linux/fs/btrfs/compression.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "compat.h"
  36#include "ctree.h"
  37#include "disk-io.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "ordered-data.h"
  42#include "compression.h"
  43#include "extent_io.h"
  44#include "extent_map.h"
  45
  46struct compressed_bio {
  47        /* number of bios pending for this compressed extent */
  48        atomic_t pending_bios;
  49
  50        /* the pages with the compressed data on them */
  51        struct page **compressed_pages;
  52
  53        /* inode that owns this data */
  54        struct inode *inode;
  55
  56        /* starting offset in the inode for our pages */
  57        u64 start;
  58
  59        /* number of bytes in the inode we're working on */
  60        unsigned long len;
  61
  62        /* number of bytes on disk */
  63        unsigned long compressed_len;
  64
  65        /* the compression algorithm for this bio */
  66        int compress_type;
  67
  68        /* number of compressed pages in the array */
  69        unsigned long nr_pages;
  70
  71        /* IO errors */
  72        int errors;
  73        int mirror_num;
  74
  75        /* for reads, this is the bio we are copying the data into */
  76        struct bio *orig_bio;
  77
  78        /*
  79         * the start of a variable length array of checksums only
  80         * used by reads
  81         */
  82        u32 sums;
  83};
  84
  85static int btrfs_decompress_biovec(int type, struct page **pages_in,
  86                                   u64 disk_start, struct bio_vec *bvec,
  87                                   int vcnt, size_t srclen);
  88
  89static inline int compressed_bio_size(struct btrfs_root *root,
  90                                      unsigned long disk_size)
  91{
  92        u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  93
  94        return sizeof(struct compressed_bio) +
  95                ((disk_size + root->sectorsize - 1) / root->sectorsize) *
  96                csum_size;
  97}
  98
  99static struct bio *compressed_bio_alloc(struct block_device *bdev,
 100                                        u64 first_byte, gfp_t gfp_flags)
 101{
 102        int nr_vecs;
 103
 104        nr_vecs = bio_get_nr_vecs(bdev);
 105        return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 106}
 107
 108static int check_compressed_csum(struct inode *inode,
 109                                 struct compressed_bio *cb,
 110                                 u64 disk_start)
 111{
 112        int ret;
 113        struct page *page;
 114        unsigned long i;
 115        char *kaddr;
 116        u32 csum;
 117        u32 *cb_sum = &cb->sums;
 118
 119        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 120                return 0;
 121
 122        for (i = 0; i < cb->nr_pages; i++) {
 123                page = cb->compressed_pages[i];
 124                csum = ~(u32)0;
 125
 126                kaddr = kmap_atomic(page);
 127                csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
 128                btrfs_csum_final(csum, (char *)&csum);
 129                kunmap_atomic(kaddr);
 130
 131                if (csum != *cb_sum) {
 132                        printk(KERN_INFO "btrfs csum failed ino %llu "
 133                               "extent %llu csum %u "
 134                               "wanted %u mirror %d\n",
 135                               btrfs_ino(inode), disk_start, csum, *cb_sum,
 136                               cb->mirror_num);
 137                        ret = -EIO;
 138                        goto fail;
 139                }
 140                cb_sum++;
 141
 142        }
 143        ret = 0;
 144fail:
 145        return ret;
 146}
 147
 148/* when we finish reading compressed pages from the disk, we
 149 * decompress them and then run the bio end_io routines on the
 150 * decompressed pages (in the inode address space).
 151 *
 152 * This allows the checksumming and other IO error handling routines
 153 * to work normally
 154 *
 155 * The compressed pages are freed here, and it must be run
 156 * in process context
 157 */
 158static void end_compressed_bio_read(struct bio *bio, int err)
 159{
 160        struct compressed_bio *cb = bio->bi_private;
 161        struct inode *inode;
 162        struct page *page;
 163        unsigned long index;
 164        int ret;
 165
 166        if (err)
 167                cb->errors = 1;
 168
 169        /* if there are more bios still pending for this compressed
 170         * extent, just exit
 171         */
 172        if (!atomic_dec_and_test(&cb->pending_bios))
 173                goto out;
 174
 175        inode = cb->inode;
 176        ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
 177        if (ret)
 178                goto csum_failed;
 179
 180        /* ok, we're the last bio for this extent, lets start
 181         * the decompression.
