linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "compat.h"
  17#include "ctree.h"
  18#include "btrfs_inode.h"
  19#include "volumes.h"
  20#include "check-integrity.h"
  21#include "locking.h"
  22#include "rcu-string.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28#ifdef CONFIG_BTRFS_DEBUG
  29static LIST_HEAD(buffers);
  30static LIST_HEAD(states);
  31
  32static DEFINE_SPINLOCK(leak_lock);
  33
  34static inline
  35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  36{
  37        unsigned long flags;
  38
  39        spin_lock_irqsave(&leak_lock, flags);
  40        list_add(new, head);
  41        spin_unlock_irqrestore(&leak_lock, flags);
  42}
  43
  44static inline
  45void btrfs_leak_debug_del(struct list_head *entry)
  46{
  47        unsigned long flags;
  48
  49        spin_lock_irqsave(&leak_lock, flags);
  50        list_del(entry);
  51        spin_unlock_irqrestore(&leak_lock, flags);
  52}
  53
  54static inline
  55void btrfs_leak_debug_check(void)
  56{
  57        struct extent_state *state;
  58        struct extent_buffer *eb;
  59
  60        while (!list_empty(&states)) {
  61                state = list_entry(states.next, struct extent_state, leak_list);
  62                printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  63                       "state %lu in tree %p refs %d\n",
  64                       state->start, state->end, state->state, state->tree,
  65                       atomic_read(&state->refs));
  66                list_del(&state->leak_list);
  67                kmem_cache_free(extent_state_cache, state);
  68        }
  69
  70        while (!list_empty(&buffers)) {
  71                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  72                printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  73                       "refs %d\n",
  74                       eb->start, eb->len, atomic_read(&eb->refs));
  75                list_del(&eb->leak_list);
  76                kmem_cache_free(extent_buffer_cache, eb);
  77        }
  78}
  79
  80#define btrfs_debug_check_extent_io_range(inode, start, end)            \
  81        __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
  82static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  83                struct inode *inode, u64 start, u64 end)
  84{
  85        u64 isize = i_size_read(inode);
  86
  87        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  88                printk_ratelimited(KERN_DEBUG
  89                    "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
  90                                caller, btrfs_ino(inode), isize, start, end);
  91        }
  92}
  93#else
  94#define btrfs_leak_debug_add(new, head) do {} while (0)
  95#define btrfs_leak_debug_del(entry)     do {} while (0)
  96#define btrfs_leak_debug_check()        do {} while (0)
  97#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
  98#endif
  99
 100#define BUFFER_LRU_MAX 64
 101
 102struct tree_entry {
 103        u64 start;
 104        u64 end;
 105        struct rb_node rb_node;
 106};
 107
 108struct extent_page_data {
 109        struct bio *bio;
 110        struct extent_io_tree *tree;
 111        get_extent_t *get_extent;
 112        unsigned long bio_flags;
 113
 114        /* tells writepage not to lock the state bits for this range
 115         * it still does the unlocking
 116         */
 117        unsigned int extent_locked:1;
 118
 119        /* tells the submit_bio code to use a WRITE_SYNC */
 120        unsigned int sync_io:1;
 121};
 122
 123static noinline void flush_write_bio(void *data);
 124static inline struct btrfs_fs_info *
 125tree_fs_info(struct extent_io_tree *tree)
 126{
 127        return btrfs_sb(tree->mapping->host->i_sb);
 128}
 129
 130int __init extent_io_init(void)
 131{
 132        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 133                        sizeof(struct extent_state), 0,
 134                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 135        if (!extent_state_cache)
 136                return -ENOMEM;
 137
 138        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 139                        sizeof(struct extent_buffer), 0,
 140                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 141        if (!extent_buffer_cache)
 142                goto free_state_cache;
 143
 144        btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 145                                     offsetof(struct btrfs_io_bio, bio));
 146        if (!btrfs_bioset)
 147                goto free_buffer_cache;
 148
 149        if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 150                goto free_bioset;
 151
 152        return 0;
 153
 154free_bioset:
 155        bioset_free(btrfs_bioset);
 156        btrfs_bioset = NULL;
 157
 158free_buffer_cache:
 159        kmem_cache_destroy(extent_buffer_cache);
 160        extent_buffer_cache = NULL;
 161
 162free_state_cache:
 163        kmem_cache_destroy(extent_state_cache);
 164        extent_state_cache = NULL;
 165        return -ENOMEM;
 166}
 167
 168void extent_io_exit(void)
 169{
 170        btrfs_leak_debug_check();
 171
 172        /*
 173         * Make sure all delayed rcu free are flushed before we
 174         * destroy caches.
 175         */
 176        rcu_barrier();
 177        if (extent_state_cache)
 178                kmem_cache_destroy(extent_state_cache);
 179        if (extent_buffer_cache)
 180                kmem_cache_destroy(extent_buffer_cache);
 181        if (btrfs_bioset)
 182                bioset_free(btrfs_bioset);
 183}
 184
 185void extent_io_tree_init(struct extent_io_tree *tree,
 186                         struct address_space *mapping)
 187{
 188        tree->state = RB_ROOT;
 189        INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 190        tree->ops = NULL;
 191        tree->dirty_bytes = 0;
 192        spin_lock_init(&tree->lock);
 193        spin_lock_init(&tree->buffer_lock);
 194        tree->mapping = mapping;
 195}
 196
 197static struct extent_state *alloc_extent_state(gfp_t mask)
 198{
 199        struct extent_state *state;
 200
 201        state = kmem_cache_alloc(extent_state_cache, mask);
 202        if (!state)
 203                return state;
 204        state->state = 0;
 205        state->private = 0;
 206        state->tree = NULL;
 207        btrfs_leak_debug_add(&state->leak_list, &states);
 208        atomic_set(&state->refs, 1);
 209        init_waitqueue_head(&state->wq);
 210        trace_alloc_extent_state(state, mask, _RET_IP_);
 211        return state;
 212}
 213
 214void free_extent_state(struct extent_state *state)
 215{
 216        if (!state)
 217                return;
 218        if (atomic_dec_and_test(&state->refs)) {
 219                WARN_ON(state->tree);
 220                btrfs_leak_debug_del(&state->leak_list);
 221                trace_free_extent_state(state, _RET_IP_);
 222                kmem_cache_free(extent_state_cache, state);
 223        }
 224}
 225
 226static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 227                                   struct rb_node *node)
 228{
 229        struct rb_node **p = &root->rb_node;
 230        struct rb_node *parent = NULL;
 231        struct tree_entry *entry;
 232
 233        while (*p) {
 234                parent = *p;
 235                entry = rb_entry(parent, struct tree_entry, rb_node);
 236
 237                if (offset < entry->start)
 238                        p = &(*p)->rb_left;
 239                else if (offset > entry->end)
 240                        p = &(*p)->rb_right;
 241                else
 242                        return parent;
 243        }
 244
 245        rb_link_node(node, parent, p);
 246        rb_insert_color(node, root);
 247        return NULL;
 248}
 249
 250static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 251                                     struct rb_node **prev_ret,
 252                                     struct rb_node **next_ret)
 253{
 254        struct rb_root *root = &tree->state;
 255        struct rb_node *n = root->rb_node;
 256        struct rb_node *prev = NULL;
 257        struct rb_node *orig_prev = NULL;
 258        struct tree_entry *entry;
 259        struct tree_entry *prev_entry = NULL;
 260
 261        while (n) {
 262                entry = rb_entry(n, struct tree_entry, rb_node);
 263                prev = n;
 264                prev_entry = entry;
 265
 266                if (offset < entry->start)
 267                        n = n->rb_left;
 268                else if (offset > entry->end)
 269                        n = n->rb_right;
 270                else
 271                        return n;
 272        }
 273
 274        if (prev_ret) {
 275                orig_prev = prev;
 276                while (prev && offset > prev_entry->end) {
 277                        prev = rb_next(prev);
 278                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 279                }
 280                *prev_ret = prev;
 281                prev = orig_prev;
 282        }
 283
 284        if (next_ret) {
 285                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 286                while (prev && offset < prev_entry->start) {
 287                        prev = rb_prev(prev);
 288                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 289                }
 290                *next_ret = prev;
 291        }
 292        return NULL;
 293}
 294
 295static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 296                                          u64 offset)
 297{
 298        struct rb_node *prev = NULL;
 299        struct rb_node *ret;
 300
 301        ret = __etree_search(tree, offset, &prev, NULL);
 302        if (!ret)
 303                return prev;
 304        return ret;
 305}
 306
 307static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 308                     struct extent_state *other)
 309{
 310        if (tree->ops && tree->ops->merge_extent_hook)
 311                tree->ops->merge_extent_hook(tree->mapping->host, new,
 312                                             other);
 313}
 314
 315/*
 316 * utility function to look for merge candidates inside a given range.
 317 * Any extents with matching state are merged together into a single
 318 * extent in the tree.  Extents with EXTENT_IO in their state field
 319 * are not merged because the end_io handlers need to be able to do
 320 * operations on them without sleeping (or doing allocations/splits).
 321 *
 322 * This should be called with the tree lock held.
 323 */
 324static void merge_state(struct extent_io_tree *tree,
 325                        struct extent_state *state)
 326{
 327        struct extent_state *other;
 328        struct rb_node *other_node;
 329
 330        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 331                return;
 332
 333        other_node = rb_prev(&state->rb_node);
 334        if (other_node) {
 335                other = rb_entry(other_node, struct extent_state, rb_node);
 336                if (other->end == state->start - 1 &&
 337                    other->state == state->state) {
 338                        merge_cb(tree, state, other);
 339                        state->start = other->start;
 340                        other->tree = NULL;
 341                        rb_erase(&other->rb_node, &tree->state);
 342                        free_extent_state(other);
 343                }
 344        }
 345        other_node = rb_next(&state->rb_node);
 346        if (other_node) {
 347                other = rb_entry(other_node, struct extent_state, rb_node);
 348                if (other->start == state->end + 1 &&
 349                    other->state == state->state) {
 350                        merge_cb(tree, state, other);
 351                        state->end = other->end;
 352                        other->tree = NULL;
 353                        rb_erase(&other->rb_node, &tree->state);
 354                        free_extent_state(other);
 355                }
 356        }
 357}
 358
 359static void set_state_cb(struct extent_io_tree *tree,
 360                         struct extent_state *state, unsigned long *bits)
 361{
 362        if (tree->ops && tree->ops->set_bit_hook)
 363                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 364}
 365
 366static void clear_state_cb(struct extent_io_tree *tree,
 367                           struct extent_state *state, unsigned long *bits)
 368{
 369        if (tree->ops && tree->ops->clear_bit_hook)
 370                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 371}
 372
 373static void set_state_bits(struct extent_io_tree *tree,
 374                           struct extent_state *state, unsigned long *bits);
 375
 376/*
 377 * insert an extent_state struct into the tree.  'bits' are set on the
 378 * struct before it is inserted.
 379 *
 380 * This may return -EEXIST if the extent is already there, in which case the
 381 * state struct is freed.
 382 *
 383 * The tree lock is not taken internally.  This is a utility function and
 384 * probably isn't what you want to call (see set/clear_extent_bit).
 385 */
 386static int insert_state(struct extent_io_tree *tree,
 387                        struct extent_state *state, u64 start, u64 end,
 388                        unsigned long *bits)
 389{
 390        struct rb_node *node;
 391
 392        if (end < start)
 393                WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
 394                       end, start);
 395        state->start = start;
 396        state->end = end;
 397
 398        set_state_bits(tree, state, bits);
 399
 400        node = tree_insert(&tree->state, end, &state->rb_node);
 401        if (node) {
 402                struct extent_state *found;
 403                found = rb_entry(node, struct extent_state, rb_node);
 404                printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 405                       "%llu %llu\n",
 406                       found->start, found->end, start, end);
 407                return -EEXIST;
 408        }
 409        state->tree = tree;
 410        merge_state(tree, state);
 411        return 0;
 412}
 413
 414static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 415                     u64 split)
 416{
 417        if (tree->ops && tree->ops->split_extent_hook)
 418                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 419}
 420
 421/*
 422 * split a given extent state struct in two, inserting the preallocated
 423 * struct 'prealloc' as the newly created second half.  'split' indicates an
 424 * offset inside 'orig' where it should be split.
 425 *
 426 * Before calling,
 427 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 428 * are two extent state structs in the tree:
 429 * prealloc: [orig->start, split - 1]
 430 * orig: [ split, orig->end ]
 431 *
 432 * The tree locks are not taken by this function. They need to be held
 433 * by the caller.
 434 */
 435static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 436                       struct extent_state *prealloc, u64 split)
 437{
 438        struct rb_node *node;
 439
 440        split_cb(tree, orig, split);
 441
 442        prealloc->start = orig->start;
 443        prealloc->end = split - 1;
 444        prealloc->state = orig->state;
 445        orig->start = split;
 446
 447        node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 448        if (node) {
 449                free_extent_state(prealloc);
 450                return -EEXIST;
 451        }
 452        prealloc->tree = tree;
 453        return 0;
 454}
 455
 456static struct extent_state *next_state(struct extent_state *state)
 457{
 458        struct rb_node *next = rb_next(&state->rb_node);
 459        if (next)
 460                return rb_entry(next, struct extent_state, rb_node);
 461        else
 462                return NULL;
 463}
 464
 465/*
 466 * utility function to clear some bits in an extent state struct.
 467 * it will optionally wake up any one waiting on this state (wake == 1).
 468 *
 469 * If no bits are set on the state struct after clearing things, the
 470 * struct is freed and removed from the tree
 471 */
 472static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 473                                            struct extent_state *state,
 474                                            unsigned long *bits, int wake)
 475{
 476        struct extent_state *next;
 477        unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
 478
 479        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 480                u64 range = state->end - state->start + 1;
 481                WARN_ON(range > tree->dirty_bytes);
 482                tree->dirty_bytes -= range;
 483        }
 484        clear_state_cb(tree, state, bits);
 485        state->state &= ~bits_to_clear;
 486        if (wake)
 487                wake_up(&state->wq);
 488        if (state->state == 0) {
 489                next = next_state(state);
 490                if (state->tree) {
 491                        rb_erase(&state->rb_node, &tree->state);
 492                        state->tree = NULL;
 493                        free_extent_state(state);
 494                } else {
 495                        WARN_ON(1);
 496                }
 497        } else {
 498                merge_state(tree, state);
 499                next = next_state(state);
 500        }
 501        return next;
 502}
 503
 504static struct extent_state *
 505alloc_extent_state_atomic(struct extent_state *prealloc)
 506{
 507        if (!prealloc)
 508                prealloc = alloc_extent_state(GFP_ATOMIC);
 509
 510        return prealloc;
 511}
 512
 513static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 514{
 515        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 516                    "Extent tree was modified by another "
 517                    "thread while locked.");
 518}
 519
 520/*
 521 * clear some bits on a range in the tree.  This may require splitting
 522 * or inserting elements in the tree, so the gfp mask is used to
 523 * indicate which allocations or sleeping are allowed.
 524 *
 525 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 526 * the given range from the tree regardless of state (ie for truncate).
 527 *
 528 * the range [start, end] is inclusive.
 529 *
 530 * This takes the tree lock, and returns 0 on success and < 0 on error.
 531 */
 532int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 533                     unsigned long bits, int wake, int delete,
 534                     struct extent_state **cached_state,
 535                     gfp_t mask)
 536{
 537        struct extent_state *state;
 538        struct extent_state *cached;
 539        struct extent_state *prealloc = NULL;
 540        struct rb_node *node;
 541        u64 last_end;
 542        int err;
 543        int clear = 0;
 544
 545        btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
 546
 547        if (bits & EXTENT_DELALLOC)
 548                bits |= EXTENT_NORESERVE;
 549
 550        if (delete)
 551                bits |= ~EXTENT_CTLBITS;
 552        bits |= EXTENT_FIRST_DELALLOC;
 553
 554        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 555                clear = 1;
 556again:
 557        if (!prealloc && (mask & __GFP_WAIT)) {
 558                prealloc = alloc_extent_state(mask);
 559                if (!prealloc)
 560                        return -ENOMEM;
 561        }
 562
 563        spin_lock(&tree->lock);
 564        if (cached_state) {
 565                cached = *cached_state;
 566
 567                if (clear) {
 568                        *cached_state = NULL;
 569                        cached_state = NULL;
 570                }
 571
 572                if (cached && cached->tree && cached->start <= start &&
 573                    cached->end > start) {
 574                        if (clear)
 575                                atomic_dec(&cached->refs);
 576                        state = cached;
 577                        goto hit_next;
 578                }
 579                if (clear)
 580                        free_extent_state(cached);
 581        }
 582        /*
 583         * this search will find the extents that end after
 584         * our range starts
 585         */
 586        node = tree_search(tree, start);
 587        if (!node)
 588                goto out;
 589        state = rb_entry(node, struct extent_state, rb_node);
 590hit_next:
 591        if (state->start > end)
 592                goto out;
 593        WARN_ON(state->end < start);
 594        last_end = state->end;
 595
 596        /* the state doesn't have the wanted bits, go ahead */
 597        if (!(state->state & bits)) {
 598                state = next_state(state);
 599                goto next;
 600        }
 601
 602        /*
 603         *     | ---- desired range ---- |
 604         *  | state | or
 605         *  | ------------- state -------------- |
 606         *
 607         * We need to split the extent we found, and may flip
 608         * bits on second half.
 609         *
 610         * If the extent we found extends past our range, we
 611         * just split and search again.  It'll get split again
 612         * the next time though.
 613         *
 614         * If the extent we found is inside our range, we clear
 615         * the desired bit on it.
 616         */
 617
 618        if (state->start < start) {
 619                prealloc = alloc_extent_state_atomic(prealloc);
 620                BUG_ON(!prealloc);
 621                err = split_state(tree, state, prealloc, start);
 622                if (err)
 623                        extent_io_tree_panic(tree, err);
 624
 625                prealloc = NULL;
 626                if (err)
 627                        goto out;
 628                if (state->end <= end) {
 629                        state = clear_state_bit(tree, state, &bits, wake);
 630                        goto next;
 631                }
 632                goto search_again;
 633        }
 634        /*
 635         * | ---- desired range ---- |
 636         *                        | state |
 637         * We need to split the extent, and clear the bit
 638         * on the first half
 639         */
 640        if (state->start <= end && state->end > end) {
 641                prealloc = alloc_extent_state_atomic(prealloc);
 642                BUG_ON(!prealloc);
 643                err = split_state(tree, state, prealloc, end + 1);
 644                if (err)
 645                        extent_io_tree_panic(tree, err);
 646
 647                if (wake)
 648                        wake_up(&state->wq);
 649
 650                clear_state_bit(tree, prealloc, &bits, wake);
 651
 652                prealloc = NULL;
 653                goto out;
 654        }
 655
 656        state = clear_state_bit(tree, state, &bits, wake);
 657next:
 658        if (last_end == (u64)-1)
 659                goto out;
 660        start = last_end + 1;
 661        if (start <= end && state && !need_resched())
 662                goto hit_next;
 663        goto search_again;
 664
 665out:
 666        spin_unlock(&tree->lock);
 667        if (prealloc)
 668                free_extent_state(prealloc);
 669
 670        return 0;
 671
 672search_again:
 673        if (start > end)
 674                goto out;
 675        spin_unlock(&tree->lock);
 676        if (mask & __GFP_WAIT)
 677                cond_resched();
 678        goto again;
 679}
 680
 681static void wait_on_state(struct extent_io_tree *tree,
 682                          struct extent_state *state)
 683                __releases(tree->lock)
 684                __acquires(tree->lock)
 685{
 686        DEFINE_WAIT(wait);
 687        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 688        spin_unlock(&tree->lock);
 689        schedule();
 690        spin_lock(&tree->lock);
 691        finish_wait(&state->wq, &wait);
 692}
 693
 694/*
 695 * waits for one or more bits to clear on a range in the state tree.
