiffies(200))) {
2411
2412                                kill_all_requests(hsotg, &hsotg->eps[0],
2413                                                          -ECONNRESET, true);
2414
2415                                s3c_hsotg_core_init(hsotg);
2416                                hsotg->last_rst = jiffies;
2417                        }
2418                }
2419        }
2420
2421        /* check both FIFOs */
2422
2423        if (gintsts & GINTSTS_NPTxFEmp) {
2424                dev_dbg(hsotg->dev, "NPTxFEmp\n");
2425
2426                /*
2427                 * Disable the interrupt to stop it happening again
2428                 * unless one of these endpoint routines decides that
2429                 * it needs re-enabling
2430                 */
2431
2432                s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2433                s3c_hsotg_irq_fifoempty(hsotg, false);
2434        }
2435
2436        if (gintsts & GINTSTS_PTxFEmp) {
2437                dev_dbg(hsotg->dev, "PTxFEmp\n");
2438
2439                /* See note in GINTSTS_NPTxFEmp */
2440
2441                s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2442                s3c_hsotg_irq_fifoempty(hsotg, true);
2443        }
2444
2445        if (gintsts & GINTSTS_RxFLvl) {
2446                /*
2447                 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2448                 * we need to retry s3c_hsotg_handle_rx if this is still
2449                 * set.
2450                 */
2451
2452                s3c_hsotg_handle_rx(hsotg);
2453        }
2454
2455        if (gintsts & GINTSTS_ModeMis) {
2456                dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2457                writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2458        }
2459
2460        if (gintsts & GINTSTS_USBSusp) {
2461                dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2462                writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2463
2464                call_gadget(hsotg, suspend);
2465                s3c_hsotg_disconnect(hsotg);
2466        }
2467
2468        if (gintsts & GINTSTS_WkUpInt) {
2469                dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2470                writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2471
2472                call_gadget(hsotg, resume);
2473        }
2474
2475        if (gintsts & GINTSTS_ErlySusp) {
2476                dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2477                writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2478        }
2479
2480        /*
2481         * these next two seem to crop-up occasionally causing the core
2482         * to shutdown the USB transfer, so try clearing them and logging
2483         * the occurrence.
2484         */
2485
2486        if (gintsts & GINTSTS_GOUTNakEff) {
2487                dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2488
2489                writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2490
2491                s3c_hsotg_dump(hsotg);
2492        }
2493
2494        if (gintsts & GINTSTS_GINNakEff) {
2495                dev_info(hsotg->dev, "GINNakEff triggered\n");
2496
2497                writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2498
2499                s3c_hsotg_dump(hsotg);
2500        }
2501
2502        /*
2503         * if we've had fifo events, we should try and go around the
2504         * loop again to see if there's any point in returning yet.
2505         */
2506
2507        if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2508                        goto irq_retry;
2509
2510        spin_unlock(&hsotg->lock);
2511
2512        return IRQ_HANDLED;
2513}
2514
2515/**
2516 * s3c_hsotg_ep_enable - enable the given endpoint
2517 * @ep: The USB endpint to configure
2518 * @desc: The USB endpoint descriptor to configure with.
2519 *
2520 * This is called from the USB gadget code's usb_ep_enable().
2521 */
2522static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2523                               const struct usb_endpoint_descriptor *desc)
2524{
2525        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2526        struct s3c_hsotg *hsotg = hs_ep->parent;
2527        unsigned long flags;
2528        int index = hs_ep->index;
2529        u32 epctrl_reg;
2530        u32 epctrl;
2531        u32 mps;
2532        int dir_in;
2533        int ret = 0;
2534
2535        dev_dbg(hsotg->dev,
2536                "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2537                __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2538                desc->wMaxPacketSize, desc->bInterval);
2539
2540        /* not to be called for EP0 */
2541        WARN_ON(index == 0);
2542
2543        dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2544        if (dir_in != hs_ep->dir_in) {
2545                dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2546                return -EINVAL;
2547        }
2548
2549        mps = usb_endpoint_maxp(desc);
2550
2551        /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2552
2553        epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2554        epctrl = readl(hsotg->regs + epctrl_reg);
2555
2556        dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2557                __func__, epctrl, epctrl_reg);
2558
2559        spin_lock_irqsave(&hsotg->lock, flags);
2560
2561        epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
2562        epctrl |= DxEPCTL_MPS(mps);
2563
2564        /*
2565         * mark the endpoint as active, otherwise the core may ignore
2566         * transactions entirely for this endpoint
2567         */
2568        epctrl |= DxEPCTL_USBActEp;
2569
2570        /*
2571         * set the NAK status on the endpoint, otherwise we might try and
2572         * do something with data that we've yet got a request to process
2573         * since the RXFIFO will take data for an endpoint even if the
2574         * size register hasn't been set.
