linux/fs/btrfs/extent-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/pagemap.h>
  20#include <linux/writeback.h>
  21#include <linux/blkdev.h>
  22#include <linux/sort.h>
  23#include <linux/rcupdate.h>
  24#include <linux/kthread.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/percpu_counter.h>
  28#include "compat.h"
  29#include "hash.h"
  30#include "ctree.h"
  31#include "disk-io.h"
  32#include "print-tree.h"
  33#include "transaction.h"
  34#include "volumes.h"
  35#include "raid56.h"
  36#include "locking.h"
  37#include "free-space-cache.h"
  38#include "math.h"
  39
  40#undef SCRAMBLE_DELAYED_REFS
  41
  42/*
  43 * control flags for do_chunk_alloc's force field
  44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  45 * if we really need one.
  46 *
  47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
  48 * if we have very few chunks already allocated.  This is
  49 * used as part of the clustering code to help make sure
  50 * we have a good pool of storage to cluster in, without
  51 * filling the FS with empty chunks
  52 *
  53 * CHUNK_ALLOC_FORCE means it must try to allocate one
  54 *
  55 */
  56enum {
  57        CHUNK_ALLOC_NO_FORCE = 0,
  58        CHUNK_ALLOC_LIMITED = 1,
  59        CHUNK_ALLOC_FORCE = 2,
  60};
  61
  62/*
  63 * Control how reservations are dealt with.
  64 *
  65 * RESERVE_FREE - freeing a reservation.
  66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  67 *   ENOSPC accounting
  68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  69 *   bytes_may_use as the ENOSPC accounting is done elsewhere
  70 */
  71enum {
  72        RESERVE_FREE = 0,
  73        RESERVE_ALLOC = 1,
  74        RESERVE_ALLOC_NO_ACCOUNT = 2,
  75};
  76
  77static int update_block_group(struct btrfs_root *root,
  78                              u64 bytenr, u64 num_bytes, int alloc);
  79static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  80                                struct btrfs_root *root,
  81                                u64 bytenr, u64 num_bytes, u64 parent,
  82                                u64 root_objectid, u64 owner_objectid,
  83                                u64 owner_offset, int refs_to_drop,
  84                                struct btrfs_delayed_extent_op *extra_op);
  85static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  86                                    struct extent_buffer *leaf,
  87                                    struct btrfs_extent_item *ei);
  88static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  89                                      struct btrfs_root *root,
  90                                      u64 parent, u64 root_objectid,
  91                                      u64 flags, u64 owner, u64 offset,
  92                                      struct btrfs_key *ins, int ref_mod);
  93static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  94                                     struct btrfs_root *root,
  95                                     u64 parent, u64 root_objectid,
  96                                     u64 flags, struct btrfs_disk_key *key,
  97                                     int level, struct btrfs_key *ins);
  98static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  99                          struct btrfs_root *extent_root, u64 flags,
 100                          int force);
 101static int find_next_key(struct btrfs_path *path, int level,
 102                         struct btrfs_key *key);
 103static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
 104                            int dump_block_groups);
 105static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
 106                                       u64 num_bytes, int reserve);
 107static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 108                               u64 num_bytes);
 109int btrfs_pin_extent(struct btrfs_root *root,
 110                     u64 bytenr, u64 num_bytes, int reserved);
 111
 112static noinline int
 113block_group_cache_done(struct btrfs_block_group_cache *cache)
 114{
 115        smp_mb();
 116        return cache->cached == BTRFS_CACHE_FINISHED ||
 117                cache->cached == BTRFS_CACHE_ERROR;
 118}
 119
 120static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
 121{
 122        return (cache->flags & bits) == bits;
 123}
 124
 125static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
 126{
 127        atomic_inc(&cache->count);
 128}
 129
 130void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 131{
 132        if (atomic_dec_and_test(&cache->count)) {
 133                WARN_ON(cache->pinned > 0);
 134                WARN_ON(cache->reserved > 0);
 135                kfree(cache->free_space_ctl);
 136                kfree(cache);
 137        }
 138}
 139
 140/*
 141 * this adds the block group to the fs_info rb tree for the block group
 142 * cache
 143 */
 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 145                                struct btrfs_block_group_cache *block_group)
 146{
 147        struct rb_node **p;
 148        struct rb_node *parent = NULL;
 149        struct btrfs_block_group_cache *cache;
 150
 151        spin_lock(&info->block_group_cache_lock);
 152        p = &info->block_group_cache_tree.rb_node;
 153
 154        while (*p) {
 155                parent = *p;
 156                cache = rb_entry(parent, struct btrfs_block_group_cache,
 157                                 cache_node);
 158                if (block_group->key.objectid < cache->key.objectid) {
 159                        p = &(*p)->rb_left;
 160                } else if (block_group->key.objectid > cache->key.objectid) {
 161                        p = &(*p)->rb_right;
 162                } else {
 163                        spin_unlock(&info->block_group_cache_lock);
 164                        return -EEXIST;
 165                }
 166        }
 167
 168        rb_link_node(&block_group->cache_node, parent, p);
 169        rb_insert_color(&block_group->cache_node,
 170                        &info->block_group_cache_tree);
 171
 172        if (info->first_logical_byte > block_group->key.objectid)
 173                info->first_logical_byte = block_group->key.objectid;
 174
 175        spin_unlock(&info->block_group_cache_lock);
 176
 177        return 0;
 178}
 179
 180/*
 181 * This will return the block group at or after bytenr if contains is 0, else
 182 * it will return the block group that contains the bytenr
 183 */
 184static struct btrfs_block_group_cache *
 185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 186                              int contains)
 187{
 188        struct btrfs_block_group_cache *cache, *ret = NULL;
 189        struct rb_node *n;
 190        u64 end, start;
 191
 192        spin_lock(&info->block_group_cache_lock);
 193        n = info->block_group_cache_tree.rb_node;
 194
 195        while (n) {
 196                cache = rb_entry(n, struct btrfs_block_group_cache,
 197                                 cache_node);
 198                end = cache->key.objectid + cache->key.offset - 1;
 199                start = cache->key.objectid;
 200
 201                if (bytenr < start) {
 202                        if (!contains && (!ret || start < ret->key.objectid))
 203                                ret = cache;
 204                        n = n->rb_left;
 205                } else if (bytenr > start) {
 206                        if (contains && bytenr <= end) {
 207                                ret = cache;
 208                                break;
 209                        }
 210                        n = n->rb_right;
 211                } else {
 212                        ret = cache;
 213                        break;
 214                }
 215        }
 216        if (ret) {
 217                btrfs_get_block_group(ret);
 218                if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 219                        info->first_logical_byte = ret->key.objectid;
 220        }
 221        spin_unlock(&info->block_group_cache_lock);
 222
 223        return ret;
 224}
 225
 226static int add_excluded_extent(struct btrfs_root *root,
 227                               u64 start, u64 num_bytes)
 228{
 229        u64 end = start + num_bytes - 1;
 230        set_extent_bits(&root->fs_info->freed_extents[0],
 231                        start, end, EXTENT_UPTODATE, GFP_NOFS);
 232        set_extent_bits(&root->fs_info->freed_extents[1],
 233                        start, end, EXTENT_UPTODATE, GFP_NOFS);
 234        return 0;
 235}
 236
 237static void free_excluded_extents(struct btrfs_root *root,
 238                                  struct btrfs_block_group_cache *cache)
 239{
 240        u64 start, end;
 241
 242        start = cache->key.objectid;
 243        end = start + cache->key.offset - 1;
 244
 245        clear_extent_bits(&root->fs_info->freed_extents[0],
 246                          start, end, EXTENT_UPTODATE, GFP_NOFS);
 247        clear_extent_bits(&root->fs_info->freed_extents[1],
 248                          start, end, EXTENT_UPTODATE, GFP_NOFS);
 249}
 250
 251static int exclude_super_stripes(struct btrfs_root *root,
 252                                 struct btrfs_block_group_cache *cache)
 253{
 254        u64 bytenr;
 255        u64 *logical;
 256        int stripe_len;
 257        int i, nr, ret;
 258
 259        if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 260                stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 261                cache->bytes_super += stripe_len;
 262                ret = add_excluded_extent(root, cache->key.objectid,
 263                                          stripe_len);
 264                if (ret)
 265                        return ret;
 266        }
 267
 268        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 269                bytenr = btrfs_sb_offset(i);
 270                ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
 271                                       cache->key.objectid, bytenr,
 272                                       0, &logical, &nr, &stripe_len);
 273                if (ret)
 274                        return ret;
 275
 276                while (nr--) {
 277                        u64 start, len;
 278
 279                        if (logical[nr] > cache->key.objectid +
 280                            cache->key.offset)
 281                                continue;
 282
 283                        if (logical[nr] + stripe_len <= cache->key.objectid)
 284                                continue;
 285
 286                        start = logical[nr];
 287                        if (start < cache->key.objectid) {
 288                                start = cache->key.objectid;
 289                                len = (logical[nr] + stripe_len) - start;
 290                        } else {
 291                                len = min_t(u64, stripe_len,
 292                                            cache->key.objectid +
 293                                            cache->key.offset - start);
 294                        }
 295
 296                        cache->bytes_super += len;
 297                        ret = add_excluded_extent(root, start, len);
 298                        if (ret) {
 299                                kfree(logical);
 300                                return ret;
 301                        }
 302                }
 303
 304                kfree(logical);
 305        }
 306        return 0;
 307}
 308
 309static struct btrfs_caching_control *
 310get_caching_control(struct btrfs_block_group_cache *cache)
 311{
 312        struct btrfs_caching_control *ctl;
 313
 314        spin_lock(&cache->lock);
 315        if (cache->cached != BTRFS_CACHE_STARTED) {
 316                spin_unlock(&cache->lock);
 317                return NULL;
 318        }
 319
 320        /* We're loading it the fast way, so we don't have a caching_ctl. */
 321        if (!cache->caching_ctl) {
 322                spin_unlock(&cache->lock);
 323                return NULL;
 324        }
 325
 326        ctl = cache->caching_ctl;
 327        atomic_inc(&ctl->count);
 328        spin_unlock(&cache->lock);
 329        return ctl;
 330}
 331
 332static void put_caching_control(struct btrfs_caching_control *ctl)
 333{
 334        if (atomic_dec_and_test(&ctl->count))
 335                kfree(ctl);
 336}
 337
 338/*
 339 * this is only called by cache_block_group, since we could have freed extents
 340 * we need to check the pinned_extents for any extents that can't be used yet
 341 * since their free space will be released as soon as the transaction commits.
 342 */
 343static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 344                              struct btrfs_fs_info *info, u64 start, u64 end)
 345{
 346        u64 extent_start, extent_end, size, total_added = 0;
 347        int ret;
 348
 349        while (start < end) {
 350                ret = find_first_extent_bit(info->pinned_extents, start,
 351                                            &extent_start, &extent_end,
 352                                            EXTENT_DIRTY | EXTENT_UPTODATE,
 353                                            NULL);
 354                if (ret)
 355                        break;
 356
 357                if (extent_start <= start) {
 358                        start = extent_end + 1;
 359                } else if (extent_start > start && extent_start < end) {
 360                        size = extent_start - start;
 361                        total_added += size;
 362                        ret = btrfs_add_free_space(block_group, start,
 363                                                   size);
 364                        BUG_ON(ret); /* -ENOMEM or logic error */
 365                        start = extent_end + 1;
 366                } else {
 367                        break;
 368                }
 369        }
 370
 371        if (start < end) {
 372                size = end - start;
 373                total_added += size;
 374                ret = btrfs_add_free_space(block_group, start, size);
 375                BUG_ON(ret); /* -ENOMEM or logic error */
 376        }
 377
 378        return total_added;
 379}
 380
 381static noinline void caching_thread(struct btrfs_work *work)
 382{
 383        struct btrfs_block_group_cache *block_group;
 384        struct btrfs_fs_info *fs_info;
 385        struct btrfs_caching_control *caching_ctl;
 386        struct btrfs_root *extent_root;
 387        struct btrfs_path *path;
 388        struct extent_buffer *leaf;
 389        struct btrfs_key key;
 390        u64 total_found = 0;
 391        u64 last = 0;
 392        u32 nritems;
 393        int ret = -ENOMEM;
 394
 395        caching_ctl = container_of(work, struct btrfs_caching_control, work);
 396        block_group = caching_ctl->block_group;
 397        fs_info = block_group->fs_info;
 398        extent_root = fs_info->extent_root;
 399
 400        path = btrfs_alloc_path();
 401        if (!path)
 402                goto out;
 403
 404        last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 405
 406        /*
 407         * We don't want to deadlock with somebody trying to allocate a new
 408         * extent for the extent root while also trying to search the extent
 409         * root to add free space.  So we skip locking and search the commit
 410         * root, since its read-only
 411         */
 412        path->skip_locking = 1;
 413        path->search_commit_root = 1;
 414        path->reada = 1;
 415
 416        key.objectid = last;
 417        key.offset = 0;
 418        key.type = BTRFS_EXTENT_ITEM_KEY;
 419again:
 420        mutex_lock(&caching_ctl->mutex);
 421        /* need to make sure the commit_root doesn't disappear */
 422        down_read(&fs_info->extent_commit_sem);
 423
 424next:
 425        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 426        if (ret < 0)
 427                goto err;
 428
 429        leaf = path->nodes[0];
 430        nritems = btrfs_header_nritems(leaf);
 431
 432        while (1) {
 433                if (btrfs_fs_closing(fs_info) > 1) {
 434                        last = (u64)-1;
 435                        break;
 436                }
 437
 438                if (path->slots[0] < nritems) {
 439                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 440                } else {
 441                        ret = find_next_key(path, 0, &key);
 442                        if (ret)
 443                                break;
 444
 445                        if (need_resched()) {
 446                                caching_ctl->progress = last;
 447                                btrfs_release_path(path);
 448                                up_read(&fs_info->extent_commit_sem);
 449                                mutex_unlock(&caching_ctl->mutex);
 450                                cond_resched();
 451                                goto again;
 452                        }
 453
 454                        ret = btrfs_next_leaf(extent_root, path);
 455                        if (ret < 0)
 456                                goto err;
 457                        if (ret)
 458                                break;
 459                        leaf = path->nodes[0];
 460                        nritems = btrfs_header_nritems(leaf);
 461                        continue;
 462                }
 463
 464                if (key.objectid < last) {
 465                        key.objectid = last;
 466                        key.offset = 0;
 467                        key.type = BTRFS_EXTENT_ITEM_KEY;
 468
 469                        caching_ctl->progress = last;
 470                        btrfs_release_path(path);
 471                        goto next;
 472                }
 473
 474                if (key.objectid < block_group->key.objectid) {
 475                        path->slots[0]++;
 476                        continue;
 477                }
 478
 479                if (key.objectid >= block_group->key.objectid +
 480                    block_group->key.offset)
 481                        break;
 482
 483                if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 484                    key.type == BTRFS_METADATA_ITEM_KEY) {
 485                        total_found += add_new_free_space(block_group,
 486                                                          fs_info, last,
 487                                                          key.objectid);
 488                        if (key.type == BTRFS_METADATA_ITEM_KEY)
 489                                last = key.objectid +
 490                                        fs_info->tree_root->leafsize;
 491                        else
 492                                last = key.objectid + key.offset;
 493
 494                        if (total_found > (1024 * 1024 * 2)) {
 495                                total_found = 0;
 496                                wake_up(&caching_ctl->wait);
 497                        }
 498                }
 499                path->slots[0]++;
 500        }
 501        ret = 0;
 502
 503        total_found += add_new_free_space(block_group, fs_info, last,
 504                                          block_group->key.objectid +
 505                                          block_group->key.offset);
 506        caching_ctl->progress = (u64)-1;
 507
 508        spin_lock(&block_group->lock);
 509        block_group->caching_ctl = NULL;
 510        block_group->cached = BTRFS_CACHE_FINISHED;
 511        spin_unlock(&block_group->lock);
 512
 513err:
 514        btrfs_free_path(path);
 515        up_read(&fs_info->extent_commit_sem);
 516
 517        free_excluded_extents(extent_root, block_group);
 518
 519        mutex_unlock(&caching_ctl->mutex);
 520out:
 521        if (ret) {
 522                spin_lock(&block_group->lock);
 523                block_group->caching_ctl = NULL;
 524                block_group->cached = BTRFS_CACHE_ERROR;
 525                spin_unlock(&block_group->lock);
 526        }
 527        wake_up(&caching_ctl->wait);
 528
 529        put_caching_control(caching_ctl);
 530        btrfs_put_block_group(block_group);
 531}
 532
 533static int cache_block_group(struct btrfs_block_group_cache *cache,
 534                             int load_cache_only)
 535{
 536        DEFINE_WAIT(wait);
 537        struct btrfs_fs_info *fs_info = cache->fs_info;
 538        struct btrfs_caching_control *caching_ctl;
 539        int ret = 0;
 540
 541        caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 542        if (!caching_ctl)
 543                return -ENOMEM;
 544
 545        INIT_LIST_HEAD(&caching_ctl->list);
 546        mutex_init(&caching_ctl->mutex);
 547        init_waitqueue_head(&caching_ctl->wait);
 548        caching_ctl->block_group = cache;
 549        caching_ctl->progress = cache->key.objectid;
 550        atomic_set(&caching_ctl->count, 1);
 551        caching_ctl->work.func = caching_thread;
 552
 553        spin_lock(&cache->lock);
 554        /*
 555         * This should be a rare occasion, but this could happen I think in the
 556         * case where one thread starts to load the space cache info, and then
 557         * some other thread starts a transaction commit which tries to do an
 558         * allocation while the other thread is still loading the space cache
 559         * info.  The previous loop should have kept us from choosing this block
 560         * group, but if we've moved to the state where we will wait on caching
 561         * block groups we need to first check if we're doing a fast load here,
 562         * so we can wait for it to finish, otherwise we could end up allocating
 563         * from a block group who's cache gets evicted for one reason or
 564         * another.
 565         */
 566        while (cache->cached == BTRFS_CACHE_FAST) {
 567                struct btrfs_caching_control *ctl;
 568
 569                ctl = cache->caching_ctl;
 570                atomic_inc(&ctl->count);
 571                prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 572                spin_unlock(&cache->lock);
 573
 574                schedule();
 575
 576                finish_wait(&ctl->wait, &wait);
 577                put_caching_control(ctl);
 578                spin_lock(&cache->lock);
 579        }
 580
 581        if (cache->cached != BTRFS_CACHE_NO) {
 582                spin_unlock(&cache->lock);
 583                kfree(caching_ctl);
 584                return 0;
 585        }
 586        WARN_ON(cache->caching_ctl);
 587        cache->caching_ctl = caching_ctl;
 588        cache->cached = BTRFS_CACHE_FAST;
 589        spin_unlock(&cache->lock);
 590
 591        if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
 592                ret = load_free_space_cache(fs_info, cache);
 593
 594                spin_lock(&cache->lock);
 595                if (ret == 1) {
 596                        cache->caching_ctl = NULL;
 597                        cache->cached = BTRFS_CACHE_FINISHED;
 598                        cache->last_byte_to_unpin = (u64)-1;
 599                } else {
 600                        if (load_cache_only) {
 601                                cache->caching_ctl = NULL;
 602                                cache->cached = BTRFS_CACHE_NO;
 603                        } else {
 604                                cache->cached = BTRFS_CACHE_STARTED;
 605                        }
 606                }
 607                spin_unlock(&cache->lock);
 608                wake_up(&caching_ctl->wait);
 609                if (ret == 1) {
 610                        put_caching_control(caching_ctl);
 611                        free_excluded_extents(fs_info->extent_root, cache);
 612                        return 0;
 613                }
 614        } else {
 615                /*
 616                 * We are not going to do the fast caching, set cached to the
 617                 * appropriate value and wakeup any waiters.
 618                 */
 619                spin_lock(&cache->lock);
 620                if (load_cache_only) {
 621                        cache->caching_ctl = NULL;
 622                        cache->cached = BTRFS_CACHE_NO;
 623                } else {
 624                        cache->cached = BTRFS_CACHE_STARTED;
 625                }
 626                spin_unlock(&cache->lock);
 627                wake_up(&caching_ctl->wait);
 628        }
 629
 630        if (load_cache_only) {
 631                put_caching_control(caching_ctl);
 632                return 0;
 633        }
 634
 635        down_write(&fs_info->extent_commit_sem);
 636        atomic_inc(&caching_ctl->count);
 637        list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 638        up_write(&fs_info->extent_commit_sem);
 639
 640        btrfs_get_block_group(cache);
 641
 642        btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
 643
 644        return ret;
 645}
 646
 647/*
 648 * return the block group that starts at or after bytenr
 649 */
 650static struct btrfs_block_group_cache *
 651btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 652{
 653        struct btrfs_block_group_cache *cache;
 654
 655        cache = block_group_cache_tree_search(info, bytenr, 0);
 656
 657        return cache;
 658}
 659
 660/*
 661 * return the block group that contains the given bytenr
 662 */
 663struct btrfs_block_group_cache *btrfs_lookup_block_group(
 664                                                 struct btrfs_fs_info *info,
 665                                                 u64 bytenr)
 666{
 667        struct btrfs_block_group_cache *cache;
 668
 669        cache = block_group_cache_tree_search(info, bytenr, 1);
 670
 671        return cache;
 672}
 673
 674static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 675                                                  u64 flags)
 676{
 677        struct list_head *head = &info->space_info;
 678        struct btrfs_space_info *found;
 679
 680        flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 681
 682        rcu_read_lock();
 683        list_for_each_entry_rcu(found, head, list) {
 684                if (found->flags & flags) {
 685                        rcu_read_unlock();
 686                        return found;
 687                }
 688        }
 689        rcu_read_unlock();
 690        return NULL;
 691}
 692
 693/*
 694 * after adding space to the filesystem, we need to clear the full flags
 695 * on all the space infos.
 696 */
 697void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 698{
 699        struct list_head *head = &info->space_info;
 700        struct btrfs_space_info *found;
 701
 702        rcu_read_lock();
 703        list_for_each_entry_rcu(found, head, list)
 704                found->full = 0;
 705        rcu_read_unlock();
 706}
 707
 708/* simple helper to search for an existing extent at a given offset */
 709int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
 710{
 711        int ret;
 712        struct btrfs_key key;
 713        struct btrfs_path *path;
 714
 715        path = btrfs_alloc_path();
 716        if (!path)
 717                return -ENOMEM;
 718
 719        key.objectid = start;
 720        key.offset = len;
 721        key.type = BTRFS_EXTENT_ITEM_KEY;
 722        ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
 723                                0, 0);
 724        if (ret > 0) {
 725                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 726                if (key.objectid == start &&
 727                    key.type == BTRFS_METADATA_ITEM_KEY)
 728                        ret = 0;
 729        }
 730        btrfs_free_path(path);
 731        return ret;
 732}
 733
 734/*
 735 * helper function to lookup reference count and flags of a tree block.
 736 *
 737 * the head node for delayed ref is used to store the sum of all the
 738 * reference count modifications queued up in the rbtree. the head
 739 * node may also store the extent flags to set. This way you can check
 740 * to see what the reference count and extent flags would be if all of
 741 * the delayed refs are not processed.
 742 */
 743int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 744                             struct btrfs_root *root, u64 bytenr,
 745                             u64 offset, int metadata, u64 *refs, u64 *flags)
 746{
 747        struct btrfs_delayed_ref_head *head;
 748        struct btrfs_delayed_ref_root *delayed_refs;
 749        struct btrfs_path *path;
 750        struct btrfs_extent_item *ei;
 751        struct extent_buffer *leaf;
 752        struct btrfs_key key;
 753        u32 item_size;
 754        u64 num_refs;
 755        u64 extent_flags;
 756        int ret;
 757
 758        /*
 759         * If we don't have skinny metadata, don't bother doing anything
 760         * different
 761         */
 762        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
 763                offset = root->leafsize;
 764                metadata = 0;
 765        }
 766
 767        path = btrfs_alloc_path();
 768        if (!path)
 769                return -ENOMEM;
 770
 771        if (metadata) {
 772                key.objectid = bytenr;
 773                key.type = BTRFS_METADATA_ITEM_KEY;
 774                key.offset = offset;
 775        } else {
 776                key.objectid = bytenr;
 777                key.type = BTRFS_EXTENT_ITEM_KEY;
 778                key.offset = offset;
 779        }
 780
 781        if (!trans) {
 782                path->skip_locking = 1;
 783                path->search_commit_root = 1;
 784        }
 785again:
 786        ret = btrfs_search_slot(trans, root->fs_info->extent_root,
 787                                &key, path, 0, 0);
 788        if (ret < 0)
 789                goto out_free;
 790
 791        if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 792                metadata = 0;
 793                if (path->slots[0]) {
 794                        path->slots[0]--;
 795                        btrfs_item_key_to_cpu(path->nodes[0], &key,
 796                                              path->slots[0]);
 797                        if (key.objectid == bytenr &&
 798                            key.type == BTRFS_EXTENT_ITEM_KEY &&
 799                            key.offset == root->leafsize)
 800                                ret = 0;
 801                }
 802                if (ret) {
 803                        key.objectid = bytenr;
 804                        key.type = BTRFS_EXTENT_ITEM_KEY;
 805                        key.offset = root->leafsize;
 806                        btrfs_release_path(path);
 807                        goto again;
 808                }
 809        }
 810
 811        if (ret == 0) {
 812                leaf = path->nodes[0];
 813                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 814                if (item_size >= sizeof(*ei)) {
 815                        ei = btrfs_item_ptr(leaf, path->slots[0],
 816                                            struct btrfs_extent_item);
 817                        num_refs = btrfs_extent_refs(leaf, ei);
 818                        extent_flags = btrfs_extent_flags(leaf, ei);
 819                } else {
 820#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 821                        struct btrfs_extent_item_v0 *ei0;
 822                        BUG_ON(item_size != sizeof(*ei0));
 823                        ei0 = btrfs_item_ptr(leaf, path->slots[0],
 824                                             struct btrfs_extent_item_v0);
 825                        num_refs = btrfs_extent_refs_v0(leaf, ei0);
 826                        /* FIXME: this isn't correct for data */
 827                        extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 828#else
 829                        BUG();
 830#endif
 831                }
 832                BUG_ON(num_refs == 0);
 833        } else {
 834                num_refs = 0;
 835                extent_flags = 0;
 836                ret = 0;
 837        }
 838
 839        if (!trans)
 840                goto out;
 841
 842        delayed_refs = &trans->transaction->delayed_refs;
 843        spin_lock(&delayed_refs->lock);
 844        head = btrfs_find_delayed_ref_head(trans, bytenr);
 845        if (head) {
 846                if (!mutex_trylock(&head->mutex)) {
 847                        atomic_inc(&head->node.refs);
 848                        spin_unlock(&delayed_refs->lock);
 849
 850                        btrfs_release_path(path);
 851
 852                        /*
 853                         * Mutex was contended, block until it's released and try
 854                         * again
 855                         */
 856                        mutex_lock(&head->mutex);
 857                        mutex_unlock(&head->mutex);
 858                        btrfs_put_delayed_ref(&head->node);
 859                        goto again;
 860                }
 861                if (head->extent_op && head->extent_op->update_flags)
 862                        extent_flags |= head->extent_op->flags_to_set;
 863                else
 864                        BUG_ON(num_refs == 0);
 865
 866                num_refs += head->node.ref_mod;
 867                mutex_unlock(&head->mutex);
 868        }
 869        spin_unlock(&delayed_refs->lock);
 870out:
 871        WARN_ON(num_refs == 0);
 872        if (refs)
 873                *refs = num_refs;
 874        if (flags)
 875                *flags = extent_flags;
 876out_free:
 877        btrfs_free_path(path);
 878        return ret;
 879}
 880
 881/*
 882 * Back reference rules.  Back refs have three main goals:
 883 *
 884 * 1) differentiate between all holders of references to an extent so that
 885 *    when a reference is dropped we can make sure it was a valid reference
 886 *    before freeing the extent.
 887 *
 888 * 2) Provide enough information to quickly find the holders of an extent
 889 *    if we notice a given block is corrupted or bad.
 890 *
 891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 892 *    maintenance.  This is actually the same as #2, but with a slightly
 893 *    different use case.
 894 *
 895 * There are two kinds of back refs. The implicit back refs is optimized
 896 * for pointers in non-shared tree blocks. For a given pointer in a block,
 897 * back refs of this kind provide information about the block's owner tree
 898 * and the pointer's key. These information allow us to find the block by
 899 * b-tree searching. The full back refs is for pointers in tree blocks not
 900 * referenced by their owner trees. The location of tree block is recorded
 901 * in the back refs. Actually the full back refs is generic, and can be
 902 * used in all cases the implicit back refs is used. The major shortcoming
 903 * of the full back refs is its overhead. Every time a tree block gets
 904 * COWed, we have to update back refs entry for all pointers in it.
 905 *
 906 * For a newly allocated tree block, we use implicit back refs for
 907 * pointers in it. This means most tree related operations only involve
 908 * implicit back refs. For a tree block created in old transaction, the
 909 * only way to drop a reference to it is COW it. So we can detect the
 910 * event that tree block loses its owner tree's reference and do the
 911 * back refs conversion.
 912 *
 913 * When a tree block is COW'd through a tree, there are four cases:
 914 *
 915 * The reference count of the block is one and the tree is the block's
 916 * owner tree. Nothing to do in this case.
 917 *
 918 * The reference count of the block is one and the tree is not the
 919 * block's owner tree. In this case, full back refs is used for pointers
 920 * in the block. Remove these full back refs, add implicit back refs for
 921 * every pointers in the new block.
 922 *
 923 * The reference count of the block is greater than one and the tree is
 924 * the block's owner tree. In this case, implicit back refs is used for
 925 * pointers in the block. Add full back refs for every pointers in the
 926 * block, increase lower level extents' reference counts. The original
 927 * implicit back refs are entailed to the new block.
 928 *
 929 * The reference count of the block is greater than one and the tree is
 930 * not the block's owner tree. Add implicit back refs for every pointer in
 931 * the new block, increase lower level extents' reference count.
 932 *
 933 * Back Reference Key composing:
 934 *
 935 * The key objectid corresponds to the first byte in the extent,
 936 * The key type is used to differentiate between types of back refs.
 937 * There are different meanings of the key offset for different types
 938 * of back refs.
 939 *
 940 * File extents can be referenced by:
 941 *
 942 * - multiple snapshots, subvolumes, or different generations in one subvol
 943 * - different files inside a single subvolume
 944 * - different offsets inside a file (bookend extents in file.c)
 945 *
 946 * The extent ref structure for the implicit back refs has fields for:
 947 *
 948 * - Objectid of the subvolume root
 949 * - objectid of the file holding the reference
 950 * - original offset in the file
 951 * - how many bookend extents
 952 *
 953 * The key offset for the implicit back refs is hash of the first
 954 * three fields.
 955 *
 956 * The extent ref structure for the full back refs has field for:
 957 *
 958 * - number of pointers in the tree leaf
 959 *
 960 * The key offset for the implicit back refs is the first byte of
 961 * the tree leaf
 962 *
 963 * When a file extent is allocated, The implicit back refs is used.
 964 * the fields are filled in:
 965 *
 966 *     (root_key.objectid, inode objectid, offset in file, 1)
 967 *
 968 * When a file extent is removed file truncation, we find the
 969 * corresponding implicit back refs and check the following fields:
 970 *
 971 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 972 *
 973 * Btree extents can be referenced by:
 974 *
 975 * - Different subvolumes
 976 *
 977 * Both the implicit back refs and the full back refs for tree blocks
 978 * only consist of key. The key offset for the implicit back refs is
 979 * objectid of block's owner tree. The key offset for the full back refs
 980 * is the first byte of parent block.
 981 *
 982 * When implicit back refs is used, information about the lowest key and
 983 * level of the tree block are required. These information are stored in
 984 * tree block info structure.
