linux/fs/btrfs/ordered-data.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
  28
  29static struct kmem_cache *btrfs_ordered_extent_cache;
  30
  31static u64 entry_end(struct btrfs_ordered_extent *entry)
  32{
  33        if (entry->file_offset + entry->len < entry->file_offset)
  34                return (u64)-1;
  35        return entry->file_offset + entry->len;
  36}
  37
  38/* returns NULL if the insertion worked, or it returns the node it did find
  39 * in the tree
  40 */
  41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  42                                   struct rb_node *node)
  43{
  44        struct rb_node **p = &root->rb_node;
  45        struct rb_node *parent = NULL;
  46        struct btrfs_ordered_extent *entry;
  47
  48        while (*p) {
  49                parent = *p;
  50                entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  51
  52                if (file_offset < entry->file_offset)
  53                        p = &(*p)->rb_left;
  54                else if (file_offset >= entry_end(entry))
  55                        p = &(*p)->rb_right;
  56                else
  57                        return parent;
  58        }
  59
  60        rb_link_node(node, parent, p);
  61        rb_insert_color(node, root);
  62        return NULL;
  63}
  64
  65static void ordered_data_tree_panic(struct inode *inode, int errno,
  66                                               u64 offset)
  67{
  68        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  69        btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  70                    "%llu\n", offset);
  71}
  72
  73/*
  74 * look for a given offset in the tree, and if it can't be found return the
  75 * first lesser offset
  76 */
  77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  78                                     struct rb_node **prev_ret)
  79{
  80        struct rb_node *n = root->rb_node;
  81        struct rb_node *prev = NULL;
  82        struct rb_node *test;
  83        struct btrfs_ordered_extent *entry;
  84        struct btrfs_ordered_extent *prev_entry = NULL;
  85
  86        while (n) {
  87                entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  88                prev = n;
  89                prev_entry = entry;
  90
  91                if (file_offset < entry->file_offset)
  92                        n = n->rb_left;
  93                else if (file_offset >= entry_end(entry))
  94                        n = n->rb_right;
  95                else
  96                        return n;
  97        }
  98        if (!prev_ret)
  99                return NULL;
 100
 101        while (prev && file_offset >= entry_end(prev_entry)) {
 102                test = rb_next(prev);
 103                if (!test)
 104                        break;
 105                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 106                                      rb_node);
 107                if (file_offset < entry_end(prev_entry))
 108                        break;
 109
 110                prev = test;
 111        }
 112        if (prev)
 113                prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 114                                      rb_node);
 115        while (prev && file_offset < entry_end(prev_entry)) {
 116                test = rb_prev(prev);
 117                if (!test)
 118                        break;
 119                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 120                                      rb_node);
 121                prev = test;
 122        }
 123        *prev_ret = prev;
 124        return NULL;
 125}
 126
 127/*
 128 * helper to check if a given offset is inside a given entry
 129 */
 130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 131{
 132        if (file_offset < entry->file_offset ||
 133            entry->file_offset + entry->len <= file_offset)
 134                return 0;
 135        return 1;
 136}
 137
 138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 139                          u64 len)
 140{
 141        if (file_offset + len <= entry->file_offset ||
 142            entry->file_offset + entry->len <= file_offset)
 143                return 0;
 144        return 1;
 145}
 146
 147/*
 148 * look find the first ordered struct that has this offset, otherwise
 149 * the first one less than this offset
 150 */
 151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 152                                          u64 file_offset)
 153{
 154        struct rb_root *root = &tree->tree;
 155        struct rb_node *prev = NULL;
 156        struct rb_node *ret;
 157        struct btrfs_ordered_extent *entry;
 158
 159        if (tree->last) {
 160                entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 161                                 rb_node);
 162                if (offset_in_entry(entry, file_offset))
 163                        return tree->last;
 164        }
 165        ret = __tree_search(root, file_offset, &prev);
 166        if (!ret)
 167                ret = prev;
 168        if (ret)
 169                tree->last = ret;
 170        return ret;
 171}
 172
 173/* allocate and add a new ordered_extent into the per-inode tree.
 174 * file_offset is the logical offset in the file
 175 *
 176 * start is the disk block number of an extent already reserved in the
 177 * extent allocation tree
 178 *
 179 * len is the length of the extent
 180 *
 181 * The tree is given a single reference on the ordered extent that was
 182 * inserted.