 182         */
 183        ret = btrfs_decompress_biovec(cb->compress_type,
 184                                      cb->compressed_pages,
 185                                      cb->start,
 186                                      cb->orig_bio->bi_io_vec,
 187                                      cb->orig_bio->bi_vcnt,
 188                                      cb->compressed_len);
 189csum_failed:
 190        if (ret)
 191                cb->errors = 1;
 192
 193        /* release the compressed pages */
 194        index = 0;
 195        for (index = 0; index < cb->nr_pages; index++) {
 196                page = cb->compressed_pages[index];
 197                page->mapping = NULL;
 198                page_cache_release(page);
 199        }
 200
 201        /* do io completion on the original bio */
 202        if (cb->errors) {
 203                bio_io_error(cb->orig_bio);
 204        } else {
 205                int bio_index = 0;
 206                struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
 207
 208                /*
 209                 * we have verified the checksum already, set page
 210                 * checked so the end_io handlers know about it
 211                 */
 212                while (bio_index < cb->orig_bio->bi_vcnt) {
 213                        SetPageChecked(bvec->bv_page);
 214                        bvec++;
 215                        bio_index++;
 216                }
 217                bio_endio(cb->orig_bio, 0);
 218        }
 219
 220        /* finally free the cb struct */
 221        kfree(cb->compressed_pages);
 222        kfree(cb);
 223out:
 224        bio_put(bio);
 225}
 226
 227/*
 228 * Clear the writeback bits on all of the file
 229 * pages for a compressed write
 230 */
 231static noinline void end_compressed_writeback(struct inode *inode, u64 start,
 232                                              unsigned long ram_size)
 233{
 234        unsigned long index = start >> PAGE_CACHE_SHIFT;
 235        unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
 236        struct page *pages[16];
 237        unsigned long nr_pages = end_index - index + 1;
 238        int i;
 239        int ret;
 240
 241        while (nr_pages > 0) {
 242                ret = find_get_pages_contig(inode->i_mapping, index,
 243                                     min_t(unsigned long,
 244                                     nr_pages, ARRAY_SIZE(pages)), pages);
 245                if (ret == 0) {
 246                        nr_pages -= 1;
 247                        index += 1;
 248                        continue;
 249                }
 250                for (i = 0; i < ret; i++) {
 251                        end_page_writeback(pages[i]);
 252                        page_cache_release(pages[i]);
 253                }
 254                nr_pages -= ret;
 255                index += ret;
 256        }
 257        /* the inode may be gone now */
 258}
 259
 260/*
 261 * do the cleanup once all the compressed pages hit the disk.
 262 * This will clear writeback on the file pages and free the compressed
 263 * pages.
 264 *
 265 * This also calls the writeback end hooks for the file pages so that
 266 * metadata and checksums can be updated in the file.
 267 */
 268static void end_compressed_bio_write(struct bio *bio, int err)
 269{
 270        struct extent_io_tree *tree;
 271        struct compressed_bio *cb = bio->bi_private;
 272        struct inode *inode;
 273        struct page *page;
 274        unsigned long index;
 275
 276        if (err)
 277                cb->errors = 1;
 278
 279        /* if there are more bios still pending for this compressed
 280         * extent, just exit
 281         */
 282        if (!atomic_dec_and_test(&cb->pending_bios))
 283                goto out;
 284
 285        /* ok, we're the last bio for this extent, step one is to
 286         * call back into the FS and do all the end_io operations
 287         */
 288        inode = cb->inode;
 289        tree = &BTRFS_I(inode)->io_tree;
 290        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 291        tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 292                                         cb->start,
 293                                         cb->start + cb->len - 1,
 294                                         NULL, 1);
 295        cb->compressed_pages[0]->mapping = NULL;
 296
 297        end_compressed_writeback(inode, cb->start, cb->len);
 298        /* note, our inode could be gone now */
 299
 300        /*
 301         * release the compressed pages, these came from alloc_page and
 302         * are not attached to the inode at all
 303         */
 304        index = 0;
 305        for (index = 0; index < cb->nr_pages; index++) {
 306                page = cb->compressed_pages[index];
 307                page->mapping = NULL;
 308                page_cache_release(page);
 309        }
 310
 311        /* finally free the cb struct */
 312        kfree(cb->compressed_pages);
 313        kfree(cb);
 314out:
 315        bio_put(bio);
 316}
 317
 318/*
 319 * worker function to build and submit bios for previously compressed pages.
