linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <linux/raid/pq.h>
  29#include <linux/semaphore.h>
  30#include <asm/div64.h>
  31#include "compat.h"
  32#include "ctree.h"
  33#include "extent_map.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "print-tree.h"
  37#include "volumes.h"
  38#include "raid56.h"
  39#include "async-thread.h"
  40#include "check-integrity.h"
  41#include "rcu-string.h"
  42#include "math.h"
  43#include "dev-replace.h"
  44
  45static int init_first_rw_device(struct btrfs_trans_handle *trans,
  46                                struct btrfs_root *root,
  47                                struct btrfs_device *device);
  48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
  50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
  51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
  52
  53static DEFINE_MUTEX(uuid_mutex);
  54static LIST_HEAD(fs_uuids);
  55
  56static void lock_chunks(struct btrfs_root *root)
  57{
  58        mutex_lock(&root->fs_info->chunk_mutex);
  59}
  60
  61static void unlock_chunks(struct btrfs_root *root)
  62{
  63        mutex_unlock(&root->fs_info->chunk_mutex);
  64}
  65
  66static struct btrfs_fs_devices *__alloc_fs_devices(void)
  67{
  68        struct btrfs_fs_devices *fs_devs;
  69
  70        fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
  71        if (!fs_devs)
  72                return ERR_PTR(-ENOMEM);
  73
  74        mutex_init(&fs_devs->device_list_mutex);
  75
  76        INIT_LIST_HEAD(&fs_devs->devices);
  77        INIT_LIST_HEAD(&fs_devs->alloc_list);
  78        INIT_LIST_HEAD(&fs_devs->list);
  79
  80        return fs_devs;
  81}
  82
  83/**
  84 * alloc_fs_devices - allocate struct btrfs_fs_devices
  85 * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
  86 *              generated.
  87 *
  88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
  89 * ERR_PTR() on error.  Returned struct is not linked onto any lists and
  90 * can be destroyed with kfree() right away.
  91 */
  92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
  93{
  94        struct btrfs_fs_devices *fs_devs;
  95
  96        fs_devs = __alloc_fs_devices();
  97        if (IS_ERR(fs_devs))
  98                return fs_devs;
  99
 100        if (fsid)
 101                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 102        else
 103                generate_random_uuid(fs_devs->fsid);
 104
 105        return fs_devs;
 106}
 107
 108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 109{
 110        struct btrfs_device *device;
 111        WARN_ON(fs_devices->opened);
 112        while (!list_empty(&fs_devices->devices)) {
 113                device = list_entry(fs_devices->devices.next,
 114                                    struct btrfs_device, dev_list);
 115                list_del(&device->dev_list);
 116                rcu_string_free(device->name);
 117                kfree(device);
 118        }
 119        kfree(fs_devices);
 120}
 121
 122static void btrfs_kobject_uevent(struct block_device *bdev,
 123                                 enum kobject_action action)
 124{
 125        int ret;
 126
 127        ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
 128        if (ret)
 129                pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
 130                        action,
 131                        kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
 132                        &disk_to_dev(bdev->bd_disk)->kobj);
 133}
 134
 135void btrfs_cleanup_fs_uuids(void)
 136{
 137        struct btrfs_fs_devices *fs_devices;
 138
 139        while (!list_empty(&fs_uuids)) {
 140                fs_devices = list_entry(fs_uuids.next,
 141                                        struct btrfs_fs_devices, list);
 142                list_del(&fs_devices->list);
 143                free_fs_devices(fs_devices);
 144        }
 145}
 146
 147static struct btrfs_device *__alloc_device(void)
 148{
 149        struct btrfs_device *dev;
 150
 151        dev = kzalloc(sizeof(*dev), GFP_NOFS);
 152        if (!dev)
 153                return ERR_PTR(-ENOMEM);
 154
 155        INIT_LIST_HEAD(&dev->dev_list);
 156        INIT_LIST_HEAD(&dev->dev_alloc_list);
 157
 158        spin_lock_init(&dev->io_lock);
 159
 160        spin_lock_init(&dev->reada_lock);
 161        atomic_set(&dev->reada_in_flight, 0);
 162        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
 163        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
 164
 165        return dev;
 166}
 167
 168static noinline struct btrfs_device *__find_device(struct list_head *head,
 169                                                   u64 devid, u8 *uuid)
 170{
 171        struct btrfs_device *dev;
 172
 173        list_for_each_entry(dev, head, dev_list) {
 174                if (dev->devid == devid &&
 175                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 176                        return dev;
 177                }
 178        }
 179        return NULL;
 180}
 181
 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 183{
 184        struct btrfs_fs_devices *fs_devices;
 185
 186        list_for_each_entry(fs_devices, &fs_uuids, list) {
 187                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 188                        return fs_devices;
 189        }
 190        return NULL;
 191}
 192
 193static int
 194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 195                      int flush, struct block_device **bdev,
 196                      struct buffer_head **bh)
 197{
 198        int ret;
 199
 200        *bdev = blkdev_get_by_path(device_path, flags, holder);
 201
 202        if (IS_ERR(*bdev)) {
 203                ret = PTR_ERR(*bdev);
 204                printk(KERN_INFO "btrfs: open %s failed\n", device_path);
 205                goto error;
 206        }
 207
 208        if (flush)
 209                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 210        ret = set_blocksize(*bdev, 4096);
 211        if (ret) {
 212                blkdev_put(*bdev, flags);
 213                goto error;
 214        }
 215        invalidate_bdev(*bdev);
 216        *bh = btrfs_read_dev_super(*bdev);
 217        if (!*bh) {
 218                ret = -EINVAL;
 219                blkdev_put(*bdev, flags);
 220                goto error;
 221        }
 222
 223        return 0;
 224
 225error:
 226        *bdev = NULL;
 227        *bh = NULL;
 228        return ret;
 229}
 230
 231static void requeue_list(struct btrfs_pending_bios *pending_bios,
 232                        struct bio *head, struct bio *tail)
 233{
 234
 235        struct bio *old_head;
 236
 237        old_head = pending_bios->head;
 238        pending_bios->head = head;
 239        if (pending_bios->tail)
 240                tail->bi_next = old_head;
 241        else
 242                pending_bios->tail = tail;
 243}
 244
 245/*
 246 * we try to collect pending bios for a device so we don't get a large
 247 * number of procs sending bios down to the same device.  This greatly
 248 * improves the schedulers ability to collect and merge the bios.
 249 *
 250 * But, it also turns into a long list of bios to process and that is sure
 251 * to eventually make the worker thread block.  The solution here is to
 252 * make some progress and then put this work struct back at the end of
 253 * the list if the block device is congested.  This way, multiple devices
 254 * can make progress from a single worker thread.
 255 */
 256static noinline void run_scheduled_bios(struct btrfs_device *device)
 257{
 258        struct bio *pending;
 259        struct backing_dev_info *bdi;
 260        struct btrfs_fs_info *fs_info;
 261        struct btrfs_pending_bios *pending_bios;
 262        struct bio *tail;
 263        struct bio *cur;
 264        int again = 0;
 265        unsigned long num_run;
 266        unsigned long batch_run = 0;
 267        unsigned long limit;
 268        unsigned long last_waited = 0;
 269        int force_reg = 0;
 270        int sync_pending = 0;
 271        struct blk_plug plug;
 272
 273        /*
 274         * this function runs all the bios we've collected for
 275         * a particular device.  We don't want to wander off to
 276         * another device without first sending all of these down.
 277         * So, setup a plug here and finish it off before we return
 278         */
 279        blk_start_plug(&plug);
 280
 281        bdi = blk_get_backing_dev_info(device->bdev);
 282        fs_info = device->dev_root->fs_info;
 283        limit = btrfs_async_submit_limit(fs_info);
 284        limit = limit * 2 / 3;
 285
 286loop:
 287        spin_lock(&device->io_lock);
 288
 289loop_lock:
 290        num_run = 0;
 291
 292        /* take all the bios off the list at once and process them
 293         * later on (without the lock held).  But, remember the
 294         * tail and other pointers so the bios can be properly reinserted
 295         * into the list if we hit congestion
 296         */
 297        if (!force_reg && device->pending_sync_bios.head) {
 298                pending_bios = &device->pending_sync_bios;
 299                force_reg = 1;
 300        } else {
 301                pending_bios = &device->pending_bios;
 302                force_reg = 0;
 303        }
 304
 305        pending = pending_bios->head;
 306        tail = pending_bios->tail;
 307        WARN_ON(pending && !tail);
 308
 309        /*
 310         * if pending was null this time around, no bios need processing
 311         * at all and we can stop.  Otherwise it'll loop back up again
 312         * and do an additional check so no bios are missed.
 313         *
 314         * device->running_pending is used to synchronize with the
 315         * schedule_bio code.
 316         */
 317        if (device->pending_sync_bios.head == NULL &&
 318            device->pending_bios.head == NULL) {
 319                again = 0;
 320                device->running_pending = 0;
 321        } else {
 322                again = 1;
 323                device->running_pending = 1;
 324        }
 325
 326        pending_bios->head = NULL;
 327        pending_bios->tail = NULL;
 328
 329        spin_unlock(&device->io_lock);
 330
 331        while (pending) {
 332
 333                rmb();
 334                /* we want to work on both lists, but do more bios on the
 335                 * sync list than the regular list
 336                 */
 337                if ((num_run > 32 &&
 338                    pending_bios != &device->pending_sync_bios &&
 339                    device->pending_sync_bios.head) ||
 340                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 341                    device->pending_bios.head)) {
 342                        spin_lock(&device->io_lock);
 343                        requeue_list(pending_bios, pending, tail);
 344                        goto loop_lock;
 345                }
 346
 347                cur = pending;
 348                pending = pending->bi_next;
 349                cur->bi_next = NULL;
 350
 351                if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
 352                    waitqueue_active(&fs_info->async_submit_wait))
 353                        wake_up(&fs_info->async_submit_wait);
 354
 355                BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 356
 357                /*
 358                 * if we're doing the sync list, record that our
 359                 * plug has some sync requests on it
 360                 *
 361                 * If we're doing the regular list and there are
 362                 * sync requests sitting around, unplug before
 363                 * we add more
 364                 */
 365                if (pending_bios == &device->pending_sync_bios) {
 366                        sync_pending = 1;
 367                } else if (sync_pending) {
 368                        blk_finish_plug(&plug);
 369                        blk_start_plug(&plug);
 370                        sync_pending = 0;
 371                }
 372
 373                btrfsic_submit_bio(cur->bi_rw, cur);
 374                num_run++;
 375                batch_run++;
 376                if (need_resched())
 377                        cond_resched();
 378
 379                /*
 380                 * we made progress, there is more work to do and the bdi
 381                 * is now congested.  Back off and let other work structs
 382                 * run instead
 383                 */
 384                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 385                    fs_info->fs_devices->open_devices > 1) {
 386                        struct io_context *ioc;
 387
 388                        ioc = current->io_context;
 389
 390                        /*
 391                         * the main goal here is that we don't want to
 392                         * block if we're going to be able to submit
 393                         * more requests without blocking.
 394                         *
 395                         * This code does two great things, it pokes into
 396                         * the elevator code from a filesystem _and_
 397                         * it makes assumptions about how batching works.