2575         */
2576
2577        epctrl |= DxEPCTL_SNAK;
2578
2579        /* update the endpoint state */
2580        hs_ep->ep.maxpacket = mps;
2581
2582        /* default, set to non-periodic */
2583        hs_ep->periodic = 0;
2584
2585        switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2586        case USB_ENDPOINT_XFER_ISOC:
2587                dev_err(hsotg->dev, "no current ISOC support\n");
2588                ret = -EINVAL;
2589                goto out;
2590
2591        case USB_ENDPOINT_XFER_BULK:
2592                epctrl |= DxEPCTL_EPType_Bulk;
2593                break;
2594
2595        case USB_ENDPOINT_XFER_INT:
2596                if (dir_in) {
2597                        /*
2598                         * Allocate our TxFNum by simply using the index
2599                         * of the endpoint for the moment. We could do
2600                         * something better if the host indicates how
2601                         * many FIFOs we are expecting to use.
2602                         */
2603
2604                        hs_ep->periodic = 1;
2605                        epctrl |= DxEPCTL_TxFNum(index);
2606                }
2607
2608                epctrl |= DxEPCTL_EPType_Intterupt;
2609                break;
2610
2611        case USB_ENDPOINT_XFER_CONTROL:
2612                epctrl |= DxEPCTL_EPType_Control;
2613                break;
2614        }
2615
2616        /*
2617         * if the hardware has dedicated fifos, we must give each IN EP
2618         * a unique tx-fifo even if it is non-periodic.
2619         */
2620        if (dir_in && hsotg->dedicated_fifos)
2621                epctrl |= DxEPCTL_TxFNum(index);
2622
2623        /* for non control endpoints, set PID to D0 */
2624        if (index)
2625                epctrl |= DxEPCTL_SetD0PID;
2626
2627        dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2628                __func__, epctrl);
2629
2630        writel(epctrl, hsotg->regs + epctrl_reg);
2631        dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2632                __func__, readl(hsotg->regs + epctrl_reg));
2633
2634        /* enable the endpoint interrupt */
2635        s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2636
2637out:
2638        spin_unlock_irqrestore(&hsotg->lock, flags);
2639        return ret;
2640}
2641
2642/**
2643 * s3c_hsotg_ep_disable - disable given endpoint
2644 * @ep: The endpoint to disable.
2645 */
2646static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2647{
2648        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2649        struct s3c_hsotg *hsotg = hs_ep->parent;
2650        int dir_in = hs_ep->dir_in;
2651        int index = hs_ep->index;
2652        unsigned long flags;
2653        u32 epctrl_reg;
2654        u32 ctrl;
2655
2656        dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2657
2658        if (ep == &hsotg->eps[0].ep) {
2659                dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2660                return -EINVAL;
2661        }
2662
2663        epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2664
2665        spin_lock_irqsave(&hsotg->lock, flags);
2666        /* terminate all requests with shutdown */
2667        kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2668
2669
2670        ctrl = readl(hsotg->regs + epctrl_reg);
2671        ctrl &= ~DxEPCTL_EPEna;
2672        ctrl &= ~DxEPCTL_USBActEp;
2673        ctrl |= DxEPCTL_SNAK;
2674
2675        dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2676        writel(ctrl, hsotg->regs + epctrl_reg);
2677
2678        /* disable endpoint interrupts */
2679        s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2680
2681        spin_unlock_irqrestore(&hsotg->lock, flags);
2682        return 0;
2683}
2684
2685/**
2686 * on_list - check request is on the given endpoint
2687 * @ep: The endpoint to check.
2688 * @test: The request to test if it is on the endpoint.
2689 */
2690static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2691{
2692        struct s3c_hsotg_req *req, *treq;
2693
2694        list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2695                if (req == test)
2696                        return true;
2697        }
2698
2699        return false;
2700}
2701
2702/**
2703 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2704 * @ep: The endpoint to dequeue.
2705 * @req: The request to be removed from a queue.
2706 */
2707static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2708{
2709        struct s3c_hsotg_req *hs_req = our_req(req);
2710        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2711        struct s3c_hsotg *hs = hs_ep->parent;
2712        unsigned long flags;
2713
2714        dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2715
2716        spin_lock_irqsave(&hs->lock, flags);
2717
2718        if (!on_list(hs_ep, hs_req)) {
2719                spin_unlock_irqrestore(&hs->lock, flags);
2720                return -EINVAL;
2721        }
2722
2723        s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2724        spin_unlock_irqrestore(&hs->lock, flags);
2725
2726        return 0;
2727}
2728
2729/**
2730 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2731 * @ep: The endpoint to set halt.