 320 * The corresponding pages in the inode should be marked for writeback
 321 * and the compressed pages should have a reference on them for dropping
 322 * when the IO is complete.
 323 *
 324 * This also checksums the file bytes and gets things ready for
 325 * the end io hooks.
 326 */
 327int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 328                                 unsigned long len, u64 disk_start,
 329                                 unsigned long compressed_len,
 330                                 struct page **compressed_pages,
 331                                 unsigned long nr_pages)
 332{
 333        struct bio *bio = NULL;
 334        struct btrfs_root *root = BTRFS_I(inode)->root;
 335        struct compressed_bio *cb;
 336        unsigned long bytes_left;
 337        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 338        int pg_index = 0;
 339        struct page *page;
 340        u64 first_byte = disk_start;
 341        struct block_device *bdev;
 342        int ret;
 343        int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 344
 345        WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 346        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 347        if (!cb)
 348                return -ENOMEM;
 349        atomic_set(&cb->pending_bios, 0);
 350        cb->errors = 0;
 351        cb->inode = inode;
 352        cb->start = start;
 353        cb->len = len;
 354        cb->mirror_num = 0;
 355        cb->compressed_pages = compressed_pages;
 356        cb->compressed_len = compressed_len;
 357        cb->orig_bio = NULL;
 358        cb->nr_pages = nr_pages;
 359
 360        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 361
 362        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 363        if(!bio) {
 364                kfree(cb);
 365                return -ENOMEM;
 366        }
 367        bio->bi_private = cb;
 368        bio->bi_end_io = end_compressed_bio_write;
 369        atomic_inc(&cb->pending_bios);
 370
 371        /* create and submit bios for the compressed pages */
 372        bytes_left = compressed_len;
 373        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 374                page = compressed_pages[pg_index];
 375                page->mapping = inode->i_mapping;
 376                if (bio->bi_size)
 377                        ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
 378                                                           PAGE_CACHE_SIZE,
 379                                                           bio, 0);
 380                else
 381                        ret = 0;
 382
 383                page->mapping = NULL;
 384                if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 385                    PAGE_CACHE_SIZE) {
 386                        bio_get(bio);
 387
 388                        /*
 389                         * inc the count before we submit the bio so
 390                         * we know the end IO handler won't happen before
 391                         * we inc the count.  Otherwise, the cb might get
 392                         * freed before we're done setting it up
 393                         */
 394                        atomic_inc(&cb->pending_bios);
 395                        ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 396                        BUG_ON(ret); /* -ENOMEM */
 397
 398                        if (!skip_sum) {
 399                                ret = btrfs_csum_one_bio(root, inode, bio,
 400                                                         start, 1);
 401                                BUG_ON(ret); /* -ENOMEM */
 402                        }
 403
 404                        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 405                        BUG_ON(ret); /* -ENOMEM */
 406
 407                        bio_put(bio);
 408
 409                        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 410                        BUG_ON(!bio);
 411                        bio->bi_private = cb;
 412                        bio->bi_end_io = end_compressed_bio_write;
 413                        bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 414                }
 415                if (bytes_left < PAGE_CACHE_SIZE) {
 416                        printk("bytes left %lu compress len %lu nr %lu\n",
 417                               bytes_left, cb->compressed_len, cb->nr_pages);
 418                }
 419                bytes_left -= PAGE_CACHE_SIZE;
 420                first_byte += PAGE_CACHE_SIZE;
 421                cond_resched();
 422        }
 423        bio_get(bio);
 424
 425        ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 426        BUG_ON(ret); /* -ENOMEM */
 427
 428        if (!skip_sum) {
 429                ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 430                BUG_ON(ret); /* -ENOMEM */
 431        }
 432