 696 * The range [start, end] is inclusive.
 697 * The tree lock is taken by this function
 698 */
 699static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 700                            unsigned long bits)
 701{
 702        struct extent_state *state;
 703        struct rb_node *node;
 704
 705        btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
 706
 707        spin_lock(&tree->lock);
 708again:
 709        while (1) {
 710                /*
 711                 * this search will find all the extents that end after
 712                 * our range starts
 713                 */
 714                node = tree_search(tree, start);
 715                if (!node)
 716                        break;
 717
 718                state = rb_entry(node, struct extent_state, rb_node);
 719
 720                if (state->start > end)
 721                        goto out;
 722
 723                if (state->state & bits) {
 724                        start = state->start;
 725                        atomic_inc(&state->refs);
 726                        wait_on_state(tree, state);
 727                        free_extent_state(state);
 728                        goto again;
 729                }
 730                start = state->end + 1;
 731
 732                if (start > end)
 733                        break;
 734
 735                cond_resched_lock(&tree->lock);
 736        }
 737out:
 738        spin_unlock(&tree->lock);
 739}
 740
 741static void set_state_bits(struct extent_io_tree *tree,
 742                           struct extent_state *state,
 743                           unsigned long *bits)
 744{
 745        unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
 746
 747        set_state_cb(tree, state, bits);
 748        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 749                u64 range = state->end - state->start + 1;
 750                tree->dirty_bytes += range;
 751        }
 752        state->state |= bits_to_set;
 753}
 754
 755static void cache_state(struct extent_state *state,
 756                        struct extent_state **cached_ptr)
 757{
 758        if (cached_ptr && !(*cached_ptr)) {
 759                if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 760                        *cached_ptr = state;
 761                        atomic_inc(&state->refs);
 762                }
 763        }
 764}
 765
 766/*
 767 * set some bits on a range in the tree.  This may require allocations or
 768 * sleeping, so the gfp mask is used to indicate what is allowed.
 769 *
 770 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 771 * part of the range already has the desired bits set.  The start of the
 772 * existing range is returned in failed_start in this case.
 773 *
 774 * [start, end] is inclusive This takes the tree lock.
 775 */
 776
 777static int __must_check
 778__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 779                 unsigned long bits, unsigned long exclusive_bits,
 780                 u64 *failed_start, struct extent_state **cached_state,
 781                 gfp_t mask)
 782{
 783        struct extent_state *state;
 784        struct extent_state *prealloc = NULL;
 785        struct rb_node *node;
 786        int err = 0;
 787        u64 last_start;
 788        u64 last_end;
 789
 790        btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
 791
 792        bits |= EXTENT_FIRST_DELALLOC;
 793again:
 794        if (!prealloc && (mask & __GFP_WAIT)) {
 795                prealloc = alloc_extent_state(mask);
 796                BUG_ON(!prealloc);
 797        }
 798
 799        spin_lock(&tree->lock);
 800        if (cached_state && *cached_state) {
 801                state = *cached_state;
 802                if (state->start <= start && state->end > start &&
 803                    state->tree) {
 804                        node = &state->rb_node;
 805                        goto hit_next;
 806                }
 807        }
 808        /*
 809         * this search will find all the extents that end after
 810         * our range starts.
 811         */
 812        node = tree_search(tree, start);
 813        if (!node) {
 814                prealloc = alloc_extent_state_atomic(prealloc);
 815                BUG_ON(!prealloc);
 816                err = insert_state(tree, prealloc, start, end, &bits);
 817                if (err)
 818                        extent_io_tree_panic(tree, err);
 819
 820                prealloc = NULL;
 821                goto out;
 822        }
 823        state = rb_entry(node, struct extent_state, rb_node);
 824hit_next:
 825        last_start = state->start;
 826        last_end = state->end;
 827
 828        /*
 829         * | ---- desired range ---- |
 830         * | state |
 831         *
 832         * Just lock what we found and keep going
 833         */
 834        if (state->start == start && state->end <= end) {
 835                if (state->state & exclusive_bits) {
 836                        *failed_start = state->start;
 837                        err = -EEXIST;
 838                        goto out;
 839                }
 840
 841                set_state_bits(tree, state, &bits);
 842                cache_state(state, cached_state);
 843                merge_state(tree, state);
 844                if (last_end == (u64)-1)
 845                        goto out;
 846                start = last_end + 1;
 847                state = next_state(state);
 848                if (start < end && state && state->start == start &&
 849                    !need_resched())
 850                        goto hit_next;
 851                goto search_again;
 852        }
 853
 854        /*
 855         *     | ---- desired range ---- |
 856         * | state |
 857         *   or
 858         * | ------------- state -------------- |
 859         *
 860         * We need to split the extent we found, and may flip bits on
 861         * second half.
 862         *
 863         * If the extent we found extends past our
 864         * range, we just split and search again.  It'll get split
 865         * again the next time though.
 866         *
 867         * If the extent we found is inside our range, we set the
 868         * desired bit on it.
 869         */
 870        if (state->start < start) {
 871                if (state->state & exclusive_bits) {
 872                        *failed_start = start;
 873                        err = -EEXIST;
 874                        goto out;
 875                }
 876
 877                prealloc = alloc_extent_state_atomic(prealloc);
 878                BUG_ON(!prealloc);
 879                err = split_state(tree, state, prealloc, start);
 880                if (err)
 881                        extent_io_tree_panic(tree, err);
 882
 883                prealloc = NULL;
 884                if (err)
 885                        goto out;
 886                if (state->end <= end) {
 887                        set_state_bits(tree, state, &bits);
 888                        cache_state(state, cached_state);
 889                        merge_state(tree, state);
 890                        if (last_end == (u64)-1)
 891                                goto out;
 892                        start = last_end + 1;
 893                        state = next_state(state);
 894                        if (start < end && state && state->start == start &&
 895                            !need_resched())
 896                                goto hit_next;
 897                }
 898                goto search_again;
 899        }
 900        /*
 901         * | ---- desired range ---- |
 902         *     | state | or               | state |
 903         *
 904         * There's a hole, we need to insert something in it and
 905         * ignore the extent we found.
 906         */
 907        if (state->start > start) {
 908                u64 this_end;
 909                if (end < last_start)
 910                        this_end = end;
 911                else
 912                        this_end = last_start - 1;
 913
 914                prealloc = alloc_extent_state_atomic(prealloc);
 915                BUG_ON(!prealloc);
 916
 917                /*
 918                 * Avoid to free 'prealloc' if it can be merged with
 919                 * the later extent.
 920                 */
 921                err = insert_state(tree, prealloc, start, this_end,
 922                                   &bits);
 923                if (err)
 924                        extent_io_tree_panic(tree, err);
 925
 926                cache_state(prealloc, cached_state);
 927                prealloc = NULL;
 928                start = this_end + 1;
 929                goto search_again;
 930        }
 931        /*
 932         * | ---- desired range ---- |
 933         *                        | state |
 934         * We need to split the extent, and set the bit
 935         * on the first half
 936         */
 937        if (state->start <= end && state->end > end) {
 938                if (state->state & exclusive_bits) {
 939                        *failed_start = start;
 940                        err = -EEXIST;
 941                        goto out;
 942                }
 943
 944                prealloc = alloc_extent_state_atomic(prealloc);
 945                BUG_ON(!prealloc);
 946                err = split_state(tree, state, prealloc, end + 1);
 947                if (err)
 948                        extent_io_tree_panic(tree, err);
 949
 950                set_state_bits(tree, prealloc, &bits);
 951                cache_state(prealloc, cached_state);
 952                merge_state(tree, prealloc);
 953                prealloc = NULL;
 954                goto out;
 955        }
 956
 957        goto search_again;
 958
 959out:
 960        spin_unlock(&tree->lock);
 961        if (prealloc)
 962                free_extent_state(prealloc);
 963
 964        return err;
 965
 966search_again:
 967        if (start > end)
 968                goto out;
 969        spin_unlock(&tree->lock);
 970        if (mask & __GFP_WAIT)
 971                cond_resched();
 972        goto again;
 973}
 974
 975int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 976                   unsigned long bits, u64 * failed_start,
 977                   struct extent_state **cached_state, gfp_t mask)
 978{
 979        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
 980                                cached_state, mask);
 981}
 982
 983
 984/**
 985 * convert_extent_bit - convert all bits in a given range from one bit to
 986 *                      another
 987 * @tree:       the io tree to search
 988 * @start:      the start offset in bytes
 989 * @end:        the end offset in bytes (inclusive)
 990 * @bits:       the bits to set in this range
 991 * @clear_bits: the bits to clear in this range
 992 * @cached_state:       state that we're going to cache
 993 * @mask:       the allocation mask
 994 *
 995 * This will go through and set bits for the given range.  If any states exist
 996 * already in this range they are set with the given bit and cleared of the
 997 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 998 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 999 * boundary bits like LOCK.
1000 */
1001int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1002                       unsigned long bits, unsigned long clear_bits,
1003                       struct extent_state **cached_state, gfp_t mask)
1004{
1005        struct extent_state *state;
1006        struct extent_state *prealloc = NULL;
1007        struct rb_node *node;
1008        int err = 0;
1009        u64 last_start;
1010        u64 last_end;
1011
1012        btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1013
1014again:
1015        if (!prealloc && (mask & __GFP_WAIT)) {
1016                prealloc = alloc_extent_state(mask);
1017                if (!prealloc)
1018                        return -ENOMEM;
1019        }
1020
1021        spin_lock(&tree->lock);
1022        if (cached_state && *cached_state) {
1023                state = *cached_state;
1024                if (state->start <= start && state->end > start &&
1025                    state->tree) {
1026                        node = &state->rb_node;
1027                        goto hit_next;
1028                }
1029        }
1030
1031        /*
1032         * this search will find all the extents that end after
1033         * our range starts.
1034         */
1035        node = tree_search(tree, start);
1036        if (!node) {
1037                prealloc = alloc_extent_state_atomic(prealloc);
1038                if (!prealloc) {
1039                        err = -ENOMEM;
1040                        goto out;
1041                }
1042                err = insert_state(tree, prealloc, start, end, &bits);
1043                prealloc = NULL;
1044                if (err)
1045                        extent_io_tree_panic(tree, err);
1046                goto out;
1047        }
1048        state = rb_entry(node, struct extent_state, rb_node);
1049hit_next:
1050        last_start = state->start;
1051        last_end = state->end;
1052
1053        /*
1054         * | ---- desired range ---- |
1055         * | state |
1056         *
1057         * Just lock what we found and keep going
1058         */
1059        if (state->start == start && state->end <= end) {
1060                set_state_bits(tree, state, &bits);
1061                cache_state(state, cached_state);
1062                state = clear_state_bit(tree, state, &clear_bits, 0);
1063                if (last_end == (u64)-1)
1064                        goto out;
1065                start = last_end + 1;
1066                if (start < end && state && state->start == start &&
1067                    !need_resched())
1068                        goto hit_next;
1069                goto search_again;
1070        }
1071
1072        /*
1073         *     | ---- desired range ---- |
1074         * | state |
1075         *   or
1076         * | ------------- state -------------- |
1077         *
1078         * We need to split the extent we found, and may flip bits on
1079         * second half.
1080         *
1081         * If the extent we found extends past our
1082         * range, we just split and search again.  It'll get split
1083         * again the next time though.
1084         *
1085         * If the extent we found is inside our range, we set the
1086         * desired bit on it.
1087         */
1088        if (state->start < start) {
1089                prealloc = alloc_extent_state_atomic(prealloc);
1090                if (!prealloc) {
1091                        err = -ENOMEM;
1092                        goto out;
1093                }
1094                err = split_state(tree, state, prealloc, start);
1095                if (err)
1096                        extent_io_tree_panic(tree, err);
1097                prealloc = NULL;
1098                if (err)
1099                        goto out;
1100                if (state->end <= end) {
1101                        set_state_bits(tree, state, &bits);
1102                        cache_state(state, cached_state);
1103                        state = clear_state_bit(tree, state, &clear_bits, 0);
1104                        if (last_end == (u64)-1)
1105                                goto out;
1106                        start = last_end + 1;
1107                        if (start < end && state && state->start == start &&
1108                            !need_resched())
1109                                goto hit_next;
1110                }
1111                goto search_again;
1112        }
1113        /*
1114         * | ---- desired range ---- |
1115         *     | state | or               | state |
1116         *
1117         * There's a hole, we need to insert something in it and
1118         * ignore the extent we found.
1119         */
1120        if (state->start > start) {
1121                u64 this_end;
1122                if (end < last_start)
1123                        this_end = end;
1124                else
1125                        this_end = last_start - 1;
1126
1127                prealloc = alloc_extent_state_atomic(prealloc);
1128                if (!prealloc) {
1129                        err = -ENOMEM;
1130                        goto out;
1131                }
1132
1133                /*
1134                 * Avoid to free 'prealloc' if it can be merged with
1135                 * the later extent.
1136                 */
1137                err = insert_state(tree, prealloc, start, this_end,
1138                                   &bits);
1139                if (err)
1140                        extent_io_tree_panic(tree, err);
1141                cache_state(prealloc, cached_state);
1142                prealloc = NULL;
1143                start = this_end + 1;
1144                goto search_again;
1145        }
1146        /*
1147         * | ---- desired range ---- |
1148         *                        | state |
1149         * We need to split the extent, and set the bit
1150         * on the first half
1151         */
1152        if (state->start <= end && state->end > end) {
1153                prealloc = alloc_extent_state_atomic(prealloc);
1154                if (!prealloc) {
1155                        err = -ENOMEM;
1156                        goto out;
1157                }
1158
1159                err = split_state(tree, state, prealloc, end + 1);
1160                if (err)
1161                        extent_io_tree_panic(tree, err);
1162
1163                set_state_bits(tree, prealloc, &bits);
1164                cache_state(prealloc, cached_state);
1165                clear_state_bit(tree, prealloc, &clear_bits, 0);
1166                prealloc = NULL;
1167                goto out;
1168        }
1169
1170        goto search_again;
1171
1172out:
1173        spin_unlock(&tree->lock);
1174        if (prealloc)
1175                free_extent_state(prealloc);
1176
1177        return err;
1178
1179search_again:
1180        if (start > end)
1181                goto out;
1182        spin_unlock(&tree->lock);
1183        if (mask & __GFP_WAIT)
1184                cond_resched();
1185        goto again;
1186}
1187
1188/* wrappers around set/clear extent bit */
1189int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1190                     gfp_t mask)
1191{
1192        return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1193                              NULL, mask);
1194}
1195
1196int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1197                    unsigned long bits, gfp_t mask)
1198{
1199        return set_extent_bit(tree, start, end, bits, NULL,
1200                              NULL, mask);
1201}
1202
1203int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1204                      unsigned long bits, gfp_t mask)
1205{
1206        return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1207}
1208
1209int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1210                        struct extent_state **cached_state, gfp_t mask)
1211{
1212        return set_extent_bit(tree, start, end,
1213                              EXTENT_DELALLOC | EXTENT_UPTODATE,
1214                              NULL, cached_state, mask);
1215}
1216
1217int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1218                      struct extent_state **cached_state, gfp_t mask)
1219{
1220        return set_extent_bit(tree, start, end,
1221                              EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1222                              NULL, cached_state, mask);
1223}
1224
1225int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1226                       gfp_t mask)
1227{
1228        return clear_extent_bit(tree, start, end,
1229                                EXTENT_DIRTY | EXTENT_DELALLOC |
1230                                EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1231}
1232
1233int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1234                     gfp_t mask)
1235{
1236        return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1237                              NULL, mask);
1238}
1239
1240int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1241                        struct extent_state **cached_state, gfp_t mask)
1242{
1243        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1244                              cached_state, mask);
1245}
1246
1247int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1248                          struct extent_state **cached_state, gfp_t mask)
1249{
1250        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1251                                cached_state, mask);
1252}
1253
1254/*
1255 * either insert or lock state struct between start and end use mask to tell
1256 * us if waiting is desired.
1257 */
1258int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1259                     unsigned long bits, struct extent_state **cached_state)
1260{
1261        int err;
1262        u64 failed_start;
1263        while (1) {
1264                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1265                                       EXTENT_LOCKED, &failed_start,
1266                                       cached_state, GFP_NOFS);
1267                if (err == -EEXIST) {
1268                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1269                        start = failed_start;
1270                } else
1271                        break;
1272                WARN_ON(start > end);
1273        }
1274        return err;
1275}
1276
1277int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1278{
1279        return lock_extent_bits(tree, start, end, 0, NULL);
1280}
1281
1282int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1283{
1284        int err;
1285        u64 failed_start;
1286
1287        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1288                               &failed_start, NULL, GFP_NOFS);
1289        if (err == -EEXIST) {
1290                if (failed_start > start)
1291                        clear_extent_bit(tree, start, failed_start - 1,
1292                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1293                return 0;
1294        }
1295        return 1;
1296}
1297
1298int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1299                         struct extent_state **cached, gfp_t mask)
1300{
1301        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1302                                mask);
1303}
1304
1305int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1306{
1307        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1308                                GFP_NOFS);
1309}
1310
1311int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1312{
1313        unsigned long index = start >> PAGE_CACHE_SHIFT;
1314        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1315        struct page *page;
1316
1317        while (index <= end_index) {
1318                page = find_get_page(inode->i_mapping, index);
1319                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1320                clear_page_dirty_for_io(page);
1321                page_cache_release(page);
1322                index++;
1323        }
1324        return 0;
1325}
1326
1327int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1328{
1329        unsigned long index = start >> PAGE_CACHE_SHIFT;
1330        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1331        struct page *page;
1332
1333        while (index <= end_index) {
1334                page = find_get_page(inode->i_mapping, index);
1335                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1336                account_page_redirty(page);
1337                __set_page_dirty_nobuffers(page);
1338                page_cache_release(page);
1339                index++;
1340        }
1341        return 0;
1342}
1343
1344/*
1345 * helper function to set both pages and extents in the tree writeback
1346 */
1347static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1348{
1349        unsigned long index = start >> PAGE_CACHE_SHIFT;
1350        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1351        struct page *page;
1352
1353        while (index <= end_index) {
1354                page = find_get_page(tree->mapping, index);
1355                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1356                set_page_writeback(page);
1357                page_cache_release(page);
1358                index++;
1359        }
1360        return 0;
1361}
1362
1363/* find the first state struct with 'bits' set after 'start', and
1364 * return it.  tree->lock must be held.  NULL will returned if
1365 * nothing was found after 'start'
1366 */
1367static struct extent_state *
1368find_first_extent_bit_state(struct extent_io_tree *tree,
1369                            u64 start, unsigned long bits)
1370{
1371        struct rb_node *node;
1372        struct extent_state *state;
1373
1374        /*
1375         * this search will find all the extents that end after
1376         * our range starts.
1377         */
1378        node = tree_search(tree, start);
1379        if (!node)
1380                goto out;
1381
1382        while (1) {
1383                state = rb_entry(node, struct extent_state, rb_node);
1384                if (state->end >= start && (state->state & bits))
1385                        return state;
1386
1387                node = rb_next(node);
1388                if (!node)
1389                        break;
1390        }
1391out:
1392        return NULL;
1393}
1394
1395/*
1396 * find the first offset in the io tree with 'bits' set. zero is
1397 * returned if we find something, and *start_ret and *end_ret are
1398 * set to reflect the state struct that was found.