2732 * @value: Set or unset the halt.
2733 */
2734static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2735{
2736        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2737        struct s3c_hsotg *hs = hs_ep->parent;
2738        int index = hs_ep->index;
2739        u32 epreg;
2740        u32 epctl;
2741        u32 xfertype;
2742
2743        dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2744
2745        /* write both IN and OUT control registers */
2746
2747        epreg = DIEPCTL(index);
2748        epctl = readl(hs->regs + epreg);
2749
2750        if (value) {
2751                epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
2752                if (epctl & DxEPCTL_EPEna)
2753                        epctl |= DxEPCTL_EPDis;
2754        } else {
2755                epctl &= ~DxEPCTL_Stall;
2756                xfertype = epctl & DxEPCTL_EPType_MASK;
2757                if (xfertype == DxEPCTL_EPType_Bulk ||
2758                        xfertype == DxEPCTL_EPType_Intterupt)
2759                                epctl |= DxEPCTL_SetD0PID;
2760        }
2761
2762        writel(epctl, hs->regs + epreg);
2763
2764        epreg = DOEPCTL(index);
2765        epctl = readl(hs->regs + epreg);
2766
2767        if (value)
2768                epctl |= DxEPCTL_Stall;
2769        else {
2770                epctl &= ~DxEPCTL_Stall;
2771                xfertype = epctl & DxEPCTL_EPType_MASK;
2772                if (xfertype == DxEPCTL_EPType_Bulk ||
2773                        xfertype == DxEPCTL_EPType_Intterupt)
2774                                epctl |= DxEPCTL_SetD0PID;
2775        }
2776
2777        writel(epctl, hs->regs + epreg);
2778
2779        return 0;
2780}
2781
2782/**
2783 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2784 * @ep: The endpoint to set halt.
2785 * @value: Set or unset the halt.
2786 */
2787static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2788{
2789        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2790        struct s3c_hsotg *hs = hs_ep->parent;
2791        unsigned long flags = 0;
2792        int ret = 0;
2793
2794        spin_lock_irqsave(&hs->lock, flags);
2795        ret = s3c_hsotg_ep_sethalt(ep, value);
2796        spin_unlock_irqrestore(&hs->lock, flags);
2797
2798        return ret;
2799}
2800
2801static struct usb_ep_ops s3c_hsotg_ep_ops = {
2802        .enable         = s3c_hsotg_ep_enable,
2803        .disable        = s3c_hsotg_ep_disable,
2804        .alloc_request  = s3c_hsotg_ep_alloc_request,
2805        .free_request   = s3c_hsotg_ep_free_request,
2806        .queue          = s3c_hsotg_ep_queue_lock,
2807        .dequeue        = s3c_hsotg_ep_dequeue,
2808        .set_halt       = s3c_hsotg_ep_sethalt_lock,
2809        /* note, don't believe we have any call for the fifo routines */
2810};
2811
2812/**
2813 * s3c_hsotg_phy_enable - enable platform phy dev
2814 * @hsotg: The driver state
2815 *
2816 * A wrapper for platform code responsible for controlling
2817 * low-level USB code
2818 */
2819static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2820{
2821        struct platform_device *pdev = to_platform_device(hsotg->dev);
2822
2823        dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2824
2825        if (hsotg->phy)
2826                usb_phy_init(hsotg->phy);
2827        else if (hsotg->plat->phy_init)
2828                hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2829}
2830
2831/**
2832 * s3c_hsotg_phy_disable - disable platform phy dev
2833 * @hsotg: The driver state
2834 *
2835 * A wrapper for platform code responsible for controlling
2836 * low-level USB code
2837 */
2838static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2839{
2840        struct platform_device *pdev = to_platform_device(hsotg->dev);
2841
2842        if (hsotg->phy)
2843                usb_phy_shutdown(hsotg->phy);
2844        else if (hsotg->plat->phy_exit)
2845                hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2846}
2847
2848/**
2849 * s3c_hsotg_init - initalize the usb core
2850 * @hsotg: The driver state
2851 */
2852static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2853{
2854        /* unmask subset of endpoint interrupts */
2855
2856        writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2857               DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
2858               hsotg->regs + DIEPMSK);
2859
2860        writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
2861               DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
2862               hsotg->regs + DOEPMSK);
2863
2864        writel(0, hsotg->regs + DAINTMSK);
2865
2866        /* Be in disconnected state until gadget is registered */
2867        __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2868
2869        if (0) {
2870                /* post global nak until we're ready */
2871                writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
2872                       hsotg->regs + DCTL);
2873        }
2874
2875        /* setup fifos */
2876
2877        dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2878                readl(hsotg->regs + GRXFSIZ),
2879                readl(hsotg->regs + GNPTXFSIZ));
2880
2881        s3c_hsotg_init_fifo(hsotg);
2882
2883        /* set the PLL on, remove the HNP/SRP and set the PHY */
2884        writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
2885               hsotg->regs + GUSBCFG);
2886
2887        writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
2888               hsotg->regs + GAHBCFG);
2889}
2890
2891/**
2892 * s3c_hsotg_udc_start - prepare the udc for work
2893 * @gadget: The usb gadget state
2894 * @driver: The usb gadget driver
2895 *
2896 * Perform initialization to prepare udc device and driver
2897 * to work.