 433        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 434        BUG_ON(ret); /* -ENOMEM */
 435
 436        bio_put(bio);
 437        return 0;
 438}
 439
 440static noinline int add_ra_bio_pages(struct inode *inode,
 441                                     u64 compressed_end,
 442                                     struct compressed_bio *cb)
 443{
 444        unsigned long end_index;
 445        unsigned long pg_index;
 446        u64 last_offset;
 447        u64 isize = i_size_read(inode);
 448        int ret;
 449        struct page *page;
 450        unsigned long nr_pages = 0;
 451        struct extent_map *em;
 452        struct address_space *mapping = inode->i_mapping;
 453        struct extent_map_tree *em_tree;
 454        struct extent_io_tree *tree;
 455        u64 end;
 456        int misses = 0;
 457
 458        page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 459        last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 460        em_tree = &BTRFS_I(inode)->extent_tree;
 461        tree = &BTRFS_I(inode)->io_tree;
 462
 463        if (isize == 0)
 464                return 0;
 465
 466        end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 467
 468        while (last_offset < compressed_end) {
 469                pg_index = last_offset >> PAGE_CACHE_SHIFT;
 470
 471                if (pg_index > end_index)
 472                        break;
 473
 474                rcu_read_lock();
 475                page = radix_tree_lookup(&mapping->page_tree, pg_index);
 476                rcu_read_unlock();
 477                if (page) {
 478                        misses++;
 479                        if (misses > 4)
 480                                break;
 481                        goto next;
 482                }
 483
 484                page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 485                                                                ~__GFP_FS);
 486                if (!page)
 487                        break;
 488
 489                if (add_to_page_cache_lru(page, mapping, pg_index,
 490                                                                GFP_NOFS)) {
 491                        page_cache_release(page);
 492                        goto next;
 493                }
 494
 495                end = last_offset + PAGE_CACHE_SIZE - 1;
 496                /*
 497                 * at this point, we have a locked page in the page cache
 498                 * for these bytes in the file.  But, we have to make
 499                 * sure they map to this compressed extent on disk.
 500                 */
 501                set_page_extent_mapped(page);
 502                lock_extent(tree, last_offset, end);
 503                read_lock(&em_tree->lock);
 504                em = lookup_extent_mapping(em_tree, last_offset,
 505                                           PAGE_CACHE_SIZE);
 506                read_unlock(&em_tree->lock);
 507
 508                if (!em || last_offset < em->start ||
 509                    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 510                    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
 511                        free_extent_map(em);
 512                        unlock_extent(tree, last_offset, end);
 513                        unlock_page(page);
 514                        page_cache_release(page);
 515                        break;
 516                }
 517                free_extent_map(em);
 518
 519                if (page->index == end_index) {
 520                        char *userpage;
 521                        size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 522
 523                        if (zero_offset) {
 524                                int zeros;
 525                                zeros = PAGE_CACHE_SIZE - zero_offset;
 526                                userpage = kmap_atomic(page);
 527                                memset(userpage + zero_offset, 0, zeros);
 528                                flush_dcache_page(page);
 529                                kunmap_atomic(userpage);
 530                        }
 531                }
 532
 533                ret = bio_add_page(cb->orig_bio, page,
 534                                   PAGE_CACHE_SIZE, 0);
 535
 536                if (ret == PAGE_CACHE_SIZE) {
 537                        nr_pages++;
 538                        page_cache_release(page);
 539                } else {
 540                        unlock_extent(tree, last_offset, end);
 541                        unlock_page(page);
 542                        page_cache_release(page);
 543                        break;
 544                }
 545next:
 546                last_offset += PAGE_CACHE_SIZE;
 547        }
 548        return 0;
 549}
 550
 551/*
 552 * for a compressed read, the bio we get passed has all the inode pages
 553 * in it.  We don't actually do IO on those pages but allocate new ones
 554 * to hold the compressed pages on disk.