 398                         */
 399                        if (ioc && ioc->nr_batch_requests > 0 &&
 400                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 401                            (last_waited == 0 ||
 402                             ioc->last_waited == last_waited)) {
 403                                /*
 404                                 * we want to go through our batch of
 405                                 * requests and stop.  So, we copy out
 406                                 * the ioc->last_waited time and test
 407                                 * against it before looping
 408                                 */
 409                                last_waited = ioc->last_waited;
 410                                if (need_resched())
 411                                        cond_resched();
 412                                continue;
 413                        }
 414                        spin_lock(&device->io_lock);
 415                        requeue_list(pending_bios, pending, tail);
 416                        device->running_pending = 1;
 417
 418                        spin_unlock(&device->io_lock);
 419                        btrfs_requeue_work(&device->work);
 420                        goto done;
 421                }
 422                /* unplug every 64 requests just for good measure */
 423                if (batch_run % 64 == 0) {
 424                        blk_finish_plug(&plug);
 425                        blk_start_plug(&plug);
 426                        sync_pending = 0;
 427                }
 428        }
 429
 430        cond_resched();
 431        if (again)
 432                goto loop;
 433
 434        spin_lock(&device->io_lock);
 435        if (device->pending_bios.head || device->pending_sync_bios.head)
 436                goto loop_lock;
 437        spin_unlock(&device->io_lock);
 438
 439done:
 440        blk_finish_plug(&plug);
 441}
 442
 443static void pending_bios_fn(struct btrfs_work *work)
 444{
 445        struct btrfs_device *device;
 446
 447        device = container_of(work, struct btrfs_device, work);
 448        run_scheduled_bios(device);
 449}
 450
 451static noinline int device_list_add(const char *path,
 452                           struct btrfs_super_block *disk_super,
 453                           u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 454{
 455        struct btrfs_device *device;
 456        struct btrfs_fs_devices *fs_devices;
 457        struct rcu_string *name;
 458        u64 found_transid = btrfs_super_generation(disk_super);
 459
 460        fs_devices = find_fsid(disk_super->fsid);
 461        if (!fs_devices) {
 462                fs_devices = alloc_fs_devices(disk_super->fsid);
 463                if (IS_ERR(fs_devices))
 464                        return PTR_ERR(fs_devices);
 465
 466                list_add(&fs_devices->list, &fs_uuids);
 467                fs_devices->latest_devid = devid;
 468                fs_devices->latest_trans = found_transid;
 469
 470                device = NULL;
 471        } else {
 472                device = __find_device(&fs_devices->devices, devid,
 473                                       disk_super->dev_item.uuid);
 474        }
 475        if (!device) {
 476                if (fs_devices->opened)
 477                        return -EBUSY;
 478
 479                device = btrfs_alloc_device(NULL, &devid,
 480                                            disk_super->dev_item.uuid);
 481                if (IS_ERR(device)) {
 482                        /* we can safely leave the fs_devices entry around */
 483                        return PTR_ERR(device);
 484                }
 485
 486                name = rcu_string_strdup(path, GFP_NOFS);
 487                if (!name) {
 488                        kfree(device);
 489                        return -ENOMEM;
 490                }
 491                rcu_assign_pointer(device->name, name);
 492
 493                mutex_lock(&fs_devices->device_list_mutex);
 494                list_add_rcu(&device->dev_list, &fs_devices->devices);
 495                fs_devices->num_devices++;
 496                mutex_unlock(&fs_devices->device_list_mutex);
 497
 498                device->fs_devices = fs_devices;
 499        } else if (!device->name || strcmp(device->name->str, path)) {
 500                name = rcu_string_strdup(path, GFP_NOFS);
 501                if (!name)
 502                        return -ENOMEM;
 503                rcu_string_free(device->name);
 504                rcu_assign_pointer(device->name, name);
 505                if (device->missing) {
 506                        fs_devices->missing_devices--;
 507                        device->missing = 0;
 508                }
 509        }
 510
 511        if (found_transid > fs_devices->latest_trans) {
 512                fs_devices->latest_devid = devid;
 513                fs_devices->latest_trans = found_transid;
 514        }
 515        *fs_devices_ret = fs_devices;
 516        return 0;
 517}
 518
 519static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 520{
 521        struct btrfs_fs_devices *fs_devices;
 522        struct btrfs_device *device;
 523        struct btrfs_device *orig_dev;
 524
 525        fs_devices = alloc_fs_devices(orig->fsid);
 526        if (IS_ERR(fs_devices))
 527                return fs_devices;
 528
 529        fs_devices->latest_devid = orig->latest_devid;
 530        fs_devices->latest_trans = orig->latest_trans;
 531        fs_devices->total_devices = orig->total_devices;
 532
 533        /* We have held the volume lock, it is safe to get the devices. */
 534        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 535                struct rcu_string *name;
 536
 537                device = btrfs_alloc_device(NULL, &orig_dev->devid,
 538                                            orig_dev->uuid);
 539                if (IS_ERR(device))
 540                        goto error;
 541
 542                /*
 543                 * This is ok to do without rcu read locked because we hold the
 544                 * uuid mutex so nothing we touch in here is going to disappear.
 545                 */
 546                name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
 547                if (!name) {
 548                        kfree(device);
 549                        goto error;
 550                }
 551                rcu_assign_pointer(device->name, name);
 552
 553                list_add(&device->dev_list, &fs_devices->devices);
 554                device->fs_devices = fs_devices;
 555                fs_devices->num_devices++;
 556        }
 557        return fs_devices;
 558error:
 559        free_fs_devices(fs_devices);
 560        return ERR_PTR(-ENOMEM);
 561}
 562
 563void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
 564                               struct btrfs_fs_devices *fs_devices, int step)
 565{
 566        struct btrfs_device *device, *next;
 567
 568        struct block_device *latest_bdev = NULL;
 569        u64 latest_devid = 0;
 570        u64 latest_transid = 0;
 571
 572        mutex_lock(&uuid_mutex);
 573again:
 574        /* This is the initialized path, it is safe to release the devices. */
 575        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 576                if (device->in_fs_metadata) {
 577                        if (!device->is_tgtdev_for_dev_replace &&
 578                            (!latest_transid ||
 579                             device->generation > latest_transid)) {
 580                                latest_devid = device->devid;
 581                                latest_transid = device->generation;
 582                                latest_bdev = device->bdev;
 583                        }
 584                        continue;
 585                }
 586
 587                if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 588                        /*
 589                         * In the first step, keep the device which has
 590                         * the correct fsid and the devid that is used
 591                         * for the dev_replace procedure.
 592                         * In the second step, the dev_replace state is
 593                         * read from the device tree and it is known
 594                         * whether the procedure is really active or
 595                         * not, which means whether this device is
 596                         * used or whether it should be removed.
 597                         */
 598                        if (step == 0 || device->is_tgtdev_for_dev_replace) {
 599                                continue;
 600                        }
 601                }
 602                if (device->bdev) {
 603                        blkdev_put(device->bdev, device->mode);
 604                        device->bdev = NULL;
 605                        fs_devices->open_devices--;
 606                }
 607                if (device->writeable) {
 608                        list_del_init(&device->dev_alloc_list);
 609                        device->writeable = 0;
 610                        if (!device->is_tgtdev_for_dev_replace)
 611                                fs_devices->rw_devices--;
 612                }
 613                list_del_init(&device->dev_list);
 614                fs_devices->num_devices--;
 615                rcu_string_free(device->name);
 616                kfree(device);
 617        }
 618
 619        if (fs_devices->seed) {
 620                fs_devices = fs_devices->seed;
 621                goto again;
 622        }
 623
 624        fs_devices->latest_bdev = latest_bdev;
 625        fs_devices->latest_devid = latest_devid;
 626        fs_devices->latest_trans = latest_transid;
 627
 628        mutex_unlock(&uuid_mutex);
 629}
 630
 631static void __free_device(struct work_struct *work)
 632{
 633        struct btrfs_device *device;
 634
 635        device = container_of(work, struct btrfs_device, rcu_work);
 636
 637        if (device->bdev)
 638                blkdev_put(device->bdev, device->mode);
 639
 640        rcu_string_free(device->name);
 641        kfree(device);
 642}
 643
 644static void free_device(struct rcu_head *head)
 645{
 646        struct btrfs_device *device;
 647
 648        device = container_of(head, struct btrfs_device, rcu);
 649
 650        INIT_WORK(&device->rcu_work, __free_device);
 651        schedule_work(&device->rcu_work);
 652}
 653
 654static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 655{
 656        struct btrfs_device *device;
 657
 658        if (--fs_devices->opened > 0)
 659                return 0;
 660
 661        mutex_lock(&fs_devices->device_list_mutex);
 662        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 663                struct btrfs_device *new_device;
 664                struct rcu_string *name;
 665
 666                if (device->bdev)
 667                        fs_devices->open_devices--;
 668
 669                if (device->writeable && !device->is_tgtdev_for_dev_replace) {
 670                        list_del_init(&device->dev_alloc_list);
 671                        fs_devices->rw_devices--;
 672                }
 673
 674                if (device->can_discard)
 675                        fs_devices->num_can_discard--;
 676                if (device->missing)
 677                        fs_devices->missing_devices--;
 678
 679                new_device = btrfs_alloc_device(NULL, &device->devid,
 680                                                device->uuid);
 681                BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
 682
 683                /* Safe because we are under uuid_mutex */
 684                if (device->name) {
 685                        name = rcu_string_strdup(device->name->str, GFP_NOFS);
 686                        BUG_ON(!name); /* -ENOMEM */
 687                        rcu_assign_pointer(new_device->name, name);
 688                }
 689
 690                list_replace_rcu(&device->dev_list, &new_device->dev_list);
 691                new_device->fs_devices = device->fs_devices;
 692
 693                call_rcu(&device->rcu, free_device);
 694        }
 695        mutex_unlock(&fs_devices->device_list_mutex);
 696
 697        WARN_ON(fs_devices->open_devices);
 698        WARN_ON(fs_devices->rw_devices);
 699        fs_devices->opened = 0;
 700        fs_devices->seeding = 0;
 701
 702        return 0;
 703}
 704
 705int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 706{
 707        struct btrfs_fs_devices *seed_devices = NULL;
 708        int ret;
 709
 710        mutex_lock(&uuid_mutex);
 711        ret = __btrfs_close_devices(fs_devices);
 712        if (!fs_devices->opened) {
 713                seed_devices = fs_devices->seed;
 714                fs_devices->seed = NULL;
 715        }
 716        mutex_unlock(&uuid_mutex);
 717
 718        while (seed_devices) {
 719                fs_devices = seed_devices;
 720                seed_devices = fs_devices->seed;
 721                __btrfs_close_devices(fs_devices);
 722                free_fs_devices(fs_devices);
 723        }
 724        /*
 725         * Wait for rcu kworkers under __btrfs_close_devices
 726         * to finish all blkdev_puts so device is really
 727         * free when umount is done.