 985 */
 986
 987#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 988static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
 989                                  struct btrfs_root *root,
 990                                  struct btrfs_path *path,
 991                                  u64 owner, u32 extra_size)
 992{
 993        struct btrfs_extent_item *item;
 994        struct btrfs_extent_item_v0 *ei0;
 995        struct btrfs_extent_ref_v0 *ref0;
 996        struct btrfs_tree_block_info *bi;
 997        struct extent_buffer *leaf;
 998        struct btrfs_key key;
 999        struct btrfs_key found_key;
1000        u32 new_size = sizeof(*item);
1001        u64 refs;
1002        int ret;
1003
1004        leaf = path->nodes[0];
1005        BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006
1007        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008        ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009                             struct btrfs_extent_item_v0);
1010        refs = btrfs_extent_refs_v0(leaf, ei0);
1011
1012        if (owner == (u64)-1) {
1013                while (1) {
1014                        if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015                                ret = btrfs_next_leaf(root, path);
1016                                if (ret < 0)
1017                                        return ret;
1018                                BUG_ON(ret > 0); /* Corruption */
1019                                leaf = path->nodes[0];
1020                        }
1021                        btrfs_item_key_to_cpu(leaf, &found_key,
1022                                              path->slots[0]);
1023                        BUG_ON(key.objectid != found_key.objectid);
1024                        if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025                                path->slots[0]++;
1026                                continue;
1027                        }
1028                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029                                              struct btrfs_extent_ref_v0);
1030                        owner = btrfs_ref_objectid_v0(leaf, ref0);
1031                        break;
1032                }
1033        }
1034        btrfs_release_path(path);
1035
1036        if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037                new_size += sizeof(*bi);
1038
1039        new_size -= sizeof(*ei0);
1040        ret = btrfs_search_slot(trans, root, &key, path,
1041                                new_size + extra_size, 1);
1042        if (ret < 0)
1043                return ret;
1044        BUG_ON(ret); /* Corruption */
1045
1046        btrfs_extend_item(root, path, new_size);
1047
1048        leaf = path->nodes[0];
1049        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050        btrfs_set_extent_refs(leaf, item, refs);
1051        /* FIXME: get real generation */
1052        btrfs_set_extent_generation(leaf, item, 0);
1053        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054                btrfs_set_extent_flags(leaf, item,
1055                                       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056                                       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057                bi = (struct btrfs_tree_block_info *)(item + 1);
1058                /* FIXME: get first key of the block */
1059                memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060                btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061        } else {
1062                btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063        }
1064        btrfs_mark_buffer_dirty(leaf);
1065        return 0;
1066}
1067#endif
1068
1069static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070{
1071        u32 high_crc = ~(u32)0;
1072        u32 low_crc = ~(u32)0;
1073        __le64 lenum;
1074
1075        lenum = cpu_to_le64(root_objectid);
1076        high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1077        lenum = cpu_to_le64(owner);
1078        low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1079        lenum = cpu_to_le64(offset);
1080        low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081
1082        return ((u64)high_crc << 31) ^ (u64)low_crc;
1083}
1084
1085static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086                                     struct btrfs_extent_data_ref *ref)
1087{
1088        return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089                                    btrfs_extent_data_ref_objectid(leaf, ref),
1090                                    btrfs_extent_data_ref_offset(leaf, ref));
1091}
1092
1093static int match_extent_data_ref(struct extent_buffer *leaf,
1094                                 struct btrfs_extent_data_ref *ref,
1095                                 u64 root_objectid, u64 owner, u64 offset)
1096{
1097        if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098            btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099            btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100                return 0;
1101        return 1;
1102}
1103
1104static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105                                           struct btrfs_root *root,
1106                                           struct btrfs_path *path,
1107                                           u64 bytenr, u64 parent,
1108                                           u64 root_objectid,
1109                                           u64 owner, u64 offset)
1110{
1111        struct btrfs_key key;
1112        struct btrfs_extent_data_ref *ref;
1113        struct extent_buffer *leaf;
1114        u32 nritems;
1115        int ret;
1116        int recow;
1117        int err = -ENOENT;
1118
1119        key.objectid = bytenr;
1120        if (parent) {
1121                key.type = BTRFS_SHARED_DATA_REF_KEY;
1122                key.offset = parent;
1123        } else {
1124                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125                key.offset = hash_extent_data_ref(root_objectid,
1126                                                  owner, offset);
1127        }
1128again:
1129        recow = 0;
1130        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131        if (ret < 0) {
1132                err = ret;
1133                goto fail;
1134        }
1135
1136        if (parent) {
1137                if (!ret)
1138                        return 0;
1139#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140                key.type = BTRFS_EXTENT_REF_V0_KEY;
1141                btrfs_release_path(path);
1142                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143                if (ret < 0) {
1144                        err = ret;
1145                        goto fail;
1146                }
1147                if (!ret)
1148                        return 0;
1149#endif
1150                goto fail;
1151        }
1152
1153        leaf = path->nodes[0];
1154        nritems = btrfs_header_nritems(leaf);
1155        while (1) {
1156                if (path->slots[0] >= nritems) {
1157                        ret = btrfs_next_leaf(root, path);
1158                        if (ret < 0)
1159                                err = ret;
1160                        if (ret)
1161                                goto fail;
1162
1163                        leaf = path->nodes[0];
1164                        nritems = btrfs_header_nritems(leaf);
1165                        recow = 1;
1166                }
1167
1168                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169                if (key.objectid != bytenr ||
1170                    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171                        goto fail;
1172
1173                ref = btrfs_item_ptr(leaf, path->slots[0],
1174                                     struct btrfs_extent_data_ref);
1175
1176                if (match_extent_data_ref(leaf, ref, root_objectid,
1177                                          owner, offset)) {
1178                        if (recow) {
1179                                btrfs_release_path(path);
1180                                goto again;
1181                        }
1182                        err = 0;
1183                        break;
1184                }
1185                path->slots[0]++;
1186        }
1187fail:
1188        return err;
1189}
1190
1191static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192                                           struct btrfs_root *root,
1193                                           struct btrfs_path *path,
1194                                           u64 bytenr, u64 parent,
1195                                           u64 root_objectid, u64 owner,
1196                                           u64 offset, int refs_to_add)
1197{
1198        struct btrfs_key key;
1199        struct extent_buffer *leaf;
1200        u32 size;
1201        u32 num_refs;
1202        int ret;
1203
1204        key.objectid = bytenr;
1205        if (parent) {
1206                key.type = BTRFS_SHARED_DATA_REF_KEY;
1207                key.offset = parent;
1208                size = sizeof(struct btrfs_shared_data_ref);
1209        } else {
1210                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211                key.offset = hash_extent_data_ref(root_objectid,
1212                                                  owner, offset);
1213                size = sizeof(struct btrfs_extent_data_ref);
1214        }
1215
1216        ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217        if (ret && ret != -EEXIST)
1218                goto fail;
1219
1220        leaf = path->nodes[0];
1221        if (parent) {
1222                struct btrfs_shared_data_ref *ref;
1223                ref = btrfs_item_ptr(leaf, path->slots[0],
1224                                     struct btrfs_shared_data_ref);
1225                if (ret == 0) {
1226                        btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227                } else {
1228                        num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229                        num_refs += refs_to_add;
1230                        btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231                }
1232        } else {
1233                struct btrfs_extent_data_ref *ref;
1234                while (ret == -EEXIST) {
1235                        ref = btrfs_item_ptr(leaf, path->slots[0],
1236                                             struct btrfs_extent_data_ref);
1237                        if (match_extent_data_ref(leaf, ref, root_objectid,
1238                                                  owner, offset))
1239                                break;
1240                        btrfs_release_path(path);
1241                        key.offset++;
1242                        ret = btrfs_insert_empty_item(trans, root, path, &key,
1243                                                      size);
1244                        if (ret && ret != -EEXIST)
1245                                goto fail;
1246
1247                        leaf = path->nodes[0];
1248                }
1249                ref = btrfs_item_ptr(leaf, path->slots[0],
1250                                     struct btrfs_extent_data_ref);
1251                if (ret == 0) {
1252                        btrfs_set_extent_data_ref_root(leaf, ref,
1253                                                       root_objectid);
1254                        btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255                        btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256                        btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257                } else {
1258                        num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259                        num_refs += refs_to_add;
1260                        btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261                }
1262        }
1263        btrfs_mark_buffer_dirty(leaf);
1264        ret = 0;
1265fail:
1266        btrfs_release_path(path);
1267        return ret;
1268}
1269
1270static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271                                           struct btrfs_root *root,
1272                                           struct btrfs_path *path,
1273                                           int refs_to_drop)
1274{
1275        struct btrfs_key key;
1276        struct btrfs_extent_data_ref *ref1 = NULL;
1277        struct btrfs_shared_data_ref *ref2 = NULL;
1278        struct extent_buffer *leaf;
1279        u32 num_refs = 0;
1280        int ret = 0;
1281
1282        leaf = path->nodes[0];
1283        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284
1285        if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287                                      struct btrfs_extent_data_ref);
1288                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291                                      struct btrfs_shared_data_ref);
1292                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295                struct btrfs_extent_ref_v0 *ref0;
1296                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297                                      struct btrfs_extent_ref_v0);
1298                num_refs = btrfs_ref_count_v0(leaf, ref0);
1299#endif
1300        } else {
1301                BUG();
1302        }
1303
1304        BUG_ON(num_refs < refs_to_drop);
1305        num_refs -= refs_to_drop;
1306
1307        if (num_refs == 0) {
1308                ret = btrfs_del_item(trans, root, path);
1309        } else {
1310                if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311                        btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312                else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313                        btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315                else {
1316                        struct btrfs_extent_ref_v0 *ref0;
1317                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318                                        struct btrfs_extent_ref_v0);
1319                        btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320                }
1321#endif
1322                btrfs_mark_buffer_dirty(leaf);
1323        }
1324        return ret;
1325}
1326
1327static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328                                          struct btrfs_path *path,
1329                                          struct btrfs_extent_inline_ref *iref)
1330{
1331        struct btrfs_key key;
1332        struct extent_buffer *leaf;
1333        struct btrfs_extent_data_ref *ref1;
1334        struct btrfs_shared_data_ref *ref2;
1335        u32 num_refs = 0;
1336
1337        leaf = path->nodes[0];
1338        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339        if (iref) {
1340                if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341                    BTRFS_EXTENT_DATA_REF_KEY) {
1342                        ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343                        num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344                } else {
1345                        ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346                        num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347                }
1348        } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350                                      struct btrfs_extent_data_ref);
1351                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354                                      struct btrfs_shared_data_ref);
1355                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358                struct btrfs_extent_ref_v0 *ref0;
1359                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360                                      struct btrfs_extent_ref_v0);
1361                num_refs = btrfs_ref_count_v0(leaf, ref0);
1362#endif
1363        } else {
1364                WARN_ON(1);
1365        }
1366        return num_refs;
1367}
1368
1369static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370                                          struct btrfs_root *root,
1371                                          struct btrfs_path *path,
1372                                          u64 bytenr, u64 parent,
1373                                          u64 root_objectid)
1374{
1375        struct btrfs_key key;
1376        int ret;
1377
1378        key.objectid = bytenr;
1379        if (parent) {
1380                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381                key.offset = parent;
1382        } else {
1383                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384                key.offset = root_objectid;
1385        }
1386
1387        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388        if (ret > 0)
1389                ret = -ENOENT;
1390#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391        if (ret == -ENOENT && parent) {
1392                btrfs_release_path(path);
1393                key.type = BTRFS_EXTENT_REF_V0_KEY;
1394                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395                if (ret > 0)
1396                        ret = -ENOENT;
1397        }
1398#endif
1399        return ret;
1400}
1401
1402static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403                                          struct btrfs_root *root,
1404                                          struct btrfs_path *path,
1405                                          u64 bytenr, u64 parent,
1406                                          u64 root_objectid)
1407{
1408        struct btrfs_key key;
1409        int ret;
1410
1411        key.objectid = bytenr;
1412        if (parent) {
1413                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414                key.offset = parent;
1415        } else {
1416                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417                key.offset = root_objectid;
1418        }
1419
1420        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421        btrfs_release_path(path);
1422        return ret;
1423}
1424
1425static inline int extent_ref_type(u64 parent, u64 owner)
1426{
1427        int type;
1428        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429                if (parent > 0)
1430                        type = BTRFS_SHARED_BLOCK_REF_KEY;
1431                else
1432                        type = BTRFS_TREE_BLOCK_REF_KEY;
1433        } else {
1434                if (parent > 0)
1435                        type = BTRFS_SHARED_DATA_REF_KEY;
1436                else
1437                        type = BTRFS_EXTENT_DATA_REF_KEY;
1438        }
1439        return type;
1440}
1441
1442static int find_next_key(struct btrfs_path *path, int level,
1443                         struct btrfs_key *key)
1444
1445{
1446        for (; level < BTRFS_MAX_LEVEL; level++) {
1447                if (!path->nodes[level])
1448                        break;
1449                if (path->slots[level] + 1 >=
1450                    btrfs_header_nritems(path->nodes[level]))
1451                        continue;
1452                if (level == 0)
1453                        btrfs_item_key_to_cpu(path->nodes[level], key,
1454                                              path->slots[level] + 1);
1455                else
1456                        btrfs_node_key_to_cpu(path->nodes[level], key,
1457                                              path->slots[level] + 1);
1458                return 0;
1459        }
1460        return 1;
1461}
1462
1463/*
1464 * look for inline back ref. if back ref is found, *ref_ret is set
1465 * to the address of inline back ref, and 0 is returned.
1466 *
1467 * if back ref isn't found, *ref_ret is set to the address where it
1468 * should be inserted, and -ENOENT is returned.
1469 *
1470 * if insert is true and there are too many inline back refs, the path
1471 * points to the extent item, and -EAGAIN is returned.
1472 *
1473 * NOTE: inline back refs are ordered in the same way that back ref
1474 *       items in the tree are ordered.
1475 */
1476static noinline_for_stack
1477int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478                                 struct btrfs_root *root,
1479                                 struct btrfs_path *path,
1480                                 struct btrfs_extent_inline_ref **ref_ret,
1481                                 u64 bytenr, u64 num_bytes,
1482                                 u64 parent, u64 root_objectid,
1483                                 u64 owner, u64 offset, int insert)
1484{
1485        struct btrfs_key key;
1486        struct extent_buffer *leaf;
1487        struct btrfs_extent_item *ei;
1488        struct btrfs_extent_inline_ref *iref;
1489        u64 flags;
1490        u64 item_size;
1491        unsigned long ptr;
1492        unsigned long end;
1493        int extra_size;
1494        int type;
1495        int want;
1496        int ret;
1497        int err = 0;
1498        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499                                                 SKINNY_METADATA);
1500
1501        key.objectid = bytenr;
1502        key.type = BTRFS_EXTENT_ITEM_KEY;
1503        key.offset = num_bytes;
1504
1505        want = extent_ref_type(parent, owner);
1506        if (insert) {
1507                extra_size = btrfs_extent_inline_ref_size(want);
1508                path->keep_locks = 1;
1509        } else
1510                extra_size = -1;
1511
1512        /*
1513         * Owner is our parent level, so we can just add one to get the level
1514         * for the block we are interested in.
1515         */
1516        if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517                key.type = BTRFS_METADATA_ITEM_KEY;
1518                key.offset = owner;
1519        }
1520
1521again:
1522        ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523        if (ret < 0) {
1524                err = ret;
1525                goto out;
1526        }
1527
1528        /*
1529         * We may be a newly converted file system which still has the old fat
1530         * extent entries for metadata, so try and see if we have one of those.
1531         */
1532        if (ret > 0 && skinny_metadata) {
1533                skinny_metadata = false;
1534                if (path->slots[0]) {
1535                        path->slots[0]--;
1536                        btrfs_item_key_to_cpu(path->nodes[0], &key,
1537                                              path->slots[0]);
1538                        if (key.objectid == bytenr &&
1539                            key.type == BTRFS_EXTENT_ITEM_KEY &&
1540                            key.offset == num_bytes)
1541                                ret = 0;
1542                }
1543                if (ret) {
1544                        key.type = BTRFS_EXTENT_ITEM_KEY;
1545                        key.offset = num_bytes;
1546                        btrfs_release_path(path);
1547                        goto again;
1548                }
1549        }
1550
1551        if (ret && !insert) {
1552                err = -ENOENT;
1553                goto out;
1554        } else if (ret) {
1555                err = -EIO;
1556                WARN_ON(1);
1557                goto out;
1558        }
1559
1560        leaf = path->nodes[0];
1561        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563        if (item_size < sizeof(*ei)) {
1564                if (!insert) {
1565                        err = -ENOENT;
1566                        goto out;
1567                }
1568                ret = convert_extent_item_v0(trans, root, path, owner,
1569                                             extra_size);
1570                if (ret < 0) {
1571                        err = ret;
1572                        goto out;
1573                }
1574                leaf = path->nodes[0];
1575                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576        }
1577#endif
1578        BUG_ON(item_size < sizeof(*ei));
1579
1580        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581        flags = btrfs_extent_flags(leaf, ei);
1582
1583        ptr = (unsigned long)(ei + 1);
1584        end = (unsigned long)ei + item_size;
1585
1586        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587                ptr += sizeof(struct btrfs_tree_block_info);
1588                BUG_ON(ptr > end);
1589        }
1590
1591        err = -ENOENT;
1592        while (1) {
1593                if (ptr >= end) {
1594                        WARN_ON(ptr > end);
1595                        break;
1596                }
1597                iref = (struct btrfs_extent_inline_ref *)ptr;
1598                type = btrfs_extent_inline_ref_type(leaf, iref);
1599                if (want < type)
1600                        break;
1601                if (want > type) {
1602                        ptr += btrfs_extent_inline_ref_size(type);
1603                        continue;
1604                }
1605
1606                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607                        struct btrfs_extent_data_ref *dref;
1608                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609                        if (match_extent_data_ref(leaf, dref, root_objectid,
1610                                                  owner, offset)) {
1611                                err = 0;
1612                                break;
1613                        }
1614                        if (hash_extent_data_ref_item(leaf, dref) <
1615                            hash_extent_data_ref(root_objectid, owner, offset))
1616                                break;
1617                } else {
1618                        u64 ref_offset;
1619                        ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620                        if (parent > 0) {
1621                                if (parent == ref_offset) {
1622                                        err = 0;
1623                                        break;
1624                                }
1625                                if (ref_offset < parent)
1626                                        break;
1627                        } else {
1628                                if (root_objectid == ref_offset) {
1629                                        err = 0;
1630                                        break;
1631                                }
1632                                if (ref_offset < root_objectid)
1633                                        break;
1634                        }
1635                }
1636                ptr += btrfs_extent_inline_ref_size(type);
1637        }
1638        if (err == -ENOENT && insert) {
1639                if (item_size + extra_size >=
1640                    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641                        err = -EAGAIN;
1642                        goto out;
1643                }
1644                /*
1645                 * To add new inline back ref, we have to make sure
1646                 * there is no corresponding back ref item.
1647                 * For simplicity, we just do not add new inline back
1648                 * ref if there is any kind of item for this block
1649                 */
1650                if (find_next_key(path, 0, &key) == 0 &&
1651                    key.objectid == bytenr &&
1652                    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653                        err = -EAGAIN;
1654                        goto out;
1655                }
1656        }
1657        *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658out:
1659        if (insert) {
1660                path->keep_locks = 0;
1661                btrfs_unlock_up_safe(path, 1);
1662        }
1663        return err;
1664}
1665
1666/*
1667 * helper to add new inline back ref
1668 */
1669static noinline_for_stack
1670void setup_inline_extent_backref(struct btrfs_root *root,
1671                                 struct btrfs_path *path,
1672                                 struct btrfs_extent_inline_ref *iref,
1673                                 u64 parent, u64 root_objectid,
1674                                 u64 owner, u64 offset, int refs_to_add,
1675                                 struct btrfs_delayed_extent_op *extent_op)
1676{
1677        struct extent_buffer *leaf;
1678        struct btrfs_extent_item *ei;
1679        unsigned long ptr;
1680        unsigned long end;
1681        unsigned long item_offset;
1682        u64 refs;
1683        int size;
1684        int type;
1685
1686        leaf = path->nodes[0];
1687        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688        item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690        type = extent_ref_type(parent, owner);
1691        size = btrfs_extent_inline_ref_size(type);
1692
1693        btrfs_extend_item(root, path, size);
1694
1695        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696        refs = btrfs_extent_refs(leaf, ei);
1697        refs += refs_to_add;
1698        btrfs_set_extent_refs(leaf, ei, refs);
1699        if (extent_op)
1700                __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702        ptr = (unsigned long)ei + item_offset;
1703        end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704        if (ptr < end - size)
1705                memmove_extent_buffer(leaf, ptr + size, ptr,
1706                                      end - size - ptr);
1707
1708        iref = (struct btrfs_extent_inline_ref *)ptr;
1709        btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711                struct btrfs_extent_data_ref *dref;
1712                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713                btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714                btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715                btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716                btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718                struct btrfs_shared_data_ref *sref;
1719                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720                btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722        } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724        } else {
1725                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726        }
1727        btrfs_mark_buffer_dirty(leaf);
1728}
1729
1730static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731                                 struct btrfs_root *root,
1732                                 struct btrfs_path *path,
1733                                 struct btrfs_extent_inline_ref **ref_ret,
1734                                 u64 bytenr, u64 num_bytes, u64 parent,
1735                                 u64 root_objectid, u64 owner, u64 offset)
1736{
1737        int ret;
1738
1739        ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740                                           bytenr, num_bytes, parent,
1741                                           root_objectid, owner, offset, 0);
1742        if (ret != -ENOENT)
1743                return ret;
1744
1745        btrfs_release_path(path);
1746        *ref_ret = NULL;
1747
1748        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749                ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750                                            root_objectid);
1751        } else {
1752                ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753                                             root_objectid, owner, offset);
1754        }
1755        return ret;
1756}
1757
1758/*
1759 * helper to update/remove inline back ref
1760 */
1761static noinline_for_stack
1762void update_inline_extent_backref(struct btrfs_root *root,
1763                                  struct btrfs_path *path,
1764                                  struct btrfs_extent_inline_ref *iref,
1765                                  int refs_to_mod,
1766                                  struct btrfs_delayed_extent_op *extent_op)
1767{
1768        struct extent_buffer *leaf;
1769        struct btrfs_extent_item *ei;
1770        struct btrfs_extent_data_ref *dref = NULL;
1771        struct btrfs_shared_data_ref *sref = NULL;
1772        unsigned long ptr;
1773        unsigned long end;
1774        u32 item_size;
1775        int size;
1776        int type;
1777        u64 refs;
1778
1779        leaf = path->nodes[0];
1780        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781        refs = btrfs_extent_refs(leaf, ei);
1782        WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783        refs += refs_to_mod;
1784        btrfs_set_extent_refs(leaf, ei, refs);
1785        if (extent_op)
1786                __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788        type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792                refs = btrfs_extent_data_ref_count(leaf, dref);
1793        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795                refs = btrfs_shared_data_ref_count(leaf, sref);
1796        } else {
1797                refs = 1;
1798                BUG_ON(refs_to_mod != -1);
1799        }
1800
1801        BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802        refs += refs_to_mod;
1803
1804        if (refs > 0) {
1805                if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806                        btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807                else
1808                        btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809        } else {
1810                size =  btrfs_extent_inline_ref_size(type);
1811                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812                ptr = (unsigned long)iref;
1813                end = (unsigned long)ei + item_size;
1814                if (ptr + size < end)
1815                        memmove_extent_buffer(leaf, ptr, ptr + size,
1816                                              end - ptr - size);
1817                item_size -= size;
1818                btrfs_truncate_item(root, path, item_size, 1);
1819        }
1820        btrfs_mark_buffer_dirty(leaf);
1821}
1822
1823static noinline_for_stack
1824int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825                                 struct btrfs_root *root,
1826                                 struct btrfs_path *path,
1827                                 u64 bytenr, u64 num_bytes, u64 parent,
1828                                 u64 root_objectid, u64 owner,
1829                                 u64 offset, int refs_to_add,
1830                                 struct btrfs_delayed_extent_op *extent_op)
1831{
1832        struct btrfs_extent_inline_ref *iref;
1833        int ret;
1834
1835        ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836                                           bytenr, num_bytes, parent,
1837                                           root_objectid, owner, offset, 1);
1838        if (ret == 0) {
1839                BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840                update_inline_extent_backref(root, path, iref,
1841                                             refs_to_add, extent_op);
1842        } else if (ret == -ENOENT) {
1843                setup_inline_extent_backref(root, path, iref, parent,
1844                                            root_objectid, owner, offset,
1845                                            refs_to_add, extent_op);
1846                ret = 0;
1847        }
1848        return ret;
1849}
1850
1851static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852                                 struct btrfs_root *root,
1853                                 struct btrfs_path *path,
1854                                 u64 bytenr, u64 parent, u64 root_objectid,
1855                                 u64 owner, u64 offset, int refs_to_add)
1856{
1857        int ret;
1858        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859                BUG_ON(refs_to_add != 1);
1860                ret = insert_tree_block_ref(trans, root, path, bytenr,
1861                                            parent, root_objectid);
1862        } else {
1863                ret = insert_extent_data_ref(trans, root, path, bytenr,
1864                                             parent, root_objectid,
1865                                             owner, offset, refs_to_add);
1866        }
1867        return ret;
1868}
1869
1870static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871                                 struct btrfs_root *root,
1872                                 struct btrfs_path *path,
1873                                 struct btrfs_extent_inline_ref *iref,
1874                                 int refs_to_drop, int is_data)
1875{
1876        int ret = 0;
1877
1878        BUG_ON(!is_data && refs_to_drop != 1);
1879        if (iref) {
1880                update_inline_extent_backref(root, path, iref,
1881                                             -refs_to_drop, NULL);
1882        } else if (is_data) {
1883                ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884        } else {
1885                ret = btrfs_del_item(trans, root, path);
1886        }
1887        return ret;
1888}
1889
1890static int btrfs_issue_discard(struct block_device *bdev,
1891                                u64 start, u64 len)
1892{
1893        return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894}
1895
1896static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897                                u64 num_bytes, u64 *actual_bytes)
1898{
1899        int ret;
1900        u64 discarded_bytes = 0;
1901        struct btrfs_bio *bbio = NULL;
1902
1903
1904        /* Tell the block device(s) that the sectors can be discarded */
1905        ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906                              bytenr, &num_bytes, &bbio, 0);
1907        /* Error condition is -ENOMEM */
1908        if (!ret) {
1909                struct btrfs_bio_stripe *stripe = bbio->stripes;
1910                int i;
1911
1912
1913                for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914                        if (!stripe->dev->can_discard)
1915                                continue;
1916
1917                        ret = btrfs_issue_discard(stripe->dev->bdev,
1918                                                  stripe->physical,
1919                                                  stripe->length);
1920                        if (!ret)
1921                                discarded_bytes += stripe->length;
1922                        else if (ret != -EOPNOTSUPP)
1923                                break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925                        /*
1926                         * Just in case we get back EOPNOTSUPP for some reason,
1927                         * just ignore the return value so we don't screw up
1928                         * people calling discard_extent.
1929                         */
1930                        ret = 0;
1931                }
1932                kfree(bbio);
1933        }
1934
1935        if (actual_bytes)
1936                *actual_bytes = discarded_bytes;
1937
1938
1939        if (ret == -EOPNOTSUPP)
1940                ret = 0;
1941        return ret;
1942}
1943
1944/* Can return -ENOMEM */
1945int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946                         struct btrfs_root *root,
1947                         u64 bytenr, u64 num_bytes, u64 parent,
1948                         u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949{
1950        int ret;
1951        struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953        BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954               root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958                                        num_bytes,
1959                                        parent, root_objectid, (int)owner,
1960                                        BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961        } else {
1962                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963                                        num_bytes,
1964                                        parent, root_objectid, owner, offset,
1965                                        BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966        }
1967        return ret;
1968}
1969
1970static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971                                  struct btrfs_root *root,
1972                                  u64 bytenr, u64 num_bytes,
1973                                  u64 parent, u64 root_objectid,
1974                                  u64 owner, u64 offset, int refs_to_add,
1975                                  struct btrfs_delayed_extent_op *extent_op)
1976{
1977        struct btrfs_path *path;
1978        struct extent_buffer *leaf;
1979        struct btrfs_extent_item *item;
1980        u64 refs;
1981        int ret;
1982        int err = 0;
1983
1984        path = btrfs_alloc_path();
1985        if (!path)
1986                return -ENOMEM;
1987
1988        path->reada = 1;
1989        path->leave_spinning = 1;
1990        /* this will setup the path even if it fails to insert the back ref */
1991        ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992                                           path, bytenr, num_bytes, parent,
1993                                           root_objectid, owner, offset,
1994                                           refs_to_add, extent_op);
1995        if (ret == 0)
1996                goto out;
1997
1998        if (ret != -EAGAIN) {
1999                err = ret;
2000                goto out;
2001        }
2002
2003        leaf = path->nodes[0];
2004        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2005        refs = btrfs_extent_refs(leaf, item);
2006        btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2007        if (extent_op)
2008                __run_delayed_extent_op(extent_op, leaf, item);
2009
2010        btrfs_mark_buffer_dirty(leaf);
2011        btrfs_release_path(path);
2012
2013        path->reada = 1;
2014        path->leave_spinning = 1;
2015
2016        /* now insert the actual backref */
2017        ret = insert_extent_backref(trans, root->fs_info->extent_root,
2018                                    path, bytenr, parent, root_objectid,
2019                                    owner, offset, refs_to_add);
2020        if (ret)
2021                btrfs_abort_transaction(trans, root, ret);
2022out:
2023        btrfs_free_path(path);
2024        return err;
2025}
2026
2027static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2028                                struct btrfs_root *root,
2029                                struct btrfs_delayed_ref_node *node,
2030                                struct btrfs_delayed_extent_op *extent_op,
2031                                int insert_reserved)
2032{
2033        int ret = 0;
2034        struct btrfs_delayed_data_ref *ref;
2035        struct btrfs_key ins;
2036        u64 parent = 0;
2037        u64 ref_root = 0;
2038        u64 flags = 0;
2039
2040        ins.objectid = node->bytenr;
2041        ins.offset = node->num_bytes;
2042        ins.type = BTRFS_EXTENT_ITEM_KEY;
2043
2044        ref = btrfs_delayed_node_to_data_ref(node);
2045        trace_run_delayed_data_ref(node, ref, node->action);
2046
2047        if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2048                parent = ref->parent;
2049        else
2050                ref_root = ref->root;
2051
2052        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2053                if (extent_op)
2054                        flags |= extent_op->flags_to_set;
2055                ret = alloc_reserved_file_extent(trans, root,
2056                                                 parent, ref_root, flags,
2057                                                 ref->objectid, ref->offset,
2058                                                 &ins, node->ref_mod);
2059        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2060                ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2061                                             node->num_bytes, parent,
2062                                             ref_root, ref->objectid,
2063                                             ref->offset, node->ref_mod,
2064                                             extent_op);
2065        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2066                ret = __btrfs_free_extent(trans, root, node->bytenr,
2067                                          node->num_bytes, parent,
2068                                          ref_root, ref->objectid,
2069                                          ref->offset, node->ref_mod,
2070                                          extent_op);
2071        } else {
2072                BUG();
2073        }
2074        return ret;
2075}
2076
2077static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2078                                    struct extent_buffer *leaf,
2079                                    struct btrfs_extent_item *ei)
2080{
2081        u64 flags = btrfs_extent_flags(leaf, ei);
2082        if (extent_op->update_flags) {
2083                flags |= extent_op->flags_to_set;
2084                btrfs_set_extent_flags(leaf, ei, flags);
2085        }
2086
2087        if (extent_op->update_key) {
2088                struct btrfs_tree_block_info *bi;
2089                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2090                bi = (struct btrfs_tree_block_info *)(ei + 1);
2091                btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2092        }
2093}
2094
2095static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2096                                 struct btrfs_root *root,
2097                                 struct btrfs_delayed_ref_node *node,
2098                                 struct btrfs_delayed_extent_op *extent_op)
2099{
2100        struct btrfs_key key;
2101        struct btrfs_path *path;
2102        struct btrfs_extent_item *ei;
2103        struct extent_buffer *leaf;
2104        u32 item_size;
2105        int ret;
2106        int err = 0;
2107        int metadata = !extent_op->is_data;
2108
2109        if (trans->aborted)
2110                return 0;
2111
2112        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2113                metadata = 0;
2114
2115        path = btrfs_alloc_path();
2116        if (!path)
2117                return -ENOMEM;
2118
2119        key.objectid = node->bytenr;
2120
2121        if (metadata) {
2122                key.type = BTRFS_METADATA_ITEM_KEY;
2123                key.offset = extent_op->level;
2124        } else {
2125                key.type = BTRFS_EXTENT_ITEM_KEY;
2126                key.offset = node->num_bytes;
2127        }
2128
2129again:
2130        path->reada = 1;
2131        path->leave_spinning = 1;
2132        ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2133                                path, 0, 1);
2134        if (ret < 0) {
2135                err = ret;
2136                goto out;
2137        }
2138        if (ret > 0) {
2139                if (metadata) {
2140                        btrfs_release_path(path);
2141                        metadata = 0;
2142
2143                        key.offset = node->num_bytes;
2144                        key.type = BTRFS_EXTENT_ITEM_KEY;
2145                        goto again;
2146                }
2147                err = -EIO;
2148                goto out;
2149        }
2150
2151        leaf = path->nodes[0];
2152        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2153#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154        if (item_size < sizeof(*ei)) {
2155                ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2156                                             path, (u64)-1, 0);
2157                if (ret < 0) {
2158                        err = ret;
2159                        goto out;
2160                }
2161                leaf = path->nodes[0];
2162                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2163        }
2164#endif
2165        BUG_ON(item_size < sizeof(*ei));
2166        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2167        __run_delayed_extent_op(extent_op, leaf, ei);
2168
2169        btrfs_mark_buffer_dirty(leaf);
2170out:
2171        btrfs_free_path(path);
2172        return err;
2173}
2174
2175static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2176                                struct btrfs_root *root,
2177                                struct btrfs_delayed_ref_node *node,
2178                                struct btrfs_delayed_extent_op *extent_op,
2179                                int insert_reserved)
2180{
2181        int ret = 0;
2182        struct btrfs_delayed_tree_ref *ref;
2183        struct btrfs_key ins;
2184        u64 parent = 0;
2185        u64 ref_root = 0;
2186        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2187                                                 SKINNY_METADATA);
2188
2189        ref = btrfs_delayed_node_to_tree_ref(node);
2190        trace_run_delayed_tree_ref(node, ref, node->action);
2191
2192        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2193                parent = ref->parent;
2194        else
2195                ref_root = ref->root;
2196
2197        ins.objectid = node->bytenr;
2198        if (skinny_metadata) {
2199                ins.offset = ref->level;
2200                ins.type = BTRFS_METADATA_ITEM_KEY;
2201        } else {
2202                ins.offset = node->num_bytes;
2203                ins.type = BTRFS_EXTENT_ITEM_KEY;
2204        }
2205
2206        BUG_ON(node->ref_mod != 1);
2207        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2208                BUG_ON(!extent_op || !extent_op->update_flags);
2209                ret = alloc_reserved_tree_block(trans, root,
2210                                                parent, ref_root,
2211                                                extent_op->flags_to_set,
2212                                                &extent_op->key,
2213                                                ref->level, &ins);
2214        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2215                ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2216                                             node->num_bytes, parent, ref_root,
2217                                             ref->level, 0, 1, extent_op);
2218        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2219                ret = __btrfs_free_extent(trans, root, node->bytenr,
2220                                          node->num_bytes, parent, ref_root,
2221                                          ref->level, 0, 1, extent_op);
2222        } else {
2223                BUG();
2224        }
2225        return ret;
2226}
2227
2228/* helper function to actually process a single delayed ref entry */
2229static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2230                               struct btrfs_root *root,
2231                               struct btrfs_delayed_ref_node *node,
2232                               struct btrfs_delayed_extent_op *extent_op,
2233                               int insert_reserved)
2234{
2235        int ret = 0;
2236
2237        if (trans->aborted)
2238                return 0;
2239
2240        if (btrfs_delayed_ref_is_head(node)) {
2241                struct btrfs_delayed_ref_head *head;
2242                /*
2243                 * we've hit the end of the chain and we were supposed
2244                 * to insert this extent into the tree.  But, it got
2245                 * deleted before we ever needed to insert it, so all
2246                 * we have to do is clean up the accounting
2247                 */
2248                BUG_ON(extent_op);
2249                head = btrfs_delayed_node_to_head(node);
2250                trace_run_delayed_ref_head(node, head, node->action);
2251
2252                if (insert_reserved) {
2253                        btrfs_pin_extent(root, node->bytenr,
2254                                         node->num_bytes, 1);
2255                        if (head->is_data) {
2256                                ret = btrfs_del_csums(trans, root,
2257                                                      node->bytenr,
2258                                                      node->num_bytes);
2259                        }
2260                }
2261                return ret;
2262        }
2263
2264        if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2265            node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2266                ret = run_delayed_tree_ref(trans, root, node, extent_op,
2267                                           insert_reserved);
2268        else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2269                 node->type == BTRFS_SHARED_DATA_REF_KEY)
2270                ret = run_delayed_data_ref(trans, root, node, extent_op,
2271                                           insert_reserved);
2272        else
2273                BUG();
2274        return ret;
2275}
2276
2277static noinline struct btrfs_delayed_ref_node *
2278select_delayed_ref(struct btrfs_delayed_ref_head *head)
2279{
2280        struct rb_node *node;
2281        struct btrfs_delayed_ref_node *ref;
2282        int action = BTRFS_ADD_DELAYED_REF;
2283again:
2284        /*
2285         * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286         * this prevents ref count from going down to zero when
2287         * there still are pending delayed ref.
2288         */
2289        node = rb_prev(&head->node.rb_node);
2290        while (1) {
2291                if (!node)
2292                        break;
2293                ref = rb_entry(node, struct btrfs_delayed_ref_node,
2294                                rb_node);
2295                if (ref->bytenr != head->node.bytenr)
2296                        break;
2297                if (ref->action == action)
2298                        return ref;
2299                node = rb_prev(node);
2300        }
2301        if (action == BTRFS_ADD_DELAYED_REF) {
2302                action = BTRFS_DROP_DELAYED_REF;
2303                goto again;
2304        }
2305        return NULL;
2306}
2307
2308/*
2309 * Returns 0 on success or if called with an already aborted transaction.