1399 *
1400 * If nothing was found, 1 is returned. If found something, return 0.
1401 */
1402int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1403                          u64 *start_ret, u64 *end_ret, unsigned long bits,
1404                          struct extent_state **cached_state)
1405{
1406        struct extent_state *state;
1407        struct rb_node *n;
1408        int ret = 1;
1409
1410        spin_lock(&tree->lock);
1411        if (cached_state && *cached_state) {
1412                state = *cached_state;
1413                if (state->end == start - 1 && state->tree) {
1414                        n = rb_next(&state->rb_node);
1415                        while (n) {
1416                                state = rb_entry(n, struct extent_state,
1417                                                 rb_node);
1418                                if (state->state & bits)
1419                                        goto got_it;
1420                                n = rb_next(n);
1421                        }
1422                        free_extent_state(*cached_state);
1423                        *cached_state = NULL;
1424                        goto out;
1425                }
1426                free_extent_state(*cached_state);
1427                *cached_state = NULL;
1428        }
1429
1430        state = find_first_extent_bit_state(tree, start, bits);
1431got_it:
1432        if (state) {
1433                cache_state(state, cached_state);
1434                *start_ret = state->start;
1435                *end_ret = state->end;
1436                ret = 0;
1437        }
1438out:
1439        spin_unlock(&tree->lock);
1440        return ret;
1441}
1442
1443/*
1444 * find a contiguous range of bytes in the file marked as delalloc, not
1445 * more than 'max_bytes'.  start and end are used to return the range,
1446 *
1447 * 1 is returned if we find something, 0 if nothing was in the tree
1448 */
1449static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1450                                        u64 *start, u64 *end, u64 max_bytes,
1451                                        struct extent_state **cached_state)
1452{
1453        struct rb_node *node;
1454        struct extent_state *state;
1455        u64 cur_start = *start;
1456        u64 found = 0;
1457        u64 total_bytes = 0;
1458
1459        spin_lock(&tree->lock);
1460
1461        /*
1462         * this search will find all the extents that end after
1463         * our range starts.
1464         */
1465        node = tree_search(tree, cur_start);
1466        if (!node) {
1467                if (!found)
1468                        *end = (u64)-1;
1469                goto out;
1470        }
1471
1472        while (1) {
1473                state = rb_entry(node, struct extent_state, rb_node);
1474                if (found && (state->start != cur_start ||
1475                              (state->state & EXTENT_BOUNDARY))) {
1476                        goto out;
1477                }
1478                if (!(state->state & EXTENT_DELALLOC)) {
1479                        if (!found)
1480                                *end = state->end;
1481                        goto out;
1482                }
1483                if (!found) {
1484                        *start = state->start;
1485                        *cached_state = state;
1486                        atomic_inc(&state->refs);
1487                }
1488                found++;
1489                *end = state->end;
1490                cur_start = state->end + 1;
1491                node = rb_next(node);
1492                total_bytes += state->end - state->start + 1;
1493                if (total_bytes >= max_bytes)
1494                        break;
1495                if (!node)
1496                        break;
1497        }
1498out:
1499        spin_unlock(&tree->lock);
1500        return found;
1501}
1502
1503static noinline void __unlock_for_delalloc(struct inode *inode,
1504                                           struct page *locked_page,
1505                                           u64 start, u64 end)
1506{
1507        int ret;
1508        struct page *pages[16];
1509        unsigned long index = start >> PAGE_CACHE_SHIFT;
1510        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1511        unsigned long nr_pages = end_index - index + 1;
1512        int i;
1513
1514        if (index == locked_page->index && end_index == index)
1515                return;
1516
1517        while (nr_pages > 0) {
1518                ret = find_get_pages_contig(inode->i_mapping, index,
1519                                     min_t(unsigned long, nr_pages,
1520                                     ARRAY_SIZE(pages)), pages);
1521                for (i = 0; i < ret; i++) {
1522                        if (pages[i] != locked_page)
1523                                unlock_page(pages[i]);
1524                        page_cache_release(pages[i]);
1525                }
1526                nr_pages -= ret;
1527                index += ret;
1528                cond_resched();
1529        }
1530}
1531
1532static noinline int lock_delalloc_pages(struct inode *inode,
1533                                        struct page *locked_page,
1534                                        u64 delalloc_start,
1535                                        u64 delalloc_end)
1536{
1537        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1538        unsigned long start_index = index;
1539        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1540        unsigned long pages_locked = 0;
1541        struct page *pages[16];
1542        unsigned long nrpages;
1543        int ret;
1544        int i;
1545
1546        /* the caller is responsible for locking the start index */
1547        if (index == locked_page->index && index == end_index)
1548                return 0;
1549
1550        /* skip the page at the start index */
1551        nrpages = end_index - index + 1;
1552        while (nrpages > 0) {
1553                ret = find_get_pages_contig(inode->i_mapping, index,
1554                                     min_t(unsigned long,
1555                                     nrpages, ARRAY_SIZE(pages)), pages);
1556                if (ret == 0) {
1557                        ret = -EAGAIN;
1558                        goto done;
1559                }
1560                /* now we have an array of pages, lock them all */
1561                for (i = 0; i < ret; i++) {
1562                        /*
1563                         * the caller is taking responsibility for
1564                         * locked_page
1565                         */
1566                        if (pages[i] != locked_page) {
1567                                lock_page(pages[i]);
1568                                if (!PageDirty(pages[i]) ||
1569                                    pages[i]->mapping != inode->i_mapping) {
1570                                        ret = -EAGAIN;
1571                                        unlock_page(pages[i]);
1572                                        page_cache_release(pages[i]);
1573                                        goto done;
1574                                }
1575                        }
1576                        page_cache_release(pages[i]);
1577                        pages_locked++;
1578                }
1579                nrpages -= ret;
1580                index += ret;
1581                cond_resched();
1582        }
1583        ret = 0;
1584done:
1585        if (ret && pages_locked) {
1586                __unlock_for_delalloc(inode, locked_page,
1587                              delalloc_start,
1588                              ((u64)(start_index + pages_locked - 1)) <<
1589                              PAGE_CACHE_SHIFT);
1590        }
1591        return ret;
1592}
1593
1594/*
1595 * find a contiguous range of bytes in the file marked as delalloc, not
1596 * more than 'max_bytes'.  start and end are used to return the range,
1597 *
1598 * 1 is returned if we find something, 0 if nothing was in the tree
1599 */
1600static noinline u64 find_lock_delalloc_range(struct inode *inode,
1601                                             struct extent_io_tree *tree,
1602                                             struct page *locked_page,
1603                                             u64 *start, u64 *end,
1604                                             u64 max_bytes)
1605{
1606        u64 delalloc_start;
1607        u64 delalloc_end;
1608        u64 found;
1609        struct extent_state *cached_state = NULL;
1610        int ret;
1611        int loops = 0;
1612
1613again:
1614        /* step one, find a bunch of delalloc bytes starting at start */
1615        delalloc_start = *start;
1616        delalloc_end = 0;
1617        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1618                                    max_bytes, &cached_state);
1619        if (!found || delalloc_end <= *start) {
1620                *start = delalloc_start;
1621                *end = delalloc_end;
1622                free_extent_state(cached_state);
1623                return 0;
1624        }
1625
1626        /*
1627         * start comes from the offset of locked_page.  We have to lock
1628         * pages in order, so we can't process delalloc bytes before
1629         * locked_page
1630         */
1631        if (delalloc_start < *start)
1632                delalloc_start = *start;
1633
1634        /*
1635         * make sure to limit the number of pages we try to lock down
1636         */
1637        if (delalloc_end + 1 - delalloc_start > max_bytes)
1638                delalloc_end = delalloc_start + max_bytes - 1;
1639
1640        /* step two, lock all the pages after the page that has start */
1641        ret = lock_delalloc_pages(inode, locked_page,
1642                                  delalloc_start, delalloc_end);
1643        if (ret == -EAGAIN) {
1644                /* some of the pages are gone, lets avoid looping by
1645                 * shortening the size of the delalloc range we're searching
1646                 */
1647                free_extent_state(cached_state);
1648                if (!loops) {
1649                        max_bytes = PAGE_CACHE_SIZE;
1650                        loops = 1;
1651                        goto again;
1652                } else {
1653                        found = 0;
1654                        goto out_failed;
1655                }
1656        }
1657        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1658
1659        /* step three, lock the state bits for the whole range */
1660        lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1661
1662        /* then test to make sure it is all still delalloc */
1663        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1664                             EXTENT_DELALLOC, 1, cached_state);
1665        if (!ret) {
1666                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1667                                     &cached_state, GFP_NOFS);
1668                __unlock_for_delalloc(inode, locked_page,
1669                              delalloc_start, delalloc_end);
1670                cond_resched();
1671                goto again;
1672        }
1673        free_extent_state(cached_state);
1674        *start = delalloc_start;
1675        *end = delalloc_end;
1676out_failed:
1677        return found;
1678}
1679
1680int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1681                                 struct page *locked_page,
1682                                 unsigned long clear_bits,
1683                                 unsigned long page_ops)
1684{
1685        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1686        int ret;
1687        struct page *pages[16];
1688        unsigned long index = start >> PAGE_CACHE_SHIFT;
1689        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1690        unsigned long nr_pages = end_index - index + 1;
1691        int i;
1692
1693        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1694        if (page_ops == 0)
1695                return 0;
1696
1697        while (nr_pages > 0) {
1698                ret = find_get_pages_contig(inode->i_mapping, index,
1699                                     min_t(unsigned long,
1700                                     nr_pages, ARRAY_SIZE(pages)), pages);
1701                for (i = 0; i < ret; i++) {
1702
1703                        if (page_ops & PAGE_SET_PRIVATE2)
1704                                SetPagePrivate2(pages[i]);
1705
1706                        if (pages[i] == locked_page) {
1707                                page_cache_release(pages[i]);
1708                                continue;
1709                        }
1710                        if (page_ops & PAGE_CLEAR_DIRTY)
1711                                clear_page_dirty_for_io(pages[i]);
1712                        if (page_ops & PAGE_SET_WRITEBACK)
1713                                set_page_writeback(pages[i]);
1714                        if (page_ops & PAGE_END_WRITEBACK)
1715                                end_page_writeback(pages[i]);
1716                        if (page_ops & PAGE_UNLOCK)
1717                                unlock_page(pages[i]);
1718                        page_cache_release(pages[i]);
1719                }
1720                nr_pages -= ret;
1721                index += ret;
1722                cond_resched();
1723        }
1724        return 0;
1725}
1726
1727/*
1728 * count the number of bytes in the tree that have a given bit(s)
1729 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1730 * cached.  The total number found is returned.
1731 */
1732u64 count_range_bits(struct extent_io_tree *tree,
1733                     u64 *start, u64 search_end, u64 max_bytes,
1734                     unsigned long bits, int contig)
1735{
1736        struct rb_node *node;
1737        struct extent_state *state;
1738        u64 cur_start = *start;
1739        u64 total_bytes = 0;
1740        u64 last = 0;
1741        int found = 0;
1742
1743        if (search_end <= cur_start) {
1744                WARN_ON(1);
1745                return 0;
1746        }
1747
1748        spin_lock(&tree->lock);
1749        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1750                total_bytes = tree->dirty_bytes;
1751                goto out;
1752        }
1753        /*
1754         * this search will find all the extents that end after
1755         * our range starts.
1756         */
1757        node = tree_search(tree, cur_start);
1758        if (!node)
1759                goto out;
1760
1761        while (1) {
1762                state = rb_entry(node, struct extent_state, rb_node);
1763                if (state->start > search_end)
1764                        break;
1765                if (contig && found && state->start > last + 1)
1766                        break;
1767                if (state->end >= cur_start && (state->state & bits) == bits) {
1768                        total_bytes += min(search_end, state->end) + 1 -
1769                                       max(cur_start, state->start);
1770                        if (total_bytes >= max_bytes)
1771                                break;
1772                        if (!found) {
1773                                *start = max(cur_start, state->start);
1774                                found = 1;
1775                        }
1776                        last = state->end;
1777                } else if (contig && found) {
1778                        break;
1779                }
1780                node = rb_next(node);
1781                if (!node)
1782                        break;
1783        }
1784out:
1785        spin_unlock(&tree->lock);
1786        return total_bytes;
1787}
1788
1789/*
1790 * set the private field for a given byte offset in the tree.  If there isn't
1791 * an extent_state there already, this does nothing.
1792 */
1793static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1794{
1795        struct rb_node *node;
1796        struct extent_state *state;
1797        int ret = 0;
1798
1799        spin_lock(&tree->lock);
1800        /*
1801         * this search will find all the extents that end after
1802         * our range starts.
1803         */
1804        node = tree_search(tree, start);
1805        if (!node) {
1806                ret = -ENOENT;
1807                goto out;
1808        }
1809        state = rb_entry(node, struct extent_state, rb_node);
1810        if (state->start != start) {
1811                ret = -ENOENT;
1812                goto out;
1813        }
1814        state->private = private;
1815out:
1816        spin_unlock(&tree->lock);
1817        return ret;
1818}
1819
1820int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1821{
1822        struct rb_node *node;
1823        struct extent_state *state;
1824        int ret = 0;
1825
1826        spin_lock(&tree->lock);
1827        /*
1828         * this search will find all the extents that end after
1829         * our range starts.
1830         */
1831        node = tree_search(tree, start);
1832        if (!node) {
1833                ret = -ENOENT;
1834                goto out;
1835        }
1836        state = rb_entry(node, struct extent_state, rb_node);
1837        if (state->start != start) {
1838                ret = -ENOENT;
1839                goto out;
1840        }
1841        *private = state->private;
1842out:
1843        spin_unlock(&tree->lock);
1844        return ret;
1845}
1846
1847/*
1848 * searches a range in the state tree for a given mask.
1849 * If 'filled' == 1, this returns 1 only if every extent in the tree
1850 * has the bits set.  Otherwise, 1 is returned if any bit in the
1851 * range is found set.
1852 */
1853int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1854                   unsigned long bits, int filled, struct extent_state *cached)
1855{
1856        struct extent_state *state = NULL;
1857        struct rb_node *node;
1858        int bitset = 0;
1859
1860        spin_lock(&tree->lock);
1861        if (cached && cached->tree && cached->start <= start &&
1862            cached->end > start)
1863                node = &cached->rb_node;
1864        else
1865                node = tree_search(tree, start);
1866        while (node && start <= end) {
1867                state = rb_entry(node, struct extent_state, rb_node);
1868
1869                if (filled && state->start > start) {
1870                        bitset = 0;
1871                        break;
1872                }
1873
1874                if (state->start > end)
1875                        break;
1876
1877                if (state->state & bits) {
1878                        bitset = 1;
1879                        if (!filled)
1880                                break;
1881                } else if (filled) {
1882                        bitset = 0;
1883                        break;
1884                }
1885
1886                if (state->end == (u64)-1)
1887                        break;
1888
1889                start = state->end + 1;
1890                if (start > end)
1891                        break;
1892                node = rb_next(node);
1893                if (!node) {
1894                        if (filled)
1895                                bitset = 0;
1896                        break;
1897                }
1898        }
1899        spin_unlock(&tree->lock);
1900        return bitset;
1901}
1902
1903/*
1904 * helper function to set a given page up to date if all the
1905 * extents in the tree for that page are up to date
1906 */
1907static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1908{
1909        u64 start = page_offset(page);
1910        u64 end = start + PAGE_CACHE_SIZE - 1;
1911        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1912                SetPageUptodate(page);
1913}
1914
1915/*
1916 * When IO fails, either with EIO or csum verification fails, we
1917 * try other mirrors that might have a good copy of the data.  This
1918 * io_failure_record is used to record state as we go through all the
1919 * mirrors.  If another mirror has good data, the page is set up to date
1920 * and things continue.  If a good mirror can't be found, the original
1921 * bio end_io callback is called to indicate things have failed.
1922 */
1923struct io_failure_record {
1924        struct page *page;
1925        u64 start;
1926        u64 len;
1927        u64 logical;
1928        unsigned long bio_flags;
1929        int this_mirror;
1930        int failed_mirror;
1931        int in_validation;
1932};
1933
1934static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1935                                int did_repair)
1936{
1937        int ret;
1938        int err = 0;
1939        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1940
1941        set_state_private(failure_tree, rec->start, 0);
1942        ret = clear_extent_bits(failure_tree, rec->start,
1943                                rec->start + rec->len - 1,
1944                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1945        if (ret)
1946                err = ret;
1947
1948        ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1949                                rec->start + rec->len - 1,
1950                                EXTENT_DAMAGED, GFP_NOFS);
1951        if (ret && !err)
1952                err = ret;
1953
1954        kfree(rec);
1955        return err;
1956}
1957
1958static void repair_io_failure_callback(struct bio *bio, int err)
1959{
1960        complete(bio->bi_private);
1961}
1962
1963/*
1964 * this bypasses the standard btrfs submit functions deliberately, as
1965 * the standard behavior is to write all copies in a raid setup. here we only
1966 * want to write the one bad copy. so we do the mapping for ourselves and issue
1967 * submit_bio directly.
1968 * to avoid any synchronization issues, wait for the data after writing, which
1969 * actually prevents the read that triggered the error from finishing.
1970 * currently, there can be no more than two copies of every data bit. thus,
1971 * exactly one rewrite is required.