 555 *
 556 * bio->bi_sector points to the compressed extent on disk
 557 * bio->bi_io_vec points to all of the inode pages
 558 * bio->bi_vcnt is a count of pages
 559 *
 560 * After the compressed pages are read, we copy the bytes into the
 561 * bio we were passed and then call the bio end_io calls
 562 */
 563int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 564                                 int mirror_num, unsigned long bio_flags)
 565{
 566        struct extent_io_tree *tree;
 567        struct extent_map_tree *em_tree;
 568        struct compressed_bio *cb;
 569        struct btrfs_root *root = BTRFS_I(inode)->root;
 570        unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 571        unsigned long compressed_len;
 572        unsigned long nr_pages;
 573        unsigned long pg_index;
 574        struct page *page;
 575        struct block_device *bdev;
 576        struct bio *comp_bio;
 577        u64 cur_disk_byte = (u64)bio->bi_sector << 9;
 578        u64 em_len;
 579        u64 em_start;
 580        struct extent_map *em;
 581        int ret = -ENOMEM;
 582        int faili = 0;
 583        u32 *sums;
 584
 585        tree = &BTRFS_I(inode)->io_tree;
 586        em_tree = &BTRFS_I(inode)->extent_tree;
 587
 588        /* we need the actual starting offset of this extent in the file */
 589        read_lock(&em_tree->lock);
 590        em = lookup_extent_mapping(em_tree,
 591                                   page_offset(bio->bi_io_vec->bv_page),
 592                                   PAGE_CACHE_SIZE);
 593        read_unlock(&em_tree->lock);
 594        if (!em)
 595                return -EIO;
 596
 597        compressed_len = em->block_len;
 598        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 599        if (!cb)
 600                goto out;
 601
 602        atomic_set(&cb->pending_bios, 0);
 603        cb->errors = 0;
 604        cb->inode = inode;
 605        cb->mirror_num = mirror_num;
 606        sums = &cb->sums;
 607
 608        cb->start = em->orig_start;
 609        em_len = em->len;
 610        em_start = em->start;
 611
 612        free_extent_map(em);
 613        em = NULL;
 614
 615        cb->len = uncompressed_len;
 616        cb->compressed_len = compressed_len;
 617        cb->compress_type = extent_compress_type(bio_flags);
 618        cb->orig_bio = bio;
 619
 620        nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
 621                                 PAGE_CACHE_SIZE;
 622        cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 623                                       GFP_NOFS);
 624        if (!cb->compressed_pages)
 625                goto fail1;
 626
 627        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 628
 629        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 630                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 631                                                              __GFP_HIGHMEM);
 632                if (!cb->compressed_pages[pg_index]) {
 633                        faili = pg_index - 1;
 634                        ret = -ENOMEM;
 635                        goto fail2;
 636                }
 637        }
 638        faili = nr_pages - 1;
 639        cb->nr_pages = nr_pages;
 640
 641        /* In the parent-locked case, we only locked the range we are
 642         * interested in.  In all other cases, we can opportunistically
 643         * cache decompressed data that goes beyond the requested range. */
 644        if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
 645                add_ra_bio_pages(inode, em_start + em_len, cb);
 646
 647        /* include any pages we added in add_ra-bio_pages */
 648        uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 649        cb->len = uncompressed_len;
 650
 651        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 652        if (!comp_bio)
 653                goto fail2;
 654        comp_bio->bi_private = cb;
 655        comp_bio->bi_end_io = end_compressed_bio_read;
 656        atomic_inc(&cb->pending_bios);
 657
 658        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 659                page = cb->compressed_pages[pg_index];
 660                page->mapping = inode->i_mapping;