2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2311 */
2312static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2313                                       struct btrfs_root *root,
2314                                       struct list_head *cluster)
2315{
2316        struct btrfs_delayed_ref_root *delayed_refs;
2317        struct btrfs_delayed_ref_node *ref;
2318        struct btrfs_delayed_ref_head *locked_ref = NULL;
2319        struct btrfs_delayed_extent_op *extent_op;
2320        struct btrfs_fs_info *fs_info = root->fs_info;
2321        int ret;
2322        int count = 0;
2323        int must_insert_reserved = 0;
2324
2325        delayed_refs = &trans->transaction->delayed_refs;
2326        while (1) {
2327                if (!locked_ref) {
2328                        /* pick a new head ref from the cluster list */
2329                        if (list_empty(cluster))
2330                                break;
2331
2332                        locked_ref = list_entry(cluster->next,
2333                                     struct btrfs_delayed_ref_head, cluster);
2334
2335                        /* grab the lock that says we are going to process
2336                         * all the refs for this head */
2337                        ret = btrfs_delayed_ref_lock(trans, locked_ref);
2338
2339                        /*
2340                         * we may have dropped the spin lock to get the head
2341                         * mutex lock, and that might have given someone else
2342                         * time to free the head.  If that's true, it has been
2343                         * removed from our list and we can move on.
2344                         */
2345                        if (ret == -EAGAIN) {
2346                                locked_ref = NULL;
2347                                count++;
2348                                continue;
2349                        }
2350                }
2351
2352                /*
2353                 * We need to try and merge add/drops of the same ref since we
2354                 * can run into issues with relocate dropping the implicit ref
2355                 * and then it being added back again before the drop can
2356                 * finish.  If we merged anything we need to re-loop so we can
2357                 * get a good ref.
2358                 */
2359                btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2360                                         locked_ref);
2361
2362                /*
2363                 * locked_ref is the head node, so we have to go one
2364                 * node back for any delayed ref updates
2365                 */
2366                ref = select_delayed_ref(locked_ref);
2367
2368                if (ref && ref->seq &&
2369                    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2370                        /*
2371                         * there are still refs with lower seq numbers in the
2372                         * process of being added. Don't run this ref yet.
2373                         */
2374                        list_del_init(&locked_ref->cluster);
2375                        btrfs_delayed_ref_unlock(locked_ref);
2376                        locked_ref = NULL;
2377                        delayed_refs->num_heads_ready++;
2378                        spin_unlock(&delayed_refs->lock);
2379                        cond_resched();
2380                        spin_lock(&delayed_refs->lock);
2381                        continue;
2382                }
2383
2384                /*
2385                 * record the must insert reserved flag before we
2386                 * drop the spin lock.
2387                 */
2388                must_insert_reserved = locked_ref->must_insert_reserved;
2389                locked_ref->must_insert_reserved = 0;
2390
2391                extent_op = locked_ref->extent_op;
2392                locked_ref->extent_op = NULL;
2393
2394                if (!ref) {
2395                        /* All delayed refs have been processed, Go ahead
2396                         * and send the head node to run_one_delayed_ref,
2397                         * so that any accounting fixes can happen
2398                         */
2399                        ref = &locked_ref->node;
2400
2401                        if (extent_op && must_insert_reserved) {
2402                                btrfs_free_delayed_extent_op(extent_op);
2403                                extent_op = NULL;
2404                        }
2405
2406                        if (extent_op) {
2407                                spin_unlock(&delayed_refs->lock);
2408
2409                                ret = run_delayed_extent_op(trans, root,
2410                                                            ref, extent_op);
2411                                btrfs_free_delayed_extent_op(extent_op);
2412
2413                                if (ret) {
2414                                        btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2415                                        spin_lock(&delayed_refs->lock);
2416                                        btrfs_delayed_ref_unlock(locked_ref);
2417                                        return ret;
2418                                }
2419
2420                                goto next;
2421                        }
2422                }
2423
2424                ref->in_tree = 0;
2425                rb_erase(&ref->rb_node, &delayed_refs->root);
2426                delayed_refs->num_entries--;
2427                if (!btrfs_delayed_ref_is_head(ref)) {
2428                        /*
2429                         * when we play the delayed ref, also correct the
2430                         * ref_mod on head
2431                         */
2432                        switch (ref->action) {
2433                        case BTRFS_ADD_DELAYED_REF:
2434                        case BTRFS_ADD_DELAYED_EXTENT:
2435                                locked_ref->node.ref_mod -= ref->ref_mod;
2436                                break;
2437                        case BTRFS_DROP_DELAYED_REF:
2438                                locked_ref->node.ref_mod += ref->ref_mod;
2439                                break;
2440                        default:
2441                                WARN_ON(1);
2442                        }
2443                } else {
2444                        list_del_init(&locked_ref->cluster);
2445                }
2446                spin_unlock(&delayed_refs->lock);
2447
2448                ret = run_one_delayed_ref(trans, root, ref, extent_op,
2449                                          must_insert_reserved);
2450
2451                btrfs_free_delayed_extent_op(extent_op);
2452                if (ret) {
2453                        btrfs_delayed_ref_unlock(locked_ref);
2454                        btrfs_put_delayed_ref(ref);
2455                        btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2456                        spin_lock(&delayed_refs->lock);
2457                        return ret;
2458                }
2459
2460                /*
2461                 * If this node is a head, that means all the refs in this head
2462                 * have been dealt with, and we will pick the next head to deal
2463                 * with, so we must unlock the head and drop it from the cluster
2464                 * list before we release it.
2465                 */
2466                if (btrfs_delayed_ref_is_head(ref)) {
2467                        btrfs_delayed_ref_unlock(locked_ref);
2468                        locked_ref = NULL;
2469                }
2470                btrfs_put_delayed_ref(ref);
2471                count++;
2472next:
2473                cond_resched();
2474                spin_lock(&delayed_refs->lock);
2475        }
2476        return count;
2477}
2478
2479#ifdef SCRAMBLE_DELAYED_REFS
2480/*
2481 * Normally delayed refs get processed in ascending bytenr order. This
2482 * correlates in most cases to the order added. To expose dependencies on this
2483 * order, we start to process the tree in the middle instead of the beginning
2484 */
2485static u64 find_middle(struct rb_root *root)
2486{
2487        struct rb_node *n = root->rb_node;
2488        struct btrfs_delayed_ref_node *entry;
2489        int alt = 1;
2490        u64 middle;
2491        u64 first = 0, last = 0;
2492
2493        n = rb_first(root);
2494        if (n) {
2495                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2496                first = entry->bytenr;
2497        }
2498        n = rb_last(root);
2499        if (n) {
2500                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2501                last = entry->bytenr;
2502        }
2503        n = root->rb_node;
2504
2505        while (n) {
2506                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2507                WARN_ON(!entry->in_tree);
2508
2509                middle = entry->bytenr;
2510
2511                if (alt)
2512                        n = n->rb_left;
2513                else
2514                        n = n->rb_right;
2515
2516                alt = 1 - alt;
2517        }
2518        return middle;
2519}
2520#endif
2521
2522int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2523                                         struct btrfs_fs_info *fs_info)
2524{
2525        struct qgroup_update *qgroup_update;
2526        int ret = 0;
2527
2528        if (list_empty(&trans->qgroup_ref_list) !=
2529            !trans->delayed_ref_elem.seq) {
2530                /* list without seq or seq without list */
2531                btrfs_err(fs_info,
2532                        "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2533                        list_empty(&trans->qgroup_ref_list) ? "" : " not",
2534                        (u32)(trans->delayed_ref_elem.seq >> 32),
2535                        (u32)trans->delayed_ref_elem.seq);
2536                BUG();
2537        }
2538
2539        if (!trans->delayed_ref_elem.seq)
2540                return 0;
2541
2542        while (!list_empty(&trans->qgroup_ref_list)) {
2543                qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2544                                                 struct qgroup_update, list);
2545                list_del(&qgroup_update->list);
2546                if (!ret)
2547                        ret = btrfs_qgroup_account_ref(
2548                                        trans, fs_info, qgroup_update->node,
2549                                        qgroup_update->extent_op);
2550                kfree(qgroup_update);
2551        }
2552
2553        btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2554
2555        return ret;
2556}
2557
2558static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2559                      int count)
2560{
2561        int val = atomic_read(&delayed_refs->ref_seq);
2562
2563        if (val < seq || val >= seq + count)
2564                return 1;
2565        return 0;
2566}
2567
2568static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2569{
2570        u64 num_bytes;
2571
2572        num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2573                             sizeof(struct btrfs_extent_inline_ref));
2574        if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2575                num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2576
2577        /*
2578         * We don't ever fill up leaves all the way so multiply by 2 just to be
2579         * closer to what we're really going to want to ouse.
2580         */
2581        return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2582}
2583
2584int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2585                                       struct btrfs_root *root)
2586{
2587        struct btrfs_block_rsv *global_rsv;
2588        u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2589        u64 num_bytes;
2590        int ret = 0;
2591
2592        num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2593        num_heads = heads_to_leaves(root, num_heads);
2594        if (num_heads > 1)
2595                num_bytes += (num_heads - 1) * root->leafsize;
2596        num_bytes <<= 1;
2597        global_rsv = &root->fs_info->global_block_rsv;
2598
2599        /*
2600         * If we can't allocate any more chunks lets make sure we have _lots_ of
2601         * wiggle room since running delayed refs can create more delayed refs.
2602         */
2603        if (global_rsv->space_info->full)
2604                num_bytes <<= 1;
2605
2606        spin_lock(&global_rsv->lock);
2607        if (global_rsv->reserved <= num_bytes)
2608                ret = 1;
2609        spin_unlock(&global_rsv->lock);
2610        return ret;
2611}
2612
2613/*
2614 * this starts processing the delayed reference count updates and
2615 * extent insertions we have queued up so far.  count can be
2616 * 0, which means to process everything in the tree at the start
2617 * of the run (but not newly added entries), or it can be some target
2618 * number you'd like to process.
2619 *
2620 * Returns 0 on success or if called with an aborted transaction
2621 * Returns <0 on error and aborts the transaction
2622 */
2623int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2624                           struct btrfs_root *root, unsigned long count)
2625{
2626        struct rb_node *node;
2627        struct btrfs_delayed_ref_root *delayed_refs;
2628        struct btrfs_delayed_ref_node *ref;
2629        struct list_head cluster;
2630        int ret;
2631        u64 delayed_start;
2632        int run_all = count == (unsigned long)-1;
2633        int run_most = 0;
2634        int loops;
2635
2636        /* We'll clean this up in btrfs_cleanup_transaction */
2637        if (trans->aborted)
2638                return 0;
2639
2640        if (root == root->fs_info->extent_root)
2641                root = root->fs_info->tree_root;
2642
2643        btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2644
2645        delayed_refs = &trans->transaction->delayed_refs;
2646        INIT_LIST_HEAD(&cluster);
2647        if (count == 0) {
2648                count = delayed_refs->num_entries * 2;
2649                run_most = 1;
2650        }
2651
2652        if (!run_all && !run_most) {
2653                int old;
2654                int seq = atomic_read(&delayed_refs->ref_seq);
2655
2656progress:
2657                old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2658                if (old) {
2659                        DEFINE_WAIT(__wait);
2660                        if (delayed_refs->flushing ||
2661                            !btrfs_should_throttle_delayed_refs(trans, root))
2662                                return 0;
2663
2664                        prepare_to_wait(&delayed_refs->wait, &__wait,
2665                                        TASK_UNINTERRUPTIBLE);
2666
2667                        old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2668                        if (old) {
2669                                schedule();
2670                                finish_wait(&delayed_refs->wait, &__wait);
2671
2672                                if (!refs_newer(delayed_refs, seq, 256))
2673                                        goto progress;
2674                                else
2675                                        return 0;
2676                        } else {
2677                                finish_wait(&delayed_refs->wait, &__wait);
2678                                goto again;
2679                        }
2680                }
2681
2682        } else {
2683                atomic_inc(&delayed_refs->procs_running_refs);
2684        }
2685
2686again:
2687        loops = 0;
2688        spin_lock(&delayed_refs->lock);
2689
2690#ifdef SCRAMBLE_DELAYED_REFS
2691        delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2692#endif
2693
2694        while (1) {
2695                if (!(run_all || run_most) &&
2696                    !btrfs_should_throttle_delayed_refs(trans, root))
2697                        break;
2698
2699                /*
2700                 * go find something we can process in the rbtree.  We start at
2701                 * the beginning of the tree, and then build a cluster
2702                 * of refs to process starting at the first one we are able to
2703                 * lock
2704                 */
2705                delayed_start = delayed_refs->run_delayed_start;
2706                ret = btrfs_find_ref_cluster(trans, &cluster,
2707                                             delayed_refs->run_delayed_start);
2708                if (ret)
2709                        break;
2710
2711                ret = run_clustered_refs(trans, root, &cluster);
2712                if (ret < 0) {
2713                        btrfs_release_ref_cluster(&cluster);
2714                        spin_unlock(&delayed_refs->lock);
2715                        btrfs_abort_transaction(trans, root, ret);
2716                        atomic_dec(&delayed_refs->procs_running_refs);
2717                        wake_up(&delayed_refs->wait);
2718                        return ret;
2719                }
2720
2721                atomic_add(ret, &delayed_refs->ref_seq);
2722
2723                count -= min_t(unsigned long, ret, count);
2724
2725                if (count == 0)
2726                        break;
2727
2728                if (delayed_start >= delayed_refs->run_delayed_start) {
2729                        if (loops == 0) {
2730                                /*
2731                                 * btrfs_find_ref_cluster looped. let's do one
2732                                 * more cycle. if we don't run any delayed ref
2733                                 * during that cycle (because we can't because
2734                                 * all of them are blocked), bail out.
2735                                 */
2736                                loops = 1;
2737                        } else {
2738                                /*
2739                                 * no runnable refs left, stop trying
2740                                 */
2741                                BUG_ON(run_all);
2742                                break;
2743                        }
2744                }
2745                if (ret) {
2746                        /* refs were run, let's reset staleness detection */
2747                        loops = 0;
2748                }
2749        }
2750
2751        if (run_all) {
2752                if (!list_empty(&trans->new_bgs)) {
2753                        spin_unlock(&delayed_refs->lock);
2754                        btrfs_create_pending_block_groups(trans, root);
2755                        spin_lock(&delayed_refs->lock);
2756                }
2757
2758                node = rb_first(&delayed_refs->root);
2759                if (!node)
2760                        goto out;
2761                count = (unsigned long)-1;
2762
2763                while (node) {
2764                        ref = rb_entry(node, struct btrfs_delayed_ref_node,
2765                                       rb_node);
2766                        if (btrfs_delayed_ref_is_head(ref)) {
2767                                struct btrfs_delayed_ref_head *head;
2768
2769                                head = btrfs_delayed_node_to_head(ref);
2770                                atomic_inc(&ref->refs);
2771
2772                                spin_unlock(&delayed_refs->lock);
2773                                /*
2774                                 * Mutex was contended, block until it's
2775                                 * released and try again
2776                                 */
2777                                mutex_lock(&head->mutex);
2778                                mutex_unlock(&head->mutex);
2779
2780                                btrfs_put_delayed_ref(ref);
2781                                cond_resched();
2782                                goto again;
2783                        }
2784                        node = rb_next(node);
2785                }
2786                spin_unlock(&delayed_refs->lock);
2787                schedule_timeout(1);
2788                goto again;
2789        }
2790out:
2791        atomic_dec(&delayed_refs->procs_running_refs);
2792        smp_mb();
2793        if (waitqueue_active(&delayed_refs->wait))
2794                wake_up(&delayed_refs->wait);
2795
2796        spin_unlock(&delayed_refs->lock);
2797        assert_qgroups_uptodate(trans);
2798        return 0;
2799}
2800
2801int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2802                                struct btrfs_root *root,
2803                                u64 bytenr, u64 num_bytes, u64 flags,
2804                                int level, int is_data)
2805{
2806        struct btrfs_delayed_extent_op *extent_op;
2807        int ret;
2808
2809        extent_op = btrfs_alloc_delayed_extent_op();
2810        if (!extent_op)
2811                return -ENOMEM;
2812
2813        extent_op->flags_to_set = flags;
2814        extent_op->update_flags = 1;
2815        extent_op->update_key = 0;
2816        extent_op->is_data = is_data ? 1 : 0;
2817        extent_op->level = level;
2818
2819        ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2820                                          num_bytes, extent_op);
2821        if (ret)
2822                btrfs_free_delayed_extent_op(extent_op);
2823        return ret;
2824}
2825
2826static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2827                                      struct btrfs_root *root,
2828                                      struct btrfs_path *path,
2829                                      u64 objectid, u64 offset, u64 bytenr)
2830{
2831        struct btrfs_delayed_ref_head *head;
2832        struct btrfs_delayed_ref_node *ref;
2833        struct btrfs_delayed_data_ref *data_ref;
2834        struct btrfs_delayed_ref_root *delayed_refs;
2835        struct rb_node *node;
2836        int ret = 0;
2837
2838        ret = -ENOENT;
2839        delayed_refs = &trans->transaction->delayed_refs;
2840        spin_lock(&delayed_refs->lock);
2841        head = btrfs_find_delayed_ref_head(trans, bytenr);
2842        if (!head)
2843                goto out;
2844
2845        if (!mutex_trylock(&head->mutex)) {
2846                atomic_inc(&head->node.refs);
2847                spin_unlock(&delayed_refs->lock);
2848
2849                btrfs_release_path(path);
2850
2851                /*
2852                 * Mutex was contended, block until it's released and let
2853                 * caller try again
2854                 */
2855                mutex_lock(&head->mutex);
2856                mutex_unlock(&head->mutex);
2857                btrfs_put_delayed_ref(&head->node);
2858                return -EAGAIN;
2859        }
2860
2861        node = rb_prev(&head->node.rb_node);
2862        if (!node)
2863                goto out_unlock;
2864
2865        ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2866
2867        if (ref->bytenr != bytenr)
2868                goto out_unlock;
2869
2870        ret = 1;
2871        if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2872                goto out_unlock;
2873
2874        data_ref = btrfs_delayed_node_to_data_ref(ref);
2875
2876        node = rb_prev(node);
2877        if (node) {
2878                int seq = ref->seq;
2879
2880                ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2881                if (ref->bytenr == bytenr && ref->seq == seq)
2882                        goto out_unlock;
2883        }
2884
2885        if (data_ref->root != root->root_key.objectid ||
2886            data_ref->objectid != objectid || data_ref->offset != offset)
2887                goto out_unlock;
2888
2889        ret = 0;
2890out_unlock:
2891        mutex_unlock(&head->mutex);
2892out:
2893        spin_unlock(&delayed_refs->lock);
2894        return ret;
2895}
2896
2897static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2898                                        struct btrfs_root *root,
2899                                        struct btrfs_path *path,
2900                                        u64 objectid, u64 offset, u64 bytenr)
2901{
2902        struct btrfs_root *extent_root = root->fs_info->extent_root;
2903        struct extent_buffer *leaf;
2904        struct btrfs_extent_data_ref *ref;
2905        struct btrfs_extent_inline_ref *iref;
2906        struct btrfs_extent_item *ei;
2907        struct btrfs_key key;
2908        u32 item_size;
2909        int ret;
2910
2911        key.objectid = bytenr;
2912        key.offset = (u64)-1;
2913        key.type = BTRFS_EXTENT_ITEM_KEY;
2914
2915        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2916        if (ret < 0)
2917                goto out;
2918        BUG_ON(ret == 0); /* Corruption */
2919
2920        ret = -ENOENT;
2921        if (path->slots[0] == 0)
2922                goto out;
2923
2924        path->slots[0]--;
2925        leaf = path->nodes[0];
2926        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2927
2928        if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2929                goto out;
2930
2931        ret = 1;
2932        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2933#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2934        if (item_size < sizeof(*ei)) {
2935                WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2936                goto out;
2937        }
2938#endif
2939        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2940
2941        if (item_size != sizeof(*ei) +
2942            btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2943                goto out;
2944
2945        if (btrfs_extent_generation(leaf, ei) <=
2946            btrfs_root_last_snapshot(&root->root_item))
2947                goto out;
2948
2949        iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2950        if (btrfs_extent_inline_ref_type(leaf, iref) !=
2951            BTRFS_EXTENT_DATA_REF_KEY)
2952                goto out;
2953
2954        ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2955        if (btrfs_extent_refs(leaf, ei) !=
2956            btrfs_extent_data_ref_count(leaf, ref) ||
2957            btrfs_extent_data_ref_root(leaf, ref) !=
2958            root->root_key.objectid ||
2959            btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2960            btrfs_extent_data_ref_offset(leaf, ref) != offset)
2961                goto out;
2962
2963        ret = 0;
2964out:
2965        return ret;
2966}
2967
2968int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2969                          struct btrfs_root *root,
2970                          u64 objectid, u64 offset, u64 bytenr)
2971{
2972        struct btrfs_path *path;
2973        int ret;
2974        int ret2;
2975
2976        path = btrfs_alloc_path();
2977        if (!path)
2978                return -ENOENT;
2979
2980        do {
2981                ret = check_committed_ref(trans, root, path, objectid,
2982                                          offset, bytenr);
2983                if (ret && ret != -ENOENT)
2984                        goto out;
2985
2986                ret2 = check_delayed_ref(trans, root, path, objectid,
2987                                         offset, bytenr);
2988        } while (ret2 == -EAGAIN);
2989
2990        if (ret2 && ret2 != -ENOENT) {
2991                ret = ret2;
2992                goto out;
2993        }
2994
2995        if (ret != -ENOENT || ret2 != -ENOENT)
2996                ret = 0;
2997out:
2998        btrfs_free_path(path);
2999        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3000                WARN_ON(ret > 0);
3001        return ret;
3002}
3003
3004static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3005                           struct btrfs_root *root,
3006                           struct extent_buffer *buf,
3007                           int full_backref, int inc, int for_cow)
3008{
3009        u64 bytenr;
3010        u64 num_bytes;
3011        u64 parent;
3012        u64 ref_root;
3013        u32 nritems;
3014        struct btrfs_key key;
3015        struct btrfs_file_extent_item *fi;
3016        int i;
3017        int level;
3018        int ret = 0;
3019        int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3020                            u64, u64, u64, u64, u64, u64, int);
3021
3022        ref_root = btrfs_header_owner(buf);
3023        nritems = btrfs_header_nritems(buf);
3024        level = btrfs_header_level(buf);
3025
3026        if (!root->ref_cows && level == 0)
3027                return 0;
3028
3029        if (inc)
3030                process_func = btrfs_inc_extent_ref;
3031        else
3032                process_func = btrfs_free_extent;
3033
3034        if (full_backref)
3035                parent = buf->start;
3036        else
3037                parent = 0;
3038
3039        for (i = 0; i < nritems; i++) {
3040                if (level == 0) {
3041                        btrfs_item_key_to_cpu(buf, &key, i);
3042                        if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3043                                continue;
3044                        fi = btrfs_item_ptr(buf, i,
3045                                            struct btrfs_file_extent_item);
3046                        if (btrfs_file_extent_type(buf, fi) ==
3047                            BTRFS_FILE_EXTENT_INLINE)
3048                                continue;
3049                        bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3050                        if (bytenr == 0)
3051                                continue;
3052
3053                        num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3054                        key.offset -= btrfs_file_extent_offset(buf, fi);
3055                        ret = process_func(trans, root, bytenr, num_bytes,
3056                                           parent, ref_root, key.objectid,
3057                                           key.offset, for_cow);
3058                        if (ret)
3059                                goto fail;
3060                } else {
3061                        bytenr = btrfs_node_blockptr(buf, i);
3062                        num_bytes = btrfs_level_size(root, level - 1);
3063                        ret = process_func(trans, root, bytenr, num_bytes,
3064                                           parent, ref_root, level - 1, 0,
3065                                           for_cow);
3066                        if (ret)
3067                                goto fail;
3068                }
3069        }
3070        return 0;
3071fail:
3072        return ret;
3073}
3074
3075int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3076                  struct extent_buffer *buf, int full_backref, int for_cow)
3077{
3078        return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3079}
3080
3081int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3082                  struct extent_buffer *buf, int full_backref, int for_cow)
3083{
3084        return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3085}
3086
3087static int write_one_cache_group(struct btrfs_trans_handle *trans,
3088                                 struct btrfs_root *root,
3089                                 struct btrfs_path *path,
3090                                 struct btrfs_block_group_cache *cache)
3091{
3092        int ret;
3093        struct btrfs_root *extent_root = root->fs_info->extent_root;
3094        unsigned long bi;
3095        struct extent_buffer *leaf;
3096
3097        ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3098        if (ret < 0)
3099                goto fail;
3100        BUG_ON(ret); /* Corruption */
3101
3102        leaf = path->nodes[0];
3103        bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3104        write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3105        btrfs_mark_buffer_dirty(leaf);
3106        btrfs_release_path(path);
3107fail:
3108        if (ret) {
3109                btrfs_abort_transaction(trans, root, ret);
3110                return ret;
3111        }
3112        return 0;
3113
3114}
3115
3116static struct btrfs_block_group_cache *
3117next_block_group(struct btrfs_root *root,
3118                 struct btrfs_block_group_cache *cache)
3119{
3120        struct rb_node *node;
3121        spin_lock(&root->fs_info->block_group_cache_lock);
3122        node = rb_next(&cache->cache_node);
3123        btrfs_put_block_group(cache);
3124        if (node) {
3125                cache = rb_entry(node, struct btrfs_block_group_cache,
3126                                 cache_node);
3127                btrfs_get_block_group(cache);
3128        } else
3129                cache = NULL;
3130        spin_unlock(&root->fs_info->block_group_cache_lock);
3131        return cache;
3132}
3133
3134static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3135                            struct btrfs_trans_handle *trans,
3136                            struct btrfs_path *path)
3137{
3138        struct btrfs_root *root = block_group->fs_info->tree_root;
3139        struct inode *inode = NULL;
3140        u64 alloc_hint = 0;
3141        int dcs = BTRFS_DC_ERROR;
3142        int num_pages = 0;
3143        int retries = 0;
3144        int ret = 0;
3145
3146        /*
3147         * If this block group is smaller than 100 megs don't bother caching the
3148         * block group.
3149         */
3150        if (block_group->key.offset < (100 * 1024 * 1024)) {
3151                spin_lock(&block_group->lock);
3152                block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3153                spin_unlock(&block_group->lock);
3154                return 0;
3155        }
3156
3157again:
3158        inode = lookup_free_space_inode(root, block_group, path);
3159        if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3160                ret = PTR_ERR(inode);
3161                btrfs_release_path(path);
3162                goto out;
3163        }
3164
3165        if (IS_ERR(inode)) {
3166                BUG_ON(retries);
3167                retries++;
3168
3169                if (block_group->ro)
3170                        goto out_free;
3171
3172                ret = create_free_space_inode(root, trans, block_group, path);
3173                if (ret)
3174                        goto out_free;
3175                goto again;
3176        }
3177
3178        /* We've already setup this transaction, go ahead and exit */
3179        if (block_group->cache_generation == trans->transid &&
3180            i_size_read(inode)) {
3181                dcs = BTRFS_DC_SETUP;
3182                goto out_put;
3183        }
3184
3185        /*
3186         * We want to set the generation to 0, that way if anything goes wrong
3187         * from here on out we know not to trust this cache when we load up next
3188         * time.
3189         */
3190        BTRFS_I(inode)->generation = 0;
3191        ret = btrfs_update_inode(trans, root, inode);
3192        WARN_ON(ret);
3193
3194        if (i_size_read(inode) > 0) {
3195                ret = btrfs_check_trunc_cache_free_space(root,
3196                                        &root->fs_info->global_block_rsv);
3197                if (ret)
3198                        goto out_put;
3199
3200                ret = btrfs_truncate_free_space_cache(root, trans, path,
3201                                                      inode);
3202                if (ret)
3203                        goto out_put;
3204        }
3205
3206        spin_lock(&block_group->lock);
3207        if (block_group->cached != BTRFS_CACHE_FINISHED ||
3208            !btrfs_test_opt(root, SPACE_CACHE)) {
3209                /*
3210                 * don't bother trying to write stuff out _if_
3211                 * a) we're not cached,
3212                 * b) we're with nospace_cache mount option.
3213                 */
3214                dcs = BTRFS_DC_WRITTEN;
3215                spin_unlock(&block_group->lock);
3216                goto out_put;
3217        }
3218        spin_unlock(&block_group->lock);
3219
3220        /*
3221         * Try to preallocate enough space based on how big the block group is.
3222         * Keep in mind this has to include any pinned space which could end up
3223         * taking up quite a bit since it's not folded into the other space
3224         * cache.
3225         */
3226        num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3227        if (!num_pages)
3228                num_pages = 1;
3229
3230        num_pages *= 16;
3231        num_pages *= PAGE_CACHE_SIZE;
3232
3233        ret = btrfs_check_data_free_space(inode, num_pages);
3234        if (ret)
3235                goto out_put;
3236
3237        ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3238                                              num_pages, num_pages,
3239                                              &alloc_hint);
3240        if (!ret)
3241                dcs = BTRFS_DC_SETUP;
3242        btrfs_free_reserved_data_space(inode, num_pages);
3243
3244out_put:
3245        iput(inode);
3246out_free:
3247        btrfs_release_path(path);
3248out:
3249        spin_lock(&block_group->lock);
3250        if (!ret && dcs == BTRFS_DC_SETUP)
3251                block_group->cache_generation = trans->transid;
3252        block_group->disk_cache_state = dcs;
3253        spin_unlock(&block_group->lock);
3254
3255        return ret;
3256}
3257
3258int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3259                                   struct btrfs_root *root)
3260{
3261        struct btrfs_block_group_cache *cache;
3262        int err = 0;
3263        struct btrfs_path *path;
3264        u64 last = 0;
3265
3266        path = btrfs_alloc_path();
3267        if (!path)
3268                return -ENOMEM;
3269
3270again:
3271        while (1) {
3272                cache = btrfs_lookup_first_block_group(root->fs_info, last);
3273                while (cache) {
3274                        if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3275                                break;
3276                        cache = next_block_group(root, cache);
3277                }
3278                if (!cache) {
3279                        if (last == 0)
3280                                break;
3281                        last = 0;
3282                        continue;
3283                }
3284                err = cache_save_setup(cache, trans, path);
3285                last = cache->key.objectid + cache->key.offset;
3286                btrfs_put_block_group(cache);
3287        }
3288
3289        while (1) {
3290                if (last == 0) {
3291                        err = btrfs_run_delayed_refs(trans, root,
3292                                                     (unsigned long)-1);
3293                        if (err) /* File system offline */
3294                                goto out;
3295                }
3296
3297                cache = btrfs_lookup_first_block_group(root->fs_info, last);
3298                while (cache) {
3299                        if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3300                                btrfs_put_block_group(cache);
3301                                goto again;
3302                        }
3303
3304                        if (cache->dirty)
3305                                break;
3306                        cache = next_block_group(root, cache);
3307                }
3308                if (!cache) {
3309                        if (last == 0)
3310                                break;
3311                        last = 0;
3312                        continue;
3313                }
3314
3315                if (cache->disk_cache_state == BTRFS_DC_SETUP)
3316                        cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3317                cache->dirty = 0;
3318                last = cache->key.objectid + cache->key.offset;
3319
3320                err = write_one_cache_group(trans, root, path, cache);
3321                if (err) /* File system offline */
3322                        goto out;
3323
3324                btrfs_put_block_group(cache);
3325        }
3326
3327        while (1) {
3328                /*
3329                 * I don't think this is needed since we're just marking our
3330                 * preallocated extent as written, but just in case it can't
3331                 * hurt.
3332                 */
3333                if (last == 0) {
3334                        err = btrfs_run_delayed_refs(trans, root,
3335                                                     (unsigned long)-1);
3336                        if (err) /* File system offline */
3337                                goto out;
3338                }
3339
3340                cache = btrfs_lookup_first_block_group(root->fs_info, last);
3341                while (cache) {
3342                        /*
3343                         * Really this shouldn't happen, but it could if we
3344                         * couldn't write the entire preallocated extent and
3345                         * splitting the extent resulted in a new block.
3346                         */
3347                        if (cache->dirty) {
3348                                btrfs_put_block_group(cache);
3349                                goto again;
3350                        }
3351                        if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3352                                break;
3353                        cache = next_block_group(root, cache);
3354                }
3355                if (!cache) {
3356                        if (last == 0)
3357                                break;
3358                        last = 0;
3359                        continue;
3360                }
3361
3362                err = btrfs_write_out_cache(root, trans, cache, path);
3363
3364                /*
3365                 * If we didn't have an error then the cache state is still
3366                 * NEED_WRITE, so we can set it to WRITTEN.
3367                 */
3368                if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3369                        cache->disk_cache_state = BTRFS_DC_WRITTEN;
3370                last = cache->key.objectid + cache->key.offset;
3371                btrfs_put_block_group(cache);
3372        }
3373out:
3374
3375        btrfs_free_path(path);
3376        return err;
3377}
3378
3379int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3380{
3381        struct btrfs_block_group_cache *block_group;
3382        int readonly = 0;
3383
3384        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3385        if (!block_group || block_group->ro)
3386                readonly = 1;
3387        if (block_group)
3388                btrfs_put_block_group(block_group);
3389        return readonly;
3390}
3391
3392static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3393                             u64 total_bytes, u64 bytes_used,
3394                             struct btrfs_space_info **space_info)
3395{
3396        struct btrfs_space_info *found;
3397        int i;
3398        int factor;
3399        int ret;
3400
3401        if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3402                     BTRFS_BLOCK_GROUP_RAID10))
3403                factor = 2;
3404        else
3405                factor = 1;
3406
3407        found = __find_space_info(info, flags);
3408        if (found) {
3409                spin_lock(&found->lock);
3410                found->total_bytes += total_bytes;
3411                found->disk_total += total_bytes * factor;
3412                found->bytes_used += bytes_used;
3413                found->disk_used += bytes_used * factor;
3414                found->full = 0;
3415                spin_unlock(&found->lock);
3416                *space_info = found;
3417                return 0;
3418        }
3419        found = kzalloc(sizeof(*found), GFP_NOFS);
3420        if (!found)
3421                return -ENOMEM;
3422
3423        ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3424        if (ret) {
3425                kfree(found);
3426                return ret;
3427        }
3428
3429        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3430                INIT_LIST_HEAD(&found->block_groups[i]);
3431        init_rwsem(&found->groups_sem);
3432        spin_lock_init(&found->lock);
3433        found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3434        found->total_bytes = total_bytes;
3435        found->disk_total = total_bytes * factor;
3436        found->bytes_used = bytes_used;
3437        found->disk_used = bytes_used * factor;
3438        found->bytes_pinned = 0;
3439        found->bytes_reserved = 0;
3440        found->bytes_readonly = 0;
3441        found->bytes_may_use = 0;
3442        found->full = 0;
3443        found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3444        found->chunk_alloc = 0;
3445        found->flush = 0;
3446        init_waitqueue_head(&found->wait);
3447        *space_info = found;
3448        list_add_rcu(&found->list, &info->space_info);
3449        if (flags & BTRFS_BLOCK_GROUP_DATA)
3450                info->data_sinfo = found;
3451        return 0;
3452}
3453
3454static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3455{
3456        u64 extra_flags = chunk_to_extended(flags) &
3457                                BTRFS_EXTENDED_PROFILE_MASK;
3458
3459        write_seqlock(&fs_info->profiles_lock);
3460        if (flags & BTRFS_BLOCK_GROUP_DATA)
3461                fs_info->avail_data_alloc_bits |= extra_flags;
3462        if (flags & BTRFS_BLOCK_GROUP_METADATA)
3463                fs_info->avail_metadata_alloc_bits |= extra_flags;
3464        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3465                fs_info->avail_system_alloc_bits |= extra_flags;
3466        write_sequnlock(&fs_info->profiles_lock);
3467}
3468
3469/*
3470 * returns target flags in extended format or 0 if restripe for this
3471 * chunk_type is not in progress
3472 *
3473 * should be called with either volume_mutex or balance_lock held
3474 */
3475static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3476{
3477        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3478        u64 target = 0;
3479
3480        if (!bctl)
3481                return 0;
3482
3483        if (flags & BTRFS_BLOCK_GROUP_DATA &&
3484            bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3485                target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3486        } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3487                   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3488                target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3489        } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3490                   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491                target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3492        }
3493
3494        return target;
3495}
3496
3497/*
3498 * @flags: available profiles in extended format (see ctree.h)
3499 *
3500 * Returns reduced profile in chunk format.  If profile changing is in
3501 * progress (either running or paused) picks the target profile (if it's
3502 * already available), otherwise falls back to plain reducing.