1972 */
1973int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1974                        u64 length, u64 logical, struct page *page,
1975                        int mirror_num)
1976{
1977        struct bio *bio;
1978        struct btrfs_device *dev;
1979        DECLARE_COMPLETION_ONSTACK(compl);
1980        u64 map_length = 0;
1981        u64 sector;
1982        struct btrfs_bio *bbio = NULL;
1983        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1984        int ret;
1985
1986        BUG_ON(!mirror_num);
1987
1988        /* we can't repair anything in raid56 yet */
1989        if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1990                return 0;
1991
1992        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1993        if (!bio)
1994                return -EIO;
1995        bio->bi_private = &compl;
1996        bio->bi_end_io = repair_io_failure_callback;
1997        bio->bi_size = 0;
1998        map_length = length;
1999
2000        ret = btrfs_map_block(fs_info, WRITE, logical,
2001                              &map_length, &bbio, mirror_num);
2002        if (ret) {
2003                bio_put(bio);
2004                return -EIO;
2005        }
2006        BUG_ON(mirror_num != bbio->mirror_num);
2007        sector = bbio->stripes[mirror_num-1].physical >> 9;
2008        bio->bi_sector = sector;
2009        dev = bbio->stripes[mirror_num-1].dev;
2010        kfree(bbio);
2011        if (!dev || !dev->bdev || !dev->writeable) {
2012                bio_put(bio);
2013                return -EIO;
2014        }
2015        bio->bi_bdev = dev->bdev;
2016        bio_add_page(bio, page, length, start - page_offset(page));
2017        btrfsic_submit_bio(WRITE_SYNC, bio);
2018        wait_for_completion(&compl);
2019
2020        if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2021                /* try to remap that extent elsewhere? */
2022                bio_put(bio);
2023                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2024                return -EIO;
2025        }
2026
2027        printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2028                      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2029                      start, rcu_str_deref(dev->name), sector);
2030
2031        bio_put(bio);
2032        return 0;
2033}
2034
2035int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2036                         int mirror_num)
2037{
2038        u64 start = eb->start;
2039        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2040        int ret = 0;
2041
2042        for (i = 0; i < num_pages; i++) {
2043                struct page *p = extent_buffer_page(eb, i);
2044                ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2045                                        start, p, mirror_num);
2046                if (ret)
2047                        break;
2048                start += PAGE_CACHE_SIZE;
2049        }
2050
2051        return ret;
2052}
2053
2054/*
2055 * each time an IO finishes, we do a fast check in the IO failure tree
2056 * to see if we need to process or clean up an io_failure_record
2057 */
2058static int clean_io_failure(u64 start, struct page *page)
2059{
2060        u64 private;
2061        u64 private_failure;
2062        struct io_failure_record *failrec;
2063        struct btrfs_fs_info *fs_info;
2064        struct extent_state *state;
2065        int num_copies;
2066        int did_repair = 0;
2067        int ret;
2068        struct inode *inode = page->mapping->host;
2069
2070        private = 0;
2071        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2072                                (u64)-1, 1, EXTENT_DIRTY, 0);
2073        if (!ret)
2074                return 0;
2075
2076        ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2077                                &private_failure);
2078        if (ret)
2079                return 0;
2080
2081        failrec = (struct io_failure_record *)(unsigned long) private_failure;
2082        BUG_ON(!failrec->this_mirror);
2083
2084        if (failrec->in_validation) {
2085                /* there was no real error, just free the record */
2086                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2087                         failrec->start);
2088                did_repair = 1;
2089                goto out;
2090        }
2091
2092        spin_lock(&BTRFS_I(inode)->io_tree.lock);
2093        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2094                                            failrec->start,
2095                                            EXTENT_LOCKED);
2096        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2097
2098        if (state && state->start <= failrec->start &&
2099            state->end >= failrec->start + failrec->len - 1) {
2100                fs_info = BTRFS_I(inode)->root->fs_info;
2101                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2102                                              failrec->len);
2103                if (num_copies > 1)  {
2104                        ret = repair_io_failure(fs_info, start, failrec->len,
2105                                                failrec->logical, page,
2106                                                failrec->failed_mirror);
2107                        did_repair = !ret;
2108                }
2109                ret = 0;
2110        }
2111
2112out:
2113        if (!ret)
2114                ret = free_io_failure(inode, failrec, did_repair);
2115
2116        return ret;
2117}
2118
2119/*
2120 * this is a generic handler for readpage errors (default
2121 * readpage_io_failed_hook). if other copies exist, read those and write back
2122 * good data to the failed position. does not investigate in remapping the
2123 * failed extent elsewhere, hoping the device will be smart enough to do this as
2124 * needed
2125 */
2126
2127static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2128                              struct page *page, u64 start, u64 end,
2129                              int failed_mirror)
2130{
2131        struct io_failure_record *failrec = NULL;
2132        u64 private;
2133        struct extent_map *em;
2134        struct inode *inode = page->mapping->host;
2135        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2136        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2137        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2138        struct bio *bio;
2139        struct btrfs_io_bio *btrfs_failed_bio;
2140        struct btrfs_io_bio *btrfs_bio;
2141        int num_copies;
2142        int ret;
2143        int read_mode;
2144        u64 logical;
2145
2146        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2147
2148        ret = get_state_private(failure_tree, start, &private);
2149        if (ret) {
2150                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2151                if (!failrec)
2152                        return -ENOMEM;
2153                failrec->start = start;
2154                failrec->len = end - start + 1;
2155                failrec->this_mirror = 0;
2156                failrec->bio_flags = 0;
2157                failrec->in_validation = 0;
2158
2159                read_lock(&em_tree->lock);
2160                em = lookup_extent_mapping(em_tree, start, failrec->len);
2161                if (!em) {
2162                        read_unlock(&em_tree->lock);
2163                        kfree(failrec);
2164                        return -EIO;
2165                }
2166
2167                if (em->start > start || em->start + em->len < start) {
2168                        free_extent_map(em);
2169                        em = NULL;
2170                }
2171                read_unlock(&em_tree->lock);
2172
2173                if (!em) {
2174                        kfree(failrec);
2175                        return -EIO;
2176                }
2177                logical = start - em->start;
2178                logical = em->block_start + logical;
2179                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2180                        logical = em->block_start;
2181                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2182                        extent_set_compress_type(&failrec->bio_flags,
2183                                                 em->compress_type);
2184                }
2185                pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2186                         "len=%llu\n", logical, start, failrec->len);
2187                failrec->logical = logical;
2188                free_extent_map(em);
2189
2190                /* set the bits in the private failure tree */
2191                ret = set_extent_bits(failure_tree, start, end,
2192                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2193                if (ret >= 0)
2194                        ret = set_state_private(failure_tree, start,
2195                                                (u64)(unsigned long)failrec);
2196                /* set the bits in the inode's tree */
2197                if (ret >= 0)
2198                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2199                                                GFP_NOFS);
2200                if (ret < 0) {
2201                        kfree(failrec);
2202                        return ret;
2203                }
2204        } else {
2205                failrec = (struct io_failure_record *)(unsigned long)private;
2206                pr_debug("bio_readpage_error: (found) logical=%llu, "
2207                         "start=%llu, len=%llu, validation=%d\n",
2208                         failrec->logical, failrec->start, failrec->len,
2209                         failrec->in_validation);
2210                /*
2211                 * when data can be on disk more than twice, add to failrec here
2212                 * (e.g. with a list for failed_mirror) to make
2213                 * clean_io_failure() clean all those errors at once.
2214                 */
2215        }
2216        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2217                                      failrec->logical, failrec->len);
2218        if (num_copies == 1) {
2219                /*
2220                 * we only have a single copy of the data, so don't bother with
2221                 * all the retry and error correction code that follows. no
2222                 * matter what the error is, it is very likely to persist.
2223                 */
2224                pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2225                         num_copies, failrec->this_mirror, failed_mirror);
2226                free_io_failure(inode, failrec, 0);
2227                return -EIO;
2228        }
2229
2230        /*
2231         * there are two premises:
2232         *      a) deliver good data to the caller
2233         *      b) correct the bad sectors on disk
2234         */
2235        if (failed_bio->bi_vcnt > 1) {
2236                /*
2237                 * to fulfill b), we need to know the exact failing sectors, as
2238                 * we don't want to rewrite any more than the failed ones. thus,
2239                 * we need separate read requests for the failed bio
2240                 *
2241                 * if the following BUG_ON triggers, our validation request got
2242                 * merged. we need separate requests for our algorithm to work.
2243                 */
2244                BUG_ON(failrec->in_validation);
2245                failrec->in_validation = 1;
2246                failrec->this_mirror = failed_mirror;
2247                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2248        } else {
2249                /*
2250                 * we're ready to fulfill a) and b) alongside. get a good copy
2251                 * of the failed sector and if we succeed, we have setup
2252                 * everything for repair_io_failure to do the rest for us.
2253                 */
2254                if (failrec->in_validation) {
2255                        BUG_ON(failrec->this_mirror != failed_mirror);
2256                        failrec->in_validation = 0;
2257                        failrec->this_mirror = 0;
2258                }
2259                failrec->failed_mirror = failed_mirror;
2260                failrec->this_mirror++;
2261                if (failrec->this_mirror == failed_mirror)
2262                        failrec->this_mirror++;
2263                read_mode = READ_SYNC;
2264        }
2265
2266        if (failrec->this_mirror > num_copies) {
2267                pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2268                         num_copies, failrec->this_mirror, failed_mirror);
2269                free_io_failure(inode, failrec, 0);
2270                return -EIO;
2271        }
2272
2273        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2274        if (!bio) {
2275                free_io_failure(inode, failrec, 0);
2276                return -EIO;
2277        }
2278        bio->bi_end_io = failed_bio->bi_end_io;
2279        bio->bi_sector = failrec->logical >> 9;
2280        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2281        bio->bi_size = 0;
2282
2283        btrfs_failed_bio = btrfs_io_bio(failed_bio);
2284        if (btrfs_failed_bio->csum) {
2285                struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2286                u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2287
2288                btrfs_bio = btrfs_io_bio(bio);
2289                btrfs_bio->csum = btrfs_bio->csum_inline;
2290                phy_offset >>= inode->i_sb->s_blocksize_bits;
2291                phy_offset *= csum_size;
2292                memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2293                       csum_size);
2294        }
2295
2296        bio_add_page(bio, page, failrec->len, start - page_offset(page));
2297
2298        pr_debug("bio_readpage_error: submitting new read[%#x] to "
2299                 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2300                 failrec->this_mirror, num_copies, failrec->in_validation);
2301
2302        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2303                                         failrec->this_mirror,
2304                                         failrec->bio_flags, 0);
2305        return ret;
2306}
2307
2308/* lots and lots of room for performance fixes in the end_bio funcs */
2309
2310int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2311{
2312        int uptodate = (err == 0);
2313        struct extent_io_tree *tree;
2314        int ret;
2315
2316        tree = &BTRFS_I(page->mapping->host)->io_tree;
2317
2318        if (tree->ops && tree->ops->writepage_end_io_hook) {
2319                ret = tree->ops->writepage_end_io_hook(page, start,
2320                                               end, NULL, uptodate);
2321                if (ret)
2322                        uptodate = 0;
2323        }
2324
2325        if (!uptodate) {
2326                ClearPageUptodate(page);
2327                SetPageError(page);
2328        }
2329        return 0;
2330}
2331
2332/*
2333 * after a writepage IO is done, we need to:
2334 * clear the uptodate bits on error
2335 * clear the writeback bits in the extent tree for this IO
2336 * end_page_writeback if the page has no more pending IO
2337 *
2338 * Scheduling is not allowed, so the extent state tree is expected
2339 * to have one and only one object corresponding to this IO.
2340 */
2341static void end_bio_extent_writepage(struct bio *bio, int err)
2342{
2343        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2344        struct extent_io_tree *tree;
2345        u64 start;
2346        u64 end;
2347
2348        do {
2349                struct page *page = bvec->bv_page;
2350                tree = &BTRFS_I(page->mapping->host)->io_tree;
2351
2352                /* We always issue full-page reads, but if some block
2353                 * in a page fails to read, blk_update_request() will
2354                 * advance bv_offset and adjust bv_len to compensate.
2355                 * Print a warning for nonzero offsets, and an error
2356                 * if they don't add up to a full page.  */
2357                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2358                        printk("%s page write in btrfs with offset %u and length %u\n",
2359                               bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2360                               ? KERN_ERR "partial" : KERN_INFO "incomplete",
2361                               bvec->bv_offset, bvec->bv_len);
2362
2363                start = page_offset(page);
2364                end = start + bvec->bv_offset + bvec->bv_len - 1;
2365
2366                if (--bvec >= bio->bi_io_vec)
2367                        prefetchw(&bvec->bv_page->flags);
2368
2369                if (end_extent_writepage(page, err, start, end))
2370                        continue;
2371
2372                end_page_writeback(page);
2373        } while (bvec >= bio->bi_io_vec);
2374
2375        bio_put(bio);
2376}
2377
2378static void
2379endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2380                              int uptodate)
2381{
2382        struct extent_state *cached = NULL;
2383        u64 end = start + len - 1;
2384
2385        if (uptodate && tree->track_uptodate)
2386                set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2387        unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2388}
2389
2390/*
2391 * after a readpage IO is done, we need to:
2392 * clear the uptodate bits on error
2393 * set the uptodate bits if things worked
2394 * set the page up to date if all extents in the tree are uptodate
2395 * clear the lock bit in the extent tree
2396 * unlock the page if there are no other extents locked for it
2397 *
2398 * Scheduling is not allowed, so the extent state tree is expected
2399 * to have one and only one object corresponding to this IO.
2400 */
2401static void end_bio_extent_readpage(struct bio *bio, int err)
2402{
2403        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2404        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2405        struct bio_vec *bvec = bio->bi_io_vec;
2406        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2407        struct extent_io_tree *tree;
2408        u64 offset = 0;
2409        u64 start;
2410        u64 end;
2411        u64 len;
2412        u64 extent_start = 0;
2413        u64 extent_len = 0;
2414        int mirror;
2415        int ret;
2416
2417        if (err)
2418                uptodate = 0;
2419
2420        do {
2421                struct page *page = bvec->bv_page;
2422                struct inode *inode = page->mapping->host;
2423
2424                pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2425                         "mirror=%lu\n", (u64)bio->bi_sector, err,
2426                         io_bio->mirror_num);
2427                tree = &BTRFS_I(inode)->io_tree;
2428
2429                /* We always issue full-page reads, but if some block
2430                 * in a page fails to read, blk_update_request() will
2431                 * advance bv_offset and adjust bv_len to compensate.
2432                 * Print a warning for nonzero offsets, and an error
2433                 * if they don't add up to a full page.  */
2434                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2435                        printk("%s page read in btrfs with offset %u and length %u\n",
2436                               bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2437                               ? KERN_ERR "partial" : KERN_INFO "incomplete",
2438                               bvec->bv_offset, bvec->bv_len);
2439
2440                start = page_offset(page);
2441                end = start + bvec->bv_offset + bvec->bv_len - 1;
2442                len = bvec->bv_len;
2443
2444                if (++bvec <= bvec_end)
2445                        prefetchw(&bvec->bv_page->flags);
2446
2447                mirror = io_bio->mirror_num;
2448                if (likely(uptodate && tree->ops &&
2449                           tree->ops->readpage_end_io_hook)) {
2450                        ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2451                                                              page, start, end,
2452                                                              mirror);
2453                        if (ret)
2454                                uptodate = 0;
2455                        else
2456                                clean_io_failure(start, page);
2457                }
2458
2459                if (likely(uptodate))
2460                        goto readpage_ok;
2461
2462                if (tree->ops && tree->ops->readpage_io_failed_hook) {
2463                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2464                        if (!ret && !err &&
2465                            test_bit(BIO_UPTODATE, &bio->bi_flags))
2466                                uptodate = 1;
2467                } else {
2468                        /*
2469                         * The generic bio_readpage_error handles errors the
2470                         * following way: If possible, new read requests are
2471                         * created and submitted and will end up in
2472                         * end_bio_extent_readpage as well (if we're lucky, not
2473                         * in the !uptodate case). In that case it returns 0 and
2474                         * we just go on with the next page in our bio. If it
2475                         * can't handle the error it will return -EIO and we
2476                         * remain responsible for that page.