 728         */
 729        rcu_barrier();
 730        return ret;
 731}
 732
 733static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 734                                fmode_t flags, void *holder)
 735{
 736        struct request_queue *q;
 737        struct block_device *bdev;
 738        struct list_head *head = &fs_devices->devices;
 739        struct btrfs_device *device;
 740        struct block_device *latest_bdev = NULL;
 741        struct buffer_head *bh;
 742        struct btrfs_super_block *disk_super;
 743        u64 latest_devid = 0;
 744        u64 latest_transid = 0;
 745        u64 devid;
 746        int seeding = 1;
 747        int ret = 0;
 748
 749        flags |= FMODE_EXCL;
 750
 751        list_for_each_entry(device, head, dev_list) {
 752                if (device->bdev)
 753                        continue;
 754                if (!device->name)
 755                        continue;
 756
 757                /* Just open everything we can; ignore failures here */
 758                if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 759                                            &bdev, &bh))
 760                        continue;
 761
 762                disk_super = (struct btrfs_super_block *)bh->b_data;
 763                devid = btrfs_stack_device_id(&disk_super->dev_item);
 764                if (devid != device->devid)
 765                        goto error_brelse;
 766
 767                if (memcmp(device->uuid, disk_super->dev_item.uuid,
 768                           BTRFS_UUID_SIZE))
 769                        goto error_brelse;
 770
 771                device->generation = btrfs_super_generation(disk_super);
 772                if (!latest_transid || device->generation > latest_transid) {
 773                        latest_devid = devid;
 774                        latest_transid = device->generation;
 775                        latest_bdev = bdev;
 776                }
 777
 778                if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 779                        device->writeable = 0;
 780                } else {
 781                        device->writeable = !bdev_read_only(bdev);
 782                        seeding = 0;
 783                }
 784
 785                q = bdev_get_queue(bdev);
 786                if (blk_queue_discard(q)) {
 787                        device->can_discard = 1;
 788                        fs_devices->num_can_discard++;
 789                }
 790
 791                device->bdev = bdev;
 792                device->in_fs_metadata = 0;
 793                device->mode = flags;
 794
 795                if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 796                        fs_devices->rotating = 1;
 797
 798                fs_devices->open_devices++;
 799                if (device->writeable &&
 800                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 801                        fs_devices->rw_devices++;
 802                        list_add(&device->dev_alloc_list,
 803                                 &fs_devices->alloc_list);
 804                }
 805                brelse(bh);
 806                continue;
 807
 808error_brelse:
 809                brelse(bh);
 810                blkdev_put(bdev, flags);
 811                continue;
 812        }
 813        if (fs_devices->open_devices == 0) {
 814                ret = -EINVAL;
 815                goto out;
 816        }
 817        fs_devices->seeding = seeding;
 818        fs_devices->opened = 1;
 819        fs_devices->latest_bdev = latest_bdev;
 820        fs_devices->latest_devid = latest_devid;
 821        fs_devices->latest_trans = latest_transid;
 822        fs_devices->total_rw_bytes = 0;
 823out:
 824        return ret;
 825}
 826
 827int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 828                       fmode_t flags, void *holder)
 829{
 830        int ret;
 831
 832        mutex_lock(&uuid_mutex);
 833        if (fs_devices->opened) {
 834                fs_devices->opened++;
 835                ret = 0;
 836        } else {
 837                ret = __btrfs_open_devices(fs_devices, flags, holder);
 838        }
 839        mutex_unlock(&uuid_mutex);
 840        return ret;
 841}
 842
 843/*
 844 * Look for a btrfs signature on a device. This may be called out of the mount path
 845 * and we are not allowed to call set_blocksize during the scan. The superblock
 846 * is read via pagecache
 847 */
 848int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 849                          struct btrfs_fs_devices **fs_devices_ret)
 850{
 851        struct btrfs_super_block *disk_super;
 852        struct block_device *bdev;
 853        struct page *page;
 854        void *p;
 855        int ret = -EINVAL;
 856        u64 devid;
 857        u64 transid;
 858        u64 total_devices;
 859        u64 bytenr;
 860        pgoff_t index;
 861
 862        /*
 863         * we would like to check all the supers, but that would make
 864         * a btrfs mount succeed after a mkfs from a different FS.
 865         * So, we need to add a special mount option to scan for
 866         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
 867         */
 868        bytenr = btrfs_sb_offset(0);
 869        flags |= FMODE_EXCL;
 870        mutex_lock(&uuid_mutex);
 871
 872        bdev = blkdev_get_by_path(path, flags, holder);
 873
 874        if (IS_ERR(bdev)) {
 875                ret = PTR_ERR(bdev);
 876                goto error;
 877        }
 878
 879        /* make sure our super fits in the device */
 880        if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
 881                goto error_bdev_put;
 882
 883        /* make sure our super fits in the page */
 884        if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
 885                goto error_bdev_put;
 886
 887        /* make sure our super doesn't straddle pages on disk */
 888        index = bytenr >> PAGE_CACHE_SHIFT;
 889        if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
 890                goto error_bdev_put;
 891
 892        /* pull in the page with our super */
 893        page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
 894                                   index, GFP_NOFS);
 895
 896        if (IS_ERR_OR_NULL(page))
 897                goto error_bdev_put;
 898
 899        p = kmap(page);
 900
 901        /* align our pointer to the offset of the super block */
 902        disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
 903
 904        if (btrfs_super_bytenr(disk_super) != bytenr ||
 905            btrfs_super_magic(disk_super) != BTRFS_MAGIC)
 906                goto error_unmap;
 907
 908        devid = btrfs_stack_device_id(&disk_super->dev_item);
 909        transid = btrfs_super_generation(disk_super);
 910        total_devices = btrfs_super_num_devices(disk_super);
 911
 912        if (disk_super->label[0]) {
 913                if (disk_super->label[BTRFS_LABEL_SIZE - 1])
 914                        disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
 915                printk(KERN_INFO "btrfs: device label %s ", disk_super->label);
 916        } else {
 917                printk(KERN_INFO "btrfs: device fsid %pU ", disk_super->fsid);
 918        }
 919
 920        printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
 921
 922        ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 923        if (!ret && fs_devices_ret)
 924                (*fs_devices_ret)->total_devices = total_devices;
 925
 926error_unmap:
 927        kunmap(page);
 928        page_cache_release(page);
 929
 930error_bdev_put:
 931        blkdev_put(bdev, flags);
 932error:
 933        mutex_unlock(&uuid_mutex);
 934        return ret;
 935}
 936
 937/* helper to account the used device space in the range */
 938int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
 939                                   u64 end, u64 *length)
 940{
 941        struct btrfs_key key;
 942        struct btrfs_root *root = device->dev_root;
 943        struct btrfs_dev_extent *dev_extent;
 944        struct btrfs_path *path;
 945        u64 extent_end;
 946        int ret;
 947        int slot;
 948        struct extent_buffer *l;
 949
 950        *length = 0;
 951
 952        if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
 953                return 0;
 954
 955        path = btrfs_alloc_path();
 956        if (!path)
 957                return -ENOMEM;
 958        path->reada = 2;
 959
 960        key.objectid = device->devid;
 961        key.offset = start;
 962        key.type = BTRFS_DEV_EXTENT_KEY;
 963
 964        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 965        if (ret < 0)
 966                goto out;
 967        if (ret > 0) {
 968                ret = btrfs_previous_item(root, path, key.objectid, key.type);
 969                if (ret < 0)
 970                        goto out;
 971        }
 972
 973        while (1) {
 974                l = path->nodes[0];
 975                slot = path->slots[0];
 976                if (slot >= btrfs_header_nritems(l)) {
 977                        ret = btrfs_next_leaf(root, path);
 978                        if (ret == 0)
 979                                continue;
 980                        if (ret < 0)
 981                                goto out;
 982
 983                        break;
 984                }
 985                btrfs_item_key_to_cpu(l, &key, slot);
 986
 987                if (key.objectid < device->devid)
 988                        goto next;
 989
 990                if (key.objectid > device->devid)
 991                        break;
 992
 993                if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 994                        goto next;
 995
 996                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 997                extent_end = key.offset + btrfs_dev_extent_length(l,
 998                                                                  dev_extent);
 999                if (key.offset <= start && extent_end > end) {
1000                        *length = end - start + 1;
1001                        break;
1002                } else if (key.offset <= start && extent_end > start)
1003                        *length += extent_end - start;
1004                else if (key.offset > start && extent_end <= end)
1005                        *length += extent_end - key.offset;
1006                else if (key.offset > start && key.offset <= end) {
1007                        *length += end - key.offset + 1;
1008                        break;
1009                } else if (key.offset > end)
1010                        break;
1011
1012next:
1013                path->slots[0]++;
1014        }
1015        ret = 0;
1016out:
1017        btrfs_free_path(path);
1018        return ret;
1019}
1020
1021static int contains_pending_extent(struct btrfs_trans_handle *trans,
1022                                   struct btrfs_device *device,
1023                                   u64 *start, u64 len)
1024{
1025        struct extent_map *em;
1026        int ret = 0;
1027
1028        list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1029                struct map_lookup *map;
1030                int i;
1031
1032                map = (struct map_lookup *)em->bdev;
1033                for (i = 0; i < map->num_stripes; i++) {
1034                        if (map->stripes[i].dev != device)
1035                                continue;
1036                        if (map->stripes[i].physical >= *start + len ||
1037                            map->stripes[i].physical + em->orig_block_len <=
1038                            *start)
1039                                continue;
1040                        *start = map->stripes[i].physical +
1041                                em->orig_block_len;
1042                        ret = 1;
1043                }
1044        }
1045
1046        return ret;
1047}
1048
1049
1050/*
1051 * find_free_dev_extent - find free space in the specified device
1052 * @device:     the device which we search the free space in
1053 * @num_bytes:  the size of the free space that we need
1054 * @start:      store the start of the free space.
1055 * @len:        the size of the free space. that we find, or the size of the max
1056 *              free space if we don't find suitable free space
1057 *
1058 * this uses a pretty simple search, the expectation is that it is
1059 * called very infrequently and that a given device has a small number
1060 * of extents
1061 *
1062 * @start is used to store the start of the free space if we find. But if we
1063 * don't find suitable free space, it will be used to store the start position
1064 * of the max free space.
1065 *
1066 * @len is used to store the size of the free space that we find.
1067 * But if we don't find suitable free space, it is used to store the size of
1068 * the max free space.
1069 */
1070int find_free_dev_extent(struct btrfs_trans_handle *trans,
1071                         struct btrfs_device *device, u64 num_bytes,
1072                         u64 *start, u64 *len)
1073{
1074        struct btrfs_key key;
1075        struct btrfs_root *root = device->dev_root;
1076        struct btrfs_dev_extent *dev_extent;
1077        struct btrfs_path *path;
1078        u64 hole_size;
1079        u64 max_hole_start;
1080        u64 max_hole_size;
1081        u64 extent_end;
1082        u64 search_start;
1083        u64 search_end = device->total_bytes;
1084        int ret;
1085        int slot;
1086        struct extent_buffer *l;
1087
1088        /* FIXME use last free of some kind */
1089
1090        /* we don't want to overwrite the superblock on the drive,
1091         * so we make sure to start at an offset of at least 1MB
1092         */
1093        search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1094
1095        path = btrfs_alloc_path();
1096        if (!path)
1097                return -ENOMEM;
1098again:
1099        max_hole_start = search_start;
1100        max_hole_size = 0;
1101        hole_size = 0;
1102
1103        if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1104                ret = -ENOSPC;
1105                goto out;
1106        }
1107
1108        path->reada = 2;
1109        path->search_commit_root = 1;
1110        path->skip_locking = 1;
1111
1112        key.objectid = device->devid;
1113        key.offset = search_start;
1114        key.type = BTRFS_DEV_EXTENT_KEY;
1115
1116        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1117        if (ret < 0)
1118                goto out;
1119        if (ret > 0) {
1120                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1121                if (ret < 0)
1122                        goto out;
1123        }
1124
1125        while (1) {
1126                l = path->nodes[0];
1127                slot = path->slots[0];
1128                if (slot >= btrfs_header_nritems(l)) {
1129                        ret = btrfs_next_leaf(root, path);
1130                        if (ret == 0)
1131                                continue;
1132                        if (ret < 0)
1133                                goto out;
1134
1135                        break;
1136                }
1137                btrfs_item_key_to_cpu(l, &key, slot);
1138
1139                if (key.objectid < device->devid)
1140                        goto next;
1141
1142                if (key.objectid > device->devid)
1143                        break;
1144
1145                if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1146                        goto next;
1147
1148                if (key.offset > search_start) {
1149                        hole_size = key.offset - search_start;
1150
1151                        /*
1152                         * Have to check before we set max_hole_start, otherwise
1153                         * we could end up sending back this offset anyway.
1154                         */
1155                        if (contains_pending_extent(trans, device,
1156                                                    &search_start,
1157                                                    hole_size))
1158                                hole_size = 0;
1159
1160                        if (hole_size > max_hole_size) {
1161                                max_hole_start = search_start;
1162                                max_hole_size = hole_size;
1163                        }
1164
1165                        /*
1166                         * If this free space is greater than which we need,
1167                         * it must be the max free space that we have found
1168                         * until now, so max_hole_start must point to the start
1169                         * of this free space and the length of this free space
1170                         * is stored in max_hole_size. Thus, we return
1171                         * max_hole_start and max_hole_size and go back to the
1172                         * caller.
1173                         */
1174                        if (hole_size >= num_bytes) {
1175                                ret = 0;
1176                                goto out;
1177                        }
1178                }
1179
1180                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1181                extent_end = key.offset + btrfs_dev_extent_length(l,
1182                                                                  dev_extent);
1183                if (extent_end > search_start)
1184                        search_start = extent_end;
1185next:
1186                path->slots[0]++;
1187                cond_resched();
1188        }
1189
1190        /*
1191         * At this point, search_start should be the end of
1192         * allocated dev extents, and when shrinking the device,
1193         * search_end may be smaller than search_start.