 183 */
 184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 185                                      u64 start, u64 len, u64 disk_len,
 186                                      int type, int dio, int compress_type)
 187{
 188        struct btrfs_root *root = BTRFS_I(inode)->root;
 189        struct btrfs_ordered_inode_tree *tree;
 190        struct rb_node *node;
 191        struct btrfs_ordered_extent *entry;
 192
 193        tree = &BTRFS_I(inode)->ordered_tree;
 194        entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 195        if (!entry)
 196                return -ENOMEM;
 197
 198        entry->file_offset = file_offset;
 199        entry->start = start;
 200        entry->len = len;
 201        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
 202            !(type == BTRFS_ORDERED_NOCOW))
 203                entry->csum_bytes_left = disk_len;
 204        entry->disk_len = disk_len;
 205        entry->bytes_left = len;
 206        entry->inode = igrab(inode);
 207        entry->compress_type = compress_type;
 208        entry->truncated_len = (u64)-1;
 209        if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 210                set_bit(type, &entry->flags);
 211
 212        if (dio)
 213                set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 214
 215        /* one ref for the tree */
 216        atomic_set(&entry->refs, 1);
 217        init_waitqueue_head(&entry->wait);
 218        INIT_LIST_HEAD(&entry->list);
 219        INIT_LIST_HEAD(&entry->root_extent_list);
 220        INIT_LIST_HEAD(&entry->work_list);
 221        init_completion(&entry->completion);
 222        INIT_LIST_HEAD(&entry->log_list);
 223
 224        trace_btrfs_ordered_extent_add(inode, entry);
 225
 226        spin_lock_irq(&tree->lock);
 227        node = tree_insert(&tree->tree, file_offset,
 228                           &entry->rb_node);
 229        if (node)
 230                ordered_data_tree_panic(inode, -EEXIST, file_offset);
 231        spin_unlock_irq(&tree->lock);
 232
 233        spin_lock(&root->ordered_extent_lock);
 234        list_add_tail(&entry->root_extent_list,
 235                      &root->ordered_extents);
 236        root->nr_ordered_extents++;
 237        if (root->nr_ordered_extents == 1) {
 238                spin_lock(&root->fs_info->ordered_root_lock);
 239                BUG_ON(!list_empty(&root->ordered_root));
 240                list_add_tail(&root->ordered_root,
 241                              &root->fs_info->ordered_roots);
 242                spin_unlock(&root->fs_info->ordered_root_lock);
 243        }
 244        spin_unlock(&root->ordered_extent_lock);
 245
 246        return 0;
 247}
 248
 249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 250                             u64 start, u64 len, u64 disk_len, int type)
 251{
 252        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 253                                          disk_len, type, 0,
 254                                          BTRFS_COMPRESS_NONE);
 255}
 256
 257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 258                                 u64 start, u64 len, u64 disk_len, int type)
 259{
 260        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 261                                          disk_len, type, 1,
 262                                          BTRFS_COMPRESS_NONE);
 263}
 264
 265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 266                                      u64 start, u64 len, u64 disk_len,
 267                                      int type, int compress_type)
 268{
 269        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 270                                          disk_len, type, 0,
 271                                          compress_type);
 272}
 273
 274/*
 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 276 * when an ordered extent is finished.  If the list covers more than one
 277 * ordered extent, it is split across multiples.
 278 */
 279void btrfs_add_ordered_sum(struct inode *inode,
 280                           struct btrfs_ordered_extent *entry,
 281                           struct btrfs_ordered_sum *sum)
 282{
 283        struct btrfs_ordered_inode_tree *tree;
 284
 285        tree = &BTRFS_I(inode)->ordered_tree;
 286        spin_lock_irq(&tree->lock);
 287        list_add_tail(&sum->list, &entry->list);
 288        WARN_ON(entry->csum_bytes_left < sum->len);
 289        entry->csum_bytes_left -= sum->len;
 290        if (entry->csum_bytes_left == 0)
 291                wake_up(&entry->wait);
 292        spin_unlock_irq(&tree->lock);
 293}
 294
 295/*
 296 * this is used to account for finished IO across a given range
 297 * of the file.  The IO may span ordered extents.  If
 298 * a given ordered_extent is completely done, 1 is returned, otherwise
 299 * 0.
 300 *
 301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 302 * to make sure this function only returns 1 once for a given ordered extent.
 303 *
 304 * file_offset is updated to one byte past the range that is recorded as
 305 * complete.  This allows you to walk forward in the file.