2898 */
2899static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2900                           struct usb_gadget_driver *driver)
2901{
2902        struct s3c_hsotg *hsotg = to_hsotg(gadget);
2903        int ret;
2904
2905        if (!hsotg) {
2906                printk(KERN_ERR "%s: called with no device\n", __func__);
2907                return -ENODEV;
2908        }
2909
2910        if (!driver) {
2911                dev_err(hsotg->dev, "%s: no driver\n", __func__);
2912                return -EINVAL;
2913        }
2914
2915        if (driver->max_speed < USB_SPEED_FULL)
2916                dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2917
2918        if (!driver->setup) {
2919                dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2920                return -EINVAL;
2921        }
2922
2923        WARN_ON(hsotg->driver);
2924
2925        driver->driver.bus = NULL;
2926        hsotg->driver = driver;
2927        hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2928        hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2929
2930        ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2931                                    hsotg->supplies);
2932        if (ret) {
2933                dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2934                goto err;
2935        }
2936
2937        hsotg->last_rst = jiffies;
2938        dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2939        return 0;
2940
2941err:
2942        hsotg->driver = NULL;
2943        return ret;
2944}
2945
2946/**
2947 * s3c_hsotg_udc_stop - stop the udc
2948 * @gadget: The usb gadget state
2949 * @driver: The usb gadget driver
2950 *
2951 * Stop udc hw block and stay tunned for future transmissions
2952 */
2953static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2954                          struct usb_gadget_driver *driver)
2955{
2956        struct s3c_hsotg *hsotg = to_hsotg(gadget);
2957        unsigned long flags = 0;
2958        int ep;
2959
2960        if (!hsotg)
2961                return -ENODEV;
2962
2963        /* all endpoints should be shutdown */
2964        for (ep = 0; ep < hsotg->num_of_eps; ep++)
2965                s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2966
2967        spin_lock_irqsave(&hsotg->lock, flags);
2968
2969        s3c_hsotg_phy_disable(hsotg);
2970
2971        if (!driver)
2972                hsotg->driver = NULL;
2973
2974        hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2975
2976        spin_unlock_irqrestore(&hsotg->lock, flags);
2977
2978        regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2979
2980        return 0;
2981}
2982
2983/**
2984 * s3c_hsotg_gadget_getframe - read the frame number
2985 * @gadget: The usb gadget state
2986 *
2987 * Read the {micro} frame number
2988 */
2989static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2990{
2991        return s3c_hsotg_read_frameno(to_hsotg(gadget));
2992}
2993
2994/**
2995 * s3c_hsotg_pullup - connect/disconnect the USB PHY
2996 * @gadget: The usb gadget state
2997 * @is_on: Current state of the USB PHY
2998 *
2999 * Connect/Disconnect the USB PHY pullup
3000 */
3001static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3002{
3003        struct s3c_hsotg *hsotg = to_hsotg(gadget);
3004        unsigned long flags = 0;
3005
3006        dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3007
3008        spin_lock_irqsave(&hsotg->lock, flags);
3009        if (is_on) {
3010                s3c_hsotg_phy_enable(hsotg);
3011                s3c_hsotg_core_init(hsotg);
3012        } else {
3013                s3c_hsotg_disconnect(hsotg);
3014                s3c_hsotg_phy_disable(hsotg);
3015        }
3016
3017        hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3018        spin_unlock_irqrestore(&hsotg->lock, flags);
3019
3020        return 0;
3021}
3022
3023static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3024        .get_frame      = s3c_hsotg_gadget_getframe,
3025        .udc_start              = s3c_hsotg_udc_start,
3026        .udc_stop               = s3c_hsotg_udc_stop,
3027        .pullup                 = s3c_hsotg_pullup,
3028};
3029
3030/**
3031 * s3c_hsotg_initep - initialise a single endpoint
3032 * @hsotg: The device state.
3033 * @hs_ep: The endpoint to be initialised.