1194         */
1195        if (search_end > search_start)
1196                hole_size = search_end - search_start;
1197
1198        if (hole_size > max_hole_size) {
1199                max_hole_start = search_start;
1200                max_hole_size = hole_size;
1201        }
1202
1203        if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1204                btrfs_release_path(path);
1205                goto again;
1206        }
1207
1208        /* See above. */
1209        if (hole_size < num_bytes)
1210                ret = -ENOSPC;
1211        else
1212                ret = 0;
1213
1214out:
1215        btrfs_free_path(path);
1216        *start = max_hole_start;
1217        if (len)
1218                *len = max_hole_size;
1219        return ret;
1220}
1221
1222static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1223                          struct btrfs_device *device,
1224                          u64 start)
1225{
1226        int ret;
1227        struct btrfs_path *path;
1228        struct btrfs_root *root = device->dev_root;
1229        struct btrfs_key key;
1230        struct btrfs_key found_key;
1231        struct extent_buffer *leaf = NULL;
1232        struct btrfs_dev_extent *extent = NULL;
1233
1234        path = btrfs_alloc_path();
1235        if (!path)
1236                return -ENOMEM;
1237
1238        key.objectid = device->devid;
1239        key.offset = start;
1240        key.type = BTRFS_DEV_EXTENT_KEY;
1241again:
1242        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1243        if (ret > 0) {
1244                ret = btrfs_previous_item(root, path, key.objectid,
1245                                          BTRFS_DEV_EXTENT_KEY);
1246                if (ret)
1247                        goto out;
1248                leaf = path->nodes[0];
1249                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1250                extent = btrfs_item_ptr(leaf, path->slots[0],
1251                                        struct btrfs_dev_extent);
1252                BUG_ON(found_key.offset > start || found_key.offset +
1253                       btrfs_dev_extent_length(leaf, extent) < start);
1254                key = found_key;
1255                btrfs_release_path(path);
1256                goto again;
1257        } else if (ret == 0) {
1258                leaf = path->nodes[0];
1259                extent = btrfs_item_ptr(leaf, path->slots[0],
1260                                        struct btrfs_dev_extent);
1261        } else {
1262                btrfs_error(root->fs_info, ret, "Slot search failed");
1263                goto out;
1264        }
1265
1266        if (device->bytes_used > 0) {
1267                u64 len = btrfs_dev_extent_length(leaf, extent);
1268                device->bytes_used -= len;
1269                spin_lock(&root->fs_info->free_chunk_lock);
1270                root->fs_info->free_chunk_space += len;
1271                spin_unlock(&root->fs_info->free_chunk_lock);
1272        }
1273        ret = btrfs_del_item(trans, root, path);
1274        if (ret) {
1275                btrfs_error(root->fs_info, ret,
1276                            "Failed to remove dev extent item");
1277        }
1278out:
1279        btrfs_free_path(path);
1280        return ret;
1281}
1282
1283static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1284                                  struct btrfs_device *device,
1285                                  u64 chunk_tree, u64 chunk_objectid,
1286                                  u64 chunk_offset, u64 start, u64 num_bytes)
1287{
1288        int ret;
1289        struct btrfs_path *path;
1290        struct btrfs_root *root = device->dev_root;
1291        struct btrfs_dev_extent *extent;
1292        struct extent_buffer *leaf;
1293        struct btrfs_key key;
1294
1295        WARN_ON(!device->in_fs_metadata);
1296        WARN_ON(device->is_tgtdev_for_dev_replace);
1297        path = btrfs_alloc_path();
1298        if (!path)
1299                return -ENOMEM;
1300
1301        key.objectid = device->devid;
1302        key.offset = start;
1303        key.type = BTRFS_DEV_EXTENT_KEY;
1304        ret = btrfs_insert_empty_item(trans, root, path, &key,
1305                                      sizeof(*extent));
1306        if (ret)
1307                goto out;
1308
1309        leaf = path->nodes[0];
1310        extent = btrfs_item_ptr(leaf, path->slots[0],
1311                                struct btrfs_dev_extent);
1312        btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1313        btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1314        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1315
1316        write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1317                    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1318
1319        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1320        btrfs_mark_buffer_dirty(leaf);
1321out:
1322        btrfs_free_path(path);
1323        return ret;
1324}
1325
1326static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1327{
1328        struct extent_map_tree *em_tree;
1329        struct extent_map *em;
1330        struct rb_node *n;
1331        u64 ret = 0;
1332
1333        em_tree = &fs_info->mapping_tree.map_tree;
1334        read_lock(&em_tree->lock);
1335        n = rb_last(&em_tree->map);
1336        if (n) {
1337                em = rb_entry(n, struct extent_map, rb_node);
1338                ret = em->start + em->len;
1339        }
1340        read_unlock(&em_tree->lock);
1341
1342        return ret;
1343}
1344
1345static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1346                                    u64 *devid_ret)
1347{
1348        int ret;
1349        struct btrfs_key key;
1350        struct btrfs_key found_key;
1351        struct btrfs_path *path;
1352
1353        path = btrfs_alloc_path();
1354        if (!path)
1355                return -ENOMEM;
1356
1357        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1358        key.type = BTRFS_DEV_ITEM_KEY;
1359        key.offset = (u64)-1;
1360
1361        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1362        if (ret < 0)
1363                goto error;
1364
1365        BUG_ON(ret == 0); /* Corruption */
1366
1367        ret = btrfs_previous_item(fs_info->chunk_root, path,
1368                                  BTRFS_DEV_ITEMS_OBJECTID,
1369                                  BTRFS_DEV_ITEM_KEY);
1370        if (ret) {
1371                *devid_ret = 1;
1372        } else {
1373                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1374                                      path->slots[0]);
1375                *devid_ret = found_key.offset + 1;
1376        }
1377        ret = 0;
1378error:
1379        btrfs_free_path(path);
1380        return ret;
1381}
1382
1383/*
1384 * the device information is stored in the chunk root
1385 * the btrfs_device struct should be fully filled in
1386 */
1387static int btrfs_add_device(struct btrfs_trans_handle *trans,
1388                            struct btrfs_root *root,
1389                            struct btrfs_device *device)
1390{
1391        int ret;
1392        struct btrfs_path *path;
1393        struct btrfs_dev_item *dev_item;
1394        struct extent_buffer *leaf;
1395        struct btrfs_key key;
1396        unsigned long ptr;
1397
1398        root = root->fs_info->chunk_root;
1399
1400        path = btrfs_alloc_path();
1401        if (!path)
1402                return -ENOMEM;
1403
1404        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1405        key.type = BTRFS_DEV_ITEM_KEY;
1406        key.offset = device->devid;
1407
1408        ret = btrfs_insert_empty_item(trans, root, path, &key,
1409                                      sizeof(*dev_item));
1410        if (ret)
1411                goto out;
1412
1413        leaf = path->nodes[0];
1414        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1415
1416        btrfs_set_device_id(leaf, dev_item, device->devid);
1417        btrfs_set_device_generation(leaf, dev_item, 0);
1418        btrfs_set_device_type(leaf, dev_item, device->type);
1419        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1420        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1421        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1422        btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1423        btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1424        btrfs_set_device_group(leaf, dev_item, 0);
1425        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1426        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1427        btrfs_set_device_start_offset(leaf, dev_item, 0);
1428
1429        ptr = btrfs_device_uuid(dev_item);
1430        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1431        ptr = btrfs_device_fsid(dev_item);
1432        write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1433        btrfs_mark_buffer_dirty(leaf);
1434
1435        ret = 0;
1436out:
1437        btrfs_free_path(path);
1438        return ret;
1439}
1440
1441static int btrfs_rm_dev_item(struct btrfs_root *root,
1442                             struct btrfs_device *device)
1443{
1444        int ret;
1445        struct btrfs_path *path;
1446        struct btrfs_key key;
1447        struct btrfs_trans_handle *trans;
1448
1449        root = root->fs_info->chunk_root;
1450
1451        path = btrfs_alloc_path();
1452        if (!path)
1453                return -ENOMEM;
1454
1455        trans = btrfs_start_transaction(root, 0);
1456        if (IS_ERR(trans)) {
1457                btrfs_free_path(path);
1458                return PTR_ERR(trans);
1459        }
1460        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1461        key.type = BTRFS_DEV_ITEM_KEY;
1462        key.offset = device->devid;
1463        lock_chunks(root);
1464
1465        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1466        if (ret < 0)
1467                goto out;
1468
1469        if (ret > 0) {
1470                ret = -ENOENT;
1471                goto out;
1472        }
1473
1474        ret = btrfs_del_item(trans, root, path);
1475        if (ret)
1476                goto out;
1477out:
1478        btrfs_free_path(path);
1479        unlock_chunks(root);
1480        btrfs_commit_transaction(trans, root);
1481        return ret;
1482}
1483
1484int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1485{
1486        struct btrfs_device *device;
1487        struct btrfs_device *next_device;
1488        struct block_device *bdev;
1489        struct buffer_head *bh = NULL;
1490        struct btrfs_super_block *disk_super;
1491        struct btrfs_fs_devices *cur_devices;
1492        u64 all_avail;
1493        u64 devid;
1494        u64 num_devices;
1495        u8 *dev_uuid;
1496        unsigned seq;
1497        int ret = 0;
1498        bool clear_super = false;
1499
1500        mutex_lock(&uuid_mutex);
1501
1502        do {
1503                seq = read_seqbegin(&root->fs_info->profiles_lock);
1504
1505                all_avail = root->fs_info->avail_data_alloc_bits |
1506                            root->fs_info->avail_system_alloc_bits |
1507                            root->fs_info->avail_metadata_alloc_bits;
1508        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1509
1510        num_devices = root->fs_info->fs_devices->num_devices;
1511        btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1512        if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1513                WARN_ON(num_devices < 1);
1514                num_devices--;
1515        }
1516        btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1517
1518        if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1519                ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1520                goto out;
1521        }
1522
1523        if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1524                ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1525                goto out;
1526        }
1527
1528        if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1529            root->fs_info->fs_devices->rw_devices <= 2) {
1530                ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1531                goto out;
1532        }
1533        if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1534            root->fs_info->fs_devices->rw_devices <= 3) {
1535                ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1536                goto out;
1537        }
1538
1539        if (strcmp(device_path, "missing") == 0) {
1540                struct list_head *devices;
1541                struct btrfs_device *tmp;
1542
1543                device = NULL;
1544                devices = &root->fs_info->fs_devices->devices;
1545                /*
1546                 * It is safe to read the devices since the volume_mutex
1547                 * is held.
1548                 */
1549                list_for_each_entry(tmp, devices, dev_list) {
1550                        if (tmp->in_fs_metadata &&
1551                            !tmp->is_tgtdev_for_dev_replace &&
1552                            !tmp->bdev) {
1553                                device = tmp;
1554                                break;
1555                        }
1556                }
1557                bdev = NULL;
1558                bh = NULL;
1559                disk_super = NULL;
1560                if (!device) {
1561                        ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1562                        goto out;
1563                }
1564        } else {
1565                ret = btrfs_get_bdev_and_sb(device_path,
1566                                            FMODE_WRITE | FMODE_EXCL,
1567                                            root->fs_info->bdev_holder, 0,
1568                                            &bdev, &bh);
1569                if (ret)
1570                        goto out;
1571                disk_super = (struct btrfs_super_block *)bh->b_data;
1572                devid = btrfs_stack_device_id(&disk_super->dev_item);
1573                dev_uuid = disk_super->dev_item.uuid;
1574                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1575                                           disk_super->fsid);
1576                if (!device) {
1577                        ret = -ENOENT;
1578                        goto error_brelse;
1579                }
1580        }
1581
1582        if (device->is_tgtdev_for_dev_replace) {
1583                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1584                goto error_brelse;
1585        }
1586
1587        if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1588                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1589                goto error_brelse;
1590        }
1591
1592        if (device->writeable) {
1593                lock_chunks(root);
1594                list_del_init(&device->dev_alloc_list);
1595                unlock_chunks(root);
1596                root->fs_info->fs_devices->rw_devices--;
1597                clear_super = true;
1598        }
1599
1600        mutex_unlock(&uuid_mutex);
1601        ret = btrfs_shrink_device(device, 0);
1602        mutex_lock(&uuid_mutex);
1603        if (ret)
1604                goto error_undo;
1605
1606        /*
1607         * TODO: the superblock still includes this device in its num_devices
1608         * counter although write_all_supers() is not locked out. This
1609         * could give a filesystem state which requires a degraded mount.