 306 */
 307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 308                                   struct btrfs_ordered_extent **cached,
 309                                   u64 *file_offset, u64 io_size, int uptodate)
 310{
 311        struct btrfs_ordered_inode_tree *tree;
 312        struct rb_node *node;
 313        struct btrfs_ordered_extent *entry = NULL;
 314        int ret;
 315        unsigned long flags;
 316        u64 dec_end;
 317        u64 dec_start;
 318        u64 to_dec;
 319
 320        tree = &BTRFS_I(inode)->ordered_tree;
 321        spin_lock_irqsave(&tree->lock, flags);
 322        node = tree_search(tree, *file_offset);
 323        if (!node) {
 324                ret = 1;
 325                goto out;
 326        }
 327
 328        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 329        if (!offset_in_entry(entry, *file_offset)) {
 330                ret = 1;
 331                goto out;
 332        }
 333
 334        dec_start = max(*file_offset, entry->file_offset);
 335        dec_end = min(*file_offset + io_size, entry->file_offset +
 336                      entry->len);
 337        *file_offset = dec_end;
 338        if (dec_start > dec_end) {
 339                printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
 340                       dec_start, dec_end);
 341        }
 342        to_dec = dec_end - dec_start;
 343        if (to_dec > entry->bytes_left) {
 344                printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
 345                       entry->bytes_left, to_dec);
 346        }
 347        entry->bytes_left -= to_dec;
 348        if (!uptodate)
 349                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 350
 351        if (entry->bytes_left == 0)
 352                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 353        else
 354                ret = 1;
 355out:
 356        if (!ret && cached && entry) {
 357                *cached = entry;
 358                atomic_inc(&entry->refs);
 359        }
 360        spin_unlock_irqrestore(&tree->lock, flags);
 361        return ret == 0;
 362}
 363
 364/*
 365 * this is used to account for finished IO across a given range
 366 * of the file.  The IO should not span ordered extents.  If
 367 * a given ordered_extent is completely done, 1 is returned, otherwise
 368 * 0.
 369 *
 370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 371 * to make sure this function only returns 1 once for a given ordered extent.
 372 */
 373int btrfs_dec_test_ordered_pending(struct inode *inode,
 374                                   struct btrfs_ordered_extent **cached,
 375                                   u64 file_offset, u64 io_size, int uptodate)
 376{
 377        struct btrfs_ordered_inode_tree *tree;
 378        struct rb_node *node;
 379        struct btrfs_ordered_extent *entry = NULL;
 380        unsigned long flags;
 381        int ret;
 382
 383        tree = &BTRFS_I(inode)->ordered_tree;
 384        spin_lock_irqsave(&tree->lock, flags);
 385        if (cached && *cached) {
 386                entry = *cached;
 387                goto have_entry;
 388        }
 389
 390        node = tree_search(tree, file_offset);
 391        if (!node) {
 392                ret = 1;
 393                goto out;
 394        }
 395
 396        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 397have_entry:
 398        if (!offset_in_entry(entry, file_offset)) {
 399                ret = 1;
 400                goto out;
 401        }
 402
 403        if (io_size > entry->bytes_left) {
 404                printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
 405                       entry->bytes_left, io_size);
 406        }
 407        entry->bytes_left -= io_size;
 408        if (!uptodate)
 409                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 410
 411        if (entry->bytes_left == 0)
 412                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 413        else
 414                ret = 1;
 415out:
 416        if (!ret && cached && entry) {
 417                *cached = entry;
 418                atomic_inc(&entry->refs);
 419        }
 420        spin_unlock_irqrestore(&tree->lock, flags);
 421        return ret == 0;
 422}
 423
 424/* Needs to either be called under a log transaction or the log_mutex */
 425void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
 426{
 427        struct btrfs_ordered_inode_tree *tree;
 428        struct btrfs_ordered_extent *ordered;
 429        struct rb_node *n;
 430        int index = log->log_transid % 2;
 431
 432        tree = &BTRFS_I(inode)->ordered_tree;
 433        spin_lock_irq(&tree->lock);
 434        for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 435                ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 436                spin_lock(&log->log_extents_lock[index]);
 437                if (list_empty(&ordered->log_list)) {
 438                        list_add_tail(&ordered->log_list, &log->logged_list[index]);