2477                         */
2478                        ret = bio_readpage_error(bio, offset, page, start, end,
2479                                                 mirror);
2480                        if (ret == 0) {
2481                                uptodate =
2482                                        test_bit(BIO_UPTODATE, &bio->bi_flags);
2483                                if (err)
2484                                        uptodate = 0;
2485                                continue;
2486                        }
2487                }
2488readpage_ok:
2489                if (likely(uptodate)) {
2490                        loff_t i_size = i_size_read(inode);
2491                        pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2492                        unsigned offset;
2493
2494                        /* Zero out the end if this page straddles i_size */
2495                        offset = i_size & (PAGE_CACHE_SIZE-1);
2496                        if (page->index == end_index && offset)
2497                                zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2498                        SetPageUptodate(page);
2499                } else {
2500                        ClearPageUptodate(page);
2501                        SetPageError(page);
2502                }
2503                unlock_page(page);
2504                offset += len;
2505
2506                if (unlikely(!uptodate)) {
2507                        if (extent_len) {
2508                                endio_readpage_release_extent(tree,
2509                                                              extent_start,
2510                                                              extent_len, 1);
2511                                extent_start = 0;
2512                                extent_len = 0;
2513                        }
2514                        endio_readpage_release_extent(tree, start,
2515                                                      end - start + 1, 0);
2516                } else if (!extent_len) {
2517                        extent_start = start;
2518                        extent_len = end + 1 - start;
2519                } else if (extent_start + extent_len == start) {
2520                        extent_len += end + 1 - start;
2521                } else {
2522                        endio_readpage_release_extent(tree, extent_start,
2523                                                      extent_len, uptodate);
2524                        extent_start = start;
2525                        extent_len = end + 1 - start;
2526                }
2527        } while (bvec <= bvec_end);
2528
2529        if (extent_len)
2530                endio_readpage_release_extent(tree, extent_start, extent_len,
2531                                              uptodate);
2532        if (io_bio->end_io)
2533                io_bio->end_io(io_bio, err);
2534        bio_put(bio);
2535}
2536
2537/*
2538 * this allocates from the btrfs_bioset.  We're returning a bio right now
2539 * but you can call btrfs_io_bio for the appropriate container_of magic
2540 */
2541struct bio *
2542btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2543                gfp_t gfp_flags)
2544{
2545        struct btrfs_io_bio *btrfs_bio;
2546        struct bio *bio;
2547
2548        bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2549
2550        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2551                while (!bio && (nr_vecs /= 2)) {
2552                        bio = bio_alloc_bioset(gfp_flags,
2553                                               nr_vecs, btrfs_bioset);
2554                }
2555        }
2556
2557        if (bio) {
2558                bio->bi_size = 0;
2559                bio->bi_bdev = bdev;
2560                bio->bi_sector = first_sector;
2561                btrfs_bio = btrfs_io_bio(bio);
2562                btrfs_bio->csum = NULL;
2563                btrfs_bio->csum_allocated = NULL;
2564                btrfs_bio->end_io = NULL;
2565        }
2566        return bio;
2567}
2568
2569struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570{
2571        return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572}
2573
2574
2575/* this also allocates from the btrfs_bioset */
2576struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577{
2578        struct btrfs_io_bio *btrfs_bio;
2579        struct bio *bio;
2580
2581        bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2582        if (bio) {
2583                btrfs_bio = btrfs_io_bio(bio);
2584                btrfs_bio->csum = NULL;
2585                btrfs_bio->csum_allocated = NULL;
2586                btrfs_bio->end_io = NULL;
2587        }
2588        return bio;
2589}
2590
2591
2592static int __must_check submit_one_bio(int rw, struct bio *bio,
2593                                       int mirror_num, unsigned long bio_flags)
2594{
2595        int ret = 0;
2596        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2597        struct page *page = bvec->bv_page;
2598        struct extent_io_tree *tree = bio->bi_private;
2599        u64 start;
2600
2601        start = page_offset(page) + bvec->bv_offset;
2602
2603        bio->bi_private = NULL;
2604
2605        bio_get(bio);
2606
2607        if (tree->ops && tree->ops->submit_bio_hook)
2608                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2609                                           mirror_num, bio_flags, start);
2610        else
2611                btrfsic_submit_bio(rw, bio);
2612
2613        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2614                ret = -EOPNOTSUPP;
2615        bio_put(bio);
2616        return ret;
2617}
2618
2619static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2620                     unsigned long offset, size_t size, struct bio *bio,
2621                     unsigned long bio_flags)
2622{
2623        int ret = 0;
2624        if (tree->ops && tree->ops->merge_bio_hook)
2625                ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2626                                                bio_flags);
2627        BUG_ON(ret < 0);
2628        return ret;
2629
2630}
2631
2632static int submit_extent_page(int rw, struct extent_io_tree *tree,
2633                              struct page *page, sector_t sector,
2634                              size_t size, unsigned long offset,
2635                              struct block_device *bdev,
2636                              struct bio **bio_ret,
2637                              unsigned long max_pages,
2638                              bio_end_io_t end_io_func,
2639                              int mirror_num,
2640                              unsigned long prev_bio_flags,
2641                              unsigned long bio_flags)
2642{
2643        int ret = 0;
2644        struct bio *bio;
2645        int nr;
2646        int contig = 0;
2647        int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2648        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2649        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2650
2651        if (bio_ret && *bio_ret) {
2652                bio = *bio_ret;
2653                if (old_compressed)
2654                        contig = bio->bi_sector == sector;
2655                else
2656                        contig = bio_end_sector(bio) == sector;
2657
2658                if (prev_bio_flags != bio_flags || !contig ||
2659                    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2660                    bio_add_page(bio, page, page_size, offset) < page_size) {
2661                        ret = submit_one_bio(rw, bio, mirror_num,
2662                                             prev_bio_flags);
2663                        if (ret < 0)
2664                                return ret;
2665                        bio = NULL;
2666                } else {
2667                        return 0;
2668                }
2669        }
2670        if (this_compressed)
2671                nr = BIO_MAX_PAGES;
2672        else
2673                nr = bio_get_nr_vecs(bdev);
2674
2675        bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2676        if (!bio)
2677                return -ENOMEM;
2678
2679        bio_add_page(bio, page, page_size, offset);
2680        bio->bi_end_io = end_io_func;
2681        bio->bi_private = tree;
2682
2683        if (bio_ret)
2684                *bio_ret = bio;
2685        else
2686                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2687
2688        return ret;
2689}
2690
2691static void attach_extent_buffer_page(struct extent_buffer *eb,
2692                                      struct page *page)
2693{
2694        if (!PagePrivate(page)) {
2695                SetPagePrivate(page);
2696                page_cache_get(page);
2697                set_page_private(page, (unsigned long)eb);
2698        } else {
2699                WARN_ON(page->private != (unsigned long)eb);
2700        }
2701}
2702
2703void set_page_extent_mapped(struct page *page)
2704{
2705        if (!PagePrivate(page)) {
2706                SetPagePrivate(page);
2707                page_cache_get(page);
2708                set_page_private(page, EXTENT_PAGE_PRIVATE);
2709        }
2710}
2711
2712static struct extent_map *
2713__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2714                 u64 start, u64 len, get_extent_t *get_extent,
2715                 struct extent_map **em_cached)
2716{
2717        struct extent_map *em;
2718
2719        if (em_cached && *em_cached) {
2720                em = *em_cached;
2721                if (em->in_tree && start >= em->start &&
2722                    start < extent_map_end(em)) {
2723                        atomic_inc(&em->refs);
2724                        return em;
2725                }
2726
2727                free_extent_map(em);
2728                *em_cached = NULL;
2729        }
2730
2731        em = get_extent(inode, page, pg_offset, start, len, 0);
2732        if (em_cached && !IS_ERR_OR_NULL(em)) {
2733                BUG_ON(*em_cached);
2734                atomic_inc(&em->refs);
2735                *em_cached = em;
2736        }
2737        return em;
2738}
2739/*
2740 * basic readpage implementation.  Locked extent state structs are inserted
2741 * into the tree that are removed when the IO is done (by the end_io
2742 * handlers)
2743 * XXX JDM: This needs looking at to ensure proper page locking
2744 */
2745static int __do_readpage(struct extent_io_tree *tree,
2746                         struct page *page,
2747                         get_extent_t *get_extent,
2748                         struct extent_map **em_cached,
2749                         struct bio **bio, int mirror_num,
2750                         unsigned long *bio_flags, int rw)
2751{
2752        struct inode *inode = page->mapping->host;
2753        u64 start = page_offset(page);
2754        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2755        u64 end;
2756        u64 cur = start;
2757        u64 extent_offset;
2758        u64 last_byte = i_size_read(inode);
2759        u64 block_start;
2760        u64 cur_end;
2761        sector_t sector;
2762        struct extent_map *em;
2763        struct block_device *bdev;
2764        int ret;
2765        int nr = 0;
2766        int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2767        size_t pg_offset = 0;
2768        size_t iosize;
2769        size_t disk_io_size;
2770        size_t blocksize = inode->i_sb->s_blocksize;
2771        unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2772
2773        set_page_extent_mapped(page);
2774
2775        end = page_end;
2776        if (!PageUptodate(page)) {
2777                if (cleancache_get_page(page) == 0) {
2778                        BUG_ON(blocksize != PAGE_SIZE);
2779                        unlock_extent(tree, start, end);
2780                        goto out;
2781                }
2782        }
2783
2784        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2785                char *userpage;
2786                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2787
2788                if (zero_offset) {
2789                        iosize = PAGE_CACHE_SIZE - zero_offset;
2790                        userpage = kmap_atomic(page);
2791                        memset(userpage + zero_offset, 0, iosize);
2792                        flush_dcache_page(page);
2793                        kunmap_atomic(userpage);
2794                }
2795        }
2796        while (cur <= end) {
2797                unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2798
2799                if (cur >= last_byte) {
2800                        char *userpage;
2801                        struct extent_state *cached = NULL;
2802
2803                        iosize = PAGE_CACHE_SIZE - pg_offset;
2804                        userpage = kmap_atomic(page);
2805                        memset(userpage + pg_offset, 0, iosize);
2806                        flush_dcache_page(page);
2807                        kunmap_atomic(userpage);
2808                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2809                                            &cached, GFP_NOFS);
2810                        if (!parent_locked)
2811                                unlock_extent_cached(tree, cur,
2812                                                     cur + iosize - 1,
2813                                                     &cached, GFP_NOFS);
2814                        break;
2815                }
2816                em = __get_extent_map(inode, page, pg_offset, cur,
2817                                      end - cur + 1, get_extent, em_cached);
2818                if (IS_ERR_OR_NULL(em)) {
2819                        SetPageError(page);
2820                        if (!parent_locked)
2821                                unlock_extent(tree, cur, end);
2822                        break;
2823                }
2824                extent_offset = cur - em->start;
2825                BUG_ON(extent_map_end(em) <= cur);
2826                BUG_ON(end < cur);
2827
2828                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2829                        this_bio_flag |= EXTENT_BIO_COMPRESSED;
2830                        extent_set_compress_type(&this_bio_flag,
2831                                                 em->compress_type);
2832                }
2833
2834                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2835                cur_end = min(extent_map_end(em) - 1, end);
2836                iosize = ALIGN(iosize, blocksize);
2837                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2838                        disk_io_size = em->block_len;
2839                        sector = em->block_start >> 9;
2840                } else {
2841                        sector = (em->block_start + extent_offset) >> 9;
2842                        disk_io_size = iosize;
2843                }
2844                bdev = em->bdev;
2845                block_start = em->block_start;
2846                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2847                        block_start = EXTENT_MAP_HOLE;
2848                free_extent_map(em);
2849                em = NULL;
2850
2851                /* we've found a hole, just zero and go on */
2852                if (block_start == EXTENT_MAP_HOLE) {
2853                        char *userpage;
2854                        struct extent_state *cached = NULL;
2855
2856                        userpage = kmap_atomic(page);
2857                        memset(userpage + pg_offset, 0, iosize);
2858                        flush_dcache_page(page);
2859                        kunmap_atomic(userpage);
2860
2861                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2862                                            &cached, GFP_NOFS);
2863                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2864                                             &cached, GFP_NOFS);
2865                        cur = cur + iosize;
2866                        pg_offset += iosize;
2867                        continue;
2868                }
2869                /* the get_extent function already copied into the page */
2870                if (test_range_bit(tree, cur, cur_end,
2871                                   EXTENT_UPTODATE, 1, NULL)) {
2872                        check_page_uptodate(tree, page);
2873                        if (!parent_locked)
2874                                unlock_extent(tree, cur, cur + iosize - 1);
2875                        cur = cur + iosize;
2876                        pg_offset += iosize;
2877                        continue;
2878                }
2879                /* we have an inline extent but it didn't get marked up
2880                 * to date.  Error out
2881                 */
2882                if (block_start == EXTENT_MAP_INLINE) {
2883                        SetPageError(page);
2884                        if (!parent_locked)
2885                                unlock_extent(tree, cur, cur + iosize - 1);
2886                        cur = cur + iosize;
2887                        pg_offset += iosize;
2888                        continue;
2889                }
2890
2891                pnr -= page->index;
2892                ret = submit_extent_page(rw, tree, page,
2893                                         sector, disk_io_size, pg_offset,
2894                                         bdev, bio, pnr,
2895                                         end_bio_extent_readpage, mirror_num,
2896                                         *bio_flags,
2897                                         this_bio_flag);
2898                if (!ret) {
2899                        nr++;
2900                        *bio_flags = this_bio_flag;
2901                } else {
2902                        SetPageError(page);
2903                        if (!parent_locked)
2904                                unlock_extent(tree, cur, cur + iosize - 1);
2905                }
2906                cur = cur + iosize;
2907                pg_offset += iosize;
2908        }
2909out:
2910        if (!nr) {
2911                if (!PageError(page))
2912                        SetPageUptodate(page);
2913                unlock_page(page);
2914        }
2915        return 0;
2916}
2917
2918static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2919                                             struct page *pages[], int nr_pages,
2920                                             u64 start, u64 end,
2921                                             get_extent_t *get_extent,
2922                                             struct extent_map **em_cached,
2923                                             struct bio **bio, int mirror_num,
2924                                             unsigned long *bio_flags, int rw)
2925{
2926        struct inode *inode;
2927        struct btrfs_ordered_extent *ordered;
2928        int index;
2929
2930        inode = pages[0]->mapping->host;
2931        while (1) {
2932                lock_extent(tree, start, end);
2933                ordered = btrfs_lookup_ordered_range(inode, start,
2934                                                     end - start + 1);
2935                if (!ordered)
2936                        break;
2937                unlock_extent(tree, start, end);
2938                btrfs_start_ordered_extent(inode, ordered, 1);
2939                btrfs_put_ordered_extent(ordered);
2940        }
2941
2942        for (index = 0; index < nr_pages; index++) {
2943                __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2944                              mirror_num, bio_flags, rw);
2945                page_cache_release(pages[index]);
2946        }
2947}
2948
2949static void __extent_readpages(struct extent_io_tree *tree,
2950                               struct page *pages[],
2951                               int nr_pages, get_extent_t *get_extent,
2952                               struct extent_map **em_cached,
2953                               struct bio **bio, int mirror_num,
2954                               unsigned long *bio_flags, int rw)
2955{
2956        u64 start = 0;
2957        u64 end = 0;
2958        u64 page_start;
2959        int index;
2960        int first_index = 0;
2961
2962        for (index = 0; index < nr_pages; index++) {
2963                page_start = page_offset(pages[index]);
2964                if (!end) {
2965                        start = page_start;
2966                        end = start + PAGE_CACHE_SIZE - 1;
2967                        first_index = index;
2968                } else if (end + 1 == page_start) {
2969                        end += PAGE_CACHE_SIZE;
2970                } else {
2971                        __do_contiguous_readpages(tree, &pages[first_index],
2972                                                  index - first_index, start,
2973                                                  end, get_extent, em_cached,
2974                                                  bio, mirror_num, bio_flags,
2975                                                  rw);
2976                        start = page_start;
2977                        end = start + PAGE_CACHE_SIZE - 1;
2978                        first_index = index;
2979                }
2980        }
2981
2982        if (end)
2983                __do_contiguous_readpages(tree, &pages[first_index],
2984                                          index - first_index, start,
2985                                          end, get_extent, em_cached, bio,
2986                                          mirror_num, bio_flags, rw);
2987}
2988
2989static int __extent_read_full_page(struct extent_io_tree *tree,
2990                                   struct page *page,
2991                                   get_extent_t *get_extent,
2992                                   struct bio **bio, int mirror_num,
2993                                   unsigned long *bio_flags, int rw)
2994{
2995        struct inode *inode = page->mapping->host;
2996        struct btrfs_ordered_extent *ordered;
2997        u64 start = page_offset(page);
2998        u64 end = start + PAGE_CACHE_SIZE - 1;
2999        int ret;
3000
3001        while (1) {
3002                lock_extent(tree, start, end);
3003                ordered = btrfs_lookup_ordered_extent(inode, start);
3004                if (!ordered)
3005                        break;
3006                unlock_extent(tree, start, end);
3007                btrfs_start_ordered_extent(inode, ordered, 1);
3008                btrfs_put_ordered_extent(ordered);
3009        }
3010
3011        ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3012                            bio_flags, rw);
3013        return ret;
3014}
3015
3016int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3017                            get_extent_t *get_extent, int mirror_num)
3018{
3019        struct bio *bio = NULL;
3020        unsigned long bio_flags = 0;
3021        int ret;
3022
3023        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3024                                      &bio_flags, READ);
3025        if (bio)
3026                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3027        return ret;
3028}
3029
3030int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3031                                 get_extent_t *get_extent, int mirror_num)
3032{
3033        struct bio *bio = NULL;
3034        unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3035        int ret;
3036
3037        ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3038                                      &bio_flags, READ);
3039        if (bio)
3040                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3041        return ret;
3042}
3043
3044static noinline void update_nr_written(struct page *page,
3045                                      struct writeback_control *wbc,
3046                                      unsigned long nr_written)
3047{
3048        wbc->nr_to_write -= nr_written;
3049        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3050            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3051                page->mapping->writeback_index = page->index + nr_written;
3052}
3053
3054/*
3055 * the writepage semantics are similar to regular writepage.  extent
3056 * records are inserted to lock ranges in the tree, and as dirty areas
3057 * are found, they are marked writeback.  Then the lock bits are removed
3058 * and the end_io handler clears the writeback ranges
3059 */
3060static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3061                              void *data)
3062{
3063        struct inode *inode = page->mapping->host;
3064        struct extent_page_data *epd = data;
3065        struct extent_io_tree *tree = epd->tree;
3066        u64 start = page_offset(page);
3067        u64 delalloc_start;
3068        u64 page_end = start + PAGE_CACHE_SIZE - 1;
3069        u64 end;
3070        u64 cur = start;
3071        u64 extent_offset;
3072        u64 last_byte = i_size_read(inode);
3073        u64 block_start;
3074        u64 iosize;
3075        sector_t sector;
3076        struct extent_state *cached_state = NULL;
3077        struct extent_map *em;
3078        struct block_device *bdev;
3079        int ret;
3080        int nr = 0;
3081        size_t pg_offset = 0;
3082        size_t blocksize;
3083        loff_t i_size = i_size_read(inode);
3084        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3085        u64 nr_delalloc;
3086        u64 delalloc_end;
3087        int page_started;
3088        int compressed;
3089        int write_flags;
3090        unsigned long nr_written = 0;
3091        bool fill_delalloc = true;
3092
3093        if (wbc->sync_mode == WB_SYNC_ALL)
3094                write_flags = WRITE_SYNC;
3095        else
3096                write_flags = WRITE;
3097
3098        trace___extent_writepage(page, inode, wbc);
3099
3100        WARN_ON(!PageLocked(page));
3101
3102        ClearPageError(page);
3103
3104        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3105        if (page->index > end_index ||
3106           (page->index == end_index && !pg_offset)) {
3107                page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3108                unlock_page(page);
3109                return 0;
3110        }
3111
3112        if (page->index == end_index) {
3113                char *userpage;
3114
3115                userpage = kmap_atomic(page);
3116                memset(userpage + pg_offset, 0,
3117                       PAGE_CACHE_SIZE - pg_offset);
3118                kunmap_atomic(userpage);
3119                flush_dcache_page(page);
3120        }
3121        pg_offset = 0;
3122
3123        set_page_extent_mapped(page);
3124
3125        if (!tree->ops || !tree->ops->fill_delalloc)
3126                fill_delalloc = false;
3127
3128        delalloc_start = start;
3129        delalloc_end = 0;
3130        page_started = 0;
3131        if (!epd->extent_locked && fill_delalloc) {
3132                u64 delalloc_to_write = 0;
3133                /*
3134                 * make sure the wbc mapping index is at least updated
3135                 * to this page.
3136                 */
3137                update_nr_written(page, wbc, 0);
3138
3139                while (delalloc_end < page_end) {
3140                        nr_delalloc = find_lock_delalloc_range(inode, tree,
3141                                                       page,
3142                                                       &delalloc_start,
3143                                                       &delalloc_end,
3144                                                       128 * 1024 * 1024);
3145                        if (nr_delalloc == 0) {
3146                                delalloc_start = delalloc_end + 1;
3147                                continue;
3148                        }
3149                        ret = tree->ops->fill_delalloc(inode, page,
3150                                                       delalloc_start,
3151                                                       delalloc_end,
3152                                                       &page_started,
3153                                                       &nr_written);
3154                        /* File system has been set read-only */
3155                        if (ret) {
3156                                SetPageError(page);
3157                                goto done;
3158                        }
3159                        /*
3160                         * delalloc_end is already one less than the total
3161                         * length, so we don't subtract one from
3162                         * PAGE_CACHE_SIZE
3163                         */
3164                        delalloc_to_write += (delalloc_end - delalloc_start +
3165                                              PAGE_CACHE_SIZE) >>
3166                                              PAGE_CACHE_SHIFT;
3167                        delalloc_start = delalloc_end + 1;
3168                }
3169                if (wbc->nr_to_write < delalloc_to_write) {
3170                        int thresh = 8192;
3171
3172                        if (delalloc_to_write < thresh * 2)
3173                                thresh = delalloc_to_write;
3174                        wbc->nr_to_write = min_t(u64, delalloc_to_write,
3175                                                 thresh);
3176                }
3177
3178                /* did the fill delalloc function already unlock and start
3179                 * the IO?
3180                 */
3181                if (page_started) {
3182                        ret = 0;
3183                        /*
3184                         * we've unlocked the page, so we can't update
3185                         * the mapping's writeback index, just update
3186                         * nr_to_write.