1610         */
1611        ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1612        if (ret)
1613                goto error_undo;
1614
1615        spin_lock(&root->fs_info->free_chunk_lock);
1616        root->fs_info->free_chunk_space = device->total_bytes -
1617                device->bytes_used;
1618        spin_unlock(&root->fs_info->free_chunk_lock);
1619
1620        device->in_fs_metadata = 0;
1621        btrfs_scrub_cancel_dev(root->fs_info, device);
1622
1623        /*
1624         * the device list mutex makes sure that we don't change
1625         * the device list while someone else is writing out all
1626         * the device supers. Whoever is writing all supers, should
1627         * lock the device list mutex before getting the number of
1628         * devices in the super block (super_copy). Conversely,
1629         * whoever updates the number of devices in the super block
1630         * (super_copy) should hold the device list mutex.
1631         */
1632
1633        cur_devices = device->fs_devices;
1634        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1635        list_del_rcu(&device->dev_list);
1636
1637        device->fs_devices->num_devices--;
1638        device->fs_devices->total_devices--;
1639
1640        if (device->missing)
1641                root->fs_info->fs_devices->missing_devices--;
1642
1643        next_device = list_entry(root->fs_info->fs_devices->devices.next,
1644                                 struct btrfs_device, dev_list);
1645        if (device->bdev == root->fs_info->sb->s_bdev)
1646                root->fs_info->sb->s_bdev = next_device->bdev;
1647        if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1648                root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1649
1650        if (device->bdev)
1651                device->fs_devices->open_devices--;
1652
1653        call_rcu(&device->rcu, free_device);
1654
1655        num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1656        btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1657        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1658
1659        if (cur_devices->open_devices == 0) {
1660                struct btrfs_fs_devices *fs_devices;
1661                fs_devices = root->fs_info->fs_devices;
1662                while (fs_devices) {
1663                        if (fs_devices->seed == cur_devices)
1664                                break;
1665                        fs_devices = fs_devices->seed;
1666                }
1667                fs_devices->seed = cur_devices->seed;
1668                cur_devices->seed = NULL;
1669                lock_chunks(root);
1670                __btrfs_close_devices(cur_devices);
1671                unlock_chunks(root);
1672                free_fs_devices(cur_devices);
1673        }
1674
1675        root->fs_info->num_tolerated_disk_barrier_failures =
1676                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1677
1678        /*
1679         * at this point, the device is zero sized.  We want to
1680         * remove it from the devices list and zero out the old super
1681         */
1682        if (clear_super && disk_super) {
1683                /* make sure this device isn't detected as part of
1684                 * the FS anymore
1685                 */
1686                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1687                set_buffer_dirty(bh);
1688                sync_dirty_buffer(bh);
1689        }
1690
1691        ret = 0;
1692
1693        /* Notify udev that device has changed */
1694        if (bdev)
1695                btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1696
1697error_brelse:
1698        brelse(bh);
1699        if (bdev)
1700                blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1701out:
1702        mutex_unlock(&uuid_mutex);
1703        return ret;
1704error_undo:
1705        if (device->writeable) {
1706                lock_chunks(root);
1707                list_add(&device->dev_alloc_list,
1708                         &root->fs_info->fs_devices->alloc_list);
1709                unlock_chunks(root);
1710                root->fs_info->fs_devices->rw_devices++;
1711        }
1712        goto error_brelse;
1713}
1714
1715void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1716                                 struct btrfs_device *srcdev)
1717{
1718        WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1719
1720        list_del_rcu(&srcdev->dev_list);
1721        list_del_rcu(&srcdev->dev_alloc_list);
1722        fs_info->fs_devices->num_devices--;
1723        if (srcdev->missing) {
1724                fs_info->fs_devices->missing_devices--;
1725                fs_info->fs_devices->rw_devices++;
1726        }
1727        if (srcdev->can_discard)
1728                fs_info->fs_devices->num_can_discard--;
1729        if (srcdev->bdev) {
1730                fs_info->fs_devices->open_devices--;
1731
1732                /* zero out the old super */
1733                btrfs_scratch_superblock(srcdev);
1734        }
1735
1736        call_rcu(&srcdev->rcu, free_device);
1737}
1738
1739void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1740                                      struct btrfs_device *tgtdev)
1741{
1742        struct btrfs_device *next_device;
1743
1744        WARN_ON(!tgtdev);
1745        mutex_lock(&fs_info->fs_devices->device_list_mutex);
1746        if (tgtdev->bdev) {
1747                btrfs_scratch_superblock(tgtdev);
1748                fs_info->fs_devices->open_devices--;
1749        }
1750        fs_info->fs_devices->num_devices--;
1751        if (tgtdev->can_discard)
1752                fs_info->fs_devices->num_can_discard++;
1753
1754        next_device = list_entry(fs_info->fs_devices->devices.next,
1755                                 struct btrfs_device, dev_list);
1756        if (tgtdev->bdev == fs_info->sb->s_bdev)
1757                fs_info->sb->s_bdev = next_device->bdev;
1758        if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1759                fs_info->fs_devices->latest_bdev = next_device->bdev;
1760        list_del_rcu(&tgtdev->dev_list);
1761
1762        call_rcu(&tgtdev->rcu, free_device);
1763
1764        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1765}
1766
1767static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1768                                     struct btrfs_device **device)
1769{
1770        int ret = 0;
1771        struct btrfs_super_block *disk_super;
1772        u64 devid;
1773        u8 *dev_uuid;
1774        struct block_device *bdev;
1775        struct buffer_head *bh;
1776
1777        *device = NULL;
1778        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1779                                    root->fs_info->bdev_holder, 0, &bdev, &bh);
1780        if (ret)
1781                return ret;
1782        disk_super = (struct btrfs_super_block *)bh->b_data;
1783        devid = btrfs_stack_device_id(&disk_super->dev_item);
1784        dev_uuid = disk_super->dev_item.uuid;
1785        *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1786                                    disk_super->fsid);
1787        brelse(bh);
1788        if (!*device)
1789                ret = -ENOENT;
1790        blkdev_put(bdev, FMODE_READ);
1791        return ret;
1792}
1793
1794int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1795                                         char *device_path,
1796                                         struct btrfs_device **device)
1797{
1798        *device = NULL;
1799        if (strcmp(device_path, "missing") == 0) {
1800                struct list_head *devices;
1801                struct btrfs_device *tmp;
1802
1803                devices = &root->fs_info->fs_devices->devices;
1804                /*
1805                 * It is safe to read the devices since the volume_mutex
1806                 * is held by the caller.
1807                 */
1808                list_for_each_entry(tmp, devices, dev_list) {
1809                        if (tmp->in_fs_metadata && !tmp->bdev) {
1810                                *device = tmp;
1811                                break;
1812                        }
1813                }
1814
1815                if (!*device) {
1816                        pr_err("btrfs: no missing device found\n");
1817                        return -ENOENT;
1818                }
1819
1820                return 0;
1821        } else {
1822                return btrfs_find_device_by_path(root, device_path, device);
1823        }
1824}
1825
1826/*
1827 * does all the dirty work required for changing file system's UUID.
1828 */
1829static int btrfs_prepare_sprout(struct btrfs_root *root)
1830{
1831        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1832        struct btrfs_fs_devices *old_devices;
1833        struct btrfs_fs_devices *seed_devices;
1834        struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1835        struct btrfs_device *device;
1836        u64 super_flags;
1837
1838        BUG_ON(!mutex_is_locked(&uuid_mutex));
1839        if (!fs_devices->seeding)
1840                return -EINVAL;
1841
1842        seed_devices = __alloc_fs_devices();
1843        if (IS_ERR(seed_devices))
1844                return PTR_ERR(seed_devices);
1845
1846        old_devices = clone_fs_devices(fs_devices);
1847        if (IS_ERR(old_devices)) {
1848                kfree(seed_devices);
1849                return PTR_ERR(old_devices);
1850        }
1851
1852        list_add(&old_devices->list, &fs_uuids);
1853
1854        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1855        seed_devices->opened = 1;
1856        INIT_LIST_HEAD(&seed_devices->devices);
1857        INIT_LIST_HEAD(&seed_devices->alloc_list);
1858        mutex_init(&seed_devices->device_list_mutex);
1859
1860        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1861        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1862                              synchronize_rcu);
1863
1864        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1865        list_for_each_entry(device, &seed_devices->devices, dev_list) {
1866                device->fs_devices = seed_devices;
1867        }
1868
1869        fs_devices->seeding = 0;
1870        fs_devices->num_devices = 0;
1871        fs_devices->open_devices = 0;
1872        fs_devices->total_devices = 0;
1873        fs_devices->seed = seed_devices;
1874
1875        generate_random_uuid(fs_devices->fsid);
1876        memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1877        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1878        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1879
1880        super_flags = btrfs_super_flags(disk_super) &
1881                      ~BTRFS_SUPER_FLAG_SEEDING;
1882        btrfs_set_super_flags(disk_super, super_flags);
1883
1884        return 0;
1885}
1886
1887/*
1888 * strore the expected generation for seed devices in device items.