 439                        atomic_inc(&ordered->refs);
 440                }
 441                spin_unlock(&log->log_extents_lock[index]);
 442        }
 443        spin_unlock_irq(&tree->lock);
 444}
 445
 446void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
 447{
 448        struct btrfs_ordered_extent *ordered;
 449        int index = transid % 2;
 450
 451        spin_lock_irq(&log->log_extents_lock[index]);
 452        while (!list_empty(&log->logged_list[index])) {
 453                ordered = list_first_entry(&log->logged_list[index],
 454                                           struct btrfs_ordered_extent,
 455                                           log_list);
 456                list_del_init(&ordered->log_list);
 457                spin_unlock_irq(&log->log_extents_lock[index]);
 458                wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 459                                                   &ordered->flags));
 460                btrfs_put_ordered_extent(ordered);
 461                spin_lock_irq(&log->log_extents_lock[index]);
 462        }
 463        spin_unlock_irq(&log->log_extents_lock[index]);
 464}
 465
 466void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 467{
 468        struct btrfs_ordered_extent *ordered;
 469        int index = transid % 2;
 470
 471        spin_lock_irq(&log->log_extents_lock[index]);
 472        while (!list_empty(&log->logged_list[index])) {
 473                ordered = list_first_entry(&log->logged_list[index],
 474                                           struct btrfs_ordered_extent,
 475                                           log_list);
 476                list_del_init(&ordered->log_list);
 477                spin_unlock_irq(&log->log_extents_lock[index]);
 478                btrfs_put_ordered_extent(ordered);
 479                spin_lock_irq(&log->log_extents_lock[index]);
 480        }
 481        spin_unlock_irq(&log->log_extents_lock[index]);
 482}
 483
 484/*
 485 * used to drop a reference on an ordered extent.  This will free
 486 * the extent if the last reference is dropped
 487 */
 488void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 489{
 490        struct list_head *cur;
 491        struct btrfs_ordered_sum *sum;
 492
 493        trace_btrfs_ordered_extent_put(entry->inode, entry);
 494
 495        if (atomic_dec_and_test(&entry->refs)) {
 496                if (entry->inode)
 497                        btrfs_add_delayed_iput(entry->inode);
 498                while (!list_empty(&entry->list)) {
 499                        cur = entry->list.next;
 500                        sum = list_entry(cur, struct btrfs_ordered_sum, list);
 501                        list_del(&sum->list);
 502                        kfree(sum);
 503                }
 504                kmem_cache_free(btrfs_ordered_extent_cache, entry);
 505        }
 506}
 507
 508/*
 509 * remove an ordered extent from the tree.  No references are dropped
 510 * and waiters are woken up.
 511 */
 512void btrfs_remove_ordered_extent(struct inode *inode,
 513                                 struct btrfs_ordered_extent *entry)
 514{
 515        struct btrfs_ordered_inode_tree *tree;
 516        struct btrfs_root *root = BTRFS_I(inode)->root;
 517        struct rb_node *node;
 518
 519        tree = &BTRFS_I(inode)->ordered_tree;
 520        spin_lock_irq(&tree->lock);
 521        node = &entry->rb_node;
 522        rb_erase(node, &tree->tree);
 523        tree->last = NULL;
 524        set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 525        spin_unlock_irq(&tree->lock);
 526
 527        spin_lock(&root->ordered_extent_lock);
 528        list_del_init(&entry->root_extent_list);
 529        root->nr_ordered_extents--;
 530
 531        trace_btrfs_ordered_extent_remove(inode, entry);
 532
 533        /*
 534         * we have no more ordered extents for this inode and
 535         * no dirty pages.  We can safely remove it from the
 536         * list of ordered extents
 537         */
 538        if (RB_EMPTY_ROOT(&tree->tree) &&
 539            !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
 540                list_del_init(&BTRFS_I(inode)->ordered_operations);
 541        }
 542
 543        if (!root->nr_ordered_extents) {
 544                spin_lock(&root->fs_info->ordered_root_lock);
 545                BUG_ON(list_empty(&root->ordered_root));
 546                list_del_init(&root->ordered_root);
 547                spin_unlock(&root->fs_info->ordered_root_lock);
 548        }
 549        spin_unlock(&root->ordered_extent_lock);
 550        wake_up(&entry->wait);
 551}
 552
 553static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 554{
 555        struct btrfs_ordered_extent *ordered;
 556
 557        ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 558        btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 559        complete(&ordered->completion);
 560}
 561
 562/*
 563 * wait for all the ordered extents in a root.  This is done when balancing
 564 * space between drives.