3187                         */
3188                        wbc->nr_to_write -= nr_written;
3189                        goto done_unlocked;
3190                }
3191        }
3192        if (tree->ops && tree->ops->writepage_start_hook) {
3193                ret = tree->ops->writepage_start_hook(page, start,
3194                                                      page_end);
3195                if (ret) {
3196                        /* Fixup worker will requeue */
3197                        if (ret == -EBUSY)
3198                                wbc->pages_skipped++;
3199                        else
3200                                redirty_page_for_writepage(wbc, page);
3201                        update_nr_written(page, wbc, nr_written);
3202                        unlock_page(page);
3203                        ret = 0;
3204                        goto done_unlocked;
3205                }
3206        }
3207
3208        /*
3209         * we don't want to touch the inode after unlocking the page,
3210         * so we update the mapping writeback index now
3211         */
3212        update_nr_written(page, wbc, nr_written + 1);
3213
3214        end = page_end;
3215        if (last_byte <= start) {
3216                if (tree->ops && tree->ops->writepage_end_io_hook)
3217                        tree->ops->writepage_end_io_hook(page, start,
3218                                                         page_end, NULL, 1);
3219                goto done;
3220        }
3221
3222        blocksize = inode->i_sb->s_blocksize;
3223
3224        while (cur <= end) {
3225                if (cur >= last_byte) {
3226                        if (tree->ops && tree->ops->writepage_end_io_hook)
3227                                tree->ops->writepage_end_io_hook(page, cur,
3228                                                         page_end, NULL, 1);
3229                        break;
3230                }
3231                em = epd->get_extent(inode, page, pg_offset, cur,
3232                                     end - cur + 1, 1);
3233                if (IS_ERR_OR_NULL(em)) {
3234                        SetPageError(page);
3235                        break;
3236                }
3237
3238                extent_offset = cur - em->start;
3239                BUG_ON(extent_map_end(em) <= cur);
3240                BUG_ON(end < cur);
3241                iosize = min(extent_map_end(em) - cur, end - cur + 1);
3242                iosize = ALIGN(iosize, blocksize);
3243                sector = (em->block_start + extent_offset) >> 9;
3244                bdev = em->bdev;
3245                block_start = em->block_start;
3246                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3247                free_extent_map(em);
3248                em = NULL;
3249
3250                /*
3251                 * compressed and inline extents are written through other
3252                 * paths in the FS
3253                 */
3254                if (compressed || block_start == EXTENT_MAP_HOLE ||
3255                    block_start == EXTENT_MAP_INLINE) {
3256                        /*
3257                         * end_io notification does not happen here for
3258                         * compressed extents
3259                         */
3260                        if (!compressed && tree->ops &&
3261                            tree->ops->writepage_end_io_hook)
3262                                tree->ops->writepage_end_io_hook(page, cur,
3263                                                         cur + iosize - 1,
3264                                                         NULL, 1);
3265                        else if (compressed) {
3266                                /* we don't want to end_page_writeback on
3267                                 * a compressed extent.  this happens
3268                                 * elsewhere
3269                                 */
3270                                nr++;
3271                        }
3272
3273                        cur += iosize;
3274                        pg_offset += iosize;
3275                        continue;
3276                }
3277                /* leave this out until we have a page_mkwrite call */
3278                if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3279                                   EXTENT_DIRTY, 0, NULL)) {
3280                        cur = cur + iosize;
3281                        pg_offset += iosize;
3282                        continue;
3283                }
3284
3285                if (tree->ops && tree->ops->writepage_io_hook) {
3286                        ret = tree->ops->writepage_io_hook(page, cur,
3287                                                cur + iosize - 1);
3288                } else {
3289                        ret = 0;
3290                }
3291                if (ret) {
3292                        SetPageError(page);
3293                } else {
3294                        unsigned long max_nr = end_index + 1;
3295
3296                        set_range_writeback(tree, cur, cur + iosize - 1);
3297                        if (!PageWriteback(page)) {
3298                                printk(KERN_ERR "btrfs warning page %lu not "
3299                                       "writeback, cur %llu end %llu\n",
3300                                       page->index, cur, end);
3301                        }
3302
3303                        ret = submit_extent_page(write_flags, tree, page,
3304                                                 sector, iosize, pg_offset,
3305                                                 bdev, &epd->bio, max_nr,
3306                                                 end_bio_extent_writepage,
3307                                                 0, 0, 0);
3308                        if (ret)
3309                                SetPageError(page);
3310                }
3311                cur = cur + iosize;
3312                pg_offset += iosize;
3313                nr++;
3314        }
3315done:
3316        if (nr == 0) {
3317                /* make sure the mapping tag for page dirty gets cleared */
3318                set_page_writeback(page);
3319                end_page_writeback(page);
3320        }
3321        unlock_page(page);
3322
3323done_unlocked:
3324
3325        /* drop our reference on any cached states */
3326        free_extent_state(cached_state);
3327        return 0;
3328}
3329
3330static int eb_wait(void *word)
3331{
3332        io_schedule();
3333        return 0;
3334}
3335
3336void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3337{
3338        wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3339                    TASK_UNINTERRUPTIBLE);
3340}
3341
3342static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3343                                     struct btrfs_fs_info *fs_info,
3344                                     struct extent_page_data *epd)
3345{
3346        unsigned long i, num_pages;
3347        int flush = 0;
3348        int ret = 0;
3349
3350        if (!btrfs_try_tree_write_lock(eb)) {
3351                flush = 1;
3352                flush_write_bio(epd);
3353                btrfs_tree_lock(eb);
3354        }
3355
3356        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3357                btrfs_tree_unlock(eb);
3358                if (!epd->sync_io)
3359                        return 0;
3360                if (!flush) {
3361                        flush_write_bio(epd);
3362                        flush = 1;
3363                }
3364                while (1) {
3365                        wait_on_extent_buffer_writeback(eb);
3366                        btrfs_tree_lock(eb);
3367                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3368                                break;
3369                        btrfs_tree_unlock(eb);
3370                }
3371        }
3372
3373        /*
3374         * We need to do this to prevent races in people who check if the eb is
3375         * under IO since we can end up having no IO bits set for a short period
3376         * of time.
3377         */
3378        spin_lock(&eb->refs_lock);
3379        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3380                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3381                spin_unlock(&eb->refs_lock);
3382                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3383                __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3384                                     -eb->len,
3385                                     fs_info->dirty_metadata_batch);
3386                ret = 1;
3387        } else {
3388                spin_unlock(&eb->refs_lock);
3389        }
3390
3391        btrfs_tree_unlock(eb);
3392
3393        if (!ret)
3394                return ret;
3395
3396        num_pages = num_extent_pages(eb->start, eb->len);
3397        for (i = 0; i < num_pages; i++) {
3398                struct page *p = extent_buffer_page(eb, i);
3399
3400                if (!trylock_page(p)) {
3401                        if (!flush) {
3402                                flush_write_bio(epd);
3403                                flush = 1;
3404                        }
3405                        lock_page(p);
3406                }
3407        }
3408
3409        return ret;
3410}
3411
3412static void end_extent_buffer_writeback(struct extent_buffer *eb)
3413{
3414        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3415        smp_mb__after_clear_bit();
3416        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3417}
3418
3419static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3420{
3421        int uptodate = err == 0;
3422        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3423        struct extent_buffer *eb;
3424        int done;
3425
3426        do {
3427                struct page *page = bvec->bv_page;
3428
3429                bvec--;
3430                eb = (struct extent_buffer *)page->private;
3431                BUG_ON(!eb);
3432                done = atomic_dec_and_test(&eb->io_pages);
3433
3434                if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3435                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3436                        ClearPageUptodate(page);
3437                        SetPageError(page);
3438                }
3439
3440                end_page_writeback(page);
3441
3442                if (!done)
3443                        continue;
3444
3445                end_extent_buffer_writeback(eb);
3446        } while (bvec >= bio->bi_io_vec);
3447
3448        bio_put(bio);
3449
3450}
3451
3452static int write_one_eb(struct extent_buffer *eb,
3453                        struct btrfs_fs_info *fs_info,
3454                        struct writeback_control *wbc,
3455                        struct extent_page_data *epd)
3456{
3457        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3458        u64 offset = eb->start;
3459        unsigned long i, num_pages;
3460        unsigned long bio_flags = 0;
3461        int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3462        int ret = 0;
3463
3464        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3465        num_pages = num_extent_pages(eb->start, eb->len);
3466        atomic_set(&eb->io_pages, num_pages);
3467        if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3468                bio_flags = EXTENT_BIO_TREE_LOG;
3469
3470        for (i = 0; i < num_pages; i++) {
3471                struct page *p = extent_buffer_page(eb, i);
3472
3473                clear_page_dirty_for_io(p);
3474                set_page_writeback(p);
3475                ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3476                                         PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3477                                         -1, end_bio_extent_buffer_writepage,
3478                                         0, epd->bio_flags, bio_flags);
3479                epd->bio_flags = bio_flags;
3480                if (ret) {
3481                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3482                        SetPageError(p);
3483                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3484                                end_extent_buffer_writeback(eb);
3485                        ret = -EIO;
3486                        break;
3487                }
3488                offset += PAGE_CACHE_SIZE;
3489                update_nr_written(p, wbc, 1);
3490                unlock_page(p);
3491        }
3492
3493        if (unlikely(ret)) {
3494                for (; i < num_pages; i++) {
3495                        struct page *p = extent_buffer_page(eb, i);
3496                        unlock_page(p);
3497                }
3498        }
3499
3500        return ret;
3501}
3502
3503int btree_write_cache_pages(struct address_space *mapping,
3504                                   struct writeback_control *wbc)
3505{
3506        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3507        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3508        struct extent_buffer *eb, *prev_eb = NULL;
3509        struct extent_page_data epd = {
3510                .bio = NULL,
3511                .tree = tree,
3512                .extent_locked = 0,
3513                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3514                .bio_flags = 0,
3515        };
3516        int ret = 0;
3517        int done = 0;
3518        int nr_to_write_done = 0;
3519        struct pagevec pvec;
3520        int nr_pages;
3521        pgoff_t index;
3522        pgoff_t end;            /* Inclusive */
3523        int scanned = 0;
3524        int tag;
3525
3526        pagevec_init(&pvec, 0);
3527        if (wbc->range_cyclic) {
3528                index = mapping->writeback_index; /* Start from prev offset */
3529                end = -1;
3530        } else {
3531                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3532                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3533                scanned = 1;
3534        }
3535        if (wbc->sync_mode == WB_SYNC_ALL)
3536                tag = PAGECACHE_TAG_TOWRITE;
3537        else
3538                tag = PAGECACHE_TAG_DIRTY;
3539retry:
3540        if (wbc->sync_mode == WB_SYNC_ALL)
3541                tag_pages_for_writeback(mapping, index, end);
3542        while (!done && !nr_to_write_done && (index <= end) &&
3543               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3544                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3545                unsigned i;
3546
3547                scanned = 1;
3548                for (i = 0; i < nr_pages; i++) {
3549                        struct page *page = pvec.pages[i];
3550
3551                        if (!PagePrivate(page))
3552                                continue;
3553
3554                        if (!wbc->range_cyclic && page->index > end) {
3555                                done = 1;
3556                                break;
3557                        }
3558
3559                        spin_lock(&mapping->private_lock);
3560                        if (!PagePrivate(page)) {
3561                                spin_unlock(&mapping->private_lock);
3562                                continue;
3563                        }
3564
3565                        eb = (struct extent_buffer *)page->private;
3566
3567                        /*
3568                         * Shouldn't happen and normally this would be a BUG_ON
3569                         * but no sense in crashing the users box for something
3570                         * we can survive anyway.
3571                         */
3572                        if (!eb) {
3573                                spin_unlock(&mapping->private_lock);
3574                                WARN_ON(1);
3575                                continue;
3576                        }
3577
3578                        if (eb == prev_eb) {
3579                                spin_unlock(&mapping->private_lock);
3580                                continue;
3581                        }
3582
3583                        ret = atomic_inc_not_zero(&eb->refs);
3584                        spin_unlock(&mapping->private_lock);
3585                        if (!ret)
3586                                continue;
3587
3588                        prev_eb = eb;
3589                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3590                        if (!ret) {
3591                                free_extent_buffer(eb);
3592                                continue;
3593                        }
3594
3595                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3596                        if (ret) {
3597                                done = 1;
3598                                free_extent_buffer(eb);
3599                                break;
3600                        }
3601                        free_extent_buffer(eb);
3602
3603                        /*
3604                         * the filesystem may choose to bump up nr_to_write.
3605                         * We have to make sure to honor the new nr_to_write
3606                         * at any time
3607                         */
3608                        nr_to_write_done = wbc->nr_to_write <= 0;
3609                }
3610                pagevec_release(&pvec);
3611                cond_resched();
3612        }
3613        if (!scanned && !done) {
3614                /*
3615                 * We hit the last page and there is more work to be done: wrap
3616                 * back to the start of the file
3617                 */
3618                scanned = 1;
3619                index = 0;
3620                goto retry;
3621        }
3622        flush_write_bio(&epd);
3623        return ret;
3624}
3625
3626/**
3627 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3628 * @mapping: address space structure to write
3629 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3630 * @writepage: function called for each page
3631 * @data: data passed to writepage function
3632 *
3633 * If a page is already under I/O, write_cache_pages() skips it, even
3634 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3635 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3636 * and msync() need to guarantee that all the data which was dirty at the time
3637 * the call was made get new I/O started against them.  If wbc->sync_mode is
3638 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3639 * existing IO to complete.
3640 */
3641static int extent_write_cache_pages(struct extent_io_tree *tree,
3642                             struct address_space *mapping,
3643                             struct writeback_control *wbc,
3644                             writepage_t writepage, void *data,
3645                             void (*flush_fn)(void *))
3646{
3647        struct inode *inode = mapping->host;
3648        int ret = 0;
3649        int done = 0;
3650        int nr_to_write_done = 0;
3651        struct pagevec pvec;
3652        int nr_pages;
3653        pgoff_t index;
3654        pgoff_t end;            /* Inclusive */
3655        int scanned = 0;
3656        int tag;
3657
3658        /*
3659         * We have to hold onto the inode so that ordered extents can do their
3660         * work when the IO finishes.  The alternative to this is failing to add
3661         * an ordered extent if the igrab() fails there and that is a huge pain
3662         * to deal with, so instead just hold onto the inode throughout the
3663         * writepages operation.  If it fails here we are freeing up the inode
3664         * anyway and we'd rather not waste our time writing out stuff that is
3665         * going to be truncated anyway.
3666         */
3667        if (!igrab(inode))
3668                return 0;
3669
3670        pagevec_init(&pvec, 0);
3671        if (wbc->range_cyclic) {
3672                index = mapping->writeback_index; /* Start from prev offset */
3673                end = -1;
3674        } else {
3675                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3676                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3677                scanned = 1;
3678        }
3679        if (wbc->sync_mode == WB_SYNC_ALL)
3680                tag = PAGECACHE_TAG_TOWRITE;
3681        else
3682                tag = PAGECACHE_TAG_DIRTY;
3683retry:
3684        if (wbc->sync_mode == WB_SYNC_ALL)
3685                tag_pages_for_writeback(mapping, index, end);
3686        while (!done && !nr_to_write_done && (index <= end) &&
3687               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3688                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3689                unsigned i;
3690
3691                scanned = 1;
3692                for (i = 0; i < nr_pages; i++) {
3693                        struct page *page = pvec.pages[i];
3694
3695                        /*
3696                         * At this point we hold neither mapping->tree_lock nor
3697                         * lock on the page itself: the page may be truncated or
3698                         * invalidated (changing page->mapping to NULL), or even
3699                         * swizzled back from swapper_space to tmpfs file
3700                         * mapping
3701                         */
3702                        if (!trylock_page(page)) {
3703                                flush_fn(data);
3704                                lock_page(page);
3705                        }
3706
3707                        if (unlikely(page->mapping != mapping)) {
3708                                unlock_page(page);
3709                                continue;
3710                        }
3711
3712                        if (!wbc->range_cyclic && page->index > end) {
3713                                done = 1;
3714                                unlock_page(page);
3715                                continue;
3716                        }
3717
3718                        if (wbc->sync_mode != WB_SYNC_NONE) {
3719                                if (PageWriteback(page))
3720                                        flush_fn(data);
3721                                wait_on_page_writeback(page);
3722                        }
3723
3724                        if (PageWriteback(page) ||
3725                            !clear_page_dirty_for_io(page)) {
3726                                unlock_page(page);
3727                                continue;
3728                        }
3729
3730                        ret = (*writepage)(page, wbc, data);
3731
3732                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3733                                unlock_page(page);
3734                                ret = 0;
3735                        }
3736                        if (ret)
3737                                done = 1;
3738
3739                        /*
3740                         * the filesystem may choose to bump up nr_to_write.
3741                         * We have to make sure to honor the new nr_to_write
3742                         * at any time
3743                         */
3744                        nr_to_write_done = wbc->nr_to_write <= 0;
3745                }
3746                pagevec_release(&pvec);
3747                cond_resched();
3748        }
3749        if (!scanned && !done) {
3750                /*
3751                 * We hit the last page and there is more work to be done: wrap
3752                 * back to the start of the file
3753                 */
3754                scanned = 1;
3755                index = 0;
3756                goto retry;
3757        }
3758        btrfs_add_delayed_iput(inode);
3759        return ret;
3760}
3761
3762static void flush_epd_write_bio(struct extent_page_data *epd)
3763{
3764        if (epd->bio) {
3765                int rw = WRITE;
3766                int ret;
3767
3768                if (epd->sync_io)
3769                        rw = WRITE_SYNC;
3770
3771                ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3772                BUG_ON(ret < 0); /* -ENOMEM */
3773                epd->bio = NULL;
3774        }
3775}
3776
3777static noinline void flush_write_bio(void *data)
3778{
3779        struct extent_page_data *epd = data;
3780        flush_epd_write_bio(epd);
3781}
3782
3783int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3784                          get_extent_t *get_extent,
3785                          struct writeback_control *wbc)
3786{
3787        int ret;
3788        struct extent_page_data epd = {
3789                .bio = NULL,
3790                .tree = tree,
3791                .get_extent = get_extent,
3792                .extent_locked = 0,
3793                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3794                .bio_flags = 0,
3795        };
3796
3797        ret = __extent_writepage(page, wbc, &epd);
3798
3799        flush_epd_write_bio(&epd);
3800        return ret;
3801}
3802
3803int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3804                              u64 start, u64 end, get_extent_t *get_extent,
3805                              int mode)
3806{
3807        int ret = 0;
3808        struct address_space *mapping = inode->i_mapping;
3809        struct page *page;
3810        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3811                PAGE_CACHE_SHIFT;
3812
3813        struct extent_page_data epd = {
3814                .bio = NULL,
3815                .tree = tree,
3816                .get_extent = get_extent,
3817                .extent_locked = 1,
3818                .sync_io = mode == WB_SYNC_ALL,
3819                .bio_flags = 0,
3820        };
3821        struct writeback_control wbc_writepages = {
3822                .sync_mode      = mode,
3823                .nr_to_write    = nr_pages * 2,
3824                .range_start    = start,
3825                .range_end      = end + 1,
3826        };
3827
3828        while (start <= end) {
3829                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3830                if (clear_page_dirty_for_io(page))
3831                        ret = __extent_writepage(page, &wbc_writepages, &epd);
3832                else {
3833                        if (tree->ops && tree->ops->writepage_end_io_hook)
3834                                tree->ops->writepage_end_io_hook(page, start,
3835                                                 start + PAGE_CACHE_SIZE - 1,
3836                                                 NULL, 1);
3837                        unlock_page(page);
3838                }
3839                page_cache_release(page);
3840                start += PAGE_CACHE_SIZE;
3841        }
3842
3843        flush_epd_write_bio(&epd);
3844        return ret;
3845}
3846
3847int extent_writepages(struct extent_io_tree *tree,
3848                      struct address_space *mapping,
3849                      get_extent_t *get_extent,
3850                      struct writeback_control *wbc)
3851{
3852        int ret = 0;
3853        struct extent_page_data epd = {
3854                .bio = NULL,
3855                .tree = tree,
3856                .get_extent = get_extent,
3857                .extent_locked = 0,
3858                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3859                .bio_flags = 0,
3860        };
3861
3862        ret = extent_write_cache_pages(tree, mapping, wbc,
3863                                       __extent_writepage, &epd,
3864                                       flush_write_bio);
3865        flush_epd_write_bio(&epd);
3866        return ret;
3867}
3868
3869int extent_readpages(struct extent_io_tree *tree,
3870                     struct address_space *mapping,
3871                     struct list_head *pages, unsigned nr_pages,
3872                     get_extent_t get_extent)
3873{
3874        struct bio *bio = NULL;
3875        unsigned page_idx;
3876        unsigned long bio_flags = 0;
3877        struct page *pagepool[16];
3878        struct page *page;
3879        struct extent_map *em_cached = NULL;
3880        int nr = 0;
3881
3882        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3883                page = list_entry(pages->prev, struct page, lru);
3884
3885                prefetchw(&page->flags);
3886                list_del(&page->lru);
3887                if (add_to_page_cache_lru(page, mapping,
3888                                        page->index, GFP_NOFS)) {
3889                        page_cache_release(page);
3890                        continue;
3891                }
3892
3893                pagepool[nr++] = page;
3894                if (nr < ARRAY_SIZE(pagepool))
3895                        continue;
3896                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3897                                   &bio, 0, &bio_flags, READ);
3898                nr = 0;
3899        }
3900        if (nr)
3901                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3902                                   &bio, 0, &bio_flags, READ);
3903
3904        if (em_cached)
3905                free_extent_map(em_cached);
3906
3907        BUG_ON(!list_empty(pages));
3908        if (bio)
3909                return submit_one_bio(READ, bio, 0, bio_flags);
3910        return 0;
3911}
3912
3913/*
3914 * basic invalidatepage code, this waits on any locked or writeback
3915 * ranges corresponding to the page, and then deletes any extent state
3916 * records from the tree
3917 */
3918int extent_invalidatepage(struct extent_io_tree *tree,
3919                          struct page *page, unsigned long offset)
3920{
3921        struct extent_state *cached_state = NULL;
3922        u64 start = page_offset(page);
3923        u64 end = start + PAGE_CACHE_SIZE - 1;
3924        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3925
3926        start += ALIGN(offset, blocksize);
3927        if (start > end)
3928                return 0;
3929
3930        lock_extent_bits(tree, start, end, 0, &cached_state);
3931        wait_on_page_writeback(page);
3932        clear_extent_bit(tree, start, end,
3933                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3934                         EXTENT_DO_ACCOUNTING,
3935                         1, 1, &cached_state, GFP_NOFS);
3936        return 0;
3937}
3938
3939/*
3940 * a helper for releasepage, this tests for areas of the page that
3941 * are locked or under IO and drops the related state bits if it is safe
3942 * to drop the page.