1889 */
1890static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1891                               struct btrfs_root *root)
1892{
1893        struct btrfs_path *path;
1894        struct extent_buffer *leaf;
1895        struct btrfs_dev_item *dev_item;
1896        struct btrfs_device *device;
1897        struct btrfs_key key;
1898        u8 fs_uuid[BTRFS_UUID_SIZE];
1899        u8 dev_uuid[BTRFS_UUID_SIZE];
1900        u64 devid;
1901        int ret;
1902
1903        path = btrfs_alloc_path();
1904        if (!path)
1905                return -ENOMEM;
1906
1907        root = root->fs_info->chunk_root;
1908        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1909        key.offset = 0;
1910        key.type = BTRFS_DEV_ITEM_KEY;
1911
1912        while (1) {
1913                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1914                if (ret < 0)
1915                        goto error;
1916
1917                leaf = path->nodes[0];
1918next_slot:
1919                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1920                        ret = btrfs_next_leaf(root, path);
1921                        if (ret > 0)
1922                                break;
1923                        if (ret < 0)
1924                                goto error;
1925                        leaf = path->nodes[0];
1926                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1927                        btrfs_release_path(path);
1928                        continue;
1929                }
1930
1931                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1932                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1933                    key.type != BTRFS_DEV_ITEM_KEY)
1934                        break;
1935
1936                dev_item = btrfs_item_ptr(leaf, path->slots[0],
1937                                          struct btrfs_dev_item);
1938                devid = btrfs_device_id(leaf, dev_item);
1939                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
1940                                   BTRFS_UUID_SIZE);
1941                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
1942                                   BTRFS_UUID_SIZE);
1943                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1944                                           fs_uuid);
1945                BUG_ON(!device); /* Logic error */
1946
1947                if (device->fs_devices->seeding) {
1948                        btrfs_set_device_generation(leaf, dev_item,
1949                                                    device->generation);
1950                        btrfs_mark_buffer_dirty(leaf);
1951                }
1952
1953                path->slots[0]++;
1954                goto next_slot;
1955        }
1956        ret = 0;
1957error:
1958        btrfs_free_path(path);
1959        return ret;
1960}
1961
1962int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1963{
1964        struct request_queue *q;
1965        struct btrfs_trans_handle *trans;
1966        struct btrfs_device *device;
1967        struct block_device *bdev;
1968        struct list_head *devices;
1969        struct super_block *sb = root->fs_info->sb;
1970        struct rcu_string *name;
1971        u64 total_bytes;
1972        int seeding_dev = 0;
1973        int ret = 0;
1974
1975        if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1976                return -EROFS;
1977
1978        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1979                                  root->fs_info->bdev_holder);
1980        if (IS_ERR(bdev))
1981                return PTR_ERR(bdev);
1982
1983        if (root->fs_info->fs_devices->seeding) {
1984                seeding_dev = 1;
1985                down_write(&sb->s_umount);
1986                mutex_lock(&uuid_mutex);
1987        }
1988
1989        filemap_write_and_wait(bdev->bd_inode->i_mapping);
1990
1991        devices = &root->fs_info->fs_devices->devices;
1992
1993        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1994        list_for_each_entry(device, devices, dev_list) {
1995                if (device->bdev == bdev) {
1996                        ret = -EEXIST;
1997                        mutex_unlock(
1998                                &root->fs_info->fs_devices->device_list_mutex);
1999                        goto error;
2000                }
2001        }
2002        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2003
2004        device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2005        if (IS_ERR(device)) {
2006                /* we can safely leave the fs_devices entry around */
2007                ret = PTR_ERR(device);
2008                goto error;
2009        }
2010
2011        name = rcu_string_strdup(device_path, GFP_NOFS);
2012        if (!name) {
2013                kfree(device);
2014                ret = -ENOMEM;
2015                goto error;
2016        }
2017        rcu_assign_pointer(device->name, name);
2018
2019        trans = btrfs_start_transaction(root, 0);
2020        if (IS_ERR(trans)) {
2021                rcu_string_free(device->name);
2022                kfree(device);
2023                ret = PTR_ERR(trans);
2024                goto error;
2025        }
2026
2027        lock_chunks(root);
2028
2029        q = bdev_get_queue(bdev);
2030        if (blk_queue_discard(q))
2031                device->can_discard = 1;
2032        device->writeable = 1;
2033        device->generation = trans->transid;
2034        device->io_width = root->sectorsize;
2035        device->io_align = root->sectorsize;
2036        device->sector_size = root->sectorsize;
2037        device->total_bytes = i_size_read(bdev->bd_inode);
2038        device->disk_total_bytes = device->total_bytes;
2039        device->dev_root = root->fs_info->dev_root;
2040        device->bdev = bdev;
2041        device->in_fs_metadata = 1;
2042        device->is_tgtdev_for_dev_replace = 0;
2043        device->mode = FMODE_EXCL;
2044        set_blocksize(device->bdev, 4096);
2045
2046        if (seeding_dev) {
2047                sb->s_flags &= ~MS_RDONLY;
2048                ret = btrfs_prepare_sprout(root);
2049                BUG_ON(ret); /* -ENOMEM */
2050        }
2051
2052        device->fs_devices = root->fs_info->fs_devices;
2053
2054        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2055        list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2056        list_add(&device->dev_alloc_list,
2057                 &root->fs_info->fs_devices->alloc_list);
2058        root->fs_info->fs_devices->num_devices++;
2059        root->fs_info->fs_devices->open_devices++;
2060        root->fs_info->fs_devices->rw_devices++;
2061        root->fs_info->fs_devices->total_devices++;
2062        if (device->can_discard)
2063                root->fs_info->fs_devices->num_can_discard++;
2064        root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2065
2066        spin_lock(&root->fs_info->free_chunk_lock);
2067        root->fs_info->free_chunk_space += device->total_bytes;
2068        spin_unlock(&root->fs_info->free_chunk_lock);
2069
2070        if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2071                root->fs_info->fs_devices->rotating = 1;
2072
2073        total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2074        btrfs_set_super_total_bytes(root->fs_info->super_copy,
2075                                    total_bytes + device->total_bytes);
2076
2077        total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2078        btrfs_set_super_num_devices(root->fs_info->super_copy,
2079                                    total_bytes + 1);
2080        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2081
2082        if (seeding_dev) {
2083                ret = init_first_rw_device(trans, root, device);
2084                if (ret) {
2085                        btrfs_abort_transaction(trans, root, ret);
2086                        goto error_trans;
2087                }
2088                ret = btrfs_finish_sprout(trans, root);
2089                if (ret) {
2090                        btrfs_abort_transaction(trans, root, ret);
2091                        goto error_trans;
2092                }
2093        } else {
2094                ret = btrfs_add_device(trans, root, device);
2095                if (ret) {
2096                        btrfs_abort_transaction(trans, root, ret);
2097                        goto error_trans;
2098                }
2099        }
2100
2101        /*
2102         * we've got more storage, clear any full flags on the space
2103         * infos
2104         */
2105        btrfs_clear_space_info_full(root->fs_info);
2106
2107        unlock_chunks(root);
2108        root->fs_info->num_tolerated_disk_barrier_failures =
2109                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2110        ret = btrfs_commit_transaction(trans, root);
2111
2112        if (seeding_dev) {
2113                mutex_unlock(&uuid_mutex);
2114                up_write(&sb->s_umount);
2115
2116                if (ret) /* transaction commit */
2117                        return ret;
2118
2119                ret = btrfs_relocate_sys_chunks(root);
2120                if (ret < 0)
2121                        btrfs_error(root->fs_info, ret,
2122                                    "Failed to relocate sys chunks after "
2123                                    "device initialization. This can be fixed "
2124                                    "using the \"btrfs balance\" command.");
2125                trans = btrfs_attach_transaction(root);
2126                if (IS_ERR(trans)) {
2127                        if (PTR_ERR(trans) == -ENOENT)
2128                                return 0;
2129                        return PTR_ERR(trans);
2130                }
2131                ret = btrfs_commit_transaction(trans, root);
2132        }
2133
2134        return ret;
2135
2136error_trans:
2137        unlock_chunks(root);
2138        btrfs_end_transaction(trans, root);
2139        rcu_string_free(device->name);
2140        kfree(device);
2141error:
2142        blkdev_put(bdev, FMODE_EXCL);
2143        if (seeding_dev) {
2144                mutex_unlock(&uuid_mutex);
2145                up_write(&sb->s_umount);
2146        }
2147        return ret;
2148}
2149
2150int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2151                                  struct btrfs_device **device_out)
2152{
2153        struct request_queue *q;
2154        struct btrfs_device *device;
2155        struct block_device *bdev;
2156        struct btrfs_fs_info *fs_info = root->fs_info;
2157        struct list_head *devices;
2158        struct rcu_string *name;
2159        u64 devid = BTRFS_DEV_REPLACE_DEVID;
2160        int ret = 0;
2161
2162        *device_out = NULL;
2163        if (fs_info->fs_devices->seeding)
2164                return -EINVAL;
2165
2166        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2167                                  fs_info->bdev_holder);
2168        if (IS_ERR(bdev))
2169                return PTR_ERR(bdev);
2170
2171        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2172
2173        devices = &fs_info->fs_devices->devices;
2174        list_for_each_entry(device, devices, dev_list) {
2175                if (device->bdev == bdev) {
2176                        ret = -EEXIST;
2177                        goto error;
2178                }
2179        }
2180
2181        device = btrfs_alloc_device(NULL, &devid, NULL);
2182        if (IS_ERR(device)) {
2183                ret = PTR_ERR(device);
2184                goto error;
2185        }
2186
2187        name = rcu_string_strdup(device_path, GFP_NOFS);
2188        if (!name) {
2189                kfree(device);
2190                ret = -ENOMEM;
2191                goto error;
2192        }
2193        rcu_assign_pointer(device->name, name);
2194
2195        q = bdev_get_queue(bdev);
2196        if (blk_queue_discard(q))
2197                device->can_discard = 1;
2198        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2199        device->writeable = 1;
2200        device->generation = 0;
2201        device->io_width = root->sectorsize;
2202        device->io_align = root->sectorsize;
2203        device->sector_size = root->sectorsize;
2204        device->total_bytes = i_size_read(bdev->bd_inode);
2205        device->disk_total_bytes = device->total_bytes;
2206        device->dev_root = fs_info->dev_root;
2207        device->bdev = bdev;
2208        device->in_fs_metadata = 1;
2209        device->is_tgtdev_for_dev_replace = 1;
2210        device->mode = FMODE_EXCL;
2211        set_blocksize(device->bdev, 4096);
2212        device->fs_devices = fs_info->fs_devices;
2213        list_add(&device->dev_list, &fs_info->fs_devices->devices);
2214        fs_info->fs_devices->num_devices++;
2215        fs_info->fs_devices->open_devices++;
2216        if (device->can_discard)
2217                fs_info->fs_devices->num_can_discard++;
2218        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2219
2220        *device_out = device;
2221        return ret;
2222
2223error:
2224        blkdev_put(bdev, FMODE_EXCL);
2225        return ret;
2226}
2227
2228void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2229                                              struct btrfs_device *tgtdev)
2230{
2231        WARN_ON(fs_info->fs_devices->rw_devices == 0);
2232        tgtdev->io_width = fs_info->dev_root->sectorsize;
2233        tgtdev->io_align = fs_info->dev_root->sectorsize;
2234        tgtdev->sector_size = fs_info->dev_root->sectorsize;
2235        tgtdev->dev_root = fs_info->dev_root;
2236        tgtdev->in_fs_metadata = 1;
2237}
2238
2239static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2240                                        struct btrfs_device *device)
2241{
2242        int ret;
2243        struct btrfs_path *path;
2244        struct btrfs_root *root;
2245        struct btrfs_dev_item *dev_item;
2246        struct extent_buffer *leaf;
2247        struct btrfs_key key;
2248
2249        root = device->dev_root->fs_info->chunk_root;
2250
2251        path = btrfs_alloc_path();
2252        if (!path)
2253                return -ENOMEM;
2254
2255        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2256        key.type = BTRFS_DEV_ITEM_KEY;
2257        key.offset = device->devid;
2258
2259        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2260        if (ret < 0)
2261                goto out;
2262
2263        if (ret > 0) {
2264                ret = -ENOENT;
2265                goto out;
2266        }
2267
2268        leaf = path->nodes[0];
2269        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2270
2271        btrfs_set_device_id(leaf, dev_item, device->devid);
2272        btrfs_set_device_type(leaf, dev_item, device->type);
2273        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2274        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2275        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2276        btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2277        btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2278        btrfs_mark_buffer_dirty(leaf);
2279
2280out:
2281        btrfs_free_path(path);
2282        return ret;
2283}
2284
2285static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2286                      struct btrfs_device *device, u64 new_size)
2287{
2288        struct btrfs_super_block *super_copy =
2289                device->dev_root->fs_info->super_copy;