 565 */
 566void btrfs_wait_ordered_extents(struct btrfs_root *root)
 567{
 568        struct list_head splice, works;
 569        struct btrfs_ordered_extent *ordered, *next;
 570
 571        INIT_LIST_HEAD(&splice);
 572        INIT_LIST_HEAD(&works);
 573
 574        mutex_lock(&root->fs_info->ordered_operations_mutex);
 575        spin_lock(&root->ordered_extent_lock);
 576        list_splice_init(&root->ordered_extents, &splice);
 577        while (!list_empty(&splice)) {
 578                ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 579                                           root_extent_list);
 580                list_move_tail(&ordered->root_extent_list,
 581                               &root->ordered_extents);
 582                atomic_inc(&ordered->refs);
 583                spin_unlock(&root->ordered_extent_lock);
 584
 585                ordered->flush_work.func = btrfs_run_ordered_extent_work;
 586                list_add_tail(&ordered->work_list, &works);
 587                btrfs_queue_worker(&root->fs_info->flush_workers,
 588                                   &ordered->flush_work);
 589
 590                cond_resched();
 591                spin_lock(&root->ordered_extent_lock);
 592        }
 593        spin_unlock(&root->ordered_extent_lock);
 594
 595        list_for_each_entry_safe(ordered, next, &works, work_list) {
 596                list_del_init(&ordered->work_list);
 597                wait_for_completion(&ordered->completion);
 598                btrfs_put_ordered_extent(ordered);
 599                cond_resched();
 600        }
 601        mutex_unlock(&root->fs_info->ordered_operations_mutex);
 602}
 603
 604void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info)
 605{
 606        struct btrfs_root *root;
 607        struct list_head splice;
 608
 609        INIT_LIST_HEAD(&splice);
 610
 611        spin_lock(&fs_info->ordered_root_lock);
 612        list_splice_init(&fs_info->ordered_roots, &splice);
 613        while (!list_empty(&splice)) {
 614                root = list_first_entry(&splice, struct btrfs_root,
 615                                        ordered_root);
 616                root = btrfs_grab_fs_root(root);
 617                BUG_ON(!root);
 618                list_move_tail(&root->ordered_root,
 619                               &fs_info->ordered_roots);
 620                spin_unlock(&fs_info->ordered_root_lock);
 621
 622                btrfs_wait_ordered_extents(root);
 623                btrfs_put_fs_root(root);
 624
 625                spin_lock(&fs_info->ordered_root_lock);
 626        }
 627        spin_unlock(&fs_info->ordered_root_lock);
 628}
 629
 630/*
 631 * this is used during transaction commit to write all the inodes
 632 * added to the ordered operation list.  These files must be fully on
 633 * disk before the transaction commits.
 634 *
 635 * we have two modes here, one is to just start the IO via filemap_flush
 636 * and the other is to wait for all the io.  When we wait, we have an
 637 * extra check to make sure the ordered operation list really is empty
 638 * before we return
 639 */
 640int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
 641                                 struct btrfs_root *root, int wait)
 642{
 643        struct btrfs_inode *btrfs_inode;
 644        struct inode *inode;
 645        struct btrfs_transaction *cur_trans = trans->transaction;
 646        struct list_head splice;
 647        struct list_head works;
 648        struct btrfs_delalloc_work *work, *next;
 649        int ret = 0;
 650
 651        INIT_LIST_HEAD(&splice);
 652        INIT_LIST_HEAD(&works);
 653
 654        mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
 655        spin_lock(&root->fs_info->ordered_root_lock);
 656        list_splice_init(&cur_trans->ordered_operations, &splice);
 657        while (!list_empty(&splice)) {
 658                btrfs_inode = list_entry(splice.next, struct btrfs_inode,
 659                                   ordered_operations);
 660                inode = &btrfs_inode->vfs_inode;
 661
 662                list_del_init(&btrfs_inode->ordered_operations);
 663
 664                /*
 665                 * the inode may be getting freed (in sys_unlink path).
 666                 */
 667                inode = igrab(inode);
 668                if (!inode)
 669                        continue;
 670
 671                if (!wait)
 672                        list_add_tail(&BTRFS_I(inode)->ordered_operations,
 673                                      &cur_trans->ordered_operations);
 674                spin_unlock(&root->fs_info->ordered_root_lock);
 675
 676                work = btrfs_alloc_delalloc_work(inode, wait, 1);
 677                if (!work) {
 678                        spin_lock(&root->fs_info->ordered_root_lock);
 679                        if (list_empty(&BTRFS_I(inode)->ordered_operations))
 680                                list_add_tail(&btrfs_inode->ordered_operations,
 681                                              &splice);
 682                        list_splice_tail(&splice,
 683                                         &cur_trans->ordered_operations);
 684                        spin_unlock(&root->fs_info->ordered_root_lock);
 685                        ret = -ENOMEM;
 686                        goto out;
 687                }
 688                list_add_tail(&work->list, &works);
 689                btrfs_queue_worker(&root->fs_info->flush_workers,
 690                                   &work->work);
 691
 692                cond_resched();
 693                spin_lock(&root->fs_info->ordered_root_lock);
 694        }
 695        spin_unlock(&root->fs_info->ordered_root_lock);
 696out:
 697        list_for_each_entry_safe(work, next, &works, list) {
 698                list_del_init(&work->list);
 699                btrfs_wait_and_free_delalloc_work(work);
 700        }
 701        mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
 702        return ret;
 703}
 704
 705/*
 706 * Used to start IO or wait for a given ordered extent to finish.