3943 */
3944static int try_release_extent_state(struct extent_map_tree *map,
3945                                    struct extent_io_tree *tree,
3946                                    struct page *page, gfp_t mask)
3947{
3948        u64 start = page_offset(page);
3949        u64 end = start + PAGE_CACHE_SIZE - 1;
3950        int ret = 1;
3951
3952        if (test_range_bit(tree, start, end,
3953                           EXTENT_IOBITS, 0, NULL))
3954                ret = 0;
3955        else {
3956                if ((mask & GFP_NOFS) == GFP_NOFS)
3957                        mask = GFP_NOFS;
3958                /*
3959                 * at this point we can safely clear everything except the
3960                 * locked bit and the nodatasum bit
3961                 */
3962                ret = clear_extent_bit(tree, start, end,
3963                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3964                                 0, 0, NULL, mask);
3965
3966                /* if clear_extent_bit failed for enomem reasons,
3967                 * we can't allow the release to continue.
3968                 */
3969                if (ret < 0)
3970                        ret = 0;
3971                else
3972                        ret = 1;
3973        }
3974        return ret;
3975}
3976
3977/*
3978 * a helper for releasepage.  As long as there are no locked extents
3979 * in the range corresponding to the page, both state records and extent
3980 * map records are removed
3981 */
3982int try_release_extent_mapping(struct extent_map_tree *map,
3983                               struct extent_io_tree *tree, struct page *page,
3984                               gfp_t mask)
3985{
3986        struct extent_map *em;
3987        u64 start = page_offset(page);
3988        u64 end = start + PAGE_CACHE_SIZE - 1;
3989
3990        if ((mask & __GFP_WAIT) &&
3991            page->mapping->host->i_size > 16 * 1024 * 1024) {
3992                u64 len;
3993                while (start <= end) {
3994                        len = end - start + 1;
3995                        write_lock(&map->lock);
3996                        em = lookup_extent_mapping(map, start, len);
3997                        if (!em) {
3998                                write_unlock(&map->lock);
3999                                break;
4000                        }
4001                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4002                            em->start != start) {
4003                                write_unlock(&map->lock);
4004                                free_extent_map(em);
4005                                break;
4006                        }
4007                        if (!test_range_bit(tree, em->start,
4008                                            extent_map_end(em) - 1,
4009                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
4010                                            0, NULL)) {
4011                                remove_extent_mapping(map, em);
4012                                /* once for the rb tree */
4013                                free_extent_map(em);
4014                        }
4015                        start = extent_map_end(em);
4016                        write_unlock(&map->lock);
4017
4018                        /* once for us */
4019                        free_extent_map(em);
4020                }
4021        }
4022        return try_release_extent_state(map, tree, page, mask);
4023}
4024
4025/*
4026 * helper function for fiemap, which doesn't want to see any holes.
4027 * This maps until we find something past 'last'
4028 */
4029static struct extent_map *get_extent_skip_holes(struct inode *inode,
4030                                                u64 offset,
4031                                                u64 last,
4032                                                get_extent_t *get_extent)
4033{
4034        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4035        struct extent_map *em;
4036        u64 len;
4037
4038        if (offset >= last)
4039                return NULL;
4040
4041        while(1) {
4042                len = last - offset;
4043                if (len == 0)
4044                        break;
4045                len = ALIGN(len, sectorsize);
4046                em = get_extent(inode, NULL, 0, offset, len, 0);
4047                if (IS_ERR_OR_NULL(em))
4048                        return em;
4049
4050                /* if this isn't a hole return it */
4051                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4052                    em->block_start != EXTENT_MAP_HOLE) {
4053                        return em;
4054                }
4055
4056                /* this is a hole, advance to the next extent */
4057                offset = extent_map_end(em);
4058                free_extent_map(em);
4059                if (offset >= last)
4060                        break;
4061        }
4062        return NULL;
4063}
4064
4065int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4066                __u64 start, __u64 len, get_extent_t *get_extent)
4067{
4068        int ret = 0;
4069        u64 off = start;
4070        u64 max = start + len;
4071        u32 flags = 0;
4072        u32 found_type;
4073        u64 last;
4074        u64 last_for_get_extent = 0;
4075        u64 disko = 0;
4076        u64 isize = i_size_read(inode);
4077        struct btrfs_key found_key;
4078        struct extent_map *em = NULL;
4079        struct extent_state *cached_state = NULL;
4080        struct btrfs_path *path;
4081        struct btrfs_file_extent_item *item;
4082        int end = 0;
4083        u64 em_start = 0;
4084        u64 em_len = 0;
4085        u64 em_end = 0;
4086        unsigned long emflags;
4087
4088        if (len == 0)
4089                return -EINVAL;
4090
4091        path = btrfs_alloc_path();
4092        if (!path)
4093                return -ENOMEM;
4094        path->leave_spinning = 1;
4095
4096        start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4097        len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4098
4099        /*
4100         * lookup the last file extent.  We're not using i_size here
4101         * because there might be preallocation past i_size
4102         */
4103        ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4104                                       path, btrfs_ino(inode), -1, 0);
4105        if (ret < 0) {
4106                btrfs_free_path(path);
4107                return ret;
4108        }
4109        WARN_ON(!ret);
4110        path->slots[0]--;
4111        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4112                              struct btrfs_file_extent_item);
4113        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4114        found_type = btrfs_key_type(&found_key);
4115
4116        /* No extents, but there might be delalloc bits */
4117        if (found_key.objectid != btrfs_ino(inode) ||
4118            found_type != BTRFS_EXTENT_DATA_KEY) {
4119                /* have to trust i_size as the end */
4120                last = (u64)-1;
4121                last_for_get_extent = isize;
4122        } else {
4123                /*
4124                 * remember the start of the last extent.  There are a
4125                 * bunch of different factors that go into the length of the
4126                 * extent, so its much less complex to remember where it started
4127                 */
4128                last = found_key.offset;
4129                last_for_get_extent = last + 1;
4130        }
4131        btrfs_free_path(path);
4132
4133        /*
4134         * we might have some extents allocated but more delalloc past those
4135         * extents.  so, we trust isize unless the start of the last extent is
4136         * beyond isize
4137         */
4138        if (last < isize) {
4139                last = (u64)-1;
4140                last_for_get_extent = isize;
4141        }
4142
4143        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4144                         &cached_state);
4145
4146        em = get_extent_skip_holes(inode, start, last_for_get_extent,
4147                                   get_extent);
4148        if (!em)
4149                goto out;
4150        if (IS_ERR(em)) {
4151                ret = PTR_ERR(em);
4152                goto out;
4153        }
4154
4155        while (!end) {
4156                u64 offset_in_extent = 0;
4157
4158                /* break if the extent we found is outside the range */
4159                if (em->start >= max || extent_map_end(em) < off)
4160                        break;
4161
4162                /*
4163                 * get_extent may return an extent that starts before our
4164                 * requested range.  We have to make sure the ranges
4165                 * we return to fiemap always move forward and don't
4166                 * overlap, so adjust the offsets here
4167                 */
4168                em_start = max(em->start, off);
4169
4170                /*
4171                 * record the offset from the start of the extent
4172                 * for adjusting the disk offset below.  Only do this if the
4173                 * extent isn't compressed since our in ram offset may be past
4174                 * what we have actually allocated on disk.
4175                 */
4176                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4177                        offset_in_extent = em_start - em->start;
4178                em_end = extent_map_end(em);
4179                em_len = em_end - em_start;
4180                emflags = em->flags;
4181                disko = 0;
4182                flags = 0;
4183
4184                /*
4185                 * bump off for our next call to get_extent
4186                 */
4187                off = extent_map_end(em);
4188                if (off >= max)
4189                        end = 1;
4190
4191                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4192                        end = 1;
4193                        flags |= FIEMAP_EXTENT_LAST;
4194                } else if (em->block_start == EXTENT_MAP_INLINE) {
4195                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4196                                  FIEMAP_EXTENT_NOT_ALIGNED);
4197                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4198                        flags |= (FIEMAP_EXTENT_DELALLOC |
4199                                  FIEMAP_EXTENT_UNKNOWN);
4200                } else {
4201                        disko = em->block_start + offset_in_extent;
4202                }
4203                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4204                        flags |= FIEMAP_EXTENT_ENCODED;
4205
4206                free_extent_map(em);
4207                em = NULL;
4208                if ((em_start >= last) || em_len == (u64)-1 ||
4209                   (last == (u64)-1 && isize <= em_end)) {
4210                        flags |= FIEMAP_EXTENT_LAST;
4211                        end = 1;
4212                }
4213
4214                /* now scan forward to see if this is really the last extent. */
4215                em = get_extent_skip_holes(inode, off, last_for_get_extent,
4216                                           get_extent);
4217                if (IS_ERR(em)) {
4218                        ret = PTR_ERR(em);
4219                        goto out;
4220                }
4221                if (!em) {
4222                        flags |= FIEMAP_EXTENT_LAST;
4223                        end = 1;
4224                }
4225                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4226                                              em_len, flags);
4227                if (ret)
4228                        goto out_free;
4229        }
4230out_free:
4231        free_extent_map(em);
4232out:
4233        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4234                             &cached_state, GFP_NOFS);
4235        return ret;
4236}
4237
4238static void __free_extent_buffer(struct extent_buffer *eb)
4239{
4240        btrfs_leak_debug_del(&eb->leak_list);
4241        kmem_cache_free(extent_buffer_cache, eb);
4242}
4243
4244static int extent_buffer_under_io(struct extent_buffer *eb)
4245{
4246        return (atomic_read(&eb->io_pages) ||
4247                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4248                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4249}
4250
4251/*
4252 * Helper for releasing extent buffer page.
4253 */
4254static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4255                                                unsigned long start_idx)
4256{
4257        unsigned long index;
4258        unsigned long num_pages;
4259        struct page *page;
4260        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4261
4262        BUG_ON(extent_buffer_under_io(eb));
4263
4264        num_pages = num_extent_pages(eb->start, eb->len);
4265        index = start_idx + num_pages;
4266        if (start_idx >= index)
4267                return;
4268
4269        do {
4270                index--;
4271                page = extent_buffer_page(eb, index);
4272                if (page && mapped) {
4273                        spin_lock(&page->mapping->private_lock);
4274                        /*
4275                         * We do this since we'll remove the pages after we've
4276                         * removed the eb from the radix tree, so we could race
4277                         * and have this page now attached to the new eb.  So
4278                         * only clear page_private if it's still connected to
4279                         * this eb.
4280                         */
4281                        if (PagePrivate(page) &&
4282                            page->private == (unsigned long)eb) {
4283                                BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4284                                BUG_ON(PageDirty(page));
4285                                BUG_ON(PageWriteback(page));
4286                                /*
4287                                 * We need to make sure we haven't be attached
4288                                 * to a new eb.
4289                                 */
4290                                ClearPagePrivate(page);
4291                                set_page_private(page, 0);
4292                                /* One for the page private */
4293                                page_cache_release(page);
4294                        }
4295                        spin_unlock(&page->mapping->private_lock);
4296
4297                }
4298                if (page) {
4299                        /* One for when we alloced the page */
4300                        page_cache_release(page);
4301                }
4302        } while (index != start_idx);
4303}
4304
4305/*
4306 * Helper for releasing the extent buffer.
4307 */
4308static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4309{
4310        btrfs_release_extent_buffer_page(eb, 0);
4311        __free_extent_buffer(eb);
4312}
4313
4314static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4315                                                   u64 start,
4316                                                   unsigned long len,
4317                                                   gfp_t mask)
4318{
4319        struct extent_buffer *eb = NULL;
4320
4321        eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4322        if (eb == NULL)
4323                return NULL;
4324        eb->start = start;
4325        eb->len = len;
4326        eb->tree = tree;
4327        eb->bflags = 0;
4328        rwlock_init(&eb->lock);
4329        atomic_set(&eb->write_locks, 0);
4330        atomic_set(&eb->read_locks, 0);
4331        atomic_set(&eb->blocking_readers, 0);
4332        atomic_set(&eb->blocking_writers, 0);
4333        atomic_set(&eb->spinning_readers, 0);
4334        atomic_set(&eb->spinning_writers, 0);
4335        eb->lock_nested = 0;
4336        init_waitqueue_head(&eb->write_lock_wq);
4337        init_waitqueue_head(&eb->read_lock_wq);
4338
4339        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4340
4341        spin_lock_init(&eb->refs_lock);
4342        atomic_set(&eb->refs, 1);
4343        atomic_set(&eb->io_pages, 0);
4344
4345        /*
4346         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4347         */
4348        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4349                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4350        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4351
4352        return eb;
4353}
4354
4355struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4356{
4357        unsigned long i;
4358        struct page *p;
4359        struct extent_buffer *new;
4360        unsigned long num_pages = num_extent_pages(src->start, src->len);
4361
4362        new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4363        if (new == NULL)
4364                return NULL;
4365
4366        for (i = 0; i < num_pages; i++) {
4367                p = alloc_page(GFP_NOFS);
4368                if (!p) {
4369                        btrfs_release_extent_buffer(new);
4370                        return NULL;
4371                }
4372                attach_extent_buffer_page(new, p);
4373                WARN_ON(PageDirty(p));
4374                SetPageUptodate(p);
4375                new->pages[i] = p;
4376        }
4377
4378        copy_extent_buffer(new, src, 0, 0, src->len);
4379        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4380        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4381
4382        return new;
4383}
4384
4385struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4386{
4387        struct extent_buffer *eb;
4388        unsigned long num_pages = num_extent_pages(0, len);
4389        unsigned long i;
4390
4391        eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4392        if (!eb)
4393                return NULL;
4394
4395        for (i = 0; i < num_pages; i++) {
4396                eb->pages[i] = alloc_page(GFP_NOFS);
4397                if (!eb->pages[i])
4398                        goto err;
4399        }
4400        set_extent_buffer_uptodate(eb);
4401        btrfs_set_header_nritems(eb, 0);
4402        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4403
4404        return eb;
4405err:
4406        for (; i > 0; i--)
4407                __free_page(eb->pages[i - 1]);
4408        __free_extent_buffer(eb);
4409        return NULL;
4410}
4411
4412static void check_buffer_tree_ref(struct extent_buffer *eb)
4413{
4414        int refs;
4415        /* the ref bit is tricky.  We have to make sure it is set
4416         * if we have the buffer dirty.   Otherwise the
4417         * code to free a buffer can end up dropping a dirty
4418         * page
4419         *
4420         * Once the ref bit is set, it won't go away while the
4421         * buffer is dirty or in writeback, and it also won't
4422         * go away while we have the reference count on the
4423         * eb bumped.
4424         *
4425         * We can't just set the ref bit without bumping the
4426         * ref on the eb because free_extent_buffer might
4427         * see the ref bit and try to clear it.  If this happens
4428         * free_extent_buffer might end up dropping our original
4429         * ref by mistake and freeing the page before we are able
4430         * to add one more ref.
4431         *
4432         * So bump the ref count first, then set the bit.  If someone
4433         * beat us to it, drop the ref we added.
4434         */
4435        refs = atomic_read(&eb->refs);
4436        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4437                return;
4438
4439        spin_lock(&eb->refs_lock);
4440        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4441                atomic_inc(&eb->refs);
4442        spin_unlock(&eb->refs_lock);
4443}
4444
4445static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4446{
4447        unsigned long num_pages, i;
4448
4449        check_buffer_tree_ref(eb);
4450
4451        num_pages = num_extent_pages(eb->start, eb->len);
4452        for (i = 0; i < num_pages; i++) {
4453                struct page *p = extent_buffer_page(eb, i);
4454                mark_page_accessed(p);
4455        }
4456}
4457
4458struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4459                                          u64 start, unsigned long len)
4460{
4461        unsigned long num_pages = num_extent_pages(start, len);
4462        unsigned long i;
4463        unsigned long index = start >> PAGE_CACHE_SHIFT;
4464        struct extent_buffer *eb;
4465        struct extent_buffer *exists = NULL;
4466        struct page *p;
4467        struct address_space *mapping = tree->mapping;
4468        int uptodate = 1;
4469        int ret;
4470
4471        rcu_read_lock();
4472        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4473        if (eb && atomic_inc_not_zero(&eb->refs)) {
4474                rcu_read_unlock();
4475                mark_extent_buffer_accessed(eb);
4476                return eb;
4477        }
4478        rcu_read_unlock();
4479
4480        eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4481        if (!eb)
4482                return NULL;
4483
4484        for (i = 0; i < num_pages; i++, index++) {
4485                p = find_or_create_page(mapping, index, GFP_NOFS);
4486                if (!p)
4487                        goto free_eb;
4488
4489                spin_lock(&mapping->private_lock);
4490                if (PagePrivate(p)) {
4491                        /*
4492                         * We could have already allocated an eb for this page
4493                         * and attached one so lets see if we can get a ref on
4494                         * the existing eb, and if we can we know it's good and
4495                         * we can just return that one, else we know we can just
4496                         * overwrite page->private.
4497                         */
4498                        exists = (struct extent_buffer *)p->private;
4499                        if (atomic_inc_not_zero(&exists->refs)) {
4500                                spin_unlock(&mapping->private_lock);
4501                                unlock_page(p);
4502                                page_cache_release(p);
4503                                mark_extent_buffer_accessed(exists);
4504                                goto free_eb;
4505                        }
4506
4507                        /*
4508                         * Do this so attach doesn't complain and we need to
4509                         * drop the ref the old guy had.
4510                         */
4511                        ClearPagePrivate(p);
4512                        WARN_ON(PageDirty(p));
4513                        page_cache_release(p);
4514                }
4515                attach_extent_buffer_page(eb, p);
4516                spin_unlock(&mapping->private_lock);
4517                WARN_ON(PageDirty(p));
4518                mark_page_accessed(p);
4519                eb->pages[i] = p;
4520                if (!PageUptodate(p))
4521                        uptodate = 0;
4522
4523                /*
4524                 * see below about how we avoid a nasty race with release page
4525                 * and why we unlock later
4526                 */
4527        }
4528        if (uptodate)
4529                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4530again:
4531        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4532        if (ret)
4533                goto free_eb;
4534
4535        spin_lock(&tree->buffer_lock);
4536        ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4537        if (ret == -EEXIST) {
4538                exists = radix_tree_lookup(&tree->buffer,
4539                                                start >> PAGE_CACHE_SHIFT);
4540                if (!atomic_inc_not_zero(&exists->refs)) {
4541                        spin_unlock(&tree->buffer_lock);
4542                        radix_tree_preload_end();
4543                        exists = NULL;
4544                        goto again;
4545                }
4546                spin_unlock(&tree->buffer_lock);
4547                radix_tree_preload_end();
4548                mark_extent_buffer_accessed(exists);
4549                goto free_eb;
4550        }
4551        /* add one reference for the tree */
4552        check_buffer_tree_ref(eb);
4553        spin_unlock(&tree->buffer_lock);
4554        radix_tree_preload_end();
4555
4556        /*
4557         * there is a race where release page may have
4558         * tried to find this extent buffer in the radix
4559         * but failed.  It will tell the VM it is safe to
4560         * reclaim the, and it will clear the page private bit.