2290        u64 old_total = btrfs_super_total_bytes(super_copy);
2291        u64 diff = new_size - device->total_bytes;
2292
2293        if (!device->writeable)
2294                return -EACCES;
2295        if (new_size <= device->total_bytes ||
2296            device->is_tgtdev_for_dev_replace)
2297                return -EINVAL;
2298
2299        btrfs_set_super_total_bytes(super_copy, old_total + diff);
2300        device->fs_devices->total_rw_bytes += diff;
2301
2302        device->total_bytes = new_size;
2303        device->disk_total_bytes = new_size;
2304        btrfs_clear_space_info_full(device->dev_root->fs_info);
2305
2306        return btrfs_update_device(trans, device);
2307}
2308
2309int btrfs_grow_device(struct btrfs_trans_handle *trans,
2310                      struct btrfs_device *device, u64 new_size)
2311{
2312        int ret;
2313        lock_chunks(device->dev_root);
2314        ret = __btrfs_grow_device(trans, device, new_size);
2315        unlock_chunks(device->dev_root);
2316        return ret;
2317}
2318
2319static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2320                            struct btrfs_root *root,
2321                            u64 chunk_tree, u64 chunk_objectid,
2322                            u64 chunk_offset)
2323{
2324        int ret;
2325        struct btrfs_path *path;
2326        struct btrfs_key key;
2327
2328        root = root->fs_info->chunk_root;
2329        path = btrfs_alloc_path();
2330        if (!path)
2331                return -ENOMEM;
2332
2333        key.objectid = chunk_objectid;
2334        key.offset = chunk_offset;
2335        key.type = BTRFS_CHUNK_ITEM_KEY;
2336
2337        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2338        if (ret < 0)
2339                goto out;
2340        else if (ret > 0) { /* Logic error or corruption */
2341                btrfs_error(root->fs_info, -ENOENT,
2342                            "Failed lookup while freeing chunk.");
2343                ret = -ENOENT;
2344                goto out;
2345        }
2346
2347        ret = btrfs_del_item(trans, root, path);
2348        if (ret < 0)
2349                btrfs_error(root->fs_info, ret,
2350                            "Failed to delete chunk item.");
2351out:
2352        btrfs_free_path(path);
2353        return ret;
2354}
2355
2356static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2357                        chunk_offset)
2358{
2359        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2360        struct btrfs_disk_key *disk_key;
2361        struct btrfs_chunk *chunk;
2362        u8 *ptr;
2363        int ret = 0;
2364        u32 num_stripes;
2365        u32 array_size;
2366        u32 len = 0;
2367        u32 cur;
2368        struct btrfs_key key;
2369
2370        array_size = btrfs_super_sys_array_size(super_copy);
2371
2372        ptr = super_copy->sys_chunk_array;
2373        cur = 0;
2374
2375        while (cur < array_size) {
2376                disk_key = (struct btrfs_disk_key *)ptr;
2377                btrfs_disk_key_to_cpu(&key, disk_key);
2378
2379                len = sizeof(*disk_key);
2380
2381                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2382                        chunk = (struct btrfs_chunk *)(ptr + len);
2383                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2384                        len += btrfs_chunk_item_size(num_stripes);
2385                } else {
2386                        ret = -EIO;
2387                        break;
2388                }
2389                if (key.objectid == chunk_objectid &&
2390                    key.offset == chunk_offset) {
2391                        memmove(ptr, ptr + len, array_size - (cur + len));
2392                        array_size -= len;
2393                        btrfs_set_super_sys_array_size(super_copy, array_size);
2394                } else {
2395                        ptr += len;
2396                        cur += len;
2397                }
2398        }
2399        return ret;
2400}
2401
2402static int btrfs_relocate_chunk(struct btrfs_root *root,
2403                         u64 chunk_tree, u64 chunk_objectid,
2404                         u64 chunk_offset)
2405{
2406        struct extent_map_tree *em_tree;
2407        struct btrfs_root *extent_root;
2408        struct btrfs_trans_handle *trans;
2409        struct extent_map *em;
2410        struct map_lookup *map;
2411        int ret;
2412        int i;
2413
2414        root = root->fs_info->chunk_root;
2415        extent_root = root->fs_info->extent_root;
2416        em_tree = &root->fs_info->mapping_tree.map_tree;
2417
2418        ret = btrfs_can_relocate(extent_root, chunk_offset);
2419        if (ret)
2420                return -ENOSPC;
2421
2422        /* step one, relocate all the extents inside this chunk */
2423        ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2424        if (ret)
2425                return ret;
2426
2427        trans = btrfs_start_transaction(root, 0);
2428        if (IS_ERR(trans)) {
2429                ret = PTR_ERR(trans);
2430                btrfs_std_error(root->fs_info, ret);
2431                return ret;
2432        }
2433
2434        lock_chunks(root);
2435
2436        /*
2437         * step two, delete the device extents and the
2438         * chunk tree entries
2439         */
2440        read_lock(&em_tree->lock);
2441        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2442        read_unlock(&em_tree->lock);
2443
2444        BUG_ON(!em || em->start > chunk_offset ||
2445               em->start + em->len < chunk_offset);
2446        map = (struct map_lookup *)em->bdev;
2447
2448        for (i = 0; i < map->num_stripes; i++) {
2449                ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2450                                            map->stripes[i].physical);
2451                BUG_ON(ret);
2452
2453                if (map->stripes[i].dev) {
2454                        ret = btrfs_update_device(trans, map->stripes[i].dev);
2455                        BUG_ON(ret);
2456                }
2457        }
2458        ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2459                               chunk_offset);
2460
2461        BUG_ON(ret);
2462
2463        trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2464
2465        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2466                ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2467                BUG_ON(ret);
2468        }
2469
2470        ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2471        BUG_ON(ret);
2472
2473        write_lock(&em_tree->lock);
2474        remove_extent_mapping(em_tree, em);
2475        write_unlock(&em_tree->lock);
2476
2477        kfree(map);
2478        em->bdev = NULL;
2479
2480        /* once for the tree */
2481        free_extent_map(em);
2482        /* once for us */
2483        free_extent_map(em);
2484
2485        unlock_chunks(root);
2486        btrfs_end_transaction(trans, root);
2487        return 0;
2488}
2489
2490static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2491{
2492        struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2493        struct btrfs_path *path;
2494        struct extent_buffer *leaf;
2495        struct btrfs_chunk *chunk;
2496        struct btrfs_key key;
2497        struct btrfs_key found_key;
2498        u64 chunk_tree = chunk_root->root_key.objectid;
2499        u64 chunk_type;
2500        bool retried = false;
2501        int failed = 0;
2502        int ret;
2503
2504        path = btrfs_alloc_path();
2505        if (!path)
2506                return -ENOMEM;
2507
2508again:
2509        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2510        key.offset = (u64)-1;
2511        key.type = BTRFS_CHUNK_ITEM_KEY;
2512
2513        while (1) {
2514                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2515                if (ret < 0)
2516                        goto error;
2517                BUG_ON(ret == 0); /* Corruption */
2518
2519                ret = btrfs_previous_item(chunk_root, path, key.objectid,
2520                                          key.type);
2521                if (ret < 0)
2522                        goto error;
2523                if (ret > 0)
2524                        break;
2525
2526                leaf = path->nodes[0];
2527                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2528
2529                chunk = btrfs_item_ptr(leaf, path->slots[0],
2530                                       struct btrfs_chunk);
2531                chunk_type = btrfs_chunk_type(leaf, chunk);
2532                btrfs_release_path(path);
2533
2534                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2535                        ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2536                                                   found_key.objectid,
2537                                                   found_key.offset);
2538                        if (ret == -ENOSPC)
2539                                failed++;
2540                        else if (ret)
2541                                BUG();
2542                }
2543
2544                if (found_key.offset == 0)
2545                        break;
2546                key.offset = found_key.offset - 1;
2547        }
2548        ret = 0;
2549        if (failed && !retried) {
2550                failed = 0;
2551                retried = true;
2552                goto again;
2553        } else if (failed && retried) {
2554                WARN_ON(1);
2555                ret = -ENOSPC;
2556        }
2557error:
2558        btrfs_free_path(path);
2559        return ret;
2560}
2561
2562static int insert_balance_item(struct btrfs_root *root,
2563                               struct btrfs_balance_control *bctl)
2564{
2565        struct btrfs_trans_handle *trans;
2566        struct btrfs_balance_item *item;
2567        struct btrfs_disk_balance_args disk_bargs;
2568        struct btrfs_path *path;
2569        struct extent_buffer *leaf;
2570        struct btrfs_key key;
2571        int ret, err;
2572
2573        path = btrfs_alloc_path();
2574        if (!path)
2575                return -ENOMEM;
2576
2577        trans = btrfs_start_transaction(root, 0);
2578        if (IS_ERR(trans)) {
2579                btrfs_free_path(path);
2580                return PTR_ERR(trans);
2581        }
2582
2583        key.objectid = BTRFS_BALANCE_OBJECTID;
2584        key.type = BTRFS_BALANCE_ITEM_KEY;
2585        key.offset = 0;
2586
2587        ret = btrfs_insert_empty_item(trans, root, path, &key,
2588                                      sizeof(*item));
2589        if (ret)
2590                goto out;
2591
2592        leaf = path->nodes[0];
2593        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2594
2595        memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2596
2597        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2598        btrfs_set_balance_data(leaf, item, &disk_bargs);
2599        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2600        btrfs_set_balance_meta(leaf, item, &disk_bargs);
2601        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2602        btrfs_set_balance_sys(leaf, item, &disk_bargs);
2603
2604        btrfs_set_balance_flags(leaf, item, bctl->flags);
2605
2606        btrfs_mark_buffer_dirty(leaf);
2607out:
2608        btrfs_free_path(path);
2609        err = btrfs_commit_transaction(trans, root);
2610        if (err && !ret)
2611                ret = err;
2612        return ret;
2613}
2614
2615static int del_balance_item(struct btrfs_root *root)
2616{
2617        struct btrfs_trans_handle *trans;
2618        struct btrfs_path *path;
2619        struct btrfs_key key;
2620        int ret, err;
2621
2622        path = btrfs_alloc_path();
2623        if (!path)
2624                return -ENOMEM;
2625
2626        trans = btrfs_start_transaction(root, 0);
2627        if (IS_ERR(trans)) {
2628                btrfs_free_path(path);
2629                return PTR_ERR(trans);
2630        }
2631
2632        key.objectid = BTRFS_BALANCE_OBJECTID;
2633        key.type = BTRFS_BALANCE_ITEM_KEY;
2634        key.offset = 0;
2635
2636        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2637        if (ret < 0)
2638                goto out;
2639        if (ret > 0) {
2640                ret = -ENOENT;
2641                goto out;
2642        }
2643
2644        ret = btrfs_del_item(trans, root, path);
2645out:
2646        btrfs_free_path(path);
2647        err = btrfs_commit_transaction(trans, root);
2648        if (err && !ret)
2649                ret = err;
2650        return ret;
2651}
2652
2653/*
2654 * This is a heuristic used to reduce the number of chunks balanced on
2655 * resume after balance was interrupted.
2656 */
2657static void update_balance_args(struct btrfs_balance_control *bctl)
2658{
2659        /*
2660         * Turn on soft mode for chunk types that were being converted.
2661         */
2662        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2663                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2664        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2665                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2666        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2667                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2668
2669        /*
2670         * Turn on usage filter if is not already used.  The idea is
2671         * that chunks that we have already balanced should be
2672         * reasonably full.  Don't do it for chunks that are being
2673         * converted - that will keep us from relocating unconverted
2674         * (albeit full) chunks.
2675         */
2676        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2677            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2678                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2679                bctl->data.usage = 90;
2680        }
2681        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2682            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2683                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2684                bctl->sys.usage = 90;
2685        }
2686        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2687            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2688                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2689                bctl->meta.usage = 90;
2690        }
2691}
2692
2693/*
2694 * Should be called with both balance and volume mutexes held to
2695 * serialize other volume operations (add_dev/rm_dev/resize) with
2696 * restriper.  Same goes for unset_balance_control.
2697 */
2698static void set_balance_control(struct btrfs_balance_control *bctl)
2699{
2700        struct btrfs_fs_info *fs_info = bctl->fs_info;
2701
2702        BUG_ON(fs_info->balance_ctl);
2703
2704        spin_lock(&fs_info->balance_lock);
2705        fs_info->balance_ctl = bctl;
2706        spin_unlock(&fs_info->balance_lock);
2707}
2708
2709static void unset_balance_control(struct btrfs_fs_info *fs_info)
2710{
2711        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2712
2713        BUG_ON(!fs_info->balance_ctl);
2714
2715        spin_lock(&fs_info->balance_lock);
2716        fs_info->balance_ctl = NULL;
2717        spin_unlock(&fs_info->balance_lock);
2718
2719        kfree(bctl);
2720}
2721
2722/*
2723 * Balance filters.  Return 1 if chunk should be filtered out
2724 * (should not be balanced).