3503 */
3504static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3505{
3506        /*
3507         * we add in the count of missing devices because we want
3508         * to make sure that any RAID levels on a degraded FS
3509         * continue to be honored.
3510         */
3511        u64 num_devices = root->fs_info->fs_devices->rw_devices +
3512                root->fs_info->fs_devices->missing_devices;
3513        u64 target;
3514        u64 tmp;
3515
3516        /*
3517         * see if restripe for this chunk_type is in progress, if so
3518         * try to reduce to the target profile
3519         */
3520        spin_lock(&root->fs_info->balance_lock);
3521        target = get_restripe_target(root->fs_info, flags);
3522        if (target) {
3523                /* pick target profile only if it's already available */
3524                if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3525                        spin_unlock(&root->fs_info->balance_lock);
3526                        return extended_to_chunk(target);
3527                }
3528        }
3529        spin_unlock(&root->fs_info->balance_lock);
3530
3531        /* First, mask out the RAID levels which aren't possible */
3532        if (num_devices == 1)
3533                flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3534                           BTRFS_BLOCK_GROUP_RAID5);
3535        if (num_devices < 3)
3536                flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3537        if (num_devices < 4)
3538                flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3539
3540        tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3541                       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3542                       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3543        flags &= ~tmp;
3544
3545        if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3546                tmp = BTRFS_BLOCK_GROUP_RAID6;
3547        else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3548                tmp = BTRFS_BLOCK_GROUP_RAID5;
3549        else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3550                tmp = BTRFS_BLOCK_GROUP_RAID10;
3551        else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3552                tmp = BTRFS_BLOCK_GROUP_RAID1;
3553        else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3554                tmp = BTRFS_BLOCK_GROUP_RAID0;
3555
3556        return extended_to_chunk(flags | tmp);
3557}
3558
3559static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3560{
3561        unsigned seq;
3562
3563        do {
3564                seq = read_seqbegin(&root->fs_info->profiles_lock);
3565
3566                if (flags & BTRFS_BLOCK_GROUP_DATA)
3567                        flags |= root->fs_info->avail_data_alloc_bits;
3568                else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3569                        flags |= root->fs_info->avail_system_alloc_bits;
3570                else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3571                        flags |= root->fs_info->avail_metadata_alloc_bits;
3572        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3573
3574        return btrfs_reduce_alloc_profile(root, flags);
3575}
3576
3577u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3578{
3579        u64 flags;
3580        u64 ret;
3581
3582        if (data)
3583                flags = BTRFS_BLOCK_GROUP_DATA;
3584        else if (root == root->fs_info->chunk_root)
3585                flags = BTRFS_BLOCK_GROUP_SYSTEM;
3586        else
3587                flags = BTRFS_BLOCK_GROUP_METADATA;
3588
3589        ret = get_alloc_profile(root, flags);
3590        return ret;
3591}
3592
3593/*
3594 * This will check the space that the inode allocates from to make sure we have
3595 * enough space for bytes.
3596 */
3597int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3598{
3599        struct btrfs_space_info *data_sinfo;
3600        struct btrfs_root *root = BTRFS_I(inode)->root;
3601        struct btrfs_fs_info *fs_info = root->fs_info;
3602        u64 used;
3603        int ret = 0, committed = 0, alloc_chunk = 1;
3604
3605        /* make sure bytes are sectorsize aligned */
3606        bytes = ALIGN(bytes, root->sectorsize);
3607
3608        if (root == root->fs_info->tree_root ||
3609            BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3610                alloc_chunk = 0;
3611                committed = 1;
3612        }
3613
3614        data_sinfo = fs_info->data_sinfo;
3615        if (!data_sinfo)
3616                goto alloc;
3617
3618again:
3619        /* make sure we have enough space to handle the data first */
3620        spin_lock(&data_sinfo->lock);
3621        used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3622                data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3623                data_sinfo->bytes_may_use;
3624
3625        if (used + bytes > data_sinfo->total_bytes) {
3626                struct btrfs_trans_handle *trans;
3627
3628                /*
3629                 * if we don't have enough free bytes in this space then we need
3630                 * to alloc a new chunk.
3631                 */
3632                if (!data_sinfo->full && alloc_chunk) {
3633                        u64 alloc_target;
3634
3635                        data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3636                        spin_unlock(&data_sinfo->lock);
3637alloc:
3638                        alloc_target = btrfs_get_alloc_profile(root, 1);
3639                        trans = btrfs_join_transaction(root);
3640                        if (IS_ERR(trans))
3641                                return PTR_ERR(trans);
3642
3643                        ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3644                                             alloc_target,
3645                                             CHUNK_ALLOC_NO_FORCE);
3646                        btrfs_end_transaction(trans, root);
3647                        if (ret < 0) {
3648                                if (ret != -ENOSPC)
3649                                        return ret;
3650                                else
3651                                        goto commit_trans;
3652                        }
3653
3654                        if (!data_sinfo)
3655                                data_sinfo = fs_info->data_sinfo;
3656
3657                        goto again;
3658                }
3659
3660                /*
3661                 * If we don't have enough pinned space to deal with this
3662                 * allocation don't bother committing the transaction.
3663                 */
3664                if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3665                                           bytes) < 0)
3666                        committed = 1;
3667                spin_unlock(&data_sinfo->lock);
3668
3669                /* commit the current transaction and try again */
3670commit_trans:
3671                if (!committed &&
3672                    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3673                        committed = 1;
3674
3675                        trans = btrfs_join_transaction(root);
3676                        if (IS_ERR(trans))
3677                                return PTR_ERR(trans);
3678                        ret = btrfs_commit_transaction(trans, root);
3679                        if (ret)
3680                                return ret;
3681                        goto again;
3682                }
3683
3684                return -ENOSPC;
3685        }
3686        data_sinfo->bytes_may_use += bytes;
3687        trace_btrfs_space_reservation(root->fs_info, "space_info",
3688                                      data_sinfo->flags, bytes, 1);
3689        spin_unlock(&data_sinfo->lock);
3690
3691        return 0;
3692}
3693
3694/*
3695 * Called if we need to clear a data reservation for this inode.
3696 */
3697void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3698{
3699        struct btrfs_root *root = BTRFS_I(inode)->root;
3700        struct btrfs_space_info *data_sinfo;
3701
3702        /* make sure bytes are sectorsize aligned */
3703        bytes = ALIGN(bytes, root->sectorsize);
3704
3705        data_sinfo = root->fs_info->data_sinfo;
3706        spin_lock(&data_sinfo->lock);
3707        WARN_ON(data_sinfo->bytes_may_use < bytes);
3708        data_sinfo->bytes_may_use -= bytes;
3709        trace_btrfs_space_reservation(root->fs_info, "space_info",
3710                                      data_sinfo->flags, bytes, 0);
3711        spin_unlock(&data_sinfo->lock);
3712}
3713
3714static void force_metadata_allocation(struct btrfs_fs_info *info)
3715{
3716        struct list_head *head = &info->space_info;
3717        struct btrfs_space_info *found;
3718
3719        rcu_read_lock();
3720        list_for_each_entry_rcu(found, head, list) {
3721                if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3722                        found->force_alloc = CHUNK_ALLOC_FORCE;
3723        }
3724        rcu_read_unlock();
3725}
3726
3727static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3728{
3729        return (global->size << 1);
3730}
3731
3732static int should_alloc_chunk(struct btrfs_root *root,
3733                              struct btrfs_space_info *sinfo, int force)
3734{
3735        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3736        u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3737        u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3738        u64 thresh;
3739
3740        if (force == CHUNK_ALLOC_FORCE)
3741                return 1;
3742
3743        /*
3744         * We need to take into account the global rsv because for all intents
3745         * and purposes it's used space.  Don't worry about locking the
3746         * global_rsv, it doesn't change except when the transaction commits.
3747         */
3748        if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3749                num_allocated += calc_global_rsv_need_space(global_rsv);
3750
3751        /*
3752         * in limited mode, we want to have some free space up to
3753         * about 1% of the FS size.
3754         */
3755        if (force == CHUNK_ALLOC_LIMITED) {
3756                thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3757                thresh = max_t(u64, 64 * 1024 * 1024,
3758                               div_factor_fine(thresh, 1));
3759
3760                if (num_bytes - num_allocated < thresh)
3761                        return 1;
3762        }
3763
3764        if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3765                return 0;
3766        return 1;
3767}
3768
3769static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3770{
3771        u64 num_dev;
3772
3773        if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3774                    BTRFS_BLOCK_GROUP_RAID0 |
3775                    BTRFS_BLOCK_GROUP_RAID5 |
3776                    BTRFS_BLOCK_GROUP_RAID6))
3777                num_dev = root->fs_info->fs_devices->rw_devices;
3778        else if (type & BTRFS_BLOCK_GROUP_RAID1)
3779                num_dev = 2;
3780        else
3781                num_dev = 1;    /* DUP or single */
3782
3783        /* metadata for updaing devices and chunk tree */
3784        return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3785}
3786
3787static void check_system_chunk(struct btrfs_trans_handle *trans,
3788                               struct btrfs_root *root, u64 type)
3789{
3790        struct btrfs_space_info *info;
3791        u64 left;
3792        u64 thresh;
3793
3794        info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3795        spin_lock(&info->lock);
3796        left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3797                info->bytes_reserved - info->bytes_readonly;
3798        spin_unlock(&info->lock);
3799
3800        thresh = get_system_chunk_thresh(root, type);
3801        if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3802                btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3803                        left, thresh, type);
3804                dump_space_info(info, 0, 0);
3805        }
3806
3807        if (left < thresh) {
3808                u64 flags;
3809
3810                flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3811                btrfs_alloc_chunk(trans, root, flags);
3812        }
3813}
3814
3815static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3816                          struct btrfs_root *extent_root, u64 flags, int force)
3817{
3818        struct btrfs_space_info *space_info;
3819        struct btrfs_fs_info *fs_info = extent_root->fs_info;
3820        int wait_for_alloc = 0;
3821        int ret = 0;
3822
3823        /* Don't re-enter if we're already allocating a chunk */
3824        if (trans->allocating_chunk)
3825                return -ENOSPC;
3826
3827        space_info = __find_space_info(extent_root->fs_info, flags);
3828        if (!space_info) {
3829                ret = update_space_info(extent_root->fs_info, flags,
3830                                        0, 0, &space_info);
3831                BUG_ON(ret); /* -ENOMEM */
3832        }
3833        BUG_ON(!space_info); /* Logic error */
3834
3835again:
3836        spin_lock(&space_info->lock);
3837        if (force < space_info->force_alloc)
3838                force = space_info->force_alloc;
3839        if (space_info->full) {
3840                if (should_alloc_chunk(extent_root, space_info, force))
3841                        ret = -ENOSPC;
3842                else
3843                        ret = 0;
3844                spin_unlock(&space_info->lock);
3845                return ret;
3846        }
3847
3848        if (!should_alloc_chunk(extent_root, space_info, force)) {
3849                spin_unlock(&space_info->lock);
3850                return 0;
3851        } else if (space_info->chunk_alloc) {
3852                wait_for_alloc = 1;
3853        } else {
3854                space_info->chunk_alloc = 1;
3855        }
3856
3857        spin_unlock(&space_info->lock);
3858
3859        mutex_lock(&fs_info->chunk_mutex);
3860
3861        /*
3862         * The chunk_mutex is held throughout the entirety of a chunk
3863         * allocation, so once we've acquired the chunk_mutex we know that the
3864         * other guy is done and we need to recheck and see if we should
3865         * allocate.
3866         */
3867        if (wait_for_alloc) {
3868                mutex_unlock(&fs_info->chunk_mutex);
3869                wait_for_alloc = 0;
3870                goto again;
3871        }
3872
3873        trans->allocating_chunk = true;
3874
3875        /*
3876         * If we have mixed data/metadata chunks we want to make sure we keep
3877         * allocating mixed chunks instead of individual chunks.
3878         */
3879        if (btrfs_mixed_space_info(space_info))
3880                flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3881
3882        /*
3883         * if we're doing a data chunk, go ahead and make sure that
3884         * we keep a reasonable number of metadata chunks allocated in the
3885         * FS as well.
3886         */
3887        if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3888                fs_info->data_chunk_allocations++;
3889                if (!(fs_info->data_chunk_allocations %
3890                      fs_info->metadata_ratio))
3891                        force_metadata_allocation(fs_info);
3892        }
3893
3894        /*
3895         * Check if we have enough space in SYSTEM chunk because we may need
3896         * to update devices.
3897         */
3898        check_system_chunk(trans, extent_root, flags);
3899
3900        ret = btrfs_alloc_chunk(trans, extent_root, flags);
3901        trans->allocating_chunk = false;
3902
3903        spin_lock(&space_info->lock);
3904        if (ret < 0 && ret != -ENOSPC)
3905                goto out;
3906        if (ret)
3907                space_info->full = 1;
3908        else
3909                ret = 1;
3910
3911        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3912out:
3913        space_info->chunk_alloc = 0;
3914        spin_unlock(&space_info->lock);
3915        mutex_unlock(&fs_info->chunk_mutex);
3916        return ret;
3917}
3918
3919static int can_overcommit(struct btrfs_root *root,
3920                          struct btrfs_space_info *space_info, u64 bytes,
3921                          enum btrfs_reserve_flush_enum flush)
3922{
3923        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3924        u64 profile = btrfs_get_alloc_profile(root, 0);
3925        u64 space_size;
3926        u64 avail;
3927        u64 used;
3928
3929        used = space_info->bytes_used + space_info->bytes_reserved +
3930                space_info->bytes_pinned + space_info->bytes_readonly;
3931
3932        /*
3933         * We only want to allow over committing if we have lots of actual space
3934         * free, but if we don't have enough space to handle the global reserve
3935         * space then we could end up having a real enospc problem when trying
3936         * to allocate a chunk or some other such important allocation.
3937         */
3938        spin_lock(&global_rsv->lock);
3939        space_size = calc_global_rsv_need_space(global_rsv);
3940        spin_unlock(&global_rsv->lock);
3941        if (used + space_size >= space_info->total_bytes)
3942                return 0;
3943
3944        used += space_info->bytes_may_use;
3945
3946        spin_lock(&root->fs_info->free_chunk_lock);
3947        avail = root->fs_info->free_chunk_space;
3948        spin_unlock(&root->fs_info->free_chunk_lock);
3949
3950        /*
3951         * If we have dup, raid1 or raid10 then only half of the free
3952         * space is actually useable.  For raid56, the space info used
3953         * doesn't include the parity drive, so we don't have to
3954         * change the math
3955         */
3956        if (profile & (BTRFS_BLOCK_GROUP_DUP |
3957                       BTRFS_BLOCK_GROUP_RAID1 |
3958                       BTRFS_BLOCK_GROUP_RAID10))
3959                avail >>= 1;
3960
3961        /*
3962         * If we aren't flushing all things, let us overcommit up to
3963         * 1/2th of the space. If we can flush, don't let us overcommit
3964         * too much, let it overcommit up to 1/8 of the space.
3965         */
3966        if (flush == BTRFS_RESERVE_FLUSH_ALL)
3967                avail >>= 3;
3968        else
3969                avail >>= 1;
3970
3971        if (used + bytes < space_info->total_bytes + avail)
3972                return 1;
3973        return 0;
3974}
3975
3976static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3977                                         unsigned long nr_pages)
3978{
3979        struct super_block *sb = root->fs_info->sb;
3980
3981        if (down_read_trylock(&sb->s_umount)) {
3982                writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3983                up_read(&sb->s_umount);
3984        } else {
3985                /*
3986                 * We needn't worry the filesystem going from r/w to r/o though
3987                 * we don't acquire ->s_umount mutex, because the filesystem
3988                 * should guarantee the delalloc inodes list be empty after
3989                 * the filesystem is readonly(all dirty pages are written to
3990                 * the disk).
3991                 */
3992                btrfs_start_all_delalloc_inodes(root->fs_info, 0);
3993                if (!current->journal_info)
3994                        btrfs_wait_all_ordered_extents(root->fs_info);
3995        }
3996}
3997
3998/*
3999 * shrink metadata reservation for delalloc
4000 */
4001static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4002                            bool wait_ordered)
4003{
4004        struct btrfs_block_rsv *block_rsv;
4005        struct btrfs_space_info *space_info;
4006        struct btrfs_trans_handle *trans;
4007        u64 delalloc_bytes;
4008        u64 max_reclaim;
4009        long time_left;
4010        unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4011        int loops = 0;
4012        enum btrfs_reserve_flush_enum flush;
4013
4014        trans = (struct btrfs_trans_handle *)current->journal_info;
4015        block_rsv = &root->fs_info->delalloc_block_rsv;
4016        space_info = block_rsv->space_info;
4017
4018        smp_mb();
4019        delalloc_bytes = percpu_counter_sum_positive(
4020                                                &root->fs_info->delalloc_bytes);
4021        if (delalloc_bytes == 0) {
4022                if (trans)
4023                        return;
4024                btrfs_wait_all_ordered_extents(root->fs_info);
4025                return;
4026        }
4027
4028        while (delalloc_bytes && loops < 3) {
4029                max_reclaim = min(delalloc_bytes, to_reclaim);
4030                nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4031                btrfs_writeback_inodes_sb_nr(root, nr_pages);
4032                /*
4033                 * We need to wait for the async pages to actually start before
4034                 * we do anything.
4035                 */
4036                wait_event(root->fs_info->async_submit_wait,
4037                           !atomic_read(&root->fs_info->async_delalloc_pages));
4038
4039                if (!trans)
4040                        flush = BTRFS_RESERVE_FLUSH_ALL;
4041                else
4042                        flush = BTRFS_RESERVE_NO_FLUSH;
4043                spin_lock(&space_info->lock);
4044                if (can_overcommit(root, space_info, orig, flush)) {
4045                        spin_unlock(&space_info->lock);
4046                        break;
4047                }
4048                spin_unlock(&space_info->lock);
4049
4050                loops++;
4051                if (wait_ordered && !trans) {
4052                        btrfs_wait_all_ordered_extents(root->fs_info);
4053                } else {
4054                        time_left = schedule_timeout_killable(1);
4055                        if (time_left)
4056                                break;
4057                }
4058                smp_mb();
4059                delalloc_bytes = percpu_counter_sum_positive(
4060                                                &root->fs_info->delalloc_bytes);
4061        }
4062}
4063
4064/**
4065 * maybe_commit_transaction - possibly commit the transaction if its ok to
4066 * @root - the root we're allocating for
4067 * @bytes - the number of bytes we want to reserve
4068 * @force - force the commit
4069 *
4070 * This will check to make sure that committing the transaction will actually
4071 * get us somewhere and then commit the transaction if it does.  Otherwise it
4072 * will return -ENOSPC.
4073 */
4074static int may_commit_transaction(struct btrfs_root *root,
4075                                  struct btrfs_space_info *space_info,
4076                                  u64 bytes, int force)
4077{
4078        struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4079        struct btrfs_trans_handle *trans;
4080
4081        trans = (struct btrfs_trans_handle *)current->journal_info;
4082        if (trans)
4083                return -EAGAIN;
4084
4085        if (force)
4086                goto commit;
4087
4088        /* See if there is enough pinned space to make this reservation */
4089        spin_lock(&space_info->lock);
4090        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4091                                   bytes) >= 0) {
4092                spin_unlock(&space_info->lock);
4093                goto commit;
4094        }
4095        spin_unlock(&space_info->lock);
4096
4097        /*
4098         * See if there is some space in the delayed insertion reservation for
4099         * this reservation.
4100         */
4101        if (space_info != delayed_rsv->space_info)
4102                return -ENOSPC;
4103
4104        spin_lock(&space_info->lock);
4105        spin_lock(&delayed_rsv->lock);
4106        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4107                                   bytes - delayed_rsv->size) >= 0) {
4108                spin_unlock(&delayed_rsv->lock);
4109                spin_unlock(&space_info->lock);
4110                return -ENOSPC;
4111        }
4112        spin_unlock(&delayed_rsv->lock);
4113        spin_unlock(&space_info->lock);
4114
4115commit:
4116        trans = btrfs_join_transaction(root);
4117        if (IS_ERR(trans))
4118                return -ENOSPC;
4119
4120        return btrfs_commit_transaction(trans, root);
4121}
4122
4123enum flush_state {
4124        FLUSH_DELAYED_ITEMS_NR  =       1,
4125        FLUSH_DELAYED_ITEMS     =       2,
4126        FLUSH_DELALLOC          =       3,
4127        FLUSH_DELALLOC_WAIT     =       4,
4128        ALLOC_CHUNK             =       5,
4129        COMMIT_TRANS            =       6,
4130};
4131
4132static int flush_space(struct btrfs_root *root,
4133                       struct btrfs_space_info *space_info, u64 num_bytes,
4134                       u64 orig_bytes, int state)
4135{
4136        struct btrfs_trans_handle *trans;
4137        int nr;
4138        int ret = 0;
4139
4140        switch (state) {
4141        case FLUSH_DELAYED_ITEMS_NR:
4142        case FLUSH_DELAYED_ITEMS:
4143                if (state == FLUSH_DELAYED_ITEMS_NR) {
4144                        u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4145
4146                        nr = (int)div64_u64(num_bytes, bytes);
4147                        if (!nr)
4148                                nr = 1;
4149                        nr *= 2;
4150                } else {
4151                        nr = -1;
4152                }
4153                trans = btrfs_join_transaction(root);
4154                if (IS_ERR(trans)) {
4155                        ret = PTR_ERR(trans);
4156                        break;
4157                }
4158                ret = btrfs_run_delayed_items_nr(trans, root, nr);
4159                btrfs_end_transaction(trans, root);
4160                break;
4161        case FLUSH_DELALLOC:
4162        case FLUSH_DELALLOC_WAIT:
4163                shrink_delalloc(root, num_bytes, orig_bytes,
4164                                state == FLUSH_DELALLOC_WAIT);
4165                break;
4166        case ALLOC_CHUNK:
4167                trans = btrfs_join_transaction(root);
4168                if (IS_ERR(trans)) {
4169                        ret = PTR_ERR(trans);
4170                        break;
4171                }
4172                ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4173                                     btrfs_get_alloc_profile(root, 0),
4174                                     CHUNK_ALLOC_NO_FORCE);
4175                btrfs_end_transaction(trans, root);
4176                if (ret == -ENOSPC)
4177                        ret = 0;
4178                break;
4179        case COMMIT_TRANS:
4180                ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4181                break;
4182        default:
4183                ret = -ENOSPC;
4184                break;
4185        }
4186
4187        return ret;
4188}
4189/**
4190 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4191 * @root - the root we're allocating for
4192 * @block_rsv - the block_rsv we're allocating for
4193 * @orig_bytes - the number of bytes we want
4194 * @flush - whether or not we can flush to make our reservation
4195 *
4196 * This will reserve orgi_bytes number of bytes from the space info associated
4197 * with the block_rsv.  If there is not enough space it will make an attempt to
4198 * flush out space to make room.  It will do this by flushing delalloc if
4199 * possible or committing the transaction.  If flush is 0 then no attempts to
4200 * regain reservations will be made and this will fail if there is not enough
4201 * space already.
4202 */
4203static int reserve_metadata_bytes(struct btrfs_root *root,
4204                                  struct btrfs_block_rsv *block_rsv,
4205                                  u64 orig_bytes,
4206                                  enum btrfs_reserve_flush_enum flush)
4207{
4208        struct btrfs_space_info *space_info = block_rsv->space_info;
4209        u64 used;
4210        u64 num_bytes = orig_bytes;
4211        int flush_state = FLUSH_DELAYED_ITEMS_NR;
4212        int ret = 0;
4213        bool flushing = false;
4214
4215again:
4216        ret = 0;
4217        spin_lock(&space_info->lock);
4218        /*
4219         * We only want to wait if somebody other than us is flushing and we
4220         * are actually allowed to flush all things.
4221         */
4222        while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4223               space_info->flush) {
4224                spin_unlock(&space_info->lock);
4225                /*
4226                 * If we have a trans handle we can't wait because the flusher
4227                 * may have to commit the transaction, which would mean we would
4228                 * deadlock since we are waiting for the flusher to finish, but
4229                 * hold the current transaction open.
4230                 */
4231                if (current->journal_info)
4232                        return -EAGAIN;
4233                ret = wait_event_killable(space_info->wait, !space_info->flush);
4234                /* Must have been killed, return */
4235                if (ret)
4236                        return -EINTR;
4237
4238                spin_lock(&space_info->lock);
4239        }
4240
4241        ret = -ENOSPC;
4242        used = space_info->bytes_used + space_info->bytes_reserved +
4243                space_info->bytes_pinned + space_info->bytes_readonly +
4244                space_info->bytes_may_use;
4245
4246        /*
4247         * The idea here is that we've not already over-reserved the block group
4248         * then we can go ahead and save our reservation first and then start
4249         * flushing if we need to.  Otherwise if we've already overcommitted
4250         * lets start flushing stuff first and then come back and try to make
4251         * our reservation.
4252         */
4253        if (used <= space_info->total_bytes) {
4254                if (used + orig_bytes <= space_info->total_bytes) {
4255                        space_info->bytes_may_use += orig_bytes;
4256                        trace_btrfs_space_reservation(root->fs_info,
4257                                "space_info", space_info->flags, orig_bytes, 1);
4258                        ret = 0;
4259                } else {
4260                        /*
4261                         * Ok set num_bytes to orig_bytes since we aren't
4262                         * overocmmitted, this way we only try and reclaim what
4263                         * we need.
4264                         */
4265                        num_bytes = orig_bytes;
4266                }
4267        } else {
4268                /*
4269                 * Ok we're over committed, set num_bytes to the overcommitted
4270                 * amount plus the amount of bytes that we need for this
4271                 * reservation.
4272                 */
4273                num_bytes = used - space_info->total_bytes +
4274                        (orig_bytes * 2);
4275        }
4276
4277        if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4278                space_info->bytes_may_use += orig_bytes;
4279                trace_btrfs_space_reservation(root->fs_info, "space_info",
4280                                              space_info->flags, orig_bytes,
4281                                              1);
4282                ret = 0;
4283        }
4284
4285        /*
4286         * Couldn't make our reservation, save our place so while we're trying
4287         * to reclaim space we can actually use it instead of somebody else
4288         * stealing it from us.
4289         *
4290         * We make the other tasks wait for the flush only when we can flush
4291         * all things.
4292         */
4293        if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4294                flushing = true;
4295                space_info->flush = 1;
4296        }
4297
4298        spin_unlock(&space_info->lock);
4299
4300        if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4301                goto out;
4302
4303        ret = flush_space(root, space_info, num_bytes, orig_bytes,
4304                          flush_state);
4305        flush_state++;
4306
4307        /*
4308         * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4309         * would happen. So skip delalloc flush.
4310         */
4311        if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4312            (flush_state == FLUSH_DELALLOC ||
4313             flush_state == FLUSH_DELALLOC_WAIT))
4314                flush_state = ALLOC_CHUNK;
4315
4316        if (!ret)
4317                goto again;
4318        else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4319                 flush_state < COMMIT_TRANS)
4320                goto again;
4321        else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4322                 flush_state <= COMMIT_TRANS)
4323                goto again;
4324
4325out:
4326        if (ret == -ENOSPC &&
4327            unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4328                struct btrfs_block_rsv *global_rsv =
4329                        &root->fs_info->global_block_rsv;
4330
4331                if (block_rsv != global_rsv &&
4332                    !block_rsv_use_bytes(global_rsv, orig_bytes))
4333                        ret = 0;
4334        }
4335        if (flushing) {
4336                spin_lock(&space_info->lock);
4337                space_info->flush = 0;
4338                wake_up_all(&space_info->wait);
4339                spin_unlock(&space_info->lock);
4340        }
4341        return ret;
4342}
4343
4344static struct btrfs_block_rsv *get_block_rsv(
4345                                        const struct btrfs_trans_handle *trans,
4346                                        const struct btrfs_root *root)
4347{
4348        struct btrfs_block_rsv *block_rsv = NULL;
4349
4350        if (root->ref_cows)
4351                block_rsv = trans->block_rsv;
4352
4353        if (root == root->fs_info->csum_root && trans->adding_csums)
4354                block_rsv = trans->block_rsv;
4355
4356        if (root == root->fs_info->uuid_root)
4357                block_rsv = trans->block_rsv;
4358
4359        if (!block_rsv)
4360                block_rsv = root->block_rsv;
4361
4362        if (!block_rsv)
4363                block_rsv = &root->fs_info->empty_block_rsv;
4364
4365        return block_rsv;
4366}
4367
4368static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4369                               u64 num_bytes)
4370{
4371        int ret = -ENOSPC;
4372        spin_lock(&block_rsv->lock);
4373        if (block_rsv->reserved >= num_bytes) {
4374                block_rsv->reserved -= num_bytes;
4375                if (block_rsv->reserved < block_rsv->size)
4376                        block_rsv->full = 0;
4377                ret = 0;
4378        }
4379        spin_unlock(&block_rsv->lock);
4380        return ret;
4381}
4382
4383static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4384                                u64 num_bytes, int update_size)
4385{
4386        spin_lock(&block_rsv->lock);
4387        block_rsv->reserved += num_bytes;
4388        if (update_size)
4389                block_rsv->size += num_bytes;
4390        else if (block_rsv->reserved >= block_rsv->size)
4391                block_rsv->full = 1;
4392        spin_unlock(&block_rsv->lock);
4393}
4394
4395int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4396                             struct btrfs_block_rsv *dest, u64 num_bytes,
4397                             int min_factor)
4398{
4399        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4400        u64 min_bytes;
4401
4402        if (global_rsv->space_info != dest->space_info)
4403                return -ENOSPC;
4404
4405        spin_lock(&global_rsv->lock);
4406        min_bytes = div_factor(global_rsv->size, min_factor);
4407        if (global_rsv->reserved < min_bytes + num_bytes) {
4408                spin_unlock(&global_rsv->lock);
4409                return -ENOSPC;
4410        }
4411        global_rsv->reserved -= num_bytes;
4412        if (global_rsv->reserved < global_rsv->size)
4413                global_rsv->full = 0;
4414        spin_unlock(&global_rsv->lock);
4415
4416        block_rsv_add_bytes(dest, num_bytes, 1);
4417        return 0;
4418}
4419
4420static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4421                                    struct btrfs_block_rsv *block_rsv,
4422                                    struct btrfs_block_rsv *dest, u64 num_bytes)
4423{
4424        struct btrfs_space_info *space_info = block_rsv->space_info;
4425
4426        spin_lock(&block_rsv->lock);
4427        if (num_bytes == (u64)-1)
4428                num_bytes = block_rsv->size;
4429        block_rsv->size -= num_bytes;
4430        if (block_rsv->reserved >= block_rsv->size) {
4431                num_bytes = block_rsv->reserved - block_rsv->size;
4432                block_rsv->reserved = block_rsv->size;
4433                block_rsv->full = 1;
4434        } else {
4435                num_bytes = 0;
4436        }
4437        spin_unlock(&block_rsv->lock);
4438
4439        if (num_bytes > 0) {
4440                if (dest) {
4441                        spin_lock(&dest->lock);
4442                        if (!dest->full) {
4443                                u64 bytes_to_add;
4444
4445                                bytes_to_add = dest->size - dest->reserved;
4446                                bytes_to_add = min(num_bytes, bytes_to_add);
4447                                dest->reserved += bytes_to_add;
4448                                if (dest->reserved >= dest->size)
4449                                        dest->full = 1;
4450                                num_bytes -= bytes_to_add;
4451                        }
4452                        spin_unlock(&dest->lock);
4453                }
4454                if (num_bytes) {
4455                        spin_lock(&space_info->lock);
4456                        space_info->bytes_may_use -= num_bytes;
4457                        trace_btrfs_space_reservation(fs_info, "space_info",
4458                                        space_info->flags, num_bytes, 0);
4459                        spin_unlock(&space_info->lock);
4460                }
4461        }
4462}
4463
4464static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4465                                   struct btrfs_block_rsv *dst, u64 num_bytes)
4466{
4467        int ret;
4468
4469        ret = block_rsv_use_bytes(src, num_bytes);
4470        if (ret)
4471                return ret;
4472
4473        block_rsv_add_bytes(dst, num_bytes, 1);
4474        return 0;
4475}
4476
4477void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4478{
4479        memset(rsv, 0, sizeof(*rsv));
4480        spin_lock_init(&rsv->lock);
4481        rsv->type = type;
4482}
4483
4484struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4485                                              unsigned short type)
4486{
4487        struct btrfs_block_rsv *block_rsv;
4488        struct btrfs_fs_info *fs_info = root->fs_info;
4489
4490        block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4491        if (!block_rsv)
4492                return NULL;
4493
4494        btrfs_init_block_rsv(block_rsv, type);
4495        block_rsv->space_info = __find_space_info(fs_info,
4496                                                  BTRFS_BLOCK_GROUP_METADATA);
4497        return block_rsv;
4498}
4499
4500void btrfs_free_block_rsv(struct btrfs_root *root,
4501                          struct btrfs_block_rsv *rsv)
4502{
4503        if (!rsv)
4504                return;
4505        btrfs_block_rsv_release(root, rsv, (u64)-1);
4506        kfree(rsv);
4507}
4508
4509int btrfs_block_rsv_add(struct btrfs_root *root,
4510                        struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4511                        enum btrfs_reserve_flush_enum flush)
4512{
4513        int ret;
4514
4515        if (num_bytes == 0)
4516                return 0;
4517
4518        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4519        if (!ret) {
4520                block_rsv_add_bytes(block_rsv, num_bytes, 1);
4521                return 0;
4522        }
4523
4524        return ret;
4525}
4526
4527int btrfs_block_rsv_check(struct btrfs_root *root,
4528                          struct btrfs_block_rsv *block_rsv, int min_factor)
4529{
4530        u64 num_bytes = 0;
4531        int ret = -ENOSPC;
4532
4533        if (!block_rsv)
4534                return 0;
4535
4536        spin_lock(&block_rsv->lock);
4537        num_bytes = div_factor(block_rsv->size, min_factor);
4538        if (block_rsv->reserved >= num_bytes)
4539                ret = 0;
4540        spin_unlock(&block_rsv->lock);
4541
4542        return ret;
4543}
4544
4545int btrfs_block_rsv_refill(struct btrfs_root *root,
4546                           struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4547                           enum btrfs_reserve_flush_enum flush)
4548{
4549        u64 num_bytes = 0;
4550        int ret = -ENOSPC;
4551
4552        if (!block_rsv)
4553                return 0;
4554
4555        spin_lock(&block_rsv->lock);
4556        num_bytes = min_reserved;
4557        if (block_rsv->reserved >= num_bytes)
4558                ret = 0;
4559        else
4560                num_bytes -= block_rsv->reserved;
4561        spin_unlock(&block_rsv->lock);
4562
4563        if (!ret)
4564                return 0;
4565
4566        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4567        if (!ret) {
4568                block_rsv_add_bytes(block_rsv, num_bytes, 0);
4569                return 0;
4570        }
4571
4572        return ret;
4573}
4574
4575int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4576                            struct btrfs_block_rsv *dst_rsv,
4577                            u64 num_bytes)
4578{
4579        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4580}
4581
4582void btrfs_block_rsv_release(struct btrfs_root *root,
4583                             struct btrfs_block_rsv *block_rsv,
4584                             u64 num_bytes)
4585{
4586        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4587        if (global_rsv->full || global_rsv == block_rsv ||
4588            block_rsv->space_info != global_rsv->space_info)
4589                global_rsv = NULL;
4590        block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4591                                num_bytes);
4592}
4593
4594/*
4595 * helper to calculate size of global block reservation.