 707 *
 708 * If wait is one, this effectively waits on page writeback for all the pages
 709 * in the extent, and it waits on the io completion code to insert
 710 * metadata into the btree corresponding to the extent
 711 */
 712void btrfs_start_ordered_extent(struct inode *inode,
 713                                       struct btrfs_ordered_extent *entry,
 714                                       int wait)
 715{
 716        u64 start = entry->file_offset;
 717        u64 end = start + entry->len - 1;
 718
 719        trace_btrfs_ordered_extent_start(inode, entry);
 720
 721        /*
 722         * pages in the range can be dirty, clean or writeback.  We
 723         * start IO on any dirty ones so the wait doesn't stall waiting
 724         * for the flusher thread to find them
 725         */
 726        if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 727                filemap_fdatawrite_range(inode->i_mapping, start, end);
 728        if (wait) {
 729                wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 730                                                 &entry->flags));
 731        }
 732}
 733
 734/*
 735 * Used to wait on ordered extents across a large range of bytes.
 736 */
 737void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 738{
 739        u64 end;
 740        u64 orig_end;
 741        struct btrfs_ordered_extent *ordered;
 742
 743        if (start + len < start) {
 744                orig_end = INT_LIMIT(loff_t);
 745        } else {
 746                orig_end = start + len - 1;
 747                if (orig_end > INT_LIMIT(loff_t))
 748                        orig_end = INT_LIMIT(loff_t);
 749        }
 750
 751        /* start IO across the range first to instantiate any delalloc
 752         * extents
 753         */
 754        filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 755
 756        /*
 757         * So with compression we will find and lock a dirty page and clear the
 758         * first one as dirty, setup an async extent, and immediately return
 759         * with the entire range locked but with nobody actually marked with
 760         * writeback.  So we can't just filemap_write_and_wait_range() and
 761         * expect it to work since it will just kick off a thread to do the
 762         * actual work.  So we need to call filemap_fdatawrite_range _again_
 763         * since it will wait on the page lock, which won't be unlocked until
 764         * after the pages have been marked as writeback and so we're good to go
 765         * from there.  We have to do this otherwise we'll miss the ordered
 766         * extents and that results in badness.  Please Josef, do not think you
 767         * know better and pull this out at some point in the future, it is
 768         * right and you are wrong.
 769         */
 770        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 771                     &BTRFS_I(inode)->runtime_flags))
 772                filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 773
 774        filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 775
 776        end = orig_end;
 777        while (1) {
 778                ordered = btrfs_lookup_first_ordered_extent(inode, end);
 779                if (!ordered)
 780                        break;
 781                if (ordered->file_offset > orig_end) {
 782                        btrfs_put_ordered_extent(ordered);
 783                        break;
 784                }
 785                if (ordered->file_offset + ordered->len < start) {
 786                        btrfs_put_ordered_extent(ordered);
 787                        break;
 788                }
 789                btrfs_start_ordered_extent(inode, ordered, 1);
 790                end = ordered->file_offset;
 791                btrfs_put_ordered_extent(ordered);
 792                if (end == 0 || end == start)
 793                        break;
 794                end--;
 795        }
 796}
 797
 798/*
 799 * find an ordered extent corresponding to file_offset.  return NULL if
 800 * nothing is found, otherwise take a reference on the extent and return it
 801 */
 802struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 803                                                         u64 file_offset)
 804{
 805        struct btrfs_ordered_inode_tree *tree;
 806        struct rb_node *node;
 807        struct btrfs_ordered_extent *entry = NULL;
 808
 809        tree = &BTRFS_I(inode)->ordered_tree;
 810        spin_lock_irq(&tree->lock);
 811        node = tree_search(tree, file_offset);
 812        if (!node)
 813                goto out;
 814
 815        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 816        if (!offset_in_entry(entry, file_offset))
 817                entry = NULL;
 818        if (entry)
 819                atomic_inc(&entry->refs);
 820out:
 821        spin_unlock_irq(&tree->lock);
 822        return entry;
 823}
 824
 825/* Since the DIO code tries to lock a wide area we need to look for any ordered
 826 * extents that exist in the range, rather than just the start of the range.