3034 * @epnum: The endpoint number
3035 *
3036 * Initialise the given endpoint (as part of the probe and device state
3037 * creation) to give to the gadget driver. Setup the endpoint name, any
3038 * direction information and other state that may be required.
3039 */
3040static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3041                                       struct s3c_hsotg_ep *hs_ep,
3042                                       int epnum)
3043{
3044        u32 ptxfifo;
3045        char *dir;
3046
3047        if (epnum == 0)
3048                dir = "";
3049        else if ((epnum % 2) == 0) {
3050                dir = "out";
3051        } else {
3052                dir = "in";
3053                hs_ep->dir_in = 1;
3054        }
3055
3056        hs_ep->index = epnum;
3057
3058        snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3059
3060        INIT_LIST_HEAD(&hs_ep->queue);
3061        INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3062
3063        /* add to the list of endpoints known by the gadget driver */
3064        if (epnum)
3065                list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3066
3067        hs_ep->parent = hsotg;
3068        hs_ep->ep.name = hs_ep->name;
3069        hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
3070        hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3071
3072        /*
3073         * Read the FIFO size for the Periodic TX FIFO, even if we're
3074         * an OUT endpoint, we may as well do this if in future the
3075         * code is changed to make each endpoint's direction changeable.
3076         */
3077
3078        ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
3079        hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3080
3081        /*
3082         * if we're using dma, we need to set the next-endpoint pointer
3083         * to be something valid.
3084         */
3085
3086        if (using_dma(hsotg)) {
3087                u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
3088                writel(next, hsotg->regs + DIEPCTL(epnum));
3089                writel(next, hsotg->regs + DOEPCTL(epnum));
3090        }
3091}
3092
3093/**
3094 * s3c_hsotg_hw_cfg - read HW configuration registers
3095 * @param: The device state
3096 *
3097 * Read the USB core HW configuration registers
3098 */
3099static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3100{
3101        u32 cfg2, cfg4;
3102        /* check hardware configuration */
3103
3104        cfg2 = readl(hsotg->regs + 0x48);
3105        hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3106
3107        dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3108
3109        cfg4 = readl(hsotg->regs + 0x50);
3110        hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3111
3112        dev_info(hsotg->dev, "%s fifos\n",
3113                 hsotg->dedicated_fifos ? "dedicated" : "shared");
3114}
3115
3116/**
3117 * s3c_hsotg_dump - dump state of the udc
3118 * @param: The device state
3119 */
3120static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3121{
3122#ifdef DEBUG
3123        struct device *dev = hsotg->dev;
3124        void __iomem *regs = hsotg->regs;
3125        u32 val;
3126        int idx;
3127
3128        dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3129                 readl(regs + DCFG), readl(regs + DCTL),
3130                 readl(regs + DIEPMSK));
3131
3132        dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3133                 readl(regs + GAHBCFG), readl(regs + 0x44));
3134
3135        dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3136                 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3137
3138        /* show periodic fifo settings */
3139
3140        for (idx = 1; idx <= 15; idx++) {
3141                val = readl(regs + DPTXFSIZn(idx));
3142                dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3143                         val >> DPTXFSIZn_DPTxFSize_SHIFT,
3144                         val & DPTXFSIZn_DPTxFStAddr_MASK);
3145        }
3146
3147        for (idx = 0; idx < 15; idx++) {
3148                dev_info(dev,
3149                         "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3150                         readl(regs + DIEPCTL(idx)),
3151                         readl(regs + DIEPTSIZ(idx)),
3152                         readl(regs + DIEPDMA(idx)));
3153
3154                val = readl(regs + DOEPCTL(idx));
3155                dev_info(dev,
3156                         "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3157                         idx, readl(regs + DOEPCTL(idx)),
3158                         readl(regs + DOEPTSIZ(idx)),
3159                         readl(regs + DOEPDMA(idx)));
3160
3161        }
3162
3163        dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3164                 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3165#endif
3166}
3167
3168/**
3169 * state_show - debugfs: show overall driver and device state.
3170 * @seq: The seq file to write to.
3171 * @v: Unused parameter.
3172 *
3173 * This debugfs entry shows the overall state of the hardware and
3174 * some general information about each of the endpoints available
3175 * to the system.