4596 * the desired value is sum of space used by extent tree,
4597 * checksum tree and root tree
4598 */
4599static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4600{
4601        struct btrfs_space_info *sinfo;
4602        u64 num_bytes;
4603        u64 meta_used;
4604        u64 data_used;
4605        int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4606
4607        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4608        spin_lock(&sinfo->lock);
4609        data_used = sinfo->bytes_used;
4610        spin_unlock(&sinfo->lock);
4611
4612        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4613        spin_lock(&sinfo->lock);
4614        if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4615                data_used = 0;
4616        meta_used = sinfo->bytes_used;
4617        spin_unlock(&sinfo->lock);
4618
4619        num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4620                    csum_size * 2;
4621        num_bytes += div64_u64(data_used + meta_used, 50);
4622
4623        if (num_bytes * 3 > meta_used)
4624                num_bytes = div64_u64(meta_used, 3);
4625
4626        return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4627}
4628
4629static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4630{
4631        struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4632        struct btrfs_space_info *sinfo = block_rsv->space_info;
4633        u64 num_bytes;
4634
4635        num_bytes = calc_global_metadata_size(fs_info);
4636
4637        spin_lock(&sinfo->lock);
4638        spin_lock(&block_rsv->lock);
4639
4640        block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4641
4642        num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4643                    sinfo->bytes_reserved + sinfo->bytes_readonly +
4644                    sinfo->bytes_may_use;
4645
4646        if (sinfo->total_bytes > num_bytes) {
4647                num_bytes = sinfo->total_bytes - num_bytes;
4648                block_rsv->reserved += num_bytes;
4649                sinfo->bytes_may_use += num_bytes;
4650                trace_btrfs_space_reservation(fs_info, "space_info",
4651                                      sinfo->flags, num_bytes, 1);
4652        }
4653
4654        if (block_rsv->reserved >= block_rsv->size) {
4655                num_bytes = block_rsv->reserved - block_rsv->size;
4656                sinfo->bytes_may_use -= num_bytes;
4657                trace_btrfs_space_reservation(fs_info, "space_info",
4658                                      sinfo->flags, num_bytes, 0);
4659                block_rsv->reserved = block_rsv->size;
4660                block_rsv->full = 1;
4661        }
4662
4663        spin_unlock(&block_rsv->lock);
4664        spin_unlock(&sinfo->lock);
4665}
4666
4667static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4668{
4669        struct btrfs_space_info *space_info;
4670
4671        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4672        fs_info->chunk_block_rsv.space_info = space_info;
4673
4674        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4675        fs_info->global_block_rsv.space_info = space_info;
4676        fs_info->delalloc_block_rsv.space_info = space_info;
4677        fs_info->trans_block_rsv.space_info = space_info;
4678        fs_info->empty_block_rsv.space_info = space_info;
4679        fs_info->delayed_block_rsv.space_info = space_info;
4680
4681        fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4682        fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4683        fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4684        fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4685        if (fs_info->quota_root)
4686                fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4687        fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4688
4689        update_global_block_rsv(fs_info);
4690}
4691
4692static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4693{
4694        block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4695                                (u64)-1);
4696        WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4697        WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4698        WARN_ON(fs_info->trans_block_rsv.size > 0);
4699        WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4700        WARN_ON(fs_info->chunk_block_rsv.size > 0);
4701        WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4702        WARN_ON(fs_info->delayed_block_rsv.size > 0);
4703        WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4704}
4705
4706void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4707                                  struct btrfs_root *root)
4708{
4709        if (!trans->block_rsv)
4710                return;
4711
4712        if (!trans->bytes_reserved)
4713                return;
4714
4715        trace_btrfs_space_reservation(root->fs_info, "transaction",
4716                                      trans->transid, trans->bytes_reserved, 0);
4717        btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4718        trans->bytes_reserved = 0;
4719}
4720
4721/* Can only return 0 or -ENOSPC */
4722int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4723                                  struct inode *inode)
4724{
4725        struct btrfs_root *root = BTRFS_I(inode)->root;
4726        struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4727        struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4728
4729        /*
4730         * We need to hold space in order to delete our orphan item once we've
4731         * added it, so this takes the reservation so we can release it later
4732         * when we are truly done with the orphan item.
4733         */
4734        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4735        trace_btrfs_space_reservation(root->fs_info, "orphan",
4736                                      btrfs_ino(inode), num_bytes, 1);
4737        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4738}
4739
4740void btrfs_orphan_release_metadata(struct inode *inode)
4741{
4742        struct btrfs_root *root = BTRFS_I(inode)->root;
4743        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4744        trace_btrfs_space_reservation(root->fs_info, "orphan",
4745                                      btrfs_ino(inode), num_bytes, 0);
4746        btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4747}
4748
4749/*
4750 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4751 * root: the root of the parent directory
4752 * rsv: block reservation
4753 * items: the number of items that we need do reservation
4754 * qgroup_reserved: used to return the reserved size in qgroup
4755 *
4756 * This function is used to reserve the space for snapshot/subvolume
4757 * creation and deletion. Those operations are different with the
4758 * common file/directory operations, they change two fs/file trees
4759 * and root tree, the number of items that the qgroup reserves is
4760 * different with the free space reservation. So we can not use
4761 * the space reseravtion mechanism in start_transaction().
4762 */
4763int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4764                                     struct btrfs_block_rsv *rsv,
4765                                     int items,
4766                                     u64 *qgroup_reserved,
4767                                     bool use_global_rsv)
4768{
4769        u64 num_bytes;
4770        int ret;
4771        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4772
4773        if (root->fs_info->quota_enabled) {
4774                /* One for parent inode, two for dir entries */
4775                num_bytes = 3 * root->leafsize;
4776                ret = btrfs_qgroup_reserve(root, num_bytes);
4777                if (ret)
4778                        return ret;
4779        } else {
4780                num_bytes = 0;
4781        }
4782
4783        *qgroup_reserved = num_bytes;
4784
4785        num_bytes = btrfs_calc_trans_metadata_size(root, items);
4786        rsv->space_info = __find_space_info(root->fs_info,
4787                                            BTRFS_BLOCK_GROUP_METADATA);
4788        ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4789                                  BTRFS_RESERVE_FLUSH_ALL);
4790
4791        if (ret == -ENOSPC && use_global_rsv)
4792                ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4793
4794        if (ret) {
4795                if (*qgroup_reserved)
4796                        btrfs_qgroup_free(root, *qgroup_reserved);
4797        }
4798
4799        return ret;
4800}
4801
4802void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4803                                      struct btrfs_block_rsv *rsv,
4804                                      u64 qgroup_reserved)
4805{
4806        btrfs_block_rsv_release(root, rsv, (u64)-1);
4807        if (qgroup_reserved)
4808                btrfs_qgroup_free(root, qgroup_reserved);
4809}
4810
4811/**
4812 * drop_outstanding_extent - drop an outstanding extent
4813 * @inode: the inode we're dropping the extent for
4814 *
4815 * This is called when we are freeing up an outstanding extent, either called
4816 * after an error or after an extent is written.  This will return the number of
4817 * reserved extents that need to be freed.  This must be called with
4818 * BTRFS_I(inode)->lock held.
4819 */
4820static unsigned drop_outstanding_extent(struct inode *inode)
4821{
4822        unsigned drop_inode_space = 0;
4823        unsigned dropped_extents = 0;
4824
4825        BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4826        BTRFS_I(inode)->outstanding_extents--;
4827
4828        if (BTRFS_I(inode)->outstanding_extents == 0 &&
4829            test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4830                               &BTRFS_I(inode)->runtime_flags))
4831                drop_inode_space = 1;
4832
4833        /*
4834         * If we have more or the same amount of outsanding extents than we have
4835         * reserved then we need to leave the reserved extents count alone.
4836         */
4837        if (BTRFS_I(inode)->outstanding_extents >=
4838            BTRFS_I(inode)->reserved_extents)
4839                return drop_inode_space;
4840
4841        dropped_extents = BTRFS_I(inode)->reserved_extents -
4842                BTRFS_I(inode)->outstanding_extents;
4843        BTRFS_I(inode)->reserved_extents -= dropped_extents;
4844        return dropped_extents + drop_inode_space;
4845}
4846
4847/**
4848 * calc_csum_metadata_size - return the amount of metada space that must be
4849 *      reserved/free'd for the given bytes.
4850 * @inode: the inode we're manipulating
4851 * @num_bytes: the number of bytes in question
4852 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4853 *
4854 * This adjusts the number of csum_bytes in the inode and then returns the
4855 * correct amount of metadata that must either be reserved or freed.  We
4856 * calculate how many checksums we can fit into one leaf and then divide the
4857 * number of bytes that will need to be checksumed by this value to figure out
4858 * how many checksums will be required.  If we are adding bytes then the number
4859 * may go up and we will return the number of additional bytes that must be
4860 * reserved.  If it is going down we will return the number of bytes that must
4861 * be freed.
4862 *
4863 * This must be called with BTRFS_I(inode)->lock held.
4864 */
4865static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4866                                   int reserve)
4867{
4868        struct btrfs_root *root = BTRFS_I(inode)->root;
4869        u64 csum_size;
4870        int num_csums_per_leaf;
4871        int num_csums;
4872        int old_csums;
4873
4874        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4875            BTRFS_I(inode)->csum_bytes == 0)
4876                return 0;
4877
4878        old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4879        if (reserve)
4880                BTRFS_I(inode)->csum_bytes += num_bytes;
4881        else
4882                BTRFS_I(inode)->csum_bytes -= num_bytes;
4883        csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4884        num_csums_per_leaf = (int)div64_u64(csum_size,
4885                                            sizeof(struct btrfs_csum_item) +
4886                                            sizeof(struct btrfs_disk_key));
4887        num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4888        num_csums = num_csums + num_csums_per_leaf - 1;
4889        num_csums = num_csums / num_csums_per_leaf;
4890
4891        old_csums = old_csums + num_csums_per_leaf - 1;
4892        old_csums = old_csums / num_csums_per_leaf;
4893
4894        /* No change, no need to reserve more */
4895        if (old_csums == num_csums)
4896                return 0;
4897
4898        if (reserve)
4899                return btrfs_calc_trans_metadata_size(root,
4900                                                      num_csums - old_csums);
4901
4902        return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4903}
4904
4905int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4906{
4907        struct btrfs_root *root = BTRFS_I(inode)->root;
4908        struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4909        u64 to_reserve = 0;
4910        u64 csum_bytes;
4911        unsigned nr_extents = 0;
4912        int extra_reserve = 0;
4913        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4914        int ret = 0;
4915        bool delalloc_lock = true;
4916        u64 to_free = 0;
4917        unsigned dropped;
4918
4919        /* If we are a free space inode we need to not flush since we will be in
4920         * the middle of a transaction commit.  We also don't need the delalloc
4921         * mutex since we won't race with anybody.  We need this mostly to make
4922         * lockdep shut its filthy mouth.
4923         */
4924        if (btrfs_is_free_space_inode(inode)) {
4925                flush = BTRFS_RESERVE_NO_FLUSH;
4926                delalloc_lock = false;
4927        }
4928
4929        if (flush != BTRFS_RESERVE_NO_FLUSH &&
4930            btrfs_transaction_in_commit(root->fs_info))
4931                schedule_timeout(1);
4932
4933        if (delalloc_lock)
4934                mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4935
4936        num_bytes = ALIGN(num_bytes, root->sectorsize);
4937
4938        spin_lock(&BTRFS_I(inode)->lock);
4939        BTRFS_I(inode)->outstanding_extents++;
4940
4941        if (BTRFS_I(inode)->outstanding_extents >
4942            BTRFS_I(inode)->reserved_extents)
4943                nr_extents = BTRFS_I(inode)->outstanding_extents -
4944                        BTRFS_I(inode)->reserved_extents;
4945
4946        /*
4947         * Add an item to reserve for updating the inode when we complete the
4948         * delalloc io.
4949         */
4950        if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4951                      &BTRFS_I(inode)->runtime_flags)) {
4952                nr_extents++;
4953                extra_reserve = 1;
4954        }
4955
4956        to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4957        to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4958        csum_bytes = BTRFS_I(inode)->csum_bytes;
4959        spin_unlock(&BTRFS_I(inode)->lock);
4960
4961        if (root->fs_info->quota_enabled) {
4962                ret = btrfs_qgroup_reserve(root, num_bytes +
4963                                           nr_extents * root->leafsize);
4964                if (ret)
4965                        goto out_fail;
4966        }
4967
4968        ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4969        if (unlikely(ret)) {
4970                if (root->fs_info->quota_enabled)
4971                        btrfs_qgroup_free(root, num_bytes +
4972                                                nr_extents * root->leafsize);
4973                goto out_fail;
4974        }
4975
4976        spin_lock(&BTRFS_I(inode)->lock);
4977        if (extra_reserve) {
4978                set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4979                        &BTRFS_I(inode)->runtime_flags);
4980                nr_extents--;
4981        }
4982        BTRFS_I(inode)->reserved_extents += nr_extents;
4983        spin_unlock(&BTRFS_I(inode)->lock);
4984
4985        if (delalloc_lock)
4986                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4987
4988        if (to_reserve)
4989                trace_btrfs_space_reservation(root->fs_info,"delalloc",
4990                                              btrfs_ino(inode), to_reserve, 1);
4991        block_rsv_add_bytes(block_rsv, to_reserve, 1);
4992
4993        return 0;
4994
4995out_fail:
4996        spin_lock(&BTRFS_I(inode)->lock);
4997        dropped = drop_outstanding_extent(inode);
4998        /*
4999         * If the inodes csum_bytes is the same as the original
5000         * csum_bytes then we know we haven't raced with any free()ers
5001         * so we can just reduce our inodes csum bytes and carry on.
5002         */
5003        if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5004                calc_csum_metadata_size(inode, num_bytes, 0);
5005        } else {
5006                u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5007                u64 bytes;
5008
5009                /*
5010                 * This is tricky, but first we need to figure out how much we
5011                 * free'd from any free-ers that occured during this
5012                 * reservation, so we reset ->csum_bytes to the csum_bytes
5013                 * before we dropped our lock, and then call the free for the
5014                 * number of bytes that were freed while we were trying our
5015                 * reservation.
5016                 */
5017                bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5018                BTRFS_I(inode)->csum_bytes = csum_bytes;
5019                to_free = calc_csum_metadata_size(inode, bytes, 0);
5020
5021
5022                /*
5023                 * Now we need to see how much we would have freed had we not
5024                 * been making this reservation and our ->csum_bytes were not
5025                 * artificially inflated.
5026                 */
5027                BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5028                bytes = csum_bytes - orig_csum_bytes;
5029                bytes = calc_csum_metadata_size(inode, bytes, 0);
5030
5031                /*
5032                 * Now reset ->csum_bytes to what it should be.  If bytes is
5033                 * more than to_free then we would have free'd more space had we
5034                 * not had an artificially high ->csum_bytes, so we need to free
5035                 * the remainder.  If bytes is the same or less then we don't
5036                 * need to do anything, the other free-ers did the correct
5037                 * thing.
5038                 */
5039                BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5040                if (bytes > to_free)
5041                        to_free = bytes - to_free;
5042                else
5043                        to_free = 0;
5044        }
5045        spin_unlock(&BTRFS_I(inode)->lock);
5046        if (dropped)
5047                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5048
5049        if (to_free) {
5050                btrfs_block_rsv_release(root, block_rsv, to_free);
5051                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5052                                              btrfs_ino(inode), to_free, 0);
5053        }
5054        if (delalloc_lock)
5055                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5056        return ret;
5057}
5058
5059/**
5060 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5061 * @inode: the inode to release the reservation for
5062 * @num_bytes: the number of bytes we're releasing
5063 *
5064 * This will release the metadata reservation for an inode.  This can be called
5065 * once we complete IO for a given set of bytes to release their metadata
5066 * reservations.
5067 */
5068void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5069{
5070        struct btrfs_root *root = BTRFS_I(inode)->root;
5071        u64 to_free = 0;
5072        unsigned dropped;
5073
5074        num_bytes = ALIGN(num_bytes, root->sectorsize);
5075        spin_lock(&BTRFS_I(inode)->lock);
5076        dropped = drop_outstanding_extent(inode);
5077
5078        if (num_bytes)
5079                to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5080        spin_unlock(&BTRFS_I(inode)->lock);
5081        if (dropped > 0)
5082                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5083
5084        trace_btrfs_space_reservation(root->fs_info, "delalloc",
5085                                      btrfs_ino(inode), to_free, 0);
5086        if (root->fs_info->quota_enabled) {
5087                btrfs_qgroup_free(root, num_bytes +
5088                                        dropped * root->leafsize);
5089        }
5090
5091        btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5092                                to_free);
5093}
5094
5095/**
5096 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5097 * @inode: inode we're writing to
5098 * @num_bytes: the number of bytes we want to allocate
5099 *
5100 * This will do the following things
5101 *
5102 * o reserve space in the data space info for num_bytes
5103 * o reserve space in the metadata space info based on number of outstanding
5104 *   extents and how much csums will be needed
5105 * o add to the inodes ->delalloc_bytes
5106 * o add it to the fs_info's delalloc inodes list.
5107 *
5108 * This will return 0 for success and -ENOSPC if there is no space left.
5109 */
5110int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5111{
5112        int ret;
5113
5114        ret = btrfs_check_data_free_space(inode, num_bytes);
5115        if (ret)
5116                return ret;
5117
5118        ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5119        if (ret) {
5120                btrfs_free_reserved_data_space(inode, num_bytes);
5121                return ret;
5122        }
5123
5124        return 0;
5125}
5126
5127/**
5128 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5129 * @inode: inode we're releasing space for
5130 * @num_bytes: the number of bytes we want to free up
5131 *
5132 * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5133 * called in the case that we don't need the metadata AND data reservations
5134 * anymore.  So if there is an error or we insert an inline extent.
5135 *
5136 * This function will release the metadata space that was not used and will
5137 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5138 * list if there are no delalloc bytes left.
5139 */
5140void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5141{
5142        btrfs_delalloc_release_metadata(inode, num_bytes);
5143        btrfs_free_reserved_data_space(inode, num_bytes);
5144}
5145
5146static int update_block_group(struct btrfs_root *root,
5147                              u64 bytenr, u64 num_bytes, int alloc)
5148{
5149        struct btrfs_block_group_cache *cache = NULL;
5150        struct btrfs_fs_info *info = root->fs_info;
5151        u64 total = num_bytes;
5152        u64 old_val;
5153        u64 byte_in_group;
5154        int factor;
5155
5156        /* block accounting for super block */
5157        spin_lock(&info->delalloc_root_lock);
5158        old_val = btrfs_super_bytes_used(info->super_copy);
5159        if (alloc)
5160                old_val += num_bytes;
5161        else
5162                old_val -= num_bytes;
5163        btrfs_set_super_bytes_used(info->super_copy, old_val);
5164        spin_unlock(&info->delalloc_root_lock);
5165
5166        while (total) {
5167                cache = btrfs_lookup_block_group(info, bytenr);
5168                if (!cache)
5169                        return -ENOENT;
5170                if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5171                                    BTRFS_BLOCK_GROUP_RAID1 |
5172                                    BTRFS_BLOCK_GROUP_RAID10))
5173                        factor = 2;
5174                else
5175                        factor = 1;
5176                /*
5177                 * If this block group has free space cache written out, we
5178                 * need to make sure to load it if we are removing space.  This
5179                 * is because we need the unpinning stage to actually add the
5180                 * space back to the block group, otherwise we will leak space.
5181                 */
5182                if (!alloc && cache->cached == BTRFS_CACHE_NO)
5183                        cache_block_group(cache, 1);
5184
5185                byte_in_group = bytenr - cache->key.objectid;
5186                WARN_ON(byte_in_group > cache->key.offset);
5187
5188                spin_lock(&cache->space_info->lock);
5189                spin_lock(&cache->lock);
5190
5191                if (btrfs_test_opt(root, SPACE_CACHE) &&
5192                    cache->disk_cache_state < BTRFS_DC_CLEAR)
5193                        cache->disk_cache_state = BTRFS_DC_CLEAR;
5194
5195                cache->dirty = 1;
5196                old_val = btrfs_block_group_used(&cache->item);
5197                num_bytes = min(total, cache->key.offset - byte_in_group);
5198                if (alloc) {
5199                        old_val += num_bytes;
5200                        btrfs_set_block_group_used(&cache->item, old_val);
5201                        cache->reserved -= num_bytes;
5202                        cache->space_info->bytes_reserved -= num_bytes;
5203                        cache->space_info->bytes_used += num_bytes;
5204                        cache->space_info->disk_used += num_bytes * factor;
5205                        spin_unlock(&cache->lock);
5206                        spin_unlock(&cache->space_info->lock);
5207                } else {
5208                        old_val -= num_bytes;
5209                        btrfs_set_block_group_used(&cache->item, old_val);
5210                        cache->pinned += num_bytes;
5211                        cache->space_info->bytes_pinned += num_bytes;
5212                        cache->space_info->bytes_used -= num_bytes;
5213                        cache->space_info->disk_used -= num_bytes * factor;
5214                        spin_unlock(&cache->lock);
5215                        spin_unlock(&cache->space_info->lock);
5216
5217                        set_extent_dirty(info->pinned_extents,
5218                                         bytenr, bytenr + num_bytes - 1,
5219                                         GFP_NOFS | __GFP_NOFAIL);
5220                }
5221                btrfs_put_block_group(cache);
5222                total -= num_bytes;
5223                bytenr += num_bytes;
5224        }
5225        return 0;
5226}
5227
5228static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5229{
5230        struct btrfs_block_group_cache *cache;
5231        u64 bytenr;
5232
5233        spin_lock(&root->fs_info->block_group_cache_lock);
5234        bytenr = root->fs_info->first_logical_byte;
5235        spin_unlock(&root->fs_info->block_group_cache_lock);
5236
5237        if (bytenr < (u64)-1)
5238                return bytenr;
5239
5240        cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5241        if (!cache)
5242                return 0;
5243
5244        bytenr = cache->key.objectid;
5245        btrfs_put_block_group(cache);
5246
5247        return bytenr;
5248}
5249
5250static int pin_down_extent(struct btrfs_root *root,
5251                           struct btrfs_block_group_cache *cache,
5252                           u64 bytenr, u64 num_bytes, int reserved)
5253{
5254        spin_lock(&cache->space_info->lock);
5255        spin_lock(&cache->lock);
5256        cache->pinned += num_bytes;
5257        cache->space_info->bytes_pinned += num_bytes;
5258        if (reserved) {
5259                cache->reserved -= num_bytes;
5260                cache->space_info->bytes_reserved -= num_bytes;
5261        }
5262        spin_unlock(&cache->lock);
5263        spin_unlock(&cache->space_info->lock);
5264
5265        set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5266                         bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5267        return 0;
5268}
5269
5270/*
5271 * this function must be called within transaction
5272 */
5273int btrfs_pin_extent(struct btrfs_root *root,
5274                     u64 bytenr, u64 num_bytes, int reserved)
5275{
5276        struct btrfs_block_group_cache *cache;
5277
5278        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5279        BUG_ON(!cache); /* Logic error */
5280
5281        pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5282
5283        btrfs_put_block_group(cache);
5284        return 0;
5285}
5286
5287/*
5288 * this function must be called within transaction
5289 */
5290int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5291                                    u64 bytenr, u64 num_bytes)
5292{
5293        struct btrfs_block_group_cache *cache;
5294        int ret;
5295
5296        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5297        if (!cache)
5298                return -EINVAL;
5299
5300        /*
5301         * pull in the free space cache (if any) so that our pin
5302         * removes the free space from the cache.  We have load_only set
5303         * to one because the slow code to read in the free extents does check
5304         * the pinned extents.
5305         */
5306        cache_block_group(cache, 1);
5307
5308        pin_down_extent(root, cache, bytenr, num_bytes, 0);
5309
5310        /* remove us from the free space cache (if we're there at all) */
5311        ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5312        btrfs_put_block_group(cache);
5313        return ret;
5314}
5315
5316static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5317{
5318        int ret;
5319        struct btrfs_block_group_cache *block_group;
5320        struct btrfs_caching_control *caching_ctl;
5321
5322        block_group = btrfs_lookup_block_group(root->fs_info, start);
5323        if (!block_group)
5324                return -EINVAL;
5325
5326        cache_block_group(block_group, 0);
5327        caching_ctl = get_caching_control(block_group);
5328
5329        if (!caching_ctl) {
5330                /* Logic error */
5331                BUG_ON(!block_group_cache_done(block_group));
5332                ret = btrfs_remove_free_space(block_group, start, num_bytes);
5333        } else {
5334                mutex_lock(&caching_ctl->mutex);
5335
5336                if (start >= caching_ctl->progress) {
5337                        ret = add_excluded_extent(root, start, num_bytes);
5338                } else if (start + num_bytes <= caching_ctl->progress) {
5339                        ret = btrfs_remove_free_space(block_group,
5340                                                      start, num_bytes);
5341                } else {
5342                        num_bytes = caching_ctl->progress - start;
5343                        ret = btrfs_remove_free_space(block_group,
5344                                                      start, num_bytes);
5345                        if (ret)
5346                                goto out_lock;
5347
5348                        num_bytes = (start + num_bytes) -
5349                                caching_ctl->progress;
5350                        start = caching_ctl->progress;
5351                        ret = add_excluded_extent(root, start, num_bytes);
5352                }
5353out_lock:
5354                mutex_unlock(&caching_ctl->mutex);
5355                put_caching_control(caching_ctl);
5356        }
5357        btrfs_put_block_group(block_group);
5358        return ret;
5359}
5360
5361int btrfs_exclude_logged_extents(struct btrfs_root *log,
5362                                 struct extent_buffer *eb)
5363{
5364        struct btrfs_file_extent_item *item;
5365        struct btrfs_key key;
5366        int found_type;
5367        int i;
5368
5369        if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5370                return 0;
5371
5372        for (i = 0; i < btrfs_header_nritems(eb); i++) {
5373                btrfs_item_key_to_cpu(eb, &key, i);
5374                if (key.type != BTRFS_EXTENT_DATA_KEY)
5375                        continue;
5376                item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5377                found_type = btrfs_file_extent_type(eb, item);
5378                if (found_type == BTRFS_FILE_EXTENT_INLINE)
5379                        continue;
5380                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5381                        continue;
5382                key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5383                key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5384                __exclude_logged_extent(log, key.objectid, key.offset);
5385        }
5386
5387        return 0;
5388}
5389
5390/**
5391 * btrfs_update_reserved_bytes - update the block_group and space info counters
5392 * @cache:      The cache we are manipulating
5393 * @num_bytes:  The number of bytes in question
5394 * @reserve:    One of the reservation enums
5395 *
5396 * This is called by the allocator when it reserves space, or by somebody who is
5397 * freeing space that was never actually used on disk.  For example if you
5398 * reserve some space for a new leaf in transaction A and before transaction A
5399 * commits you free that leaf, you call this with reserve set to 0 in order to
5400 * clear the reservation.
5401 *
5402 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5403 * ENOSPC accounting.  For data we handle the reservation through clearing the
5404 * delalloc bits in the io_tree.  We have to do this since we could end up
5405 * allocating less disk space for the amount of data we have reserved in the
5406 * case of compression.
5407 *
5408 * If this is a reservation and the block group has become read only we cannot
5409 * make the reservation and return -EAGAIN, otherwise this function always
5410 * succeeds.
5411 */
5412static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5413                                       u64 num_bytes, int reserve)
5414{
5415        struct btrfs_space_info *space_info = cache->space_info;
5416        int ret = 0;
5417
5418        spin_lock(&space_info->lock);
5419        spin_lock(&cache->lock);
5420        if (reserve != RESERVE_FREE) {
5421                if (cache->ro) {
5422                        ret = -EAGAIN;
5423                } else {
5424                        cache->reserved += num_bytes;
5425                        space_info->bytes_reserved += num_bytes;
5426                        if (reserve == RESERVE_ALLOC) {
5427                                trace_btrfs_space_reservation(cache->fs_info,
5428                                                "space_info", space_info->flags,
5429                                                num_bytes, 0);
5430                                space_info->bytes_may_use -= num_bytes;
5431                        }
5432                }
5433        } else {
5434                if (cache->ro)
5435                        space_info->bytes_readonly += num_bytes;
5436                cache->reserved -= num_bytes;
5437                space_info->bytes_reserved -= num_bytes;
5438        }
5439        spin_unlock(&cache->lock);
5440        spin_unlock(&space_info->lock);
5441        return ret;
5442}
5443
5444void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5445                                struct btrfs_root *root)
5446{
5447        struct btrfs_fs_info *fs_info = root->fs_info;
5448        struct btrfs_caching_control *next;
5449        struct btrfs_caching_control *caching_ctl;
5450        struct btrfs_block_group_cache *cache;
5451        struct btrfs_space_info *space_info;
5452
5453        down_write(&fs_info->extent_commit_sem);
5454
5455        list_for_each_entry_safe(caching_ctl, next,
5456                                 &fs_info->caching_block_groups, list) {
5457                cache = caching_ctl->block_group;
5458                if (block_group_cache_done(cache)) {
5459                        cache->last_byte_to_unpin = (u64)-1;
5460                        list_del_init(&caching_ctl->list);
5461                        put_caching_control(caching_ctl);
5462                } else {
5463                        cache->last_byte_to_unpin = caching_ctl->progress;
5464                }
5465        }
5466
5467        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5468                fs_info->pinned_extents = &fs_info->freed_extents[1];
5469        else
5470                fs_info->pinned_extents = &fs_info->freed_extents[0];
5471
5472        up_write(&fs_info->extent_commit_sem);
5473
5474        list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5475                percpu_counter_set(&space_info->total_bytes_pinned, 0);
5476
5477        update_global_block_rsv(fs_info);
5478}
5479
5480static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5481{
5482        struct btrfs_fs_info *fs_info = root->fs_info;
5483        struct btrfs_block_group_cache *cache = NULL;
5484        struct btrfs_space_info *space_info;
5485        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5486        u64 len;
5487        bool readonly;
5488
5489        while (start <= end) {
5490                readonly = false;
5491                if (!cache ||
5492                    start >= cache->key.objectid + cache->key.offset) {
5493                        if (cache)
5494                                btrfs_put_block_group(cache);
5495                        cache = btrfs_lookup_block_group(fs_info, start);
5496                        BUG_ON(!cache); /* Logic error */
5497                }
5498
5499                len = cache->key.objectid + cache->key.offset - start;
5500                len = min(len, end + 1 - start);
5501
5502                if (start < cache->last_byte_to_unpin) {
5503                        len = min(len, cache->last_byte_to_unpin - start);
5504                        btrfs_add_free_space(cache, start, len);
5505                }
5506
5507                start += len;
5508                space_info = cache->space_info;
5509
5510                spin_lock(&space_info->lock);
5511                spin_lock(&cache->lock);
5512                cache->pinned -= len;
5513                space_info->bytes_pinned -= len;
5514                if (cache->ro) {
5515                        space_info->bytes_readonly += len;
5516                        readonly = true;
5517                }
5518                spin_unlock(&cache->lock);
5519                if (!readonly && global_rsv->space_info == space_info) {
5520                        spin_lock(&global_rsv->lock);
5521                        if (!global_rsv->full) {
5522                                len = min(len, global_rsv->size -
5523                                          global_rsv->reserved);
5524                                global_rsv->reserved += len;
5525                                space_info->bytes_may_use += len;
5526                                if (global_rsv->reserved >= global_rsv->size)
5527                                        global_rsv->full = 1;
5528                        }
5529                        spin_unlock(&global_rsv->lock);
5530                }
5531                spin_unlock(&space_info->lock);
5532        }
5533
5534        if (cache)
5535                btrfs_put_block_group(cache);
5536        return 0;
5537}
5538
5539int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5540                               struct btrfs_root *root)
5541{
5542        struct btrfs_fs_info *fs_info = root->fs_info;
5543        struct extent_io_tree *unpin;
5544        u64 start;
5545        u64 end;
5546        int ret;
5547
5548        if (trans->aborted)
5549                return 0;
5550
5551        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5552                unpin = &fs_info->freed_extents[1];
5553        else
5554                unpin = &fs_info->freed_extents[0];
5555
5556        while (1) {
5557                ret = find_first_extent_bit(unpin, 0, &start, &end,
5558                                            EXTENT_DIRTY, NULL);
5559                if (ret)
5560                        break;
5561
5562                if (btrfs_test_opt(root, DISCARD))
5563                        ret = btrfs_discard_extent(root, start,
5564                                                   end + 1 - start, NULL);
5565
5566                clear_extent_dirty(unpin, start, end, GFP_NOFS);
5567                unpin_extent_range(root, start, end);
5568                cond_resched();
5569        }
5570
5571        return 0;
5572}
5573
5574static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5575                             u64 owner, u64 root_objectid)
5576{
5577        struct btrfs_space_info *space_info;
5578        u64 flags;
5579
5580        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5581                if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5582                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
5583                else
5584                        flags = BTRFS_BLOCK_GROUP_METADATA;
5585        } else {
5586                flags = BTRFS_BLOCK_GROUP_DATA;
5587        }
5588
5589        space_info = __find_space_info(fs_info, flags);
5590        BUG_ON(!space_info); /* Logic bug */
5591        percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5592}
5593
5594
5595static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5596                                struct btrfs_root *root,
5597                                u64 bytenr, u64 num_bytes, u64 parent,
5598                                u64 root_objectid, u64 owner_objectid,
5599                                u64 owner_offset, int refs_to_drop,
5600                                struct btrfs_delayed_extent_op *extent_op)
5601{
5602        struct btrfs_key key;
5603        struct btrfs_path *path;
5604        struct btrfs_fs_info *info = root->fs_info;
5605        struct btrfs_root *extent_root = info->extent_root;
5606        struct extent_buffer *leaf;
5607        struct btrfs_extent_item *ei;
5608        struct btrfs_extent_inline_ref *iref;
5609        int ret;
5610        int is_data;
5611        int extent_slot = 0;
5612        int found_extent = 0;
5613        int num_to_del = 1;
5614        u32 item_size;
5615        u64 refs;
5616        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5617                                                 SKINNY_METADATA);
5618
5619        path = btrfs_alloc_path();
5620        if (!path)
5621                return -ENOMEM;
5622
5623        path->reada = 1;
5624        path->leave_spinning = 1;
5625
5626        is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5627        BUG_ON(!is_data && refs_to_drop != 1);
5628
5629        if (is_data)
5630                skinny_metadata = 0;
5631
5632        ret = lookup_extent_backref(trans, extent_root, path, &iref,
5633                                    bytenr, num_bytes, parent,
5634                                    root_objectid, owner_objectid,
5635                                    owner_offset);
5636        if (ret == 0) {
5637                extent_slot = path->slots[0];
5638                while (extent_slot >= 0) {
5639                        btrfs_item_key_to_cpu(path->nodes[0], &key,
5640                                              extent_slot);
5641                        if (key.objectid != bytenr)
5642                                break;
5643                        if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5644                            key.offset == num_bytes) {
5645                                found_extent = 1;
5646                                break;
5647                        }
5648                        if (key.type == BTRFS_METADATA_ITEM_KEY &&
5649                            key.offset == owner_objectid) {
5650                                found_extent = 1;
5651                                break;
5652                        }
5653                        if (path->slots[0] - extent_slot > 5)
5654                                break;
5655                        extent_slot--;
5656                }
5657#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5658                item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5659                if (found_extent && item_size < sizeof(*ei))
5660                        found_extent = 0;
5661#endif
5662                if (!found_extent) {
5663                        BUG_ON(iref);
5664                        ret = remove_extent_backref(trans, extent_root, path,
5665                                                    NULL, refs_to_drop,
5666                                                    is_data);
5667                        if (ret) {
5668                                btrfs_abort_transaction(trans, extent_root, ret);
5669                                goto out;
5670                        }
5671                        btrfs_release_path(path);
5672                        path->leave_spinning = 1;
5673
5674                        key.objectid = bytenr;
5675                        key.type = BTRFS_EXTENT_ITEM_KEY;
5676                        key.offset = num_bytes;
5677
5678                        if (!is_data && skinny_metadata) {
5679                                key.type = BTRFS_METADATA_ITEM_KEY;
5680                                key.offset = owner_objectid;
5681                        }
5682
5683                        ret = btrfs_search_slot(trans, extent_root,
5684                                                &key, path, -1, 1);
5685                        if (ret > 0 && skinny_metadata && path->slots[0]) {
5686                                /*
5687                                 * Couldn't find our skinny metadata item,
5688                                 * see if we have ye olde extent item.