 661                page->index = em_start >> PAGE_CACHE_SHIFT;
 662
 663                if (comp_bio->bi_size)
 664                        ret = tree->ops->merge_bio_hook(READ, page, 0,
 665                                                        PAGE_CACHE_SIZE,
 666                                                        comp_bio, 0);
 667                else
 668                        ret = 0;
 669
 670                page->mapping = NULL;
 671                if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 672                    PAGE_CACHE_SIZE) {
 673                        bio_get(comp_bio);
 674
 675                        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 676                        BUG_ON(ret); /* -ENOMEM */
 677
 678                        /*
 679                         * inc the count before we submit the bio so
 680                         * we know the end IO handler won't happen before
 681                         * we inc the count.  Otherwise, the cb might get
 682                         * freed before we're done setting it up
 683                         */
 684                        atomic_inc(&cb->pending_bios);
 685
 686                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 687                                ret = btrfs_lookup_bio_sums(root, inode,
 688                                                        comp_bio, sums);
 689                                BUG_ON(ret); /* -ENOMEM */
 690                        }
 691                        sums += (comp_bio->bi_size + root->sectorsize - 1) /
 692                                root->sectorsize;
 693
 694                        ret = btrfs_map_bio(root, READ, comp_bio,
 695                                            mirror_num, 0);
 696                        if (ret)
 697                                bio_endio(comp_bio, ret);
 698
 699                        bio_put(comp_bio);
 700
 701                        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 702                                                        GFP_NOFS);
 703                        BUG_ON(!comp_bio);
 704                        comp_bio->bi_private = cb;
 705                        comp_bio->bi_end_io = end_compressed_bio_read;
 706
 707                        bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 708                }
 709                cur_disk_byte += PAGE_CACHE_SIZE;
 710        }
 711        bio_get(comp_bio);
 712
 713        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 714        BUG_ON(ret); /* -ENOMEM */
 715
 716        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 717                ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 718                BUG_ON(ret); /* -ENOMEM */
 719        }
 720
 721        ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 722        if (ret)
 723                bio_endio(comp_bio, ret);
 724
 725        bio_put(comp_bio);
 726        return 0;
 727
 728fail2:
 729        while (faili >= 0) {
 730                __free_page(cb->compressed_pages[faili]);
 731                faili--;
 732        }
 733
 734        kfree(cb->compressed_pages);
 735fail1:
 736        kfree(cb);
 737out:
 738        free_extent_map(em);
 739        return ret;
 740}
 741
 742static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 743static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 744static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 745static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 746static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 747
 748static struct btrfs_compress_op *btrfs_compress_op[] = {
 749        &btrfs_zlib_compress,
 750        &btrfs_lzo_compress,
 751};
 752
 753void __init btrfs_init_compress(void)
 754{
 755        int i;
 756
 757        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 758                INIT_LIST_HEAD(&comp_idle_workspace[i]);
 759                spin_lock_init(&comp_workspace_lock[i]);
 760                atomic_set(&comp_alloc_workspace[i], 0);
 761                init_waitqueue_head(&comp_workspace_wait[i]);
 762        }
 763}
 764
 765/*
 766 * this finds an available workspace or allocates a new one
 767 * ERR_PTR is returned if things go bad.