3176 */
3177static int state_show(struct seq_file *seq, void *v)
3178{
3179        struct s3c_hsotg *hsotg = seq->private;
3180        void __iomem *regs = hsotg->regs;
3181        int idx;
3182
3183        seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3184                 readl(regs + DCFG),
3185                 readl(regs + DCTL),
3186                 readl(regs + DSTS));
3187
3188        seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3189                   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3190
3191        seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3192                   readl(regs + GINTMSK),
3193                   readl(regs + GINTSTS));
3194
3195        seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3196                   readl(regs + DAINTMSK),
3197                   readl(regs + DAINT));
3198
3199        seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3200                   readl(regs + GNPTXSTS),
3201                   readl(regs + GRXSTSR));
3202
3203        seq_printf(seq, "\nEndpoint status:\n");
3204
3205        for (idx = 0; idx < 15; idx++) {
3206                u32 in, out;
3207
3208                in = readl(regs + DIEPCTL(idx));
3209                out = readl(regs + DOEPCTL(idx));
3210
3211                seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3212                           idx, in, out);
3213
3214                in = readl(regs + DIEPTSIZ(idx));
3215                out = readl(regs + DOEPTSIZ(idx));
3216
3217                seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3218                           in, out);
3219
3220                seq_printf(seq, "\n");
3221        }
3222
3223        return 0;
3224}
3225
3226static int state_open(struct inode *inode, struct file *file)
3227{
3228        return single_open(file, state_show, inode->i_private);
3229}
3230
3231static const struct file_operations state_fops = {
3232        .owner          = THIS_MODULE,
3233        .open           = state_open,
3234        .read           = seq_read,
3235        .llseek         = seq_lseek,
3236        .release        = single_release,
3237};
3238
3239/**
3240 * fifo_show - debugfs: show the fifo information
3241 * @seq: The seq_file to write data to.
3242 * @v: Unused parameter.
3243 *
3244 * Show the FIFO information for the overall fifo and all the
3245 * periodic transmission FIFOs.
3246 */
3247static int fifo_show(struct seq_file *seq, void *v)
3248{
3249        struct s3c_hsotg *hsotg = seq->private;
3250        void __iomem *regs = hsotg->regs;
3251        u32 val;
3252        int idx;
3253
3254        seq_printf(seq, "Non-periodic FIFOs:\n");
3255        seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3256
3257        val = readl(regs + GNPTXFSIZ);
3258        seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3259                   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
3260                   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3261
3262        seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3263
3264        for (idx = 1; idx <= 15; idx++) {
3265                val = readl(regs + DPTXFSIZn(idx));
3266
3267                seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3268                           val >> DPTXFSIZn_DPTxFSize_SHIFT,
3269                           val & DPTXFSIZn_DPTxFStAddr_MASK);
3270        }
3271
3272        return 0;
3273}
3274
3275static int fifo_open(struct inode *inode, struct file *file)
3276{
3277        return single_open(file, fifo_show, inode->i_private);
3278}
3279
3280static const struct file_operations fifo_fops = {
3281        .owner          = THIS_MODULE,
3282        .open           = fifo_open,
3283        .read           = seq_read,
3284        .llseek         = seq_lseek,
3285        .release        = single_release,
3286};
3287
3288
3289static const char *decode_direction(int is_in)
3290{
3291        return is_in ? "in" : "out";
3292}
3293
3294/**
3295 * ep_show - debugfs: show the state of an endpoint.
3296 * @seq: The seq_file to write data to.
3297 * @v: Unused parameter.
3298 *
3299 * This debugfs entry shows the state of the given endpoint (one is
3300 * registered for each available).
3301 */
3302static int ep_show(struct seq_file *seq, void *v)
3303{
3304        struct s3c_hsotg_ep *ep = seq->private;
3305        struct s3c_hsotg *hsotg = ep->parent;
3306        struct s3c_hsotg_req *req;
3307        void __iomem *regs = hsotg->regs;
3308        int index = ep->index;
3309        int show_limit = 15;
3310        unsigned long flags;
3311
3312        seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3313                   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3314
3315        /* first show the register state */
3316
3317        seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3318                   readl(regs + DIEPCTL(index)),
3319                   readl(regs + DOEPCTL(index)));
3320
3321        seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3322                   readl(regs + DIEPDMA(index)),
3323                   readl(regs + DOEPDMA(index)));
3324
3325        seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3326                   readl(regs + DIEPINT(index)),
3327                   readl(regs + DOEPINT(index)));
3328
3329        seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3330                   readl(regs + DIEPTSIZ(index)),
3331                   readl(regs + DOEPTSIZ(index)));
3332
3333        seq_printf(seq, "\n");
3334        seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3335        seq_printf(seq, "total_data=%ld\n", ep->total_data);
3336
3337        seq_printf(seq, "request list (%p,%p):\n",
3338                   ep->queue.next, ep->queue.prev);
3339
3340        spin_lock_irqsave(&hsotg->lock, flags);
3341
3342        list_for_each_entry(req, &ep->queue, queue) {
3343                if (--show_limit < 0) {
3344                        seq_printf(seq, "not showing more requests...\n");
3345                        break;
3346                }
3347
3348                seq_printf(seq, "%c req %p: %d bytes @%p, ",
3349                           req == ep->req ? '*' : ' ',
3350                           req, req->req.length, req->req.buf);
3351                seq_printf(seq, "%d done, res %d\n",
3352                           req->req.actual, req->req.status);
3353        }
3354
3355        spin_unlock_irqrestore(&hsotg->lock, flags);
3356
3357        return 0;
3358}
3359
3360static int ep_open(struct inode *inode, struct file *file)
3361{
3362        return single_open(file, ep_show, inode->i_private);
3363}
3364
3365static const struct file_operations ep_fops = {
3366        .owner          = THIS_MODULE,
3367        .open           = ep_open,
3368        .read           = seq_read,
3369        .llseek         = seq_lseek,
3370        .release        = single_release,
3371};
3372
3373/**
3374 * s3c_hsotg_create_debug - create debugfs directory and files
3375 * @hsotg: The driver state
3376 *
3377 * Create the debugfs files to allow the user to get information
3378 * about the state of the system. The directory name is created
3379 * with the same name as the device itself, in case we end up
3380 * with multiple blocks in future systems.