5689                                 */
5690                                path->slots[0]--;
5691                                btrfs_item_key_to_cpu(path->nodes[0], &key,
5692                                                      path->slots[0]);
5693                                if (key.objectid == bytenr &&
5694                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
5695                                    key.offset == num_bytes)
5696                                        ret = 0;
5697                        }
5698
5699                        if (ret > 0 && skinny_metadata) {
5700                                skinny_metadata = false;
5701                                key.type = BTRFS_EXTENT_ITEM_KEY;
5702                                key.offset = num_bytes;
5703                                btrfs_release_path(path);
5704                                ret = btrfs_search_slot(trans, extent_root,
5705                                                        &key, path, -1, 1);
5706                        }
5707
5708                        if (ret) {
5709                                btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5710                                        ret, bytenr);
5711                                if (ret > 0)
5712                                        btrfs_print_leaf(extent_root,
5713                                                         path->nodes[0]);
5714                        }
5715                        if (ret < 0) {
5716                                btrfs_abort_transaction(trans, extent_root, ret);
5717                                goto out;
5718                        }
5719                        extent_slot = path->slots[0];
5720                }
5721        } else if (ret == -ENOENT) {
5722                btrfs_print_leaf(extent_root, path->nodes[0]);
5723                WARN_ON(1);
5724                btrfs_err(info,
5725                        "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5726                        bytenr, parent, root_objectid, owner_objectid,
5727                        owner_offset);
5728        } else {
5729                btrfs_abort_transaction(trans, extent_root, ret);
5730                goto out;
5731        }
5732
5733        leaf = path->nodes[0];
5734        item_size = btrfs_item_size_nr(leaf, extent_slot);
5735#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5736        if (item_size < sizeof(*ei)) {
5737                BUG_ON(found_extent || extent_slot != path->slots[0]);
5738                ret = convert_extent_item_v0(trans, extent_root, path,
5739                                             owner_objectid, 0);
5740                if (ret < 0) {
5741                        btrfs_abort_transaction(trans, extent_root, ret);
5742                        goto out;
5743                }
5744
5745                btrfs_release_path(path);
5746                path->leave_spinning = 1;
5747
5748                key.objectid = bytenr;
5749                key.type = BTRFS_EXTENT_ITEM_KEY;
5750                key.offset = num_bytes;
5751
5752                ret = btrfs_search_slot(trans, extent_root, &key, path,
5753                                        -1, 1);
5754                if (ret) {
5755                        btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5756                                ret, bytenr);
5757                        btrfs_print_leaf(extent_root, path->nodes[0]);
5758                }
5759                if (ret < 0) {
5760                        btrfs_abort_transaction(trans, extent_root, ret);
5761                        goto out;
5762                }
5763
5764                extent_slot = path->slots[0];
5765                leaf = path->nodes[0];
5766                item_size = btrfs_item_size_nr(leaf, extent_slot);
5767        }
5768#endif
5769        BUG_ON(item_size < sizeof(*ei));
5770        ei = btrfs_item_ptr(leaf, extent_slot,
5771                            struct btrfs_extent_item);
5772        if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5773            key.type == BTRFS_EXTENT_ITEM_KEY) {
5774                struct btrfs_tree_block_info *bi;
5775                BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5776                bi = (struct btrfs_tree_block_info *)(ei + 1);
5777                WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5778        }
5779
5780        refs = btrfs_extent_refs(leaf, ei);
5781        if (refs < refs_to_drop) {
5782                btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5783                          "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5784                ret = -EINVAL;
5785                btrfs_abort_transaction(trans, extent_root, ret);
5786                goto out;
5787        }
5788        refs -= refs_to_drop;
5789
5790        if (refs > 0) {
5791                if (extent_op)
5792                        __run_delayed_extent_op(extent_op, leaf, ei);
5793                /*
5794                 * In the case of inline back ref, reference count will
5795                 * be updated by remove_extent_backref
5796                 */
5797                if (iref) {
5798                        BUG_ON(!found_extent);
5799                } else {
5800                        btrfs_set_extent_refs(leaf, ei, refs);
5801                        btrfs_mark_buffer_dirty(leaf);
5802                }
5803                if (found_extent) {
5804                        ret = remove_extent_backref(trans, extent_root, path,
5805                                                    iref, refs_to_drop,
5806                                                    is_data);
5807                        if (ret) {
5808                                btrfs_abort_transaction(trans, extent_root, ret);
5809                                goto out;
5810                        }
5811                }
5812                add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5813                                 root_objectid);
5814        } else {
5815                if (found_extent) {
5816                        BUG_ON(is_data && refs_to_drop !=
5817                               extent_data_ref_count(root, path, iref));
5818                        if (iref) {
5819                                BUG_ON(path->slots[0] != extent_slot);
5820                        } else {
5821                                BUG_ON(path->slots[0] != extent_slot + 1);
5822                                path->slots[0] = extent_slot;
5823                                num_to_del = 2;
5824                        }
5825                }
5826
5827                ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5828                                      num_to_del);
5829                if (ret) {
5830                        btrfs_abort_transaction(trans, extent_root, ret);
5831                        goto out;
5832                }
5833                btrfs_release_path(path);
5834
5835                if (is_data) {
5836                        ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5837                        if (ret) {
5838                                btrfs_abort_transaction(trans, extent_root, ret);
5839                                goto out;
5840                        }
5841                }
5842
5843                ret = update_block_group(root, bytenr, num_bytes, 0);
5844                if (ret) {
5845                        btrfs_abort_transaction(trans, extent_root, ret);
5846                        goto out;
5847                }
5848        }
5849out:
5850        btrfs_free_path(path);
5851        return ret;
5852}
5853
5854/*
5855 * when we free an block, it is possible (and likely) that we free the last
5856 * delayed ref for that extent as well.  This searches the delayed ref tree for
5857 * a given extent, and if there are no other delayed refs to be processed, it
5858 * removes it from the tree.
5859 */
5860static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5861                                      struct btrfs_root *root, u64 bytenr)
5862{
5863        struct btrfs_delayed_ref_head *head;
5864        struct btrfs_delayed_ref_root *delayed_refs;
5865        struct btrfs_delayed_ref_node *ref;
5866        struct rb_node *node;
5867        int ret = 0;
5868
5869        delayed_refs = &trans->transaction->delayed_refs;
5870        spin_lock(&delayed_refs->lock);
5871        head = btrfs_find_delayed_ref_head(trans, bytenr);
5872        if (!head)
5873                goto out;
5874
5875        node = rb_prev(&head->node.rb_node);
5876        if (!node)
5877                goto out;
5878
5879        ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5880
5881        /* there are still entries for this ref, we can't drop it */
5882        if (ref->bytenr == bytenr)
5883                goto out;
5884
5885        if (head->extent_op) {
5886                if (!head->must_insert_reserved)
5887                        goto out;
5888                btrfs_free_delayed_extent_op(head->extent_op);
5889                head->extent_op = NULL;
5890        }
5891
5892        /*
5893         * waiting for the lock here would deadlock.  If someone else has it
5894         * locked they are already in the process of dropping it anyway
5895         */
5896        if (!mutex_trylock(&head->mutex))
5897                goto out;
5898
5899        /*
5900         * at this point we have a head with no other entries.  Go
5901         * ahead and process it.
5902         */
5903        head->node.in_tree = 0;
5904        rb_erase(&head->node.rb_node, &delayed_refs->root);
5905
5906        delayed_refs->num_entries--;
5907
5908        /*
5909         * we don't take a ref on the node because we're removing it from the
5910         * tree, so we just steal the ref the tree was holding.
5911         */
5912        delayed_refs->num_heads--;
5913        if (list_empty(&head->cluster))
5914                delayed_refs->num_heads_ready--;
5915
5916        list_del_init(&head->cluster);
5917        spin_unlock(&delayed_refs->lock);
5918
5919        BUG_ON(head->extent_op);
5920        if (head->must_insert_reserved)
5921                ret = 1;
5922
5923        mutex_unlock(&head->mutex);
5924        btrfs_put_delayed_ref(&head->node);
5925        return ret;
5926out:
5927        spin_unlock(&delayed_refs->lock);
5928        return 0;
5929}
5930
5931void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5932                           struct btrfs_root *root,
5933                           struct extent_buffer *buf,
5934                           u64 parent, int last_ref)
5935{
5936        struct btrfs_block_group_cache *cache = NULL;
5937        int pin = 1;
5938        int ret;
5939
5940        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5941                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5942                                        buf->start, buf->len,
5943                                        parent, root->root_key.objectid,
5944                                        btrfs_header_level(buf),
5945                                        BTRFS_DROP_DELAYED_REF, NULL, 0);
5946                BUG_ON(ret); /* -ENOMEM */
5947        }
5948
5949        if (!last_ref)
5950                return;
5951
5952        cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5953
5954        if (btrfs_header_generation(buf) == trans->transid) {
5955                if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5956                        ret = check_ref_cleanup(trans, root, buf->start);
5957                        if (!ret)
5958                                goto out;
5959                }
5960
5961                if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5962                        pin_down_extent(root, cache, buf->start, buf->len, 1);
5963                        goto out;
5964                }
5965
5966                WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5967
5968                btrfs_add_free_space(cache, buf->start, buf->len);
5969                btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5970                pin = 0;
5971        }
5972out:
5973        if (pin)
5974                add_pinned_bytes(root->fs_info, buf->len,
5975                                 btrfs_header_level(buf),
5976                                 root->root_key.objectid);
5977
5978        /*
5979         * Deleting the buffer, clear the corrupt flag since it doesn't matter
5980         * anymore.
5981         */
5982        clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5983        btrfs_put_block_group(cache);
5984}
5985
5986/* Can return -ENOMEM */
5987int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5988                      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5989                      u64 owner, u64 offset, int for_cow)
5990{
5991        int ret;
5992        struct btrfs_fs_info *fs_info = root->fs_info;
5993
5994        add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
5995
5996        /*
5997         * tree log blocks never actually go into the extent allocation
5998         * tree, just update pinning info and exit early.
5999         */
6000        if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6001                WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6002                /* unlocks the pinned mutex */
6003                btrfs_pin_extent(root, bytenr, num_bytes, 1);
6004                ret = 0;
6005        } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6006                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6007                                        num_bytes,
6008                                        parent, root_objectid, (int)owner,
6009                                        BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6010        } else {
6011                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6012                                                num_bytes,
6013                                                parent, root_objectid, owner,
6014                                                offset, BTRFS_DROP_DELAYED_REF,
6015                                                NULL, for_cow);
6016        }
6017        return ret;
6018}
6019
6020static u64 stripe_align(struct btrfs_root *root,
6021                        struct btrfs_block_group_cache *cache,
6022                        u64 val, u64 num_bytes)
6023{
6024        u64 ret = ALIGN(val, root->stripesize);
6025        return ret;
6026}
6027
6028/*
6029 * when we wait for progress in the block group caching, its because
6030 * our allocation attempt failed at least once.  So, we must sleep
6031 * and let some progress happen before we try again.
6032 *
6033 * This function will sleep at least once waiting for new free space to
6034 * show up, and then it will check the block group free space numbers
6035 * for our min num_bytes.  Another option is to have it go ahead
6036 * and look in the rbtree for a free extent of a given size, but this
6037 * is a good start.
6038 *
6039 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6040 * any of the information in this block group.
6041 */
6042static noinline void
6043wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6044                                u64 num_bytes)
6045{
6046        struct btrfs_caching_control *caching_ctl;
6047
6048        caching_ctl = get_caching_control(cache);
6049        if (!caching_ctl)
6050                return;
6051
6052        wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6053                   (cache->free_space_ctl->free_space >= num_bytes));
6054
6055        put_caching_control(caching_ctl);
6056}
6057
6058static noinline int
6059wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6060{
6061        struct btrfs_caching_control *caching_ctl;
6062        int ret = 0;
6063
6064        caching_ctl = get_caching_control(cache);
6065        if (!caching_ctl)
6066                return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6067
6068        wait_event(caching_ctl->wait, block_group_cache_done(cache));
6069        if (cache->cached == BTRFS_CACHE_ERROR)
6070                ret = -EIO;
6071        put_caching_control(caching_ctl);
6072        return ret;
6073}
6074
6075int __get_raid_index(u64 flags)
6076{
6077        if (flags & BTRFS_BLOCK_GROUP_RAID10)
6078                return BTRFS_RAID_RAID10;
6079        else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6080                return BTRFS_RAID_RAID1;
6081        else if (flags & BTRFS_BLOCK_GROUP_DUP)
6082                return BTRFS_RAID_DUP;
6083        else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6084                return BTRFS_RAID_RAID0;
6085        else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6086                return BTRFS_RAID_RAID5;
6087        else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6088                return BTRFS_RAID_RAID6;
6089
6090        return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6091}
6092
6093static int get_block_group_index(struct btrfs_block_group_cache *cache)
6094{
6095        return __get_raid_index(cache->flags);
6096}
6097
6098enum btrfs_loop_type {
6099        LOOP_CACHING_NOWAIT = 0,
6100        LOOP_CACHING_WAIT = 1,
6101        LOOP_ALLOC_CHUNK = 2,
6102        LOOP_NO_EMPTY_SIZE = 3,
6103};
6104
6105/*
6106 * walks the btree of allocated extents and find a hole of a given size.
6107 * The key ins is changed to record the hole:
6108 * ins->objectid == start position
6109 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6110 * ins->offset == the size of the hole.
6111 * Any available blocks before search_start are skipped.
6112 *
6113 * If there is no suitable free space, we will record the max size of
6114 * the free space extent currently.
6115 */
6116static noinline int find_free_extent(struct btrfs_root *orig_root,
6117                                     u64 num_bytes, u64 empty_size,
6118                                     u64 hint_byte, struct btrfs_key *ins,
6119                                     u64 flags)
6120{
6121        int ret = 0;
6122        struct btrfs_root *root = orig_root->fs_info->extent_root;
6123        struct btrfs_free_cluster *last_ptr = NULL;
6124        struct btrfs_block_group_cache *block_group = NULL;
6125        struct btrfs_block_group_cache *used_block_group;
6126        u64 search_start = 0;
6127        u64 max_extent_size = 0;
6128        int empty_cluster = 2 * 1024 * 1024;
6129        struct btrfs_space_info *space_info;
6130        int loop = 0;
6131        int index = __get_raid_index(flags);
6132        int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6133                RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6134        bool found_uncached_bg = false;
6135        bool failed_cluster_refill = false;
6136        bool failed_alloc = false;
6137        bool use_cluster = true;
6138        bool have_caching_bg = false;
6139
6140        WARN_ON(num_bytes < root->sectorsize);
6141        btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6142        ins->objectid = 0;
6143        ins->offset = 0;
6144
6145        trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6146
6147        space_info = __find_space_info(root->fs_info, flags);
6148        if (!space_info) {
6149                btrfs_err(root->fs_info, "No space info for %llu", flags);
6150                return -ENOSPC;
6151        }
6152
6153        /*
6154         * If the space info is for both data and metadata it means we have a
6155         * small filesystem and we can't use the clustering stuff.
6156         */
6157        if (btrfs_mixed_space_info(space_info))
6158                use_cluster = false;
6159
6160        if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6161                last_ptr = &root->fs_info->meta_alloc_cluster;
6162                if (!btrfs_test_opt(root, SSD))
6163                        empty_cluster = 64 * 1024;
6164        }
6165
6166        if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6167            btrfs_test_opt(root, SSD)) {
6168                last_ptr = &root->fs_info->data_alloc_cluster;
6169        }
6170
6171        if (last_ptr) {
6172                spin_lock(&last_ptr->lock);
6173                if (last_ptr->block_group)
6174                        hint_byte = last_ptr->window_start;
6175                spin_unlock(&last_ptr->lock);
6176        }
6177
6178        search_start = max(search_start, first_logical_byte(root, 0));
6179        search_start = max(search_start, hint_byte);
6180
6181        if (!last_ptr)
6182                empty_cluster = 0;
6183
6184        if (search_start == hint_byte) {
6185                block_group = btrfs_lookup_block_group(root->fs_info,
6186                                                       search_start);
6187                used_block_group = block_group;
6188                /*
6189                 * we don't want to use the block group if it doesn't match our
6190                 * allocation bits, or if its not cached.
6191                 *
6192                 * However if we are re-searching with an ideal block group
6193                 * picked out then we don't care that the block group is cached.
6194                 */
6195                if (block_group && block_group_bits(block_group, flags) &&
6196                    block_group->cached != BTRFS_CACHE_NO) {
6197                        down_read(&space_info->groups_sem);
6198                        if (list_empty(&block_group->list) ||
6199                            block_group->ro) {
6200                                /*
6201                                 * someone is removing this block group,
6202                                 * we can't jump into the have_block_group
6203                                 * target because our list pointers are not
6204                                 * valid
6205                                 */
6206                                btrfs_put_block_group(block_group);
6207                                up_read(&space_info->groups_sem);
6208                        } else {
6209                                index = get_block_group_index(block_group);
6210                                goto have_block_group;
6211                        }
6212                } else if (block_group) {
6213                        btrfs_put_block_group(block_group);
6214                }
6215        }
6216search:
6217        have_caching_bg = false;
6218        down_read(&space_info->groups_sem);
6219        list_for_each_entry(block_group, &space_info->block_groups[index],
6220                            list) {
6221                u64 offset;
6222                int cached;
6223
6224                used_block_group = block_group;
6225                btrfs_get_block_group(block_group);
6226                search_start = block_group->key.objectid;
6227
6228                /*
6229                 * this can happen if we end up cycling through all the
6230                 * raid types, but we want to make sure we only allocate
6231                 * for the proper type.
6232                 */
6233                if (!block_group_bits(block_group, flags)) {
6234                    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6235                                BTRFS_BLOCK_GROUP_RAID1 |
6236                                BTRFS_BLOCK_GROUP_RAID5 |
6237                                BTRFS_BLOCK_GROUP_RAID6 |
6238                                BTRFS_BLOCK_GROUP_RAID10;
6239
6240                        /*
6241                         * if they asked for extra copies and this block group
6242                         * doesn't provide them, bail.  This does allow us to
6243                         * fill raid0 from raid1.
6244                         */
6245                        if ((flags & extra) && !(block_group->flags & extra))
6246                                goto loop;
6247                }
6248
6249have_block_group:
6250                cached = block_group_cache_done(block_group);
6251                if (unlikely(!cached)) {
6252                        found_uncached_bg = true;
6253                        ret = cache_block_group(block_group, 0);
6254                        BUG_ON(ret < 0);
6255                        ret = 0;
6256                }
6257
6258                if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6259                        goto loop;
6260                if (unlikely(block_group->ro))
6261                        goto loop;
6262
6263                /*
6264                 * Ok we want to try and use the cluster allocator, so
6265                 * lets look there
6266                 */
6267                if (last_ptr) {
6268                        unsigned long aligned_cluster;
6269                        /*
6270                         * the refill lock keeps out other
6271                         * people trying to start a new cluster
6272                         */
6273                        spin_lock(&last_ptr->refill_lock);
6274                        used_block_group = last_ptr->block_group;
6275                        if (used_block_group != block_group &&
6276                            (!used_block_group ||
6277                             used_block_group->ro ||
6278                             !block_group_bits(used_block_group, flags))) {
6279                                used_block_group = block_group;
6280                                goto refill_cluster;
6281                        }
6282
6283                        if (used_block_group != block_group)
6284                                btrfs_get_block_group(used_block_group);
6285
6286                        offset = btrfs_alloc_from_cluster(used_block_group,
6287                                                last_ptr,
6288                                                num_bytes,
6289                                                used_block_group->key.objectid,
6290                                                &max_extent_size);
6291                        if (offset) {
6292                                /* we have a block, we're done */
6293                                spin_unlock(&last_ptr->refill_lock);
6294                                trace_btrfs_reserve_extent_cluster(root,
6295                                        block_group, search_start, num_bytes);
6296                                goto checks;
6297                        }
6298
6299                        WARN_ON(last_ptr->block_group != used_block_group);
6300                        if (used_block_group != block_group) {
6301                                btrfs_put_block_group(used_block_group);
6302                                used_block_group = block_group;
6303                        }
6304refill_cluster:
6305                        BUG_ON(used_block_group != block_group);
6306                        /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6307                         * set up a new clusters, so lets just skip it
6308                         * and let the allocator find whatever block
6309                         * it can find.  If we reach this point, we
6310                         * will have tried the cluster allocator
6311                         * plenty of times and not have found
6312                         * anything, so we are likely way too
6313                         * fragmented for the clustering stuff to find
6314                         * anything.
6315                         *
6316                         * However, if the cluster is taken from the
6317                         * current block group, release the cluster
6318                         * first, so that we stand a better chance of
6319                         * succeeding in the unclustered
6320                         * allocation.  */
6321                        if (loop >= LOOP_NO_EMPTY_SIZE &&
6322                            last_ptr->block_group != block_group) {
6323                                spin_unlock(&last_ptr->refill_lock);
6324                                goto unclustered_alloc;
6325                        }
6326
6327                        /*
6328                         * this cluster didn't work out, free it and
6329                         * start over
6330                         */
6331                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
6332
6333                        if (loop >= LOOP_NO_EMPTY_SIZE) {
6334                                spin_unlock(&last_ptr->refill_lock);
6335                                goto unclustered_alloc;
6336                        }
6337
6338                        aligned_cluster = max_t(unsigned long,
6339                                                empty_cluster + empty_size,
6340                                              block_group->full_stripe_len);
6341
6342                        /* allocate a cluster in this block group */
6343                        ret = btrfs_find_space_cluster(root, block_group,
6344                                                       last_ptr, search_start,
6345                                                       num_bytes,
6346                                                       aligned_cluster);
6347                        if (ret == 0) {
6348                                /*
6349                                 * now pull our allocation out of this
6350                                 * cluster
6351                                 */
6352                                offset = btrfs_alloc_from_cluster(block_group,
6353                                                        last_ptr,
6354                                                        num_bytes,
6355                                                        search_start,
6356                                                        &max_extent_size);
6357                                if (offset) {
6358                                        /* we found one, proceed */
6359                                        spin_unlock(&last_ptr->refill_lock);
6360                                        trace_btrfs_reserve_extent_cluster(root,
6361                                                block_group, search_start,
6362                                                num_bytes);
6363                                        goto checks;
6364                                }
6365                        } else if (!cached && loop > LOOP_CACHING_NOWAIT
6366                                   && !failed_cluster_refill) {
6367                                spin_unlock(&last_ptr->refill_lock);
6368
6369                                failed_cluster_refill = true;
6370                                wait_block_group_cache_progress(block_group,
6371                                       num_bytes + empty_cluster + empty_size);
6372                                goto have_block_group;
6373                        }
6374
6375                        /*
6376                         * at this point we either didn't find a cluster
6377                         * or we weren't able to allocate a block from our
6378                         * cluster.  Free the cluster we've been trying
6379                         * to use, and go to the next block group
6380                         */
6381                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
6382                        spin_unlock(&last_ptr->refill_lock);
6383                        goto loop;
6384                }
6385
6386unclustered_alloc:
6387                spin_lock(&block_group->free_space_ctl->tree_lock);
6388                if (cached &&
6389                    block_group->free_space_ctl->free_space <
6390                    num_bytes + empty_cluster + empty_size) {
6391                        if (block_group->free_space_ctl->free_space >
6392                            max_extent_size)
6393                                max_extent_size =
6394                                        block_group->free_space_ctl->free_space;
6395                        spin_unlock(&block_group->free_space_ctl->tree_lock);
6396                        goto loop;
6397                }
6398                spin_unlock(&block_group->free_space_ctl->tree_lock);
6399
6400                offset = btrfs_find_space_for_alloc(block_group, search_start,
6401                                                    num_bytes, empty_size,
6402                                                    &max_extent_size);
6403                /*
6404                 * If we didn't find a chunk, and we haven't failed on this
6405                 * block group before, and this block group is in the middle of
6406                 * caching and we are ok with waiting, then go ahead and wait
6407                 * for progress to be made, and set failed_alloc to true.
6408                 *
6409                 * If failed_alloc is true then we've already waited on this
6410                 * block group once and should move on to the next block group.
6411                 */
6412                if (!offset && !failed_alloc && !cached &&
6413                    loop > LOOP_CACHING_NOWAIT) {
6414                        wait_block_group_cache_progress(block_group,
6415                                                num_bytes + empty_size);
6416                        failed_alloc = true;
6417                        goto have_block_group;
6418                } else if (!offset) {
6419                        if (!cached)
6420                                have_caching_bg = true;
6421                        goto loop;
6422                }
6423checks:
6424                search_start = stripe_align(root, used_block_group,
6425                                            offset, num_bytes);
6426
6427                /* move on to the next group */
6428                if (search_start + num_bytes >
6429                    used_block_group->key.objectid + used_block_group->key.offset) {
6430                        btrfs_add_free_space(used_block_group, offset, num_bytes);
6431                        goto loop;
6432                }
6433
6434                if (offset < search_start)
6435                        btrfs_add_free_space(used_block_group, offset,
6436                                             search_start - offset);
6437                BUG_ON(offset > search_start);
6438
6439                ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6440                                                  alloc_type);
6441                if (ret == -EAGAIN) {
6442                        btrfs_add_free_space(used_block_group, offset, num_bytes);
6443                        goto loop;
6444                }
6445
6446                /* we are all good, lets return */
6447                ins->objectid = search_start;
6448                ins->offset = num_bytes;
6449
6450                trace_btrfs_reserve_extent(orig_root, block_group,
6451                                           search_start, num_bytes);
6452                if (used_block_group != block_group)
6453                        btrfs_put_block_group(used_block_group);
6454                btrfs_put_block_group(block_group);
6455                break;
6456loop:
6457                failed_cluster_refill = false;
6458                failed_alloc = false;
6459                BUG_ON(index != get_block_group_index(block_group));
6460                if (used_block_group != block_group)
6461                        btrfs_put_block_group(used_block_group);
6462                btrfs_put_block_group(block_group);
6463        }
6464        up_read(&space_info->groups_sem);
6465
6466        if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6467                goto search;
6468
6469        if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6470                goto search;
6471
6472        /*
6473         * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6474         *                      caching kthreads as we move along
6475         * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6476         * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6477         * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6478         *                      again
6479         */
6480        if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6481                index = 0;
6482                loop++;
6483                if (loop == LOOP_ALLOC_CHUNK) {
6484                        struct btrfs_trans_handle *trans;
6485
6486                        trans = btrfs_join_transaction(root);
6487                        if (IS_ERR(trans)) {
6488                                ret = PTR_ERR(trans);
6489                                goto out;
6490                        }
6491
6492                        ret = do_chunk_alloc(trans, root, flags,
6493                                             CHUNK_ALLOC_FORCE);
6494                        /*
6495                         * Do not bail out on ENOSPC since we
6496                         * can do more things.
6497                         */
6498                        if (ret < 0 && ret != -ENOSPC)
6499                                btrfs_abort_transaction(trans,
6500                                                        root, ret);
6501                        else
6502                                ret = 0;
6503                        btrfs_end_transaction(trans, root);
6504                        if (ret)
6505                                goto out;
6506                }
6507
6508                if (loop == LOOP_NO_EMPTY_SIZE) {
6509                        empty_size = 0;
6510                        empty_cluster = 0;
6511                }
6512
6513                goto search;
6514        } else if (!ins->objectid) {
6515                ret = -ENOSPC;
6516        } else if (ins->objectid) {
6517                ret = 0;
6518        }
6519out:
6520        if (ret == -ENOSPC)
6521                ins->offset = max_extent_size;
6522        return ret;
6523}
6524
6525static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6526                            int dump_block_groups)
6527{
6528        struct btrfs_block_group_cache *cache;
6529        int index = 0;
6530
6531        spin_lock(&info->lock);
6532        printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6533               info->flags,
6534               info->total_bytes - info->bytes_used - info->bytes_pinned -
6535               info->bytes_reserved - info->bytes_readonly,
6536               (info->full) ? "" : "not ");
6537        printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6538               "reserved=%llu, may_use=%llu, readonly=%llu\n",
6539               info->total_bytes, info->bytes_used, info->bytes_pinned,
6540               info->bytes_reserved, info->bytes_may_use,
6541               info->bytes_readonly);
6542        spin_unlock(&info->lock);
6543
6544        if (!dump_block_groups)
6545                return;
6546
6547        down_read(&info->groups_sem);
6548again:
6549        list_for_each_entry(cache, &info->block_groups[index], list) {
6550                spin_lock(&cache->lock);
6551                printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6552                       cache->key.objectid, cache->key.offset,
6553                       btrfs_block_group_used(&cache->item), cache->pinned,
6554                       cache->reserved, cache->ro ? "[readonly]" : "");
6555                btrfs_dump_free_space(cache, bytes);
6556                spin_unlock(&cache->lock);
6557        }
6558        if (++index < BTRFS_NR_RAID_TYPES)
6559                goto again;
6560        up_read(&info->groups_sem);
6561}
6562
6563int btrfs_reserve_extent(struct btrfs_root *root,
6564                         u64 num_bytes, u64 min_alloc_size,
6565                         u64 empty_size, u64 hint_byte,
6566                         struct btrfs_key *ins, int is_data)
6567{
6568        bool final_tried = false;
6569        u64 flags;
6570        int ret;
6571
6572        flags = btrfs_get_alloc_profile(root, is_data);
6573again:
6574        WARN_ON(num_bytes < root->sectorsize);
6575        ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6576                               flags);
6577
6578        if (ret == -ENOSPC) {
6579                if (!final_tried && ins->offset) {
6580                        num_bytes = min(num_bytes >> 1, ins->offset);
6581                        num_bytes = round_down(num_bytes, root->sectorsize);
6582                        num_bytes = max(num_bytes, min_alloc_size);
6583                        if (num_bytes == min_alloc_size)
6584                                final_tried = true;
6585                        goto again;
6586                } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6587                        struct btrfs_space_info *sinfo;
6588
6589                        sinfo = __find_space_info(root->fs_info, flags);
6590                        btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6591                                flags, num_bytes);
6592                        if (sinfo)
6593                                dump_space_info(sinfo, num_bytes, 1);
6594                }
6595        }
6596
6597        trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6598
6599        return ret;
6600}
6601
6602static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6603                                        u64 start, u64 len, int pin)
6604{
6605        struct btrfs_block_group_cache *cache;
6606        int ret = 0;
6607
6608        cache = btrfs_lookup_block_group(root->fs_info, start);
6609        if (!cache) {
6610                btrfs_err(root->fs_info, "Unable to find block group for %llu",
6611                        start);
6612                return -ENOSPC;
6613        }
6614
6615        if (btrfs_test_opt(root, DISCARD))
6616                ret = btrfs_discard_extent(root, start, len, NULL);
6617
6618        if (pin)
6619                pin_down_extent(root, cache, start, len, 1);
6620        else {
6621                btrfs_add_free_space(cache, start, len);
6622                btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6623        }
6624        btrfs_put_block_group(cache);
6625
6626        trace_btrfs_reserved_extent_free(root, start, len);
6627
6628        return ret;
6629}
6630
6631int btrfs_free_reserved_extent(struct btrfs_root *root,
6632                                        u64 start, u64 len)
6633{
6634        return __btrfs_free_reserved_extent(root, start, len, 0);
6635}
6636
6637int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6638                                       u64 start, u64 len)
6639{
6640        return __btrfs_free_reserved_extent(root, start, len, 1);
6641}
6642
6643static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6644                                      struct btrfs_root *root,
6645                                      u64 parent, u64 root_objectid,
6646                                      u64 flags, u64 owner, u64 offset,
6647                                      struct btrfs_key *ins, int ref_mod)
6648{
6649        int ret;
6650        struct btrfs_fs_info *fs_info = root->fs_info;
6651        struct btrfs_extent_item *extent_item;
6652        struct btrfs_extent_inline_ref *iref;
6653        struct btrfs_path *path;
6654        struct extent_buffer *leaf;
6655        int type;
6656        u32 size;
6657
6658        if (parent > 0)
6659                type = BTRFS_SHARED_DATA_REF_KEY;
6660        else
6661                type = BTRFS_EXTENT_DATA_REF_KEY;
6662
6663        size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6664
6665        path = btrfs_alloc_path();
6666        if (!path)
6667                return -ENOMEM;
6668
6669        path->leave_spinning = 1;
6670        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6671                                      ins, size);
6672        if (ret) {
6673                btrfs_free_path(path);
6674                return ret;
6675        }
6676
6677        leaf = path->nodes[0];
6678        extent_item = btrfs_item_ptr(leaf, path->slots[0],
6679                                     struct btrfs_extent_item);
6680        btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6681        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6682        btrfs_set_extent_flags(leaf, extent_item,
6683                               flags | BTRFS_EXTENT_FLAG_DATA);
6684
6685        iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6686        btrfs_set_extent_inline_ref_type(leaf, iref, type);
6687        if (parent > 0) {
6688                struct btrfs_shared_data_ref *ref;
6689                ref = (struct btrfs_shared_data_ref *)(iref + 1);
6690                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6691                btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6692        } else {
6693                struct btrfs_extent_data_ref *ref;
6694                ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6695                btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6696                btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6697                btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6698                btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6699        }
6700
6701        btrfs_mark_buffer_dirty(path->nodes[0]);
6702        btrfs_free_path(path);
6703
6704        ret = update_block_group(root, ins->objectid, ins->offset, 1);
6705        if (ret) { /* -ENOENT, logic error */
6706                btrfs_err(fs_info, "update block group failed for %llu %llu",
6707                        ins->objectid, ins->offset);
6708                BUG();
6709        }
6710        return ret;
6711}
6712
6713static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6714                                     struct btrfs_root *root,
6715                                     u64 parent, u64 root_objectid,
6716                                     u64 flags, struct btrfs_disk_key *key,
6717                                     int level, struct btrfs_key *ins)
6718{
6719        int ret;
6720        struct btrfs_fs_info *fs_info = root->fs_info;
6721        struct btrfs_extent_item *extent_item;
6722        struct btrfs_tree_block_info *block_info;
6723        struct btrfs_extent_inline_ref *iref;
6724        struct btrfs_path *path;
6725        struct extent_buffer *leaf;
6726        u32 size = sizeof(*extent_item) + sizeof(*iref);
6727        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6728                                                 SKINNY_METADATA);
6729
6730        if (!skinny_metadata)
6731                size += sizeof(*block_info);
6732
6733        path = btrfs_alloc_path();
6734        if (!path)
6735                return -ENOMEM;
6736
6737        path->leave_spinning = 1;
6738        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6739                                      ins, size);
6740        if (ret) {
6741                btrfs_free_path(path);
6742                return ret;
6743        }
6744
6745        leaf = path->nodes[0];
6746        extent_item = btrfs_item_ptr(leaf, path->slots[0],
6747                                     struct btrfs_extent_item);
6748        btrfs_set_extent_refs(leaf, extent_item, 1);
6749        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6750        btrfs_set_extent_flags(leaf, extent_item,
6751                               flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6752
6753        if (skinny_metadata) {
6754                iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6755        } else {
6756                block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6757                btrfs_set_tree_block_key(leaf, block_info, key);
6758                btrfs_set_tree_block_level(leaf, block_info, level);
6759                iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6760        }
6761
6762        if (parent > 0) {
6763                BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6764                btrfs_set_extent_inline_ref_type(leaf, iref,
6765                                                 BTRFS_SHARED_BLOCK_REF_KEY);
6766                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6767        } else {
6768                btrfs_set_extent_inline_ref_type(leaf, iref,
6769                                                 BTRFS_TREE_BLOCK_REF_KEY);
6770                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6771        }
6772
6773        btrfs_mark_buffer_dirty(leaf);
6774        btrfs_free_path(path);
6775
6776        ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6777        if (ret) { /* -ENOENT, logic error */
6778                btrfs_err(fs_info, "update block group failed for %llu %llu",
6779                        ins->objectid, ins->offset);
6780                BUG();
6781        }
6782        return ret;
6783}
6784
6785int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6786                                     struct btrfs_root *root,
6787                                     u64 root_objectid, u64 owner,
6788                                     u64 offset, struct btrfs_key *ins)
6789{
6790        int ret;
6791
6792        BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6793
6794        ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6795                                         ins->offset, 0,
6796                                         root_objectid, owner, offset,
6797                                         BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6798        return ret;
6799}
6800
6801/*
6802 * this is used by the tree logging recovery code.  It records that
6803 * an extent has been allocated and makes sure to clear the free
6804 * space cache bits as well
6805 */
6806int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6807                                   struct btrfs_root *root,
6808                                   u64 root_objectid, u64 owner, u64 offset,
6809                                   struct btrfs_key *ins)
6810{
6811        int ret;
6812        struct btrfs_block_group_cache *block_group;
6813
6814        /*
6815         * Mixed block groups will exclude before processing the log so we only
6816         * need to do the exlude dance if this fs isn't mixed.