 768 */
 769static struct list_head *find_workspace(int type)
 770{
 771        struct list_head *workspace;
 772        int cpus = num_online_cpus();
 773        int idx = type - 1;
 774
 775        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 776        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 777        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 778        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 779        int *num_workspace                      = &comp_num_workspace[idx];
 780again:
 781        spin_lock(workspace_lock);
 782        if (!list_empty(idle_workspace)) {
 783                workspace = idle_workspace->next;
 784                list_del(workspace);
 785                (*num_workspace)--;
 786                spin_unlock(workspace_lock);
 787                return workspace;
 788
 789        }
 790        if (atomic_read(alloc_workspace) > cpus) {
 791                DEFINE_WAIT(wait);
 792
 793                spin_unlock(workspace_lock);
 794                prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 795                if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 796                        schedule();
 797                finish_wait(workspace_wait, &wait);
 798                goto again;
 799        }
 800        atomic_inc(alloc_workspace);
 801        spin_unlock(workspace_lock);
 802
 803        workspace = btrfs_compress_op[idx]->alloc_workspace();
 804        if (IS_ERR(workspace)) {
 805                atomic_dec(alloc_workspace);
 806                wake_up(workspace_wait);
 807        }
 808        return workspace;
 809}
 810
 811/*
 812 * put a workspace struct back on the list or free it if we have enough
 813 * idle ones sitting around
 814 */
 815static void free_workspace(int type, struct list_head *workspace)
 816{
 817        int idx = type - 1;
 818        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 819        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 820        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 821        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 822        int *num_workspace                      = &comp_num_workspace[idx];
 823
 824        spin_lock(workspace_lock);
 825        if (*num_workspace < num_online_cpus()) {
 826                list_add_tail(workspace, idle_workspace);
 827                (*num_workspace)++;
 828                spin_unlock(workspace_lock);
 829                goto wake;
 830        }
 831        spin_unlock(workspace_lock);
 832
 833        btrfs_compress_op[idx]->free_workspace(workspace);
 834        atomic_dec(alloc_workspace);
 835wake:
 836        smp_mb();
 837        if (waitqueue_active(workspace_wait))
 838                wake_up(workspace_wait);
 839}
 840
 841/*
 842 * cleanup function for module exit
 843 */
 844static void free_workspaces(void)
 845{
 846        struct list_head *workspace;
 847        int i;
 848
 849        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 850                while (!list_empty(&comp_idle_workspace[i])) {
 851                        workspace = comp_idle_workspace[i].next;
 852                        list_del(workspace);
 853                        btrfs_compress_op[i]->free_workspace(workspace);
 854                        atomic_dec(&comp_alloc_workspace[i]);
 855                }
 856        }
 857}
 858
 859/*
 860 * given an address space and start/len, compress the bytes.
 861 *
 862 * pages are allocated to hold the compressed result and stored
 863 * in 'pages'
 864 *
 865 * out_pages is used to return the number of pages allocated.  There
 866 * may be pages allocated even if we return an error
 867 *
 868 * total_in is used to return the number of bytes actually read.  It
 869 * may be smaller then len if we had to exit early because we
 870 * ran out of room in the pages array or because we cross the
 871 * max_out threshold.
 872 *
 873 * total_out is used to return the total number of compressed bytes
 874 *
 875 * max_out tells us the max number of bytes that we're allowed to
 876 * stuff into pages
 877 */
 878int btrfs_compress_pages(int type, struct address_space *mapping,
 879                         u64 start, unsigned long len,
 880                         struct page **pages,
 881                         unsigned long nr_dest_pages,
 882                         unsigned long *out_pages,
 883                         unsigned long *total_in,
 884                         unsigned long *total_out,
 885                         unsigned long max_out)
 886{
 887        struct list_head *workspace;
 888        int ret;
 889
 890        workspace = find_workspace(type);
 891        if (IS_ERR(workspace))
 892                return -1;
 893
 894        ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 895                                                      start, len, pages,
 896                                                      nr_dest_pages, out_pages,
 897                                                      total_in, total_out,
 898                                                      max_out);
 899        free_workspace(type, workspace);
 900        return ret;
 901}
 902
 903/*
 904 * pages_in is an array of pages with compressed data.
 905 *
 906 * disk_start is the starting logical offset of this array in the file
 907 *
 908 * bvec is a bio_vec of pages from the file that we want to decompress into
 909 *
 910 * vcnt is the count of pages in the biovec
 911 *
 912 * srclen is the number of bytes in pages_in
 913 *
 914 * The basic idea is that we have a bio that was created by readpages.
 915 * The pages in the bio are for the uncompressed data, and they may not
 916 * be contiguous.  They all correspond to the range of bytes covered by
 917 * the compressed extent.
 918 */
 919static int btrfs_decompress_biovec(int type, struct page **pages_in,
 920                                   u64 disk_start, struct bio_vec *bvec,
 921                                   int vcnt, size_t srclen)
 922{
 923        struct list_head *workspace;
 924        int ret;
 925
 926        workspace = find_workspace(type);
 927        if (IS_ERR(workspace))
 928                return -ENOMEM;
 929
 930        ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 931                                                         disk_start,
 932                                                         bvec, vcnt, srclen);
 933        free_workspace(type, workspace);
 934        return ret;
 935}
 936
 937/*
 938 * a less complex decompression routine.  Our compressed data fits in a
 939 * single page, and we want to read a single page out of it.