3381 */
3382static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3383{
3384        struct dentry *root;
3385        unsigned epidx;
3386
3387        root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3388        hsotg->debug_root = root;
3389        if (IS_ERR(root)) {
3390                dev_err(hsotg->dev, "cannot create debug root\n");
3391                return;
3392        }
3393
3394        /* create general state file */
3395
3396        hsotg->debug_file = debugfs_create_file("state", 0444, root,
3397                                                hsotg, &state_fops);
3398
3399        if (IS_ERR(hsotg->debug_file))
3400                dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3401
3402        hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3403                                                hsotg, &fifo_fops);
3404
3405        if (IS_ERR(hsotg->debug_fifo))
3406                dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3407
3408        /* create one file for each endpoint */
3409
3410        for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3411                struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3412
3413                ep->debugfs = debugfs_create_file(ep->name, 0444,
3414                                                  root, ep, &ep_fops);
3415
3416                if (IS_ERR(ep->debugfs))
3417                        dev_err(hsotg->dev, "failed to create %s debug file\n",
3418                                ep->name);
3419        }
3420}
3421
3422/**
3423 * s3c_hsotg_delete_debug - cleanup debugfs entries
3424 * @hsotg: The driver state
3425 *
3426 * Cleanup (remove) the debugfs files for use on module exit.
3427 */
3428static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3429{
3430        unsigned epidx;
3431
3432        for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3433                struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3434                debugfs_remove(ep->debugfs);
3435        }
3436
3437        debugfs_remove(hsotg->debug_file);
3438        debugfs_remove(hsotg->debug_fifo);
3439        debugfs_remove(hsotg->debug_root);
3440}
3441
3442/**
3443 * s3c_hsotg_probe - probe function for hsotg driver
3444 * @pdev: The platform information for the driver
3445 */
3446
3447static int s3c_hsotg_probe(struct platform_device *pdev)
3448{
3449        struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3450        struct usb_phy *phy;
3451        struct device *dev = &pdev->dev;
3452        struct s3c_hsotg_ep *eps;
3453        struct s3c_hsotg *hsotg;
3454        struct resource *res;
3455        int epnum;
3456        int ret;
3457        int i;
3458
3459        hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3460        if (!hsotg) {
3461                dev_err(dev, "cannot get memory\n");
3462                return -ENOMEM;
3463        }
3464
3465        phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3466        if (IS_ERR(phy)) {
3467                /* Fallback for pdata */
3468                plat = dev_get_platdata(&pdev->dev);
3469                if (!plat) {
3470                        dev_err(&pdev->dev, "no platform data or transceiver defined\n");
3471                        return -EPROBE_DEFER;
3472                } else {
3473                        hsotg->plat = plat;
3474                }
3475        } else {
3476                hsotg->phy = phy;
3477        }
3478
3479        hsotg->dev = dev;
3480
3481        hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3482        if (IS_ERR(hsotg->clk)) {
3483                dev_err(dev, "cannot get otg clock\n");
3484                return PTR_ERR(hsotg->clk);
3485        }
3486
3487        platform_set_drvdata(pdev, hsotg);
3488
3489        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3490
3491        hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3492        if (IS_ERR(hsotg->regs)) {
3493                ret = PTR_ERR(hsotg->regs);
3494                goto err_clk;
3495        }
3496
3497        ret = platform_get_irq(pdev, 0);
3498        if (ret < 0) {
3499                dev_err(dev, "cannot find IRQ\n");
3500                goto err_clk;
3501        }
3502
3503        spin_lock_init(&hsotg->lock);
3504
3505        hsotg->irq = ret;
3506
3507        ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3508                                dev_name(dev), hsotg);
3509        if (ret < 0) {
3510                dev_err(dev, "cannot claim IRQ\n");
3511                goto err_clk;
3512        }
3513
3514        dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3515
3516        hsotg->gadget.max_speed = USB_SPEED_HIGH;
3517        hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3518        hsotg->gadget.name = dev_name(dev);
3519
3520        /* reset the system */
3521