6817         */
6818        if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6819                ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6820                if (ret)
6821                        return ret;
6822        }
6823
6824        block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6825        if (!block_group)
6826                return -EINVAL;
6827
6828        ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6829                                          RESERVE_ALLOC_NO_ACCOUNT);
6830        BUG_ON(ret); /* logic error */
6831        ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6832                                         0, owner, offset, ins, 1);
6833        btrfs_put_block_group(block_group);
6834        return ret;
6835}
6836
6837static struct extent_buffer *
6838btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6839                      u64 bytenr, u32 blocksize, int level)
6840{
6841        struct extent_buffer *buf;
6842
6843        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6844        if (!buf)
6845                return ERR_PTR(-ENOMEM);
6846        btrfs_set_header_generation(buf, trans->transid);
6847        btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6848        btrfs_tree_lock(buf);
6849        clean_tree_block(trans, root, buf);
6850        clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6851
6852        btrfs_set_lock_blocking(buf);
6853        btrfs_set_buffer_uptodate(buf);
6854
6855        if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6856                /*
6857                 * we allow two log transactions at a time, use different
6858                 * EXENT bit to differentiate dirty pages.
6859                 */
6860                if (root->log_transid % 2 == 0)
6861                        set_extent_dirty(&root->dirty_log_pages, buf->start,
6862                                        buf->start + buf->len - 1, GFP_NOFS);
6863                else
6864                        set_extent_new(&root->dirty_log_pages, buf->start,
6865                                        buf->start + buf->len - 1, GFP_NOFS);
6866        } else {
6867                set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6868                         buf->start + buf->len - 1, GFP_NOFS);
6869        }
6870        trans->blocks_used++;
6871        /* this returns a buffer locked for blocking */
6872        return buf;
6873}
6874
6875static struct btrfs_block_rsv *
6876use_block_rsv(struct btrfs_trans_handle *trans,
6877              struct btrfs_root *root, u32 blocksize)
6878{
6879        struct btrfs_block_rsv *block_rsv;
6880        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6881        int ret;
6882        bool global_updated = false;
6883
6884        block_rsv = get_block_rsv(trans, root);
6885
6886        if (unlikely(block_rsv->size == 0))
6887                goto try_reserve;
6888again:
6889        ret = block_rsv_use_bytes(block_rsv, blocksize);
6890        if (!ret)
6891                return block_rsv;
6892
6893        if (block_rsv->failfast)
6894                return ERR_PTR(ret);
6895
6896        if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6897                global_updated = true;
6898                update_global_block_rsv(root->fs_info);
6899                goto again;
6900        }
6901
6902        if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6903                static DEFINE_RATELIMIT_STATE(_rs,
6904                                DEFAULT_RATELIMIT_INTERVAL * 10,
6905                                /*DEFAULT_RATELIMIT_BURST*/ 1);
6906                if (__ratelimit(&_rs))
6907                        WARN(1, KERN_DEBUG
6908                                "btrfs: block rsv returned %d\n", ret);
6909        }
6910try_reserve:
6911        ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6912                                     BTRFS_RESERVE_NO_FLUSH);
6913        if (!ret)
6914                return block_rsv;
6915        /*
6916         * If we couldn't reserve metadata bytes try and use some from
6917         * the global reserve if its space type is the same as the global
6918         * reservation.
6919         */
6920        if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6921            block_rsv->space_info == global_rsv->space_info) {
6922                ret = block_rsv_use_bytes(global_rsv, blocksize);
6923                if (!ret)
6924                        return global_rsv;
6925        }
6926        return ERR_PTR(ret);
6927}
6928
6929static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6930                            struct btrfs_block_rsv *block_rsv, u32 blocksize)
6931{
6932        block_rsv_add_bytes(block_rsv, blocksize, 0);
6933        block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6934}
6935
6936/*
6937 * finds a free extent and does all the dirty work required for allocation
6938 * returns the key for the extent through ins, and a tree buffer for
6939 * the first block of the extent through buf.
6940 *
6941 * returns the tree buffer or NULL.
6942 */
6943struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6944                                        struct btrfs_root *root, u32 blocksize,
6945                                        u64 parent, u64 root_objectid,
6946                                        struct btrfs_disk_key *key, int level,
6947                                        u64 hint, u64 empty_size)
6948{
6949        struct btrfs_key ins;
6950        struct btrfs_block_rsv *block_rsv;
6951        struct extent_buffer *buf;
6952        u64 flags = 0;
6953        int ret;
6954        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6955                                                 SKINNY_METADATA);
6956
6957        block_rsv = use_block_rsv(trans, root, blocksize);
6958        if (IS_ERR(block_rsv))
6959                return ERR_CAST(block_rsv);
6960
6961        ret = btrfs_reserve_extent(root, blocksize, blocksize,
6962                                   empty_size, hint, &ins, 0);
6963        if (ret) {
6964                unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6965                return ERR_PTR(ret);
6966        }
6967
6968        buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6969                                    blocksize, level);
6970        BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6971
6972        if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6973                if (parent == 0)
6974                        parent = ins.objectid;
6975                flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6976        } else
6977                BUG_ON(parent > 0);
6978
6979        if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6980                struct btrfs_delayed_extent_op *extent_op;
6981                extent_op = btrfs_alloc_delayed_extent_op();
6982                BUG_ON(!extent_op); /* -ENOMEM */
6983                if (key)
6984                        memcpy(&extent_op->key, key, sizeof(extent_op->key));
6985                else
6986                        memset(&extent_op->key, 0, sizeof(extent_op->key));
6987                extent_op->flags_to_set = flags;
6988                if (skinny_metadata)
6989                        extent_op->update_key = 0;
6990                else
6991                        extent_op->update_key = 1;
6992                extent_op->update_flags = 1;
6993                extent_op->is_data = 0;
6994                extent_op->level = level;
6995
6996                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6997                                        ins.objectid,
6998                                        ins.offset, parent, root_objectid,
6999                                        level, BTRFS_ADD_DELAYED_EXTENT,
7000                                        extent_op, 0);
7001                BUG_ON(ret); /* -ENOMEM */
7002        }
7003        return buf;
7004}
7005
7006struct walk_control {
7007        u64 refs[BTRFS_MAX_LEVEL];
7008        u64 flags[BTRFS_MAX_LEVEL];
7009        struct btrfs_key update_progress;
7010        int stage;
7011        int level;
7012        int shared_level;
7013        int update_ref;
7014        int keep_locks;
7015        int reada_slot;
7016        int reada_count;
7017        int for_reloc;
7018};
7019
7020#define DROP_REFERENCE  1
7021#define UPDATE_BACKREF  2
7022
7023static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7024                                     struct btrfs_root *root,
7025                                     struct walk_control *wc,
7026                                     struct btrfs_path *path)
7027{
7028        u64 bytenr;
7029        u64 generation;
7030        u64 refs;
7031        u64 flags;
7032        u32 nritems;
7033        u32 blocksize;
7034        struct btrfs_key key;
7035        struct extent_buffer *eb;
7036        int ret;
7037        int slot;
7038        int nread = 0;
7039
7040        if (path->slots[wc->level] < wc->reada_slot) {
7041                wc->reada_count = wc->reada_count * 2 / 3;
7042                wc->reada_count = max(wc->reada_count, 2);
7043        } else {
7044                wc->reada_count = wc->reada_count * 3 / 2;
7045                wc->reada_count = min_t(int, wc->reada_count,
7046                                        BTRFS_NODEPTRS_PER_BLOCK(root));
7047        }
7048
7049        eb = path->nodes[wc->level];
7050        nritems = btrfs_header_nritems(eb);
7051        blocksize = btrfs_level_size(root, wc->level - 1);
7052
7053        for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7054                if (nread >= wc->reada_count)
7055                        break;
7056
7057                cond_resched();
7058                bytenr = btrfs_node_blockptr(eb, slot);
7059                generation = btrfs_node_ptr_generation(eb, slot);
7060
7061                if (slot == path->slots[wc->level])
7062                        goto reada;
7063
7064                if (wc->stage == UPDATE_BACKREF &&
7065                    generation <= root->root_key.offset)
7066                        continue;
7067
7068                /* We don't lock the tree block, it's OK to be racy here */
7069                ret = btrfs_lookup_extent_info(trans, root, bytenr,
7070                                               wc->level - 1, 1, &refs,
7071                                               &flags);
7072                /* We don't care about errors in readahead. */
7073                if (ret < 0)
7074                        continue;
7075                BUG_ON(refs == 0);
7076
7077                if (wc->stage == DROP_REFERENCE) {
7078                        if (refs == 1)
7079                                goto reada;
7080
7081                        if (wc->level == 1 &&
7082                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7083                                continue;
7084                        if (!wc->update_ref ||
7085                            generation <= root->root_key.offset)
7086                                continue;
7087                        btrfs_node_key_to_cpu(eb, &key, slot);
7088                        ret = btrfs_comp_cpu_keys(&key,
7089                                                  &wc->update_progress);
7090                        if (ret < 0)
7091                                continue;
7092                } else {
7093                        if (wc->level == 1 &&
7094                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7095                                continue;
7096                }
7097reada:
7098                ret = readahead_tree_block(root, bytenr, blocksize,
7099                                           generation);
7100                if (ret)
7101                        break;
7102                nread++;
7103        }
7104        wc->reada_slot = slot;
7105}
7106
7107/*
7108 * helper to process tree block while walking down the tree.
7109 *
7110 * when wc->stage == UPDATE_BACKREF, this function updates
7111 * back refs for pointers in the block.
7112 *
7113 * NOTE: return value 1 means we should stop walking down.
7114 */
7115static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7116                                   struct btrfs_root *root,
7117                                   struct btrfs_path *path,
7118                                   struct walk_control *wc, int lookup_info)
7119{
7120        int level = wc->level;
7121        struct extent_buffer *eb = path->nodes[level];
7122        u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7123        int ret;
7124
7125        if (wc->stage == UPDATE_BACKREF &&
7126            btrfs_header_owner(eb) != root->root_key.objectid)
7127                return 1;
7128
7129        /*
7130         * when reference count of tree block is 1, it won't increase
7131         * again. once full backref flag is set, we never clear it.
7132         */
7133        if (lookup_info &&
7134            ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7135             (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7136                BUG_ON(!path->locks[level]);
7137                ret = btrfs_lookup_extent_info(trans, root,
7138                                               eb->start, level, 1,
7139                                               &wc->refs[level],
7140                                               &wc->flags[level]);
7141                BUG_ON(ret == -ENOMEM);
7142                if (ret)
7143                        return ret;
7144                BUG_ON(wc->refs[level] == 0);
7145        }
7146
7147        if (wc->stage == DROP_REFERENCE) {
7148                if (wc->refs[level] > 1)
7149                        return 1;
7150
7151                if (path->locks[level] && !wc->keep_locks) {
7152                        btrfs_tree_unlock_rw(eb, path->locks[level]);
7153                        path->locks[level] = 0;
7154                }
7155                return 0;
7156        }
7157
7158        /* wc->stage == UPDATE_BACKREF */
7159        if (!(wc->flags[level] & flag)) {
7160                BUG_ON(!path->locks[level]);
7161                ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7162                BUG_ON(ret); /* -ENOMEM */
7163                ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7164                BUG_ON(ret); /* -ENOMEM */
7165                ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7166                                                  eb->len, flag,
7167                                                  btrfs_header_level(eb), 0);
7168                BUG_ON(ret); /* -ENOMEM */
7169                wc->flags[level] |= flag;
7170        }
7171
7172        /*
7173         * the block is shared by multiple trees, so it's not good to
7174         * keep the tree lock
7175         */
7176        if (path->locks[level] && level > 0) {
7177                btrfs_tree_unlock_rw(eb, path->locks[level]);
7178                path->locks[level] = 0;
7179        }
7180        return 0;
7181}
7182
7183/*
7184 * helper to process tree block pointer.
7185 *
7186 * when wc->stage == DROP_REFERENCE, this function checks
7187 * reference count of the block pointed to. if the block
7188 * is shared and we need update back refs for the subtree
7189 * rooted at the block, this function changes wc->stage to
7190 * UPDATE_BACKREF. if the block is shared and there is no
7191 * need to update back, this function drops the reference
7192 * to the block.
7193 *
7194 * NOTE: return value 1 means we should stop walking down.
7195 */
7196static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7197                                 struct btrfs_root *root,
7198                                 struct btrfs_path *path,
7199                                 struct walk_control *wc, int *lookup_info)
7200{
7201        u64 bytenr;
7202        u64 generation;
7203        u64 parent;
7204        u32 blocksize;
7205        struct btrfs_key key;
7206        struct extent_buffer *next;
7207        int level = wc->level;
7208        int reada = 0;
7209        int ret = 0;
7210
7211        generation = btrfs_node_ptr_generation(path->nodes[level],
7212                                               path->slots[level]);
7213        /*
7214         * if the lower level block was created before the snapshot
7215         * was created, we know there is no need to update back refs
7216         * for the subtree
7217         */
7218        if (wc->stage == UPDATE_BACKREF &&
7219            generation <= root->root_key.offset) {
7220                *lookup_info = 1;
7221                return 1;
7222        }
7223
7224        bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7225        blocksize = btrfs_level_size(root, level - 1);
7226
7227        next = btrfs_find_tree_block(root, bytenr, blocksize);
7228        if (!next) {
7229                next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7230                if (!next)
7231                        return -ENOMEM;
7232                btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7233                                               level - 1);
7234                reada = 1;
7235        }
7236        btrfs_tree_lock(next);
7237        btrfs_set_lock_blocking(next);
7238
7239        ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7240                                       &wc->refs[level - 1],
7241                                       &wc->flags[level - 1]);
7242        if (ret < 0) {
7243                btrfs_tree_unlock(next);
7244                return ret;
7245        }
7246
7247        if (unlikely(wc->refs[level - 1] == 0)) {
7248                btrfs_err(root->fs_info, "Missing references.");
7249                BUG();
7250        }
7251        *lookup_info = 0;
7252
7253        if (wc->stage == DROP_REFERENCE) {
7254                if (wc->refs[level - 1] > 1) {
7255                        if (level == 1 &&
7256                            (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7257                                goto skip;
7258
7259                        if (!wc->update_ref ||
7260                            generation <= root->root_key.offset)
7261                                goto skip;
7262
7263                        btrfs_node_key_to_cpu(path->nodes[level], &key,
7264                                              path->slots[level]);
7265                        ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7266                        if (ret < 0)
7267                                goto skip;
7268
7269                        wc->stage = UPDATE_BACKREF;
7270                        wc->shared_level = level - 1;
7271                }
7272        } else {
7273                if (level == 1 &&
7274                    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7275                        goto skip;
7276        }
7277
7278        if (!btrfs_buffer_uptodate(next, generation, 0)) {
7279                btrfs_tree_unlock(next);
7280                free_extent_buffer(next);
7281                next = NULL;
7282                *lookup_info = 1;
7283        }
7284
7285        if (!next) {
7286                if (reada && level == 1)
7287                        reada_walk_down(trans, root, wc, path);
7288                next = read_tree_block(root, bytenr, blocksize, generation);
7289                if (!next || !extent_buffer_uptodate(next)) {
7290                        free_extent_buffer(next);
7291                        return -EIO;
7292                }
7293                btrfs_tree_lock(next);
7294                btrfs_set_lock_blocking(next);
7295        }
7296
7297        level--;
7298        BUG_ON(level != btrfs_header_level(next));
7299        path->nodes[level] = next;
7300        path->slots[level] = 0;
7301        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7302        wc->level = level;
7303        if (wc->level == 1)
7304                wc->reada_slot = 0;
7305        return 0;
7306skip:
7307        wc->refs[level - 1] = 0;
7308        wc->flags[level - 1] = 0;
7309        if (wc->stage == DROP_REFERENCE) {
7310                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7311                        parent = path->nodes[level]->start;
7312                } else {
7313                        BUG_ON(root->root_key.objectid !=
7314                               btrfs_header_owner(path->nodes[level]));
7315                        parent = 0;
7316                }
7317
7318                ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7319                                root->root_key.objectid, level - 1, 0, 0);
7320                BUG_ON(ret); /* -ENOMEM */
7321        }
7322        btrfs_tree_unlock(next);
7323        free_extent_buffer(next);
7324        *lookup_info = 1;
7325        return 1;
7326}
7327
7328/*
7329 * helper to process tree block while walking up the tree.
7330 *
7331 * when wc->stage == DROP_REFERENCE, this function drops
7332 * reference count on the block.
7333 *
7334 * when wc->stage == UPDATE_BACKREF, this function changes
7335 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7336 * to UPDATE_BACKREF previously while processing the block.
7337 *
7338 * NOTE: return value 1 means we should stop walking up.
7339 */
7340static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7341                                 struct btrfs_root *root,
7342                                 struct btrfs_path *path,
7343                                 struct walk_control *wc)
7344{
7345        int ret;
7346        int level = wc->level;
7347        struct extent_buffer *eb = path->nodes[level];
7348        u64 parent = 0;
7349
7350        if (wc->stage == UPDATE_BACKREF) {
7351                BUG_ON(wc->shared_level < level);
7352                if (level < wc->shared_level)
7353                        goto out;
7354
7355                ret = find_next_key(path, level + 1, &wc->update_progress);
7356                if (ret > 0)
7357                        wc->update_ref = 0;
7358
7359                wc->stage = DROP_REFERENCE;
7360                wc->shared_level = -1;
7361                path->slots[level] = 0;
7362
7363                /*
7364                 * check reference count again if the block isn't locked.
7365                 * we should start walking down the tree again if reference
7366                 * count is one.
7367                 */
7368                if (!path->locks[level]) {
7369                        BUG_ON(level == 0);
7370                        btrfs_tree_lock(eb);
7371                        btrfs_set_lock_blocking(eb);
7372                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7373
7374                        ret = btrfs_lookup_extent_info(trans, root,
7375                                                       eb->start, level, 1,
7376                                                       &wc->refs[level],
7377                                                       &wc->flags[level]);
7378                        if (ret < 0) {
7379                                btrfs_tree_unlock_rw(eb, path->locks[level]);
7380                                path->locks[level] = 0;
7381                                return ret;
7382                        }
7383                        BUG_ON(wc->refs[level] == 0);
7384                        if (wc->refs[level] == 1) {
7385                                btrfs_tree_unlock_rw(eb, path->locks[level]);
7386                                path->locks[level] = 0;
7387                                return 1;
7388                        }
7389                }
7390        }
7391
7392        /* wc->stage == DROP_REFERENCE */
7393        BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7394
7395        if (wc->refs[level] == 1) {
7396                if (level == 0) {
7397                        if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7398                                ret = btrfs_dec_ref(trans, root, eb, 1,
7399                                                    wc->for_reloc);
7400                        else
7401                                ret = btrfs_dec_ref(trans, root, eb, 0,
7402                                                    wc->for_reloc);
7403                        BUG_ON(ret); /* -ENOMEM */
7404                }
7405                /* make block locked assertion in clean_tree_block happy */
7406                if (!path->locks[level] &&
7407                    btrfs_header_generation(eb) == trans->transid) {
7408                        btrfs_tree_lock(eb);
7409                        btrfs_set_lock_blocking(eb);
7410                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7411                }
7412                clean_tree_block(trans, root, eb);
7413        }
7414
7415        if (eb == root->node) {
7416                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7417                        parent = eb->start;
7418                else
7419                        BUG_ON(root->root_key.objectid !=
7420                               btrfs_header_owner(eb));
7421        } else {
7422                if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7423                        parent = path->nodes[level + 1]->start;
7424                else
7425                        BUG_ON(root->root_key.objectid !=
7426                               btrfs_header_owner(path->nodes[level + 1]));
7427        }
7428
7429        btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7430out:
7431        wc->refs[level] = 0;
7432        wc->flags[level] = 0;
7433        return 0;
7434}
7435
7436static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7437                                   struct btrfs_root *root,
7438                                   struct btrfs_path *path,
7439                                   struct walk_control *wc)
7440{
7441        int level = wc->level;
7442        int lookup_info = 1;
7443        int ret;
7444
7445        while (level >= 0) {
7446                ret = walk_down_proc(trans, root, path, wc, lookup_info);
7447                if (ret > 0)
7448                        break;
7449
7450                if (level == 0)
7451                        break;
7452
7453                if (path->slots[level] >=
7454                    btrfs_header_nritems(path->nodes[level]))
7455                        break;
7456
7457                ret = do_walk_down(trans, root, path, wc, &lookup_info);
7458                if (ret > 0) {
7459                        path->slots[level]++;
7460                        continue;
7461                } else if (ret < 0)
7462                        return ret;
7463                level = wc->level;
7464        }
7465        return 0;
7466}
7467
7468static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7469                                 struct btrfs_root *root,
7470                                 struct btrfs_path *path,
7471                                 struct walk_control *wc, int max_level)
7472{
7473        int level = wc->level;
7474        int ret;
7475
7476        path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7477        while (level < max_level && path->nodes[level]) {
7478                wc->level = level;
7479                if (path->slots[level] + 1 <
7480                    btrfs_header_nritems(path->nodes[level])) {
7481                        path->slots[level]++;
7482                        return 0;
7483                } else {
7484                        ret = walk_up_proc(trans, root, path, wc);
7485                        if (ret > 0)
7486                                return 0;
7487
7488                        if (path->locks[level]) {
7489                                btrfs_tree_unlock_rw(path->nodes[level],
7490                                                     path->locks[level]);
7491                                path->locks[level] = 0;
7492                        }
7493                        free_extent_buffer(path->nodes[level]);
7494                        path->nodes[level] = NULL;
7495                        level++;
7496                }
7497        }
7498        return 1;
7499}
7500
7501/*
7502 * drop a subvolume tree.
7503 *
7504 * this function traverses the tree freeing any blocks that only
7505 * referenced by the tree.
7506 *
7507 * when a shared tree block is found. this function decreases its
7508 * reference count by one. if update_ref is true, this function
7509 * also make sure backrefs for the shared block and all lower level
7510 * blocks are properly updated.
7511 *
7512 * If called with for_reloc == 0, may exit early with -EAGAIN
7513 */
7514int btrfs_drop_snapshot(struct btrfs_root *root,
7515                         struct btrfs_block_rsv *block_rsv, int update_ref,
7516                         int for_reloc)
7517{
7518        struct btrfs_path *path;
7519        struct btrfs_trans_handle *trans;
7520        struct btrfs_root *tree_root = root->fs_info->tree_root;
7521        struct btrfs_root_item *root_item = &root->root_item;
7522        struct walk_control *wc;
7523        struct btrfs_key key;
7524        int err = 0;
7525        int ret;
7526        int level;
7527        bool root_dropped = false;
7528
7529        path = btrfs_alloc_path();
7530        if (!path) {
7531                err = -ENOMEM;
7532                goto out;
7533        }
7534
7535        wc = kzalloc(sizeof(*wc), GFP_NOFS);
7536        if (!wc) {
7537                btrfs_free_path(path);
7538                err = -ENOMEM;
7539                goto out;
7540        }
7541
7542        trans = btrfs_start_transaction(tree_root, 0);
7543        if (IS_ERR(trans)) {
7544                err = PTR_ERR(trans);
7545                goto out_free;
7546        }
7547
7548        if (block_rsv)
7549                trans->block_rsv = block_rsv;
7550
7551        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7552                level = btrfs_header_level(root->node);
7553                path->nodes[level] = btrfs_lock_root_node(root);
7554                btrfs_set_lock_blocking(path->nodes[level]);
7555                path->slots[level] = 0;
7556                path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7557                memset(&wc->update_progress, 0,
7558                       sizeof(wc->update_progress));
7559        } else {
7560                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7561                memcpy(&wc->update_progress, &key,
7562                       sizeof(wc->update_progress));
7563
7564                level = root_item->drop_level;
7565                BUG_ON(level == 0);
7566                path->lowest_level = level;
7567                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7568                path->lowest_level = 0;
7569                if (ret < 0) {
7570                        err = ret;
7571                        goto out_end_trans;
7572                }
7573                WARN_ON(ret > 0);
7574
7575                /*
7576                 * unlock our path, this is safe because only this
7577                 * function is allowed to delete this snapshot
7578                 */
7579                btrfs_unlock_up_safe(path, 0);
7580
7581                level = btrfs_header_level(root->node);
7582                while (1) {
7583                        btrfs_tree_lock(path->nodes[level]);
7584                        btrfs_set_lock_blocking(path->nodes[level]);
7585                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7586
7587                        ret = btrfs_lookup_extent_info(trans, root,
7588                                                path->nodes[level]->start,
7589                                                level, 1, &wc->refs[level],
7590                                                &wc->flags[level]);
7591                        if (ret < 0) {
7592                                err = ret;
7593                                goto out_end_trans;
7594                        }
7595                        BUG_ON(wc->refs[level] == 0);
7596
7597                        if (level == root_item->drop_level)
7598                                break;
7599
7600                        btrfs_tree_unlock(path->nodes[level]);
7601                        path->locks[level] = 0;
7602                        WARN_ON(wc->refs[level] != 1);
7603                        level--;
7604                }
7605        }
7606
7607        wc->level = level;
7608        wc->shared_level = -1;
7609        wc->stage = DROP_REFERENCE;
7610        wc->update_ref = update_ref;
7611        wc->keep_locks = 0;
7612        wc->for_reloc = for_reloc;
7613        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7614
7615        while (1) {
7616
7617                ret = walk_down_tree(trans, root, path, wc);
7618                if (ret < 0) {
7619                        err = ret;
7620                        break;
7621                }
7622
7623                ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7624                if (ret < 0) {
7625                        err = ret;
7626                        break;
7627                }
7628
7629                if (ret > 0) {
7630                        BUG_ON(wc->stage != DROP_REFERENCE);
7631                        break;
7632                }
7633
7634                if (wc->stage == DROP_REFERENCE) {
7635                        level = wc->level;
7636                        btrfs_node_key(path->nodes[level],
7637                                       &root_item->drop_progress,
7638                                       path->slots[level]);
7639                        root_item->drop_level = level;
7640                }
7641
7642                BUG_ON(wc->level == 0);
7643                if (btrfs_should_end_transaction(trans, tree_root) ||
7644                    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7645                        ret = btrfs_update_root(trans, tree_root,
7646                                                &root->root_key,
7647                                                root_item);
7648                        if (ret) {
7649                                btrfs_abort_transaction(trans, tree_root, ret);
7650                                err = ret;
7651                                goto out_end_trans;
7652                        }
7653
7654                        btrfs_end_transaction_throttle(trans, tree_root);
7655                        if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7656                                pr_debug("btrfs: drop snapshot early exit\n");
7657                                err = -EAGAIN;
7658                                goto out_free;
7659                        }
7660
7661                        trans = btrfs_start_transaction(tree_root, 0);
7662                        if (IS_ERR(trans)) {
7663                                err = PTR_ERR(trans);
7664                                goto out_free;
7665                        }
7666                        if (block_rsv)
7667                                trans->block_rsv = block_rsv;
7668                }
7669        }
7670        btrfs_release_path(path);
7671        if (err)
7672                goto out_end_trans;
7673
7674        ret = btrfs_del_root(trans, tree_root, &root->root_key);
7675        if (ret) {
7676                btrfs_abort_transaction(trans, tree_root, ret);
7677                goto out_end_trans;
7678        }
7679
7680        if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7681                ret = btrfs_find_root(tree_root, &root->root_key, path,
7682                                      NULL, NULL);
7683                if (ret < 0) {
7684                        btrfs_abort_transaction(trans, tree_root, ret);
7685                        err = ret;
7686                        goto out_end_trans;
7687                } else if (ret > 0) {
7688                        /* if we fail to delete the orphan item this time
7689                         * around, it'll get picked up the next time.
7690                         *
7691                         * The most common failure here is just -ENOENT.
7692                         */
7693                        btrfs_del_orphan_item(trans, tree_root,
7694                                              root->root_key.objectid);
7695                }
7696        }
7697
7698        if (root->in_radix) {
7699                btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7700        } else {
7701                free_extent_buffer(root->node);
7702                free_extent_buffer(root->commit_root);
7703                btrfs_put_fs_root(root);
7704        }
7705        root_dropped = true;
7706out_end_trans:
7707        btrfs_end_transaction_throttle(trans, tree_root);
7708out_free:
7709        kfree(wc);
7710        btrfs_free_path(path);
7711out:
7712        /*
7713         * So if we need to stop dropping the snapshot for whatever reason we
7714         * need to make sure to add it back to the dead root list so that we
7715         * keep trying to do the work later.  This also cleans up roots if we
7716         * don't have it in the radix (like when we recover after a power fail
7717         * or unmount) so we don't leak memory.
7718         */
7719        if (!for_reloc && root_dropped == false)
7720                btrfs_add_dead_root(root);
7721        if (err)
7722                btrfs_std_error(root->fs_info, err);
7723        return err;
7724}
7725
7726/*
7727 * drop subtree rooted at tree block 'node'.
7728 *
7729 * NOTE: this function will unlock and release tree block 'node'
7730 * only used by relocation code
7731 */
7732int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7733                        struct btrfs_root *root,
7734                        struct extent_buffer *node,
7735                        struct extent_buffer *parent)
7736{
7737        struct btrfs_path *path;
7738        struct walk_control *wc;
7739        int level;
7740        int parent_level;
7741        int ret = 0;
7742        int wret;
7743
7744        BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7745
7746        path = btrfs_alloc_path();
7747        if (!path)
7748                return -ENOMEM;
7749
7750        wc = kzalloc(sizeof(*wc), GFP_NOFS);
7751        if (!wc) {
7752                btrfs_free_path(path);
7753                return -ENOMEM;
7754        }
7755
7756        btrfs_assert_tree_locked(parent);
7757        parent_level = btrfs_header_level(parent);
7758        extent_buffer_get(parent);
7759        path->nodes[parent_level] = parent;
7760        path->slots[parent_level] = btrfs_header_nritems(parent);
7761
7762        btrfs_assert_tree_locked(node);
7763        level = btrfs_header_level(node);
7764        path->nodes[level] = node;
7765        path->slots[level] = 0;
7766        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7767
7768        wc->refs[parent_level] = 1;
7769        wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7770        wc->level = level;
7771        wc->shared_level = -1;
7772        wc->stage = DROP_REFERENCE;
7773        wc->update_ref = 0;
7774        wc->keep_locks = 1;
7775        wc->for_reloc = 1;
7776        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7777
7778        while (1) {
7779                wret = walk_down_tree(trans, root, path, wc);
7780                if (wret < 0) {
7781                        ret = wret;
7782                        break;
7783                }
7784
7785                wret = walk_up_tree(trans, root, path, wc, parent_level);
7786                if (wret < 0)
7787                        ret = wret;
7788                if (wret != 0)
7789                        break;
7790        }
7791
7792        kfree(wc);
7793        btrfs_free_path(path);
7794        return ret;
7795}
7796
7797static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7798{
7799        u64 num_devices;
7800        u64 stripped;
7801
7802        /*
7803         * if restripe for this chunk_type is on pick target profile and
7804         * return, otherwise do the usual balance
7805         */
7806        stripped = get_restripe_target(root->fs_info, flags);
7807        if (stripped)
7808                return extended_to_chunk(stripped);
7809
7810        /*
7811         * we add in the count of missing devices because we want
7812         * to make sure that any RAID levels on a degraded FS
7813         * continue to be honored.