4561         * We must make sure to set the page private bit properly
4562         * after the extent buffer is in the radix tree so
4563         * it doesn't get lost
4564         */
4565        SetPageChecked(eb->pages[0]);
4566        for (i = 1; i < num_pages; i++) {
4567                p = extent_buffer_page(eb, i);
4568                ClearPageChecked(p);
4569                unlock_page(p);
4570        }
4571        unlock_page(eb->pages[0]);
4572        return eb;
4573
4574free_eb:
4575        for (i = 0; i < num_pages; i++) {
4576                if (eb->pages[i])
4577                        unlock_page(eb->pages[i]);
4578        }
4579
4580        WARN_ON(!atomic_dec_and_test(&eb->refs));
4581        btrfs_release_extent_buffer(eb);
4582        return exists;
4583}
4584
4585struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4586                                         u64 start, unsigned long len)
4587{
4588        struct extent_buffer *eb;
4589
4590        rcu_read_lock();
4591        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4592        if (eb && atomic_inc_not_zero(&eb->refs)) {
4593                rcu_read_unlock();
4594                mark_extent_buffer_accessed(eb);
4595                return eb;
4596        }
4597        rcu_read_unlock();
4598
4599        return NULL;
4600}
4601
4602static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4603{
4604        struct extent_buffer *eb =
4605                        container_of(head, struct extent_buffer, rcu_head);
4606
4607        __free_extent_buffer(eb);
4608}
4609
4610/* Expects to have eb->eb_lock already held */
4611static int release_extent_buffer(struct extent_buffer *eb)
4612{
4613        WARN_ON(atomic_read(&eb->refs) == 0);
4614        if (atomic_dec_and_test(&eb->refs)) {
4615                if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4616                        spin_unlock(&eb->refs_lock);
4617                } else {
4618                        struct extent_io_tree *tree = eb->tree;
4619
4620                        spin_unlock(&eb->refs_lock);
4621
4622                        spin_lock(&tree->buffer_lock);
4623                        radix_tree_delete(&tree->buffer,
4624                                          eb->start >> PAGE_CACHE_SHIFT);
4625                        spin_unlock(&tree->buffer_lock);
4626                }
4627
4628                /* Should be safe to release our pages at this point */
4629                btrfs_release_extent_buffer_page(eb, 0);
4630                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4631                return 1;
4632        }
4633        spin_unlock(&eb->refs_lock);
4634
4635        return 0;
4636}
4637
4638void free_extent_buffer(struct extent_buffer *eb)
4639{
4640        int refs;
4641        int old;
4642        if (!eb)
4643                return;
4644
4645        while (1) {
4646                refs = atomic_read(&eb->refs);
4647                if (refs <= 3)
4648                        break;
4649                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4650                if (old == refs)
4651                        return;
4652        }
4653
4654        spin_lock(&eb->refs_lock);
4655        if (atomic_read(&eb->refs) == 2 &&
4656            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4657                atomic_dec(&eb->refs);
4658
4659        if (atomic_read(&eb->refs) == 2 &&
4660            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4661            !extent_buffer_under_io(eb) &&
4662            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4663                atomic_dec(&eb->refs);
4664
4665        /*
4666         * I know this is terrible, but it's temporary until we stop tracking
4667         * the uptodate bits and such for the extent buffers.
4668         */
4669        release_extent_buffer(eb);
4670}
4671
4672void free_extent_buffer_stale(struct extent_buffer *eb)
4673{
4674        if (!eb)
4675                return;
4676
4677        spin_lock(&eb->refs_lock);
4678        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4679
4680        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4681            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4682                atomic_dec(&eb->refs);
4683        release_extent_buffer(eb);
4684}
4685
4686void clear_extent_buffer_dirty(struct extent_buffer *eb)
4687{
4688        unsigned long i;
4689        unsigned long num_pages;
4690        struct page *page;
4691
4692        num_pages = num_extent_pages(eb->start, eb->len);
4693
4694        for (i = 0; i < num_pages; i++) {
4695                page = extent_buffer_page(eb, i);
4696                if (!PageDirty(page))
4697                        continue;
4698
4699                lock_page(page);
4700                WARN_ON(!PagePrivate(page));
4701
4702                clear_page_dirty_for_io(page);
4703                spin_lock_irq(&page->mapping->tree_lock);
4704                if (!PageDirty(page)) {
4705                        radix_tree_tag_clear(&page->mapping->page_tree,
4706                                                page_index(page),
4707                                                PAGECACHE_TAG_DIRTY);
4708                }
4709                spin_unlock_irq(&page->mapping->tree_lock);
4710                ClearPageError(page);
4711                unlock_page(page);
4712        }
4713        WARN_ON(atomic_read(&eb->refs) == 0);
4714}
4715
4716int set_extent_buffer_dirty(struct extent_buffer *eb)
4717{
4718        unsigned long i;
4719        unsigned long num_pages;
4720        int was_dirty = 0;
4721
4722        check_buffer_tree_ref(eb);
4723
4724        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4725
4726        num_pages = num_extent_pages(eb->start, eb->len);
4727        WARN_ON(atomic_read(&eb->refs) == 0);
4728        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4729
4730        for (i = 0; i < num_pages; i++)
4731                set_page_dirty(extent_buffer_page(eb, i));
4732        return was_dirty;
4733}
4734
4735int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4736{
4737        unsigned long i;
4738        struct page *page;
4739        unsigned long num_pages;
4740
4741        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4742        num_pages = num_extent_pages(eb->start, eb->len);
4743        for (i = 0; i < num_pages; i++) {
4744                page = extent_buffer_page(eb, i);
4745                if (page)
4746                        ClearPageUptodate(page);
4747        }
4748        return 0;
4749}
4750
4751int set_extent_buffer_uptodate(struct extent_buffer *eb)
4752{
4753        unsigned long i;
4754        struct page *page;
4755        unsigned long num_pages;
4756
4757        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4758        num_pages = num_extent_pages(eb->start, eb->len);
4759        for (i = 0; i < num_pages; i++) {
4760                page = extent_buffer_page(eb, i);
4761                SetPageUptodate(page);
4762        }
4763        return 0;
4764}
4765
4766int extent_buffer_uptodate(struct extent_buffer *eb)
4767{
4768        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4769}
4770
4771int read_extent_buffer_pages(struct extent_io_tree *tree,
4772                             struct extent_buffer *eb, u64 start, int wait,
4773                             get_extent_t *get_extent, int mirror_num)
4774{
4775        unsigned long i;
4776        unsigned long start_i;
4777        struct page *page;
4778        int err;
4779        int ret = 0;
4780        int locked_pages = 0;
4781        int all_uptodate = 1;
4782        unsigned long num_pages;
4783        unsigned long num_reads = 0;
4784        struct bio *bio = NULL;
4785        unsigned long bio_flags = 0;
4786
4787        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4788                return 0;
4789
4790        if (start) {
4791                WARN_ON(start < eb->start);
4792                start_i = (start >> PAGE_CACHE_SHIFT) -
4793                        (eb->start >> PAGE_CACHE_SHIFT);
4794        } else {
4795                start_i = 0;
4796        }
4797
4798        num_pages = num_extent_pages(eb->start, eb->len);
4799        for (i = start_i; i < num_pages; i++) {
4800                page = extent_buffer_page(eb, i);
4801                if (wait == WAIT_NONE) {
4802                        if (!trylock_page(page))
4803                                goto unlock_exit;
4804                } else {
4805                        lock_page(page);
4806                }
4807                locked_pages++;
4808                if (!PageUptodate(page)) {
4809                        num_reads++;
4810                        all_uptodate = 0;
4811                }
4812        }
4813        if (all_uptodate) {
4814                if (start_i == 0)
4815                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4816                goto unlock_exit;
4817        }
4818
4819        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4820        eb->read_mirror = 0;
4821        atomic_set(&eb->io_pages, num_reads);
4822        for (i = start_i; i < num_pages; i++) {
4823                page = extent_buffer_page(eb, i);
4824                if (!PageUptodate(page)) {
4825                        ClearPageError(page);
4826                        err = __extent_read_full_page(tree, page,
4827                                                      get_extent, &bio,
4828                                                      mirror_num, &bio_flags,
4829                                                      READ | REQ_META);
4830                        if (err)
4831                                ret = err;
4832                } else {
4833                        unlock_page(page);
4834                }
4835        }
4836
4837        if (bio) {
4838                err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4839                                     bio_flags);
4840                if (err)
4841                        return err;
4842        }
4843
4844        if (ret || wait != WAIT_COMPLETE)
4845                return ret;
4846
4847        for (i = start_i; i < num_pages; i++) {
4848                page = extent_buffer_page(eb, i);
4849                wait_on_page_locked(page);
4850                if (!PageUptodate(page))
4851                        ret = -EIO;
4852        }
4853
4854        return ret;
4855
4856unlock_exit:
4857        i = start_i;
4858        while (locked_pages > 0) {
4859                page = extent_buffer_page(eb, i);
4860                i++;
4861                unlock_page(page);
4862                locked_pages--;
4863        }
4864        return ret;
4865}
4866
4867void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4868                        unsigned long start,
4869                        unsigned long len)
4870{
4871        size_t cur;
4872        size_t offset;
4873        struct page *page;
4874        char *kaddr;
4875        char *dst = (char *)dstv;
4876        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4877        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4878
4879        WARN_ON(start > eb->len);
4880        WARN_ON(start + len > eb->start + eb->len);
4881
4882        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4883
4884        while (len > 0) {
4885                page = extent_buffer_page(eb, i);
4886
4887                cur = min(len, (PAGE_CACHE_SIZE - offset));
4888                kaddr = page_address(page);
4889                memcpy(dst, kaddr + offset, cur);
4890
4891                dst += cur;
4892                len -= cur;
4893                offset = 0;
4894                i++;
4895        }
4896}
4897
4898int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4899                               unsigned long min_len, char **map,
4900                               unsigned long *map_start,
4901                               unsigned long *map_len)
4902{
4903        size_t offset = start & (PAGE_CACHE_SIZE - 1);
4904        char *kaddr;
4905        struct page *p;
4906        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4907        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4908        unsigned long end_i = (start_offset + start + min_len - 1) >>
4909                PAGE_CACHE_SHIFT;
4910
4911        if (i != end_i)
4912                return -EINVAL;
4913
4914        if (i == 0) {
4915                offset = start_offset;
4916                *map_start = 0;
4917        } else {
4918                offset = 0;
4919                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4920        }
4921
4922        if (start + min_len > eb->len) {
4923                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4924                       "wanted %lu %lu\n",
4925                       eb->start, eb->len, start, min_len);
4926                return -EINVAL;
4927        }
4928
4929        p = extent_buffer_page(eb, i);
4930        kaddr = page_address(p);
4931        *map = kaddr + offset;
4932        *map_len = PAGE_CACHE_SIZE - offset;
4933        return 0;
4934}
4935
4936int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4937                          unsigned long start,
4938                          unsigned long len)
4939{
4940        size_t cur;
4941        size_t offset;
4942        struct page *page;
4943        char *kaddr;
4944        char *ptr = (char *)ptrv;
4945        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4946        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4947        int ret = 0;
4948
4949        WARN_ON(start > eb->len);
4950        WARN_ON(start + len > eb->start + eb->len);
4951
4952        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4953
4954        while (len > 0) {
4955                page = extent_buffer_page(eb, i);
4956
4957                cur = min(len, (PAGE_CACHE_SIZE - offset));
4958
4959                kaddr = page_address(page);
4960                ret = memcmp(ptr, kaddr + offset, cur);
4961                if (ret)
4962                        break;
4963
4964                ptr += cur;
4965                len -= cur;
4966                offset = 0;
4967                i++;
4968        }
4969        return ret;
4970}
4971
4972void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4973                         unsigned long start, unsigned long len)
4974{
4975        size_t cur;
4976        size_t offset;
4977        struct page *page;
4978        char *kaddr;
4979        char *src = (char *)srcv;
4980        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4981        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4982
4983        WARN_ON(start > eb->len);
4984        WARN_ON(start + len > eb->start + eb->len);
4985
4986        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4987
4988        while (len > 0) {
4989                page = extent_buffer_page(eb, i);
4990                WARN_ON(!PageUptodate(page));
4991
4992                cur = min(len, PAGE_CACHE_SIZE - offset);
4993                kaddr = page_address(page);
4994                memcpy(kaddr + offset, src, cur);
4995
4996                src += cur;
4997                len -= cur;
4998                offset = 0;
4999                i++;
5000        }
5001}
5002
5003void memset_extent_buffer(struct extent_buffer *eb, char c,
5004                          unsigned long start, unsigned long len)
5005{
5006        size_t cur;
5007        size_t offset;
5008        struct page *page;
5009        char *kaddr;
5010        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5011        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5012
5013        WARN_ON(start > eb->len);
5014        WARN_ON(start + len > eb->start + eb->len);
5015
5016        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5017
5018        while (len > 0) {
5019                page = extent_buffer_page(eb, i);
5020                WARN_ON(!PageUptodate(page));
5021
5022                cur = min(len, PAGE_CACHE_SIZE - offset);
5023                kaddr = page_address(page);
5024                memset(kaddr + offset, c, cur);
5025
5026                len -= cur;
5027                offset = 0;
5028                i++;
5029        }
5030}
5031
5032void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5033                        unsigned long dst_offset, unsigned long src_offset,
5034                        unsigned long len)
5035{
5036        u64 dst_len = dst->len;
5037        size_t cur;
5038        size_t offset;
5039        struct page *page;
5040        char *kaddr;
5041        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5042        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5043
5044        WARN_ON(src->len != dst_len);
5045
5046        offset = (start_offset + dst_offset) &
5047                (PAGE_CACHE_SIZE - 1);
5048
5049        while (len > 0) {
5050                page = extent_buffer_page(dst, i);
5051                WARN_ON(!PageUptodate(page));
5052
5053                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5054
5055                kaddr = page_address(page);
5056                read_extent_buffer(src, kaddr + offset, src_offset, cur);
5057
5058                src_offset += cur;
5059                len -= cur;
5060                offset = 0;
5061                i++;
5062        }
5063}
5064
5065static void move_pages(struct page *dst_page, struct page *src_page,
5066                       unsigned long dst_off, unsigned long src_off,
5067                       unsigned long len)
5068{
5069        char *dst_kaddr = page_address(dst_page);
5070        if (dst_page == src_page) {
5071                memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5072        } else {
5073                char *src_kaddr = page_address(src_page);
5074                char *p = dst_kaddr + dst_off + len;
5075                char *s = src_kaddr + src_off + len;
5076
5077                while (len--)
5078                        *--p = *--s;
5079        }
5080}
5081
5082static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5083{
5084        unsigned long distance = (src > dst) ? src - dst : dst - src;
5085        return distance < len;
5086}
5087
5088static void copy_pages(struct page *dst_page, struct page *src_page,
5089                       unsigned long dst_off, unsigned long src_off,
5090                       unsigned long len)
5091{
5092        char *dst_kaddr = page_address(dst_page);
5093        char *src_kaddr;
5094        int must_memmove = 0;
5095
5096        if (dst_page != src_page) {
5097                src_kaddr = page_address(src_page);
5098        } else {
5099                src_kaddr = dst_kaddr;
5100                if (areas_overlap(src_off, dst_off, len))
5101                        must_memmove = 1;
5102        }
5103
5104        if (must_memmove)
5105                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5106        else
5107                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5108}
5109
5110void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5111                           unsigned long src_offset, unsigned long len)
5112{
5113        size_t cur;
5114        size_t dst_off_in_page;
5115        size_t src_off_in_page;
5116        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5117        unsigned long dst_i;
5118        unsigned long src_i;
5119
5120        if (src_offset + len > dst->len) {
5121                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5122                       "len %lu dst len %lu\n", src_offset, len, dst->len);
5123                BUG_ON(1);
5124        }
5125        if (dst_offset + len > dst->len) {
5126                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5127                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5128                BUG_ON(1);
5129        }
5130
5131        while (len > 0) {
5132                dst_off_in_page = (start_offset + dst_offset) &
5133                        (PAGE_CACHE_SIZE - 1);
5134                src_off_in_page = (start_offset + src_offset) &
5135                        (PAGE_CACHE_SIZE - 1);
5136
5137                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5138                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5139
5140                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5141                                               src_off_in_page));
5142                cur = min_t(unsigned long, cur,
5143                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5144
5145                copy_pages(extent_buffer_page(dst, dst_i),
5146                           extent_buffer_page(dst, src_i),
5147                           dst_off_in_page, src_off_in_page, cur);
5148
5149                src_offset += cur;
5150                dst_offset += cur;
5151                len -= cur;
5152        }
5153}
5154
5155void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5156                           unsigned long src_offset, unsigned long len)
5157{
5158        size_t cur;
5159        size_t dst_off_in_page;
5160        size_t src_off_in_page;
5161        unsigned long dst_end = dst_offset + len - 1;
5162        unsigned long src_end = src_offset + len - 1;
5163        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5164        unsigned long dst_i;
5165        unsigned long src_i;
5166
5167        if (src_offset + len > dst->len) {
5168                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5169                       "len %lu len %lu\n", src_offset, len, dst->len);
5170                BUG_ON(1);
5171        }
5172        if (dst_offset + len > dst->len) {
5173                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5174                       "len %lu len %lu\n", dst_offset, len, dst->len);
5175                BUG_ON(1);
5176        }
5177        if (dst_offset < src_offset) {
5178                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5179                return;
5180        }
5181        while (len > 0) {
5182                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5183                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5184
5185                dst_off_in_page = (start_offset + dst_end) &
5186                        (PAGE_CACHE_SIZE - 1);
5187                src_off_in_page = (start_offset + src_end) &
5188                        (PAGE_CACHE_SIZE - 1);
5189
5190                cur = min_t(unsigned long, len, src_off_in_page + 1);
5191                cur = min(cur, dst_off_in_page + 1);
5192                move_pages(extent_buffer_page(dst, dst_i),
5193                           extent_buffer_page(dst, src_i),
5194                           dst_off_in_page - cur + 1,
5195                           src_off_in_page - cur + 1, cur);
5196
5197                dst_end -= cur;
5198                src_end -= cur;
5199                len -= cur;
5200        }
5201}
5202
5203int try_release_extent_buffer(struct page *page)
5204{
5205        struct extent_buffer *eb;
5206
5207        /*
5208         * We need to make sure noboody is attaching this page to an eb right
5209         * now.
5210         */
5211        spin_lock(&page->mapping->private_lock);
5212        if (!PagePrivate(page)) {
5213                spin_unlock(&page->mapping->private_lock);
5214                return 1;
5215        }
5216
5217        eb = (struct extent_buffer *)page->private;
5218        BUG_ON(!eb);
5219
5220        /*
5221         * This is a little awful but should be ok, we need to make sure that
5222         * the eb doesn't disappear out from under us while we're looking at
5223         * this page.
5224         */
5225        spin_lock(&eb->refs_lock);
5226        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5227                spin_unlock(&eb->refs_lock);
5228                spin_unlock(&page->mapping->private_lock);
5229                return 0;
5230        }
5231        spin_unlock(&page->mapping->private_lock);
5232
5233        /*
5234         * If tree ref isn't set then we know the ref on this eb is a real ref,
5235         * so just return, this page will likely be freed soon anyway.
5236         */
5237        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5238                spin_unlock(&eb->refs_lock);
5239                return 0;
5240        }
5241
5242        return release_extent_buffer(eb);
5243}
5244