 827 */
 828struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 829                                                        u64 file_offset,
 830                                                        u64 len)
 831{
 832        struct btrfs_ordered_inode_tree *tree;
 833        struct rb_node *node;
 834        struct btrfs_ordered_extent *entry = NULL;
 835
 836        tree = &BTRFS_I(inode)->ordered_tree;
 837        spin_lock_irq(&tree->lock);
 838        node = tree_search(tree, file_offset);
 839        if (!node) {
 840                node = tree_search(tree, file_offset + len);
 841                if (!node)
 842                        goto out;
 843        }
 844
 845        while (1) {
 846                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 847                if (range_overlaps(entry, file_offset, len))
 848                        break;
 849
 850                if (entry->file_offset >= file_offset + len) {
 851                        entry = NULL;
 852                        break;
 853                }
 854                entry = NULL;
 855                node = rb_next(node);
 856                if (!node)
 857                        break;
 858        }
 859out:
 860        if (entry)
 861                atomic_inc(&entry->refs);
 862        spin_unlock_irq(&tree->lock);
 863        return entry;
 864}
 865
 866/*
 867 * lookup and return any extent before 'file_offset'.  NULL is returned
 868 * if none is found
 869 */
 870struct btrfs_ordered_extent *
 871btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 872{
 873        struct btrfs_ordered_inode_tree *tree;
 874        struct rb_node *node;
 875        struct btrfs_ordered_extent *entry = NULL;
 876
 877        tree = &BTRFS_I(inode)->ordered_tree;
 878        spin_lock_irq(&tree->lock);
 879        node = tree_search(tree, file_offset);
 880        if (!node)
 881                goto out;
 882
 883        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 884        atomic_inc(&entry->refs);
 885out:
 886        spin_unlock_irq(&tree->lock);
 887        return entry;
 888}
 889
 890/*
 891 * After an extent is done, call this to conditionally update the on disk
 892 * i_size.  i_size is updated to cover any fully written part of the file.
 893 */
 894int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 895                                struct btrfs_ordered_extent *ordered)
 896{
 897        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 898        u64 disk_i_size;
 899        u64 new_i_size;
 900        u64 i_size = i_size_read(inode);
 901        struct rb_node *node;
 902        struct rb_node *prev = NULL;
 903        struct btrfs_ordered_extent *test;
 904        int ret = 1;
 905
 906        spin_lock_irq(&tree->lock);
 907        if (ordered) {
 908                offset = entry_end(ordered);
 909                if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 910                        offset = min(offset,
 911                                     ordered->file_offset +
 912                                     ordered->truncated_len);
 913        } else {
 914                offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 915        }
 916        disk_i_size = BTRFS_I(inode)->disk_i_size;
 917
 918        /* truncate file */
 919        if (disk_i_size > i_size) {
 920                BTRFS_I(inode)->disk_i_size = i_size;
 921                ret = 0;
 922                goto out;
 923        }
 924
 925        /*
 926         * if the disk i_size is already at the inode->i_size, or
 927         * this ordered extent is inside the disk i_size, we're done
 928         */
 929        if (disk_i_size == i_size)
 930                goto out;
 931
 932        /*
 933         * We still need to update disk_i_size if outstanding_isize is greater
 934         * than disk_i_size.
 935         */
 936        if (offset <= disk_i_size &&
 937            (!ordered || ordered->outstanding_isize <= disk_i_size))
 938                goto out;
 939
 940        /*
 941         * walk backward from this ordered extent to disk_i_size.
 942         * if we find an ordered extent then we can't update disk i_size
 943         * yet
 944         */
 945        if (ordered) {
 946                node = rb_prev(&ordered->rb_node);
 947        } else {
 948                prev = tree_search(tree, offset);
 949                /*
 950                 * we insert file extents without involving ordered struct,
 951                 * so there should be no ordered struct cover this offset
 952                 */
 953                if (prev) {
 954                        test = rb_entry(prev, struct btrfs_ordered_extent,
 955                                        rb_node);
 956                        BUG_ON(offset_in_entry(test, offset));
 957                }
 958                node = prev;
 959        }
 960        for (; node; node = rb_prev(node)) {
 961                test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 962
 963                /* We treat this entry as if it doesnt exist */
 964                if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 965                        continue;
 966                if (test->file_offset + test->len <= disk_i_size)
 967                        break;
 968                if (test->file_offset >= i_size)
 969                        break;
 970                if (entry_end(test) > disk_i_size) {
 971                        /*
 972                         * we don't update disk_i_size now, so record this
 973                         * undealt i_size. Or we will not know the real
 974                         * i_size.