7814         */
7815        num_devices = root->fs_info->fs_devices->rw_devices +
7816                root->fs_info->fs_devices->missing_devices;
7817
7818        stripped = BTRFS_BLOCK_GROUP_RAID0 |
7819                BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7820                BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7821
7822        if (num_devices == 1) {
7823                stripped |= BTRFS_BLOCK_GROUP_DUP;
7824                stripped = flags & ~stripped;
7825
7826                /* turn raid0 into single device chunks */
7827                if (flags & BTRFS_BLOCK_GROUP_RAID0)
7828                        return stripped;
7829
7830                /* turn mirroring into duplication */
7831                if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7832                             BTRFS_BLOCK_GROUP_RAID10))
7833                        return stripped | BTRFS_BLOCK_GROUP_DUP;
7834        } else {
7835                /* they already had raid on here, just return */
7836                if (flags & stripped)
7837                        return flags;
7838
7839                stripped |= BTRFS_BLOCK_GROUP_DUP;
7840                stripped = flags & ~stripped;
7841
7842                /* switch duplicated blocks with raid1 */
7843                if (flags & BTRFS_BLOCK_GROUP_DUP)
7844                        return stripped | BTRFS_BLOCK_GROUP_RAID1;
7845
7846                /* this is drive concat, leave it alone */
7847        }
7848
7849        return flags;
7850}
7851
7852static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7853{
7854        struct btrfs_space_info *sinfo = cache->space_info;
7855        u64 num_bytes;
7856        u64 min_allocable_bytes;
7857        int ret = -ENOSPC;
7858
7859
7860        /*
7861         * We need some metadata space and system metadata space for
7862         * allocating chunks in some corner cases until we force to set
7863         * it to be readonly.
7864         */
7865        if ((sinfo->flags &
7866             (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7867            !force)
7868                min_allocable_bytes = 1 * 1024 * 1024;
7869        else
7870                min_allocable_bytes = 0;
7871
7872        spin_lock(&sinfo->lock);
7873        spin_lock(&cache->lock);
7874
7875        if (cache->ro) {
7876                ret = 0;
7877                goto out;
7878        }
7879
7880        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7881                    cache->bytes_super - btrfs_block_group_used(&cache->item);
7882
7883        if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7884            sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7885            min_allocable_bytes <= sinfo->total_bytes) {
7886                sinfo->bytes_readonly += num_bytes;
7887                cache->ro = 1;
7888                ret = 0;
7889        }
7890out:
7891        spin_unlock(&cache->lock);
7892        spin_unlock(&sinfo->lock);
7893        return ret;
7894}
7895
7896int btrfs_set_block_group_ro(struct btrfs_root *root,
7897                             struct btrfs_block_group_cache *cache)
7898
7899{
7900        struct btrfs_trans_handle *trans;
7901        u64 alloc_flags;
7902        int ret;
7903
7904        BUG_ON(cache->ro);
7905
7906        trans = btrfs_join_transaction(root);
7907        if (IS_ERR(trans))
7908                return PTR_ERR(trans);
7909
7910        alloc_flags = update_block_group_flags(root, cache->flags);
7911        if (alloc_flags != cache->flags) {
7912                ret = do_chunk_alloc(trans, root, alloc_flags,
7913                                     CHUNK_ALLOC_FORCE);
7914                if (ret < 0)
7915                        goto out;
7916        }
7917
7918        ret = set_block_group_ro(cache, 0);
7919        if (!ret)
7920                goto out;
7921        alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7922        ret = do_chunk_alloc(trans, root, alloc_flags,
7923                             CHUNK_ALLOC_FORCE);
7924        if (ret < 0)
7925                goto out;
7926        ret = set_block_group_ro(cache, 0);
7927out:
7928        btrfs_end_transaction(trans, root);
7929        return ret;
7930}
7931
7932int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7933                            struct btrfs_root *root, u64 type)
7934{
7935        u64 alloc_flags = get_alloc_profile(root, type);
7936        return do_chunk_alloc(trans, root, alloc_flags,
7937                              CHUNK_ALLOC_FORCE);
7938}
7939
7940/*
7941 * helper to account the unused space of all the readonly block group in the
7942 * list. takes mirrors into account.
7943 */
7944static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7945{
7946        struct btrfs_block_group_cache *block_group;
7947        u64 free_bytes = 0;
7948        int factor;
7949
7950        list_for_each_entry(block_group, groups_list, list) {
7951                spin_lock(&block_group->lock);
7952
7953                if (!block_group->ro) {
7954                        spin_unlock(&block_group->lock);
7955                        continue;
7956                }
7957
7958                if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7959                                          BTRFS_BLOCK_GROUP_RAID10 |
7960                                          BTRFS_BLOCK_GROUP_DUP))
7961                        factor = 2;
7962                else
7963                        factor = 1;
7964
7965                free_bytes += (block_group->key.offset -
7966                               btrfs_block_group_used(&block_group->item)) *
7967                               factor;
7968
7969                spin_unlock(&block_group->lock);
7970        }
7971
7972        return free_bytes;
7973}
7974
7975/*
7976 * helper to account the unused space of all the readonly block group in the
7977 * space_info. takes mirrors into account.
7978 */
7979u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7980{
7981        int i;
7982        u64 free_bytes = 0;
7983
7984        spin_lock(&sinfo->lock);
7985
7986        for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7987                if (!list_empty(&sinfo->block_groups[i]))
7988                        free_bytes += __btrfs_get_ro_block_group_free_space(
7989                                                &sinfo->block_groups[i]);
7990
7991        spin_unlock(&sinfo->lock);
7992
7993        return free_bytes;
7994}
7995
7996void btrfs_set_block_group_rw(struct btrfs_root *root,
7997                              struct btrfs_block_group_cache *cache)
7998{
7999        struct btrfs_space_info *sinfo = cache->space_info;
8000        u64 num_bytes;
8001
8002        BUG_ON(!cache->ro);
8003
8004        spin_lock(&sinfo->lock);
8005        spin_lock(&cache->lock);
8006        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8007                    cache->bytes_super - btrfs_block_group_used(&cache->item);
8008        sinfo->bytes_readonly -= num_bytes;
8009        cache->ro = 0;
8010        spin_unlock(&cache->lock);
8011        spin_unlock(&sinfo->lock);
8012}
8013
8014/*
8015 * checks to see if its even possible to relocate this block group.
8016 *
8017 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8018 * ok to go ahead and try.
8019 */
8020int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8021{
8022        struct btrfs_block_group_cache *block_group;
8023        struct btrfs_space_info *space_info;
8024        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8025        struct btrfs_device *device;
8026        struct btrfs_trans_handle *trans;
8027        u64 min_free;
8028        u64 dev_min = 1;
8029        u64 dev_nr = 0;
8030        u64 target;
8031        int index;
8032        int full = 0;
8033        int ret = 0;
8034
8035        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8036
8037        /* odd, couldn't find the block group, leave it alone */
8038        if (!block_group)
8039                return -1;
8040
8041        min_free = btrfs_block_group_used(&block_group->item);
8042
8043        /* no bytes used, we're good */
8044        if (!min_free)
8045                goto out;
8046
8047        space_info = block_group->space_info;
8048        spin_lock(&space_info->lock);
8049
8050        full = space_info->full;
8051
8052        /*
8053         * if this is the last block group we have in this space, we can't
8054         * relocate it unless we're able to allocate a new chunk below.
8055         *
8056         * Otherwise, we need to make sure we have room in the space to handle
8057         * all of the extents from this block group.  If we can, we're good
8058         */
8059        if ((space_info->total_bytes != block_group->key.offset) &&
8060            (space_info->bytes_used + space_info->bytes_reserved +
8061             space_info->bytes_pinned + space_info->bytes_readonly +
8062             min_free < space_info->total_bytes)) {
8063                spin_unlock(&space_info->lock);
8064                goto out;
8065        }
8066        spin_unlock(&space_info->lock);
8067
8068        /*
8069         * ok we don't have enough space, but maybe we have free space on our
8070         * devices to allocate new chunks for relocation, so loop through our
8071         * alloc devices and guess if we have enough space.  if this block
8072         * group is going to be restriped, run checks against the target
8073         * profile instead of the current one.
8074         */
8075        ret = -1;
8076
8077        /*
8078         * index:
8079         *      0: raid10
8080         *      1: raid1
8081         *      2: dup
8082         *      3: raid0
8083         *      4: single
8084         */
8085        target = get_restripe_target(root->fs_info, block_group->flags);
8086        if (target) {
8087                index = __get_raid_index(extended_to_chunk(target));
8088        } else {
8089                /*
8090                 * this is just a balance, so if we were marked as full
8091                 * we know there is no space for a new chunk
8092                 */
8093                if (full)
8094                        goto out;
8095
8096                index = get_block_group_index(block_group);
8097        }
8098
8099        if (index == BTRFS_RAID_RAID10) {
8100                dev_min = 4;
8101                /* Divide by 2 */
8102                min_free >>= 1;
8103        } else if (index == BTRFS_RAID_RAID1) {
8104                dev_min = 2;
8105        } else if (index == BTRFS_RAID_DUP) {
8106                /* Multiply by 2 */
8107                min_free <<= 1;
8108        } else if (index == BTRFS_RAID_RAID0) {
8109                dev_min = fs_devices->rw_devices;
8110                do_div(min_free, dev_min);
8111        }
8112
8113        /* We need to do this so that we can look at pending chunks */
8114        trans = btrfs_join_transaction(root);
8115        if (IS_ERR(trans)) {
8116                ret = PTR_ERR(trans);
8117                goto out;
8118        }
8119
8120        mutex_lock(&root->fs_info->chunk_mutex);
8121        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8122                u64 dev_offset;
8123
8124                /*
8125                 * check to make sure we can actually find a chunk with enough
8126                 * space to fit our block group in.
8127                 */
8128                if (device->total_bytes > device->bytes_used + min_free &&
8129                    !device->is_tgtdev_for_dev_replace) {
8130                        ret = find_free_dev_extent(trans, device, min_free,
8131                                                   &dev_offset, NULL);
8132                        if (!ret)
8133                                dev_nr++;
8134
8135                        if (dev_nr >= dev_min)
8136                                break;
8137
8138                        ret = -1;
8139                }
8140        }
8141        mutex_unlock(&root->fs_info->chunk_mutex);
8142        btrfs_end_transaction(trans, root);
8143out:
8144        btrfs_put_block_group(block_group);
8145        return ret;
8146}
8147
8148static int find_first_block_group(struct btrfs_root *root,
8149                struct btrfs_path *path, struct btrfs_key *key)
8150{
8151        int ret = 0;
8152        struct btrfs_key found_key;
8153        struct extent_buffer *leaf;
8154        int slot;
8155
8156        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8157        if (ret < 0)
8158                goto out;
8159
8160        while (1) {
8161                slot = path->slots[0];
8162                leaf = path->nodes[0];
8163                if (slot >= btrfs_header_nritems(leaf)) {
8164                        ret = btrfs_next_leaf(root, path);
8165                        if (ret == 0)
8166                                continue;
8167                        if (ret < 0)
8168                                goto out;
8169                        break;
8170                }
8171                btrfs_item_key_to_cpu(leaf, &found_key, slot);
8172
8173                if (found_key.objectid >= key->objectid &&
8174                    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8175                        ret = 0;
8176                        goto out;
8177                }
8178                path->slots[0]++;
8179        }
8180out:
8181        return ret;
8182}
8183
8184void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8185{
8186        struct btrfs_block_group_cache *block_group;
8187        u64 last = 0;
8188
8189        while (1) {
8190                struct inode *inode;
8191
8192                block_group = btrfs_lookup_first_block_group(info, last);
8193                while (block_group) {
8194                        spin_lock(&block_group->lock);
8195                        if (block_group->iref)
8196                                break;
8197                        spin_unlock(&block_group->lock);
8198                        block_group = next_block_group(info->tree_root,
8199                                                       block_group);
8200                }
8201                if (!block_group) {
8202                        if (last == 0)
8203                                break;
8204                        last = 0;
8205                        continue;
8206                }
8207
8208                inode = block_group->inode;
8209                block_group->iref = 0;
8210                block_group->inode = NULL;
8211                spin_unlock(&block_group->lock);
8212                iput(inode);
8213                last = block_group->key.objectid + block_group->key.offset;
8214                btrfs_put_block_group(block_group);
8215        }
8216}
8217
8218int btrfs_free_block_groups(struct btrfs_fs_info *info)
8219{
8220        struct btrfs_block_group_cache *block_group;
8221        struct btrfs_space_info *space_info;
8222        struct btrfs_caching_control *caching_ctl;
8223        struct rb_node *n;
8224
8225        down_write(&info->extent_commit_sem);
8226        while (!list_empty(&info->caching_block_groups)) {
8227                caching_ctl = list_entry(info->caching_block_groups.next,
8228                                         struct btrfs_caching_control, list);
8229                list_del(&caching_ctl->list);
8230                put_caching_control(caching_ctl);
8231        }
8232        up_write(&info->extent_commit_sem);
8233
8234        spin_lock(&info->block_group_cache_lock);
8235        while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8236                block_group = rb_entry(n, struct btrfs_block_group_cache,
8237                                       cache_node);
8238                rb_erase(&block_group->cache_node,
8239                         &info->block_group_cache_tree);
8240                spin_unlock(&info->block_group_cache_lock);
8241
8242                down_write(&block_group->space_info->groups_sem);
8243                list_del(&block_group->list);
8244                up_write(&block_group->space_info->groups_sem);
8245
8246                if (block_group->cached == BTRFS_CACHE_STARTED)
8247                        wait_block_group_cache_done(block_group);
8248
8249                /*
8250                 * We haven't cached this block group, which means we could
8251                 * possibly have excluded extents on this block group.
8252                 */
8253                if (block_group->cached == BTRFS_CACHE_NO ||
8254                    block_group->cached == BTRFS_CACHE_ERROR)
8255                        free_excluded_extents(info->extent_root, block_group);
8256
8257                btrfs_remove_free_space_cache(block_group);
8258                btrfs_put_block_group(block_group);
8259
8260                spin_lock(&info->block_group_cache_lock);
8261        }
8262        spin_unlock(&info->block_group_cache_lock);
8263
8264        /* now that all the block groups are freed, go through and
8265         * free all the space_info structs.  This is only called during
8266         * the final stages of unmount, and so we know nobody is
8267         * using them.  We call synchronize_rcu() once before we start,
8268         * just to be on the safe side.
8269         */
8270        synchronize_rcu();
8271
8272        release_global_block_rsv(info);
8273
8274        while(!list_empty(&info->space_info)) {
8275                space_info = list_entry(info->space_info.next,
8276                                        struct btrfs_space_info,
8277                                        list);
8278                if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8279                        if (space_info->bytes_pinned > 0 ||
8280                            space_info->bytes_reserved > 0 ||
8281                            space_info->bytes_may_use > 0) {
8282                                WARN_ON(1);
8283                                dump_space_info(space_info, 0, 0);
8284                        }
8285                }
8286                percpu_counter_destroy(&space_info->total_bytes_pinned);
8287                list_del(&space_info->list);
8288                kfree(space_info);
8289        }
8290        return 0;
8291}
8292
8293static void __link_block_group(struct btrfs_space_info *space_info,
8294                               struct btrfs_block_group_cache *cache)
8295{
8296        int index = get_block_group_index(cache);
8297
8298        down_write(&space_info->groups_sem);
8299        list_add_tail(&cache->list, &space_info->block_groups[index]);
8300        up_write(&space_info->groups_sem);
8301}
8302
8303int btrfs_read_block_groups(struct btrfs_root *root)
8304{
8305        struct btrfs_path *path;
8306        int ret;
8307        struct btrfs_block_group_cache *cache;
8308        struct btrfs_fs_info *info = root->fs_info;
8309        struct btrfs_space_info *space_info;
8310        struct btrfs_key key;
8311        struct btrfs_key found_key;
8312        struct extent_buffer *leaf;
8313        int need_clear = 0;
8314        u64 cache_gen;
8315
8316        root = info->extent_root;
8317        key.objectid = 0;
8318        key.offset = 0;
8319        btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8320        path = btrfs_alloc_path();
8321        if (!path)
8322                return -ENOMEM;
8323        path->reada = 1;
8324
8325        cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8326        if (btrfs_test_opt(root, SPACE_CACHE) &&
8327            btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8328                need_clear = 1;
8329        if (btrfs_test_opt(root, CLEAR_CACHE))
8330                need_clear = 1;
8331
8332        while (1) {
8333                ret = find_first_block_group(root, path, &key);
8334                if (ret > 0)
8335                        break;
8336                if (ret != 0)
8337                        goto error;
8338                leaf = path->nodes[0];
8339                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8340                cache = kzalloc(sizeof(*cache), GFP_NOFS);
8341                if (!cache) {
8342                        ret = -ENOMEM;
8343                        goto error;
8344                }
8345                cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8346                                                GFP_NOFS);
8347                if (!cache->free_space_ctl) {
8348                        kfree(cache);
8349                        ret = -ENOMEM;
8350                        goto error;
8351                }
8352
8353                atomic_set(&cache->count, 1);
8354                spin_lock_init(&cache->lock);
8355                cache->fs_info = info;
8356                INIT_LIST_HEAD(&cache->list);
8357                INIT_LIST_HEAD(&cache->cluster_list);
8358
8359                if (need_clear) {
8360                        /*
8361                         * When we mount with old space cache, we need to
8362                         * set BTRFS_DC_CLEAR and set dirty flag.
8363                         *
8364                         * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8365                         *    truncate the old free space cache inode and
8366                         *    setup a new one.
8367                         * b) Setting 'dirty flag' makes sure that we flush
8368                         *    the new space cache info onto disk.
8369                         */
8370                        cache->disk_cache_state = BTRFS_DC_CLEAR;
8371                        if (btrfs_test_opt(root, SPACE_CACHE))
8372                                cache->dirty = 1;
8373                }
8374
8375                read_extent_buffer(leaf, &cache->item,
8376                                   btrfs_item_ptr_offset(leaf, path->slots[0]),
8377                                   sizeof(cache->item));
8378                memcpy(&cache->key, &found_key, sizeof(found_key));
8379
8380                key.objectid = found_key.objectid + found_key.offset;
8381                btrfs_release_path(path);
8382                cache->flags = btrfs_block_group_flags(&cache->item);
8383                cache->sectorsize = root->sectorsize;
8384                cache->full_stripe_len = btrfs_full_stripe_len(root,
8385                                               &root->fs_info->mapping_tree,
8386                                               found_key.objectid);
8387                btrfs_init_free_space_ctl(cache);
8388
8389                /*
8390                 * We need to exclude the super stripes now so that the space
8391                 * info has super bytes accounted for, otherwise we'll think
8392                 * we have more space than we actually do.
8393                 */
8394                ret = exclude_super_stripes(root, cache);
8395                if (ret) {
8396                        /*
8397                         * We may have excluded something, so call this just in
8398                         * case.
8399                         */
8400                        free_excluded_extents(root, cache);
8401                        kfree(cache->free_space_ctl);
8402                        kfree(cache);
8403                        goto error;
8404                }
8405
8406                /*
8407                 * check for two cases, either we are full, and therefore
8408                 * don't need to bother with the caching work since we won't
8409                 * find any space, or we are empty, and we can just add all
8410                 * the space in and be done with it.  This saves us _alot_ of
8411                 * time, particularly in the full case.
8412                 */
8413                if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8414                        cache->last_byte_to_unpin = (u64)-1;
8415                        cache->cached = BTRFS_CACHE_FINISHED;
8416                        free_excluded_extents(root, cache);
8417                } else if (btrfs_block_group_used(&cache->item) == 0) {
8418                        cache->last_byte_to_unpin = (u64)-1;
8419                        cache->cached = BTRFS_CACHE_FINISHED;
8420                        add_new_free_space(cache, root->fs_info,
8421                                           found_key.objectid,
8422                                           found_key.objectid +
8423                                           found_key.offset);
8424                        free_excluded_extents(root, cache);
8425                }
8426
8427                ret = btrfs_add_block_group_cache(root->fs_info, cache);
8428                if (ret) {
8429                        btrfs_remove_free_space_cache(cache);
8430                        btrfs_put_block_group(cache);
8431                        goto error;
8432                }
8433
8434                ret = update_space_info(info, cache->flags, found_key.offset,
8435                                        btrfs_block_group_used(&cache->item),
8436                                        &space_info);
8437                if (ret) {
8438                        btrfs_remove_free_space_cache(cache);
8439                        spin_lock(&info->block_group_cache_lock);
8440                        rb_erase(&cache->cache_node,
8441                                 &info->block_group_cache_tree);
8442                        spin_unlock(&info->block_group_cache_lock);
8443                        btrfs_put_block_group(cache);
8444                        goto error;
8445                }
8446
8447                cache->space_info = space_info;
8448                spin_lock(&cache->space_info->lock);
8449                cache->space_info->bytes_readonly += cache->bytes_super;
8450                spin_unlock(&cache->space_info->lock);
8451
8452                __link_block_group(space_info, cache);
8453
8454                set_avail_alloc_bits(root->fs_info, cache->flags);
8455                if (btrfs_chunk_readonly(root, cache->key.objectid))
8456                        set_block_group_ro(cache, 1);
8457        }
8458
8459        list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8460                if (!(get_alloc_profile(root, space_info->flags) &
8461                      (BTRFS_BLOCK_GROUP_RAID10 |
8462                       BTRFS_BLOCK_GROUP_RAID1 |
8463                       BTRFS_BLOCK_GROUP_RAID5 |
8464                       BTRFS_BLOCK_GROUP_RAID6 |
8465                       BTRFS_BLOCK_GROUP_DUP)))
8466                        continue;
8467                /*
8468                 * avoid allocating from un-mirrored block group if there are
8469                 * mirrored block groups.
8470                 */
8471                list_for_each_entry(cache,
8472                                &space_info->block_groups[BTRFS_RAID_RAID0],
8473                                list)
8474                        set_block_group_ro(cache, 1);
8475                list_for_each_entry(cache,
8476                                &space_info->block_groups[BTRFS_RAID_SINGLE],
8477                                list)
8478                        set_block_group_ro(cache, 1);
8479        }
8480
8481        init_global_block_rsv(info);
8482        ret = 0;
8483error:
8484        btrfs_free_path(path);
8485        return ret;
8486}
8487
8488void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8489                                       struct btrfs_root *root)
8490{
8491        struct btrfs_block_group_cache *block_group, *tmp;
8492        struct btrfs_root *extent_root = root->fs_info->extent_root;
8493        struct btrfs_block_group_item item;
8494        struct btrfs_key key;
8495        int ret = 0;
8496
8497        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8498                                 new_bg_list) {
8499                list_del_init(&block_group->new_bg_list);
8500
8501                if (ret)
8502                        continue;
8503
8504                spin_lock(&block_group->lock);
8505                memcpy(&item, &block_group->item, sizeof(item));
8506                memcpy(&key, &block_group->key, sizeof(key));
8507                spin_unlock(&block_group->lock);
8508
8509                ret = btrfs_insert_item(trans, extent_root, &key, &item,
8510                                        sizeof(item));
8511                if (ret)
8512                        btrfs_abort_transaction(trans, extent_root, ret);
8513                ret = btrfs_finish_chunk_alloc(trans, extent_root,
8514                                               key.objectid, key.offset);
8515                if (ret)
8516                        btrfs_abort_transaction(trans, extent_root, ret);
8517        }
8518}
8519
8520int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8521                           struct btrfs_root *root, u64 bytes_used,
8522                           u64 type, u64 chunk_objectid, u64 chunk_offset,
8523                           u64 size)
8524{
8525        int ret;
8526        struct btrfs_root *extent_root;
8527        struct btrfs_block_group_cache *cache;
8528
8529        extent_root = root->fs_info->extent_root;
8530
8531        root->fs_info->last_trans_log_full_commit = trans->transid;
8532
8533        cache = kzalloc(sizeof(*cache), GFP_NOFS);
8534        if (!cache)
8535                return -ENOMEM;
8536        cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8537                                        GFP_NOFS);
8538        if (!cache->free_space_ctl) {
8539                kfree(cache);
8540                return -ENOMEM;
8541        }
8542
8543        cache->key.objectid = chunk_offset;
8544        cache->key.offset = size;
8545        cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8546        cache->sectorsize = root->sectorsize;
8547        cache->fs_info = root->fs_info;
8548        cache->full_stripe_len = btrfs_full_stripe_len(root,
8549                                               &root->fs_info->mapping_tree,
8550                                               chunk_offset);
8551
8552        atomic_set(&cache->count, 1);
8553        spin_lock_init(&cache->lock);
8554        INIT_LIST_HEAD(&cache->list);
8555        INIT_LIST_HEAD(&cache->cluster_list);
8556        INIT_LIST_HEAD(&cache->new_bg_list);
8557
8558        btrfs_init_free_space_ctl(cache);
8559
8560        btrfs_set_block_group_used(&cache->item, bytes_used);
8561        btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8562        cache->flags = type;
8563        btrfs_set_block_group_flags(&cache->item, type);
8564
8565        cache->last_byte_to_unpin = (u64)-1;
8566        cache->cached = BTRFS_CACHE_FINISHED;
8567        ret = exclude_super_stripes(root, cache);
8568        if (ret) {
8569                /*
8570                 * We may have excluded something, so call this just in
8571                 * case.
8572                 */
8573                free_excluded_extents(root, cache);
8574                kfree(cache->free_space_ctl);
8575                kfree(cache);
8576                return ret;
8577        }
8578
8579        add_new_free_space(cache, root->fs_info, chunk_offset,
8580                           chunk_offset + size);
8581
8582        free_excluded_extents(root, cache);
8583
8584        ret = btrfs_add_block_group_cache(root->fs_info, cache);
8585        if (ret) {
8586                btrfs_remove_free_space_cache(cache);
8587                btrfs_put_block_group(cache);
8588                return ret;
8589        }
8590
8591        ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8592                                &cache->space_info);
8593        if (ret) {
8594                btrfs_remove_free_space_cache(cache);
8595                spin_lock(&root->fs_info->block_group_cache_lock);
8596                rb_erase(&cache->cache_node,
8597                         &root->fs_info->block_group_cache_tree);
8598                spin_unlock(&root->fs_info->block_group_cache_lock);
8599                btrfs_put_block_group(cache);
8600                return ret;
8601        }
8602        update_global_block_rsv(root->fs_info);
8603
8604        spin_lock(&cache->space_info->lock);
8605        cache->space_info->bytes_readonly += cache->bytes_super;
8606        spin_unlock(&cache->space_info->lock);
8607
8608        __link_block_group(cache->space_info, cache);
8609
8610        list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8611
8612        set_avail_alloc_bits(extent_root->fs_info, type);
8613
8614        return 0;
8615}
8616
8617static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8618{
8619        u64 extra_flags = chunk_to_extended(flags) &
8620                                BTRFS_EXTENDED_PROFILE_MASK;
8621
8622        write_seqlock(&fs_info->profiles_lock);
8623        if (flags & BTRFS_BLOCK_GROUP_DATA)
8624                fs_info->avail_data_alloc_bits &= ~extra_flags;
8625        if (flags & BTRFS_BLOCK_GROUP_METADATA)
8626                fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8627        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8628                fs_info->avail_system_alloc_bits &= ~extra_flags;
8629        write_sequnlock(&fs_info->profiles_lock);
8630}
8631
8632int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8633                             struct btrfs_root *root, u64 group_start)
8634{
8635        struct btrfs_path *path;
8636        struct btrfs_block_group_cache *block_group;
8637        struct btrfs_free_cluster *cluster;
8638        struct btrfs_root *tree_root = root->fs_info->tree_root;
8639        struct btrfs_key key;
8640        struct inode *inode;
8641        int ret;
8642        int index;
8643        int factor;
8644
8645        root = root->fs_info->extent_root;
8646
8647        block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8648        BUG_ON(!block_group);
8649        BUG_ON(!block_group->ro);
8650
8651        /*
8652         * Free the reserved super bytes from this block group before
8653         * remove it.
8654         */
8655        free_excluded_extents(root, block_group);
8656
8657        memcpy(&key, &block_group->key, sizeof(key));
8658        index = get_block_group_index(block_group);
8659        if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8660                                  BTRFS_BLOCK_GROUP_RAID1 |
8661                                  BTRFS_BLOCK_GROUP_RAID10))
8662                factor = 2;
8663        else
8664                factor = 1;
8665
8666        /* make sure this block group isn't part of an allocation cluster */
8667        cluster = &root->fs_info->data_alloc_cluster;
8668        spin_lock(&cluster->refill_lock);
8669        btrfs_return_cluster_to_free_space(block_group, cluster);
8670        spin_unlock(&cluster->refill_lock);
8671
8672        /*
8673         * make sure this block group isn't part of a metadata
8674         * allocation cluster
8675         */
8676        cluster = &root->fs_info->meta_alloc_cluster;
8677        spin_lock(&cluster->refill_lock);
8678        btrfs_return_cluster_to_free_space(block_group, cluster);
8679        spin_unlock(&cluster->refill_lock);
8680
8681        path = btrfs_alloc_path();
8682        if (!path) {
8683                ret = -ENOMEM;
8684                goto out;
8685        }
8686
8687        inode = lookup_free_space_inode(tree_root, block_group, path);
8688        if (!IS_ERR(inode)) {
8689                ret = btrfs_orphan_add(trans, inode);
8690                if (ret) {
8691                        btrfs_add_delayed_iput(inode);
8692                        goto out;
8693                }
8694                clear_nlink(inode);
8695                /* One for the block groups ref */
8696                spin_lock(&block_group->lock);
8697                if (block_group->iref) {
8698                        block_group->iref = 0;
8699                        block_group->inode = NULL;
8700                        spin_unlock(&block_group->lock);
8701                        iput(inode);
8702                } else {
8703                        spin_unlock(&block_group->lock);
8704                }
8705                /* One for our lookup ref */
8706                btrfs_add_delayed_iput(inode);
8707        }
8708
8709        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8710        key.offset = block_group->key.objectid;
8711        key.type = 0;
8712
8713        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8714        if (ret < 0)
8715                goto out;
8716        if (ret > 0)
8717                btrfs_release_path(path);
8718        if (ret == 0) {
8719                ret = btrfs_del_item(trans, tree_root, path);
8720                if (ret)
8721                        goto out;
8722                btrfs_release_path(path);
8723        }
8724
8725        spin_lock(&root->fs_info->block_group_cache_lock);
8726        rb_erase(&block_group->cache_node,
8727                 &root->fs_info->block_group_cache_tree);
8728
8729        if (root->fs_info->first_logical_byte == block_group->key.objectid)
8730                root->fs_info->first_logical_byte = (u64)-1;
8731        spin_unlock(&root->fs_info->block_group_cache_lock);
8732
8733        down_write(&block_group->space_info->groups_sem);
8734        /*
8735         * we must use list_del_init so people can check to see if they
8736         * are still on the list after taking the semaphore
8737         */
8738        list_del_init(&block_group->list);
8739        if (list_empty(&block_group->space_info->block_groups[index]))
8740                clear_avail_alloc_bits(root->fs_info, block_group->flags);
8741        up_write(&block_group->space_info->groups_sem);
8742
8743        if (block_group->cached == BTRFS_CACHE_STARTED)
8744                wait_block_group_cache_done(block_group);
8745
8746        btrfs_remove_free_space_cache(block_group);
8747
8748        spin_lock(&block_group->space_info->lock);
8749        block_group->space_info->total_bytes -= block_group->key.offset;
8750        block_group->space_info->bytes_readonly -= block_group->key.offset;
8751        block_group->space_info->disk_total -= block_group->key.offset * factor;
8752        spin_unlock(&block_group->space_info->lock);
8753
8754        memcpy(&key, &block_group->key, sizeof(key));
8755
8756        btrfs_clear_space_info_full(root->fs_info);
8757
8758        btrfs_put_block_group(block_group);
8759        btrfs_put_block_group(block_group);
8760
8761        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8762        if (ret > 0)
8763                ret = -EIO;
8764        if (ret < 0)
8765                goto out;
8766
8767        ret = btrfs_del_item(trans, root, path);
8768out:
8769        btrfs_free_path(path);
8770        return ret;
8771}
8772
8773int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8774{
8775        struct btrfs_space_info *space_info;
8776        struct btrfs_super_block *disk_super;
8777        u64 features;
8778        u64 flags;
8779        int mixed = 0;
8780        int ret;
8781
8782        disk_super = fs_info->super_copy;
8783        if (!btrfs_super_root(disk_super))
8784                return 1;
8785
8786        features = btrfs_super_incompat_flags(disk_super);
8787        if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8788                mixed = 1;
8789
8790        flags = BTRFS_BLOCK_GROUP_SYSTEM;
8791        ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8792        if (ret)
8793                goto out;
8794
8795        if (mixed) {
8796                flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8797                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8798        } else {
8799                flags = BTRFS_BLOCK_GROUP_METADATA;
8800                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8801                if (ret)
8802                        goto out;
8803
8804                flags = BTRFS_BLOCK_GROUP_DATA;
8805                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8806        }
8807out:
8808        return ret;
8809}
8810
8811int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8812{
8813        return unpin_extent_range(root, start, end);
8814}
8815
8816int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8817                               u64 num_bytes, u64 *actual_bytes)
8818{
8819        return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8820}
8821
8822int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8823{
8824        struct btrfs_fs_info *fs_info = root->fs_info;
8825        struct btrfs_block_group_cache *cache = NULL;
8826        u64 group_trimmed;
8827        u64 start;
8828        u64 end;
8829        u64 trimmed = 0;
8830        u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8831        int ret = 0;
8832
8833        /*
8834         * try to trim all FS space, our block group may start from non-zero.
8835         */
8836        if (range->len == total_bytes)
8837                cache = btrfs_lookup_first_block_group(fs_info, range->start);
8838        else
8839                cache = btrfs_lookup_block_group(fs_info, range->start);
8840
8841        while (cache) {
8842                if (cache->key.objectid >= (range->start + range->len)) {
8843                        btrfs_put_block_group(cache);
8844                        break;
8845                }
8846
8847                start = max(range->start, cache->key.objectid);
8848                end = min(range->start + range->len,
8849                                cache->key.objectid + cache->key.offset);
8850
8851                if (end - start >= range->minlen) {
8852                        if (!block_group_cache_done(cache)) {
8853                                ret = cache_block_group(cache, 0);
8854                                if (ret) {
8855                                        btrfs_put_block_group(cache);
8856                                        break;
8857                                }
8858                                ret = wait_block_group_cache_done(cache);
8859                                if (ret) {
8860                                        btrfs_put_block_group(cache);
8861                                        break;
8862                                }
8863                        }
8864                        ret = btrfs_trim_block_group(cache,
8865                                                     &group_trimmed,
8866                                                     start,
8867                                                     end,
8868                                                     range->minlen);
8869
8870                        trimmed += group_trimmed;
8871                        if (ret) {
8872                                btrfs_put_block_group(cache);
8873                                break;
8874                        }
8875                }
8876
8877                cache = next_block_group(fs_info->tree_root, cache);
8878        }
8879
8880        range->len = trimmed;
8881        return ret;
8882}
8883