 940 * start_byte tells us the offset into the compressed data we're interested in
 941 */
 942int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 943                     unsigned long start_byte, size_t srclen, size_t destlen)
 944{
 945        struct list_head *workspace;
 946        int ret;
 947
 948        workspace = find_workspace(type);
 949        if (IS_ERR(workspace))
 950                return -ENOMEM;
 951
 952        ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 953                                                  dest_page, start_byte,
 954                                                  srclen, destlen);
 955
 956        free_workspace(type, workspace);
 957        return ret;
 958}
 959
 960void btrfs_exit_compress(void)
 961{
 962        free_workspaces();
 963}
 964
 965/*
 966 * Copy uncompressed data from working buffer to pages.
 967 *
 968 * buf_start is the byte offset we're of the start of our workspace buffer.
 969 *
 970 * total_out is the last byte of the buffer
 971 */
 972int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 973                              unsigned long total_out, u64 disk_start,
 974                              struct bio_vec *bvec, int vcnt,
 975                              unsigned long *pg_index,
 976                              unsigned long *pg_offset)
 977{
 978        unsigned long buf_offset;
 979        unsigned long current_buf_start;
 980        unsigned long start_byte;
 981        unsigned long working_bytes = total_out - buf_start;
 982        unsigned long bytes;
 983        char *kaddr;
 984        struct page *page_out = bvec[*pg_index].bv_page;
 985
 986        /*
 987         * start byte is the first byte of the page we're currently
 988         * copying into relative to the start of the compressed data.
 989         */
 990        start_byte = page_offset(page_out) - disk_start;
 991
 992        /* we haven't yet hit data corresponding to this page */
 993        if (total_out <= start_byte)
 994                return 1;
 995
 996        /*
 997         * the start of the data we care about is offset into
 998         * the middle of our working buffer
 999         */
1000        if (total_out > start_byte && buf_start < start_byte) {
1001                buf_offset = start_byte - buf_start;
1002                working_bytes -= buf_offset;
1003        } else {
1004                buf_offset = 0;
1005        }
1006        current_buf_start = buf_start;
1007
1008        /* copy bytes from the working buffer into the pages */
1009        while (working_bytes > 0) {
1010                bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1011                            PAGE_CACHE_SIZE - buf_offset);
1012                bytes = min(bytes, working_bytes);
1013                kaddr = kmap_atomic(page_out);
1014                memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1015                kunmap_atomic(kaddr);
1016                flush_dcache_page(page_out);
1017
1018                *pg_offset += bytes;
1019                buf_offset += bytes;
1020                working_bytes -= bytes;
1021                current_buf_start += bytes;
1022
1023                /* check if we need to pick another page */
1024                if (*pg_offset == PAGE_CACHE_SIZE) {
1025                        (*pg_index)++;
1026                        if (*pg_index >= vcnt)
1027                                return 0;
1028
1029                        page_out = bvec[*pg_index].bv_page;
1030                        *pg_offset = 0;
1031                        start_byte = page_offset(page_out) - disk_start;
1032
1033                        /*
1034                         * make sure our new page is covered by this
1035                         * working buffer
1036                         */
1037                        if (total_out <= start_byte)
1038                                return 1;
1039
1040                        /*
1041                         * the next page in the biovec might not be adjacent
1042                         * to the last page, but it might still be found
1043                         * inside this working buffer. bump our offset pointer
1044                         */
1045                        if (total_out > start_byte &&
1046                            current_buf_start < start_byte) {
1047                                buf_offset = start_byte - buf_start;
1048                                working_bytes = total_out - start_byte;
1049                                current_buf_start = buf_start + buf_offset;
1050                        }
1051                }
1052        }
1053
1054        return 1;
1055}
1056