 975                         */
 976                        if (test->outstanding_isize < offset)
 977                                test->outstanding_isize = offset;
 978                        if (ordered &&
 979                            ordered->outstanding_isize >
 980                            test->outstanding_isize)
 981                                test->outstanding_isize =
 982                                                ordered->outstanding_isize;
 983                        goto out;
 984                }
 985        }
 986        new_i_size = min_t(u64, offset, i_size);
 987
 988        /*
 989         * Some ordered extents may completed before the current one, and
 990         * we hold the real i_size in ->outstanding_isize.
 991         */
 992        if (ordered && ordered->outstanding_isize > new_i_size)
 993                new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
 994        BTRFS_I(inode)->disk_i_size = new_i_size;
 995        ret = 0;
 996out:
 997        /*
 998         * We need to do this because we can't remove ordered extents until
 999         * after the i_disk_size has been updated and then the inode has been
1000         * updated to reflect the change, so we need to tell anybody who finds
1001         * this ordered extent that we've already done all the real work, we
1002         * just haven't completed all the other work.
1003         */
1004        if (ordered)
1005                set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1006        spin_unlock_irq(&tree->lock);
1007        return ret;
1008}
1009
1010/*
1011 * search the ordered extents for one corresponding to 'offset' and
1012 * try to find a checksum.  This is used because we allow pages to
1013 * be reclaimed before their checksum is actually put into the btree
1014 */
1015int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1016                           u32 *sum, int len)
1017{
1018        struct btrfs_ordered_sum *ordered_sum;
1019        struct btrfs_ordered_extent *ordered;
1020        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1021        unsigned long num_sectors;
1022        unsigned long i;
1023        u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1024        int index = 0;
1025
1026        ordered = btrfs_lookup_ordered_extent(inode, offset);
1027        if (!ordered)
1028                return 0;
1029
1030        spin_lock_irq(&tree->lock);
1031        list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1032                if (disk_bytenr >= ordered_sum->bytenr &&
1033                    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1034                        i = (disk_bytenr - ordered_sum->bytenr) >>
1035                            inode->i_sb->s_blocksize_bits;
1036                        num_sectors = ordered_sum->len >>
1037                                      inode->i_sb->s_blocksize_bits;
1038                        num_sectors = min_t(int, len - index, num_sectors - i);
1039                        memcpy(sum + index, ordered_sum->sums + i,
1040                               num_sectors);
1041
1042                        index += (int)num_sectors;
1043                        if (index == len)
1044                                goto out;
1045                        disk_bytenr += num_sectors * sectorsize;
1046                }
1047        }
1048out:
1049        spin_unlock_irq(&tree->lock);
1050        btrfs_put_ordered_extent(ordered);
1051        return index;
1052}
1053
1054
1055/*
1056 * add a given inode to the list of inodes that must be fully on
1057 * disk before a transaction commit finishes.
1058 *
1059 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1060 * used to make sure renamed files are fully on disk.
1061 *
1062 * It is a noop if the inode is already fully on disk.
1063 *
1064 * If trans is not null, we'll do a friendly check for a transaction that
1065 * is already flushing things and force the IO down ourselves.
1066 */
1067void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1068                                 struct btrfs_root *root, struct inode *inode)
1069{
1070        struct btrfs_transaction *cur_trans = trans->transaction;
1071        u64 last_mod;
1072
1073        last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1074
1075        /*
1076         * if this file hasn't been changed since the last transaction
1077         * commit, we can safely return without doing anything
1078         */
1079        if (last_mod < root->fs_info->last_trans_committed)
1080                return;
1081
1082        spin_lock(&root->fs_info->ordered_root_lock);
1083        if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1084                list_add_tail(&BTRFS_I(inode)->ordered_operations,
1085                              &cur_trans->ordered_operations);
1086        }
1087        spin_unlock(&root->fs_info->ordered_root_lock);
1088}
1089
1090int __init ordered_data_init(void)
1091{
1092        btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1093                                     sizeof(struct btrfs_ordered_extent), 0,
1094                                     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1095                                     NULL);
1096        if (!btrfs_ordered_extent_cache)
1097                return -ENOMEM;
1098
1099        return 0;
1100}
1101
1102void ordered_data_exit(void)
1103{
1104        if (btrfs_ordered_extent_cache)
1105                kmem_cache_destroy(btrfs_ordered_extent_cache);
1106}
1107