3522        clk_prepare_enable(hsotg->clk);
3523
3524        /* regulators */
3525
3526        for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3527                hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3528
3529        ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3530                                 hsotg->supplies);
3531        if (ret) {
3532                dev_err(dev, "failed to request supplies: %d\n", ret);
3533                goto err_clk;
3534        }
3535
3536        ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3537                                    hsotg->supplies);
3538
3539        if (ret) {
3540                dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3541                goto err_supplies;
3542        }
3543
3544        /* usb phy enable */
3545        s3c_hsotg_phy_enable(hsotg);
3546
3547        s3c_hsotg_corereset(hsotg);
3548        s3c_hsotg_init(hsotg);
3549        s3c_hsotg_hw_cfg(hsotg);
3550
3551        /* hsotg->num_of_eps holds number of EPs other than ep0 */
3552
3553        if (hsotg->num_of_eps == 0) {
3554                dev_err(dev, "wrong number of EPs (zero)\n");
3555                ret = -EINVAL;
3556                goto err_supplies;
3557        }
3558
3559        eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3560                      GFP_KERNEL);
3561        if (!eps) {
3562                dev_err(dev, "cannot get memory\n");
3563                ret = -ENOMEM;
3564                goto err_supplies;
3565        }
3566
3567        hsotg->eps = eps;
3568
3569        /* setup endpoint information */
3570
3571        INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3572        hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3573
3574        /* allocate EP0 request */
3575
3576        hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3577                                                     GFP_KERNEL);
3578        if (!hsotg->ctrl_req) {
3579                dev_err(dev, "failed to allocate ctrl req\n");
3580                ret = -ENOMEM;
3581                goto err_ep_mem;
3582        }
3583
3584        /* initialise the endpoints now the core has been initialised */
3585        for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3586                s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3587
3588        /* disable power and clock */
3589
3590        ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3591                                    hsotg->supplies);
3592        if (ret) {
3593                dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3594                goto err_ep_mem;
3595        }
3596
3597        s3c_hsotg_phy_disable(hsotg);
3598
3599        ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3600        if (ret)
3601                goto err_ep_mem;
3602
3603        s3c_hsotg_create_debug(hsotg);
3604
3605        s3c_hsotg_dump(hsotg);
3606
3607        return 0;
3608
3609err_ep_mem:
3610        kfree(eps);
3611err_supplies:
3612        s3c_hsotg_phy_disable(hsotg);
3613err_clk:
3614        clk_disable_unprepare(hsotg->clk);
3615
3616        return ret;
3617}
3618
3619/**
3620 * s3c_hsotg_remove - remove function for hsotg driver
3621 * @pdev: The platform information for the driver
3622 */
3623static int s3c_hsotg_remove(struct platform_device *pdev)
3624{
3625        struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3626
3627        usb_del_gadget_udc(&hsotg->gadget);
3628
3629        s3c_hsotg_delete_debug(hsotg);
3630
3631        if (hsotg->driver) {
3632                /* should have been done already by driver model core */
3633                usb_gadget_unregister_driver(hsotg->driver);
3634        }
3635
3636        s3c_hsotg_phy_disable(hsotg);
3637        clk_disable_unprepare(hsotg->clk);
3638
3639        return 0;
3640}
3641
3642#if 1
3643#define s3c_hsotg_suspend NULL
3644#define s3c_hsotg_resume NULL
3645#endif
3646
3647#ifdef CONFIG_OF
3648static const struct of_device_id s3c_hsotg_of_ids[] = {
3649        { .compatible = "samsung,s3c6400-hsotg", },
3650        { /* sentinel */ }
3651};
3652MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3653#endif
3654
3655static struct platform_driver s3c_hsotg_driver = {
3656        .driver         = {
3657                .name   = "s3c-hsotg",
3658                .owner  = THIS_MODULE,
3659                .of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3660        },
3661        .probe          = s3c_hsotg_probe,
3662        .remove         = s3c_hsotg_remove,
3663        .suspend        = s3c_hsotg_suspend,
3664        .resume         = s3c_hsotg_resume,
3665};
3666
3667module_platform_driver(s3c_hsotg_driver);
3668
3669MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3670MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3671MODULE_LICENSE("GPL");
3672MODULE_ALIAS("platform:s3c-hsotg");
3673