2725 */
2726static int chunk_profiles_filter(u64 chunk_type,
2727                                 struct btrfs_balance_args *bargs)
2728{
2729        chunk_type = chunk_to_extended(chunk_type) &
2730                                BTRFS_EXTENDED_PROFILE_MASK;
2731
2732        if (bargs->profiles & chunk_type)
2733                return 0;
2734
2735        return 1;
2736}
2737
2738static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2739                              struct btrfs_balance_args *bargs)
2740{
2741        struct btrfs_block_group_cache *cache;
2742        u64 chunk_used, user_thresh;
2743        int ret = 1;
2744
2745        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2746        chunk_used = btrfs_block_group_used(&cache->item);
2747
2748        if (bargs->usage == 0)
2749                user_thresh = 1;
2750        else if (bargs->usage > 100)
2751                user_thresh = cache->key.offset;
2752        else
2753                user_thresh = div_factor_fine(cache->key.offset,
2754                                              bargs->usage);
2755
2756        if (chunk_used < user_thresh)
2757                ret = 0;
2758
2759        btrfs_put_block_group(cache);
2760        return ret;
2761}
2762
2763static int chunk_devid_filter(struct extent_buffer *leaf,
2764                              struct btrfs_chunk *chunk,
2765                              struct btrfs_balance_args *bargs)
2766{
2767        struct btrfs_stripe *stripe;
2768        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2769        int i;
2770
2771        for (i = 0; i < num_stripes; i++) {
2772                stripe = btrfs_stripe_nr(chunk, i);
2773                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2774                        return 0;
2775        }
2776
2777        return 1;
2778}
2779
2780/* [pstart, pend) */
2781static int chunk_drange_filter(struct extent_buffer *leaf,
2782                               struct btrfs_chunk *chunk,
2783                               u64 chunk_offset,
2784                               struct btrfs_balance_args *bargs)
2785{
2786        struct btrfs_stripe *stripe;
2787        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2788        u64 stripe_offset;
2789        u64 stripe_length;
2790        int factor;
2791        int i;
2792
2793        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2794                return 0;
2795
2796        if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2797             BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2798                factor = num_stripes / 2;
2799        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2800                factor = num_stripes - 1;
2801        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2802                factor = num_stripes - 2;
2803        } else {
2804                factor = num_stripes;
2805        }
2806
2807        for (i = 0; i < num_stripes; i++) {
2808                stripe = btrfs_stripe_nr(chunk, i);
2809                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2810                        continue;
2811
2812                stripe_offset = btrfs_stripe_offset(leaf, stripe);
2813                stripe_length = btrfs_chunk_length(leaf, chunk);
2814                do_div(stripe_length, factor);
2815
2816                if (stripe_offset < bargs->pend &&
2817                    stripe_offset + stripe_length > bargs->pstart)
2818                        return 0;
2819        }
2820
2821        return 1;
2822}
2823
2824/* [vstart, vend) */
2825static int chunk_vrange_filter(struct extent_buffer *leaf,
2826                               struct btrfs_chunk *chunk,
2827                               u64 chunk_offset,
2828                               struct btrfs_balance_args *bargs)
2829{
2830        if (chunk_offset < bargs->vend &&
2831            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2832                /* at least part of the chunk is inside this vrange */
2833                return 0;
2834
2835        return 1;
2836}
2837
2838static int chunk_soft_convert_filter(u64 chunk_type,
2839                                     struct btrfs_balance_args *bargs)
2840{
2841        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2842                return 0;
2843
2844        chunk_type = chunk_to_extended(chunk_type) &
2845                                BTRFS_EXTENDED_PROFILE_MASK;
2846
2847        if (bargs->target == chunk_type)
2848                return 1;
2849
2850        return 0;
2851}
2852
2853static int should_balance_chunk(struct btrfs_root *root,
2854                                struct extent_buffer *leaf,
2855                                struct btrfs_chunk *chunk, u64 chunk_offset)
2856{
2857        struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2858        struct btrfs_balance_args *bargs = NULL;
2859        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2860
2861        /* type filter */
2862        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2863              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2864                return 0;
2865        }
2866
2867        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2868                bargs = &bctl->data;
2869        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2870                bargs = &bctl->sys;
2871        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2872                bargs = &bctl->meta;
2873
2874        /* profiles filter */
2875        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2876            chunk_profiles_filter(chunk_type, bargs)) {
2877                return 0;
2878        }
2879
2880        /* usage filter */
2881        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2882            chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2883                return 0;
2884        }
2885
2886        /* devid filter */
2887        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2888            chunk_devid_filter(leaf, chunk, bargs)) {
2889                return 0;
2890        }
2891
2892        /* drange filter, makes sense only with devid filter */
2893        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2894            chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2895                return 0;
2896        }
2897
2898        /* vrange filter */
2899        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2900            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2901                return 0;
2902        }
2903
2904        /* soft profile changing mode */
2905        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2906            chunk_soft_convert_filter(chunk_type, bargs)) {
2907                return 0;
2908        }
2909
2910        return 1;
2911}
2912
2913static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2914{
2915        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2916        struct btrfs_root *chunk_root = fs_info->chunk_root;
2917        struct btrfs_root *dev_root = fs_info->dev_root;
2918        struct list_head *devices;
2919        struct btrfs_device *device;
2920        u64 old_size;
2921        u64 size_to_free;
2922        struct btrfs_chunk *chunk;
2923        struct btrfs_path *path;
2924        struct btrfs_key key;
2925        struct btrfs_key found_key;
2926        struct btrfs_trans_handle *trans;
2927        struct extent_buffer *leaf;
2928        int slot;
2929        int ret;
2930        int enospc_errors = 0;
2931        bool counting = true;
2932
2933        /* step one make some room on all the devices */
2934        devices = &fs_info->fs_devices->devices;
2935        list_for_each_entry(device, devices, dev_list) {
2936                old_size = device->total_bytes;
2937                size_to_free = div_factor(old_size, 1);
2938                size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2939                if (!device->writeable ||
2940                    device->total_bytes - device->bytes_used > size_to_free ||
2941                    device->is_tgtdev_for_dev_replace)
2942                        continue;
2943
2944                ret = btrfs_shrink_device(device, old_size - size_to_free);
2945                if (ret == -ENOSPC)
2946                        break;
2947                BUG_ON(ret);
2948
2949                trans = btrfs_start_transaction(dev_root, 0);
2950                BUG_ON(IS_ERR(trans));
2951
2952                ret = btrfs_grow_device(trans, device, old_size);
2953                BUG_ON(ret);
2954
2955                btrfs_end_transaction(trans, dev_root);
2956        }
2957
2958        /* step two, relocate all the chunks */
2959        path = btrfs_alloc_path();
2960        if (!path) {
2961                ret = -ENOMEM;
2962                goto error;
2963        }
2964
2965        /* zero out stat counters */
2966        spin_lock(&fs_info->balance_lock);
2967        memset(&bctl->stat, 0, sizeof(bctl->stat));
2968        spin_unlock(&fs_info->balance_lock);
2969again:
2970        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2971        key.offset = (u64)-1;
2972        key.type = BTRFS_CHUNK_ITEM_KEY;
2973
2974        while (1) {
2975                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2976                    atomic_read(&fs_info->balance_cancel_req)) {
2977                        ret = -ECANCELED;
2978                        goto error;
2979                }
2980
2981                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2982                if (ret < 0)
2983                        goto error;
2984
2985                /*
2986                 * this shouldn't happen, it means the last relocate
2987                 * failed
2988                 */
2989                if (ret == 0)
2990                        BUG(); /* FIXME break ? */
2991
2992                ret = btrfs_previous_item(chunk_root, path, 0,
2993                                          BTRFS_CHUNK_ITEM_KEY);
2994                if (ret) {
2995                        ret = 0;
2996                        break;
2997                }
2998
2999                leaf = path->nodes[0];
3000                slot = path->slots[0];
3001                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3002
3003                if (found_key.objectid != key.objectid)
3004                        break;
3005
3006                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3007
3008                if (!counting) {
3009                        spin_lock(&fs_info->balance_lock);
3010                        bctl->stat.considered++;
3011                        spin_unlock(&fs_info->balance_lock);
3012                }
3013
3014                ret = should_balance_chunk(chunk_root, leaf, chunk,
3015                                           found_key.offset);
3016                btrfs_release_path(path);
3017                if (!ret)
3018                        goto loop;
3019
3020                if (counting) {
3021                        spin_lock(&fs_info->balance_lock);
3022                        bctl->stat.expected++;
3023                        spin_unlock(&fs_info->balance_lock);
3024                        goto loop;
3025                }
3026
3027                ret = btrfs_relocate_chunk(chunk_root,
3028                                           chunk_root->root_key.objectid,
3029                                           found_key.objectid,
3030                                           found_key.offset);
3031                if (ret && ret != -ENOSPC)
3032                        goto error;
3033                if (ret == -ENOSPC) {
3034                        enospc_errors++;
3035                } else {
3036                        spin_lock(&fs_info->balance_lock);
3037                        bctl->stat.completed++;
3038                        spin_unlock(&fs_info->balance_lock);
3039                }
3040loop:
3041                if (found_key.offset == 0)
3042                        break;
3043                key.offset = found_key.offset - 1;
3044        }
3045
3046        if (counting) {
3047                btrfs_release_path(path);
3048                counting = false;
3049                goto again;
3050        }
3051error:
3052        btrfs_free_path(path);
3053        if (enospc_errors) {
3054                printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3055                       enospc_errors);
3056                if (!ret)
3057                        ret = -ENOSPC;
3058        }
3059
3060        return ret;
3061}
3062
3063/**
3064 * alloc_profile_is_valid - see if a given profile is valid and reduced
3065 * @flags: profile to validate
3066 * @extended: if true @flags is treated as an extended profile
3067 */
3068static int alloc_profile_is_valid(u64 flags, int extended)
3069{
3070        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3071                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3072
3073        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3074
3075        /* 1) check that all other bits are zeroed */
3076        if (flags & ~mask)
3077                return 0;
3078
3079        /* 2) see if profile is reduced */
3080        if (flags == 0)
3081                return !extended; /* "0" is valid for usual profiles */
3082
3083        /* true if exactly one bit set */
3084        return (flags & (flags - 1)) == 0;
3085}
3086
3087static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3088{
3089        /* cancel requested || normal exit path */
3090        return atomic_read(&fs_info->balance_cancel_req) ||
3091                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3092                 atomic_read(&fs_info->balance_cancel_req) == 0);
3093}
3094
3095static void __cancel_balance(struct btrfs_fs_info *fs_info)
3096{
3097        int ret;
3098
3099        unset_balance_control(fs_info);
3100        ret = del_balance_item(fs_info->tree_root);
3101        if (ret)
3102                btrfs_std_error(fs_info, ret);
3103
3104        atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3105}
3106
3107/*
3108 * Should be called with both balance and volume mutexes held
3109 */
3110int btrfs_balance(struct btrfs_balance_control *bctl,
3111                  struct btrfs_ioctl_balance_args *bargs)
3112{
3113        struct btrfs_fs_info *fs_info = bctl->fs_info;
3114        u64 allowed;
3115        int mixed = 0;
3116        int ret;
3117        u64 num_devices;
3118        unsigned seq;
3119
3120        if (btrfs_fs_closing(fs_info) ||
3121            atomic_read(&fs_info->balance_pause_req) ||
3122            atomic_read(&fs_info->balance_cancel_req)) {
3123                ret = -EINVAL;
3124                goto out;
3125        }
3126
3127        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3128        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3129                mixed = 1;
3130
3131        /*
3132         * In case of mixed groups both data and meta should be picked,
3133         * and identical options should be given for both of them.
3134         */
3135        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3136        if (mixed && (bctl->flags & allowed)) {
3137                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3138                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3139                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3140                        printk(KERN_ERR "btrfs: with mixed groups data and "
3141                               "metadata balance options must be the same\n");
3142                        ret = -EINVAL;
3143                        goto out;
3144                }
3145        }
3146
3147        num_devices = fs_info->fs_devices->num_devices;
3148        btrfs_dev_replace_lock(&fs_info->dev_replace);
3149        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3150                BUG_ON(num_devices < 1);
3151                num_devices--;
3152        }
3153        btrfs_dev_replace_unlock(&fs_info->dev_replace);
3154        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3155        if (num_devices == 1)
3156                allowed |= BTRFS_BLOCK_GROUP_DUP;
3157        else if (num_devices > 1)
3158                allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3159        if (num_devices > 2)
3160                allowed |= BTRFS_BLOCK_GROUP_RAID5;
3161        if (num_devices > 3)
3162                allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3163                            BTRFS_BLOCK_GROUP_RAID6);
3164        if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3165            (!alloc_profile_is_valid(bctl->data.target, 1) ||
3166             (bctl->data.target & ~allowed))) {
3167                printk(KERN_ERR "btrfs: unable to start balance with target "
3168                       "data profile %llu\n",
3169                       bctl->data.target);
3170                ret = -EINVAL;
3171                goto out;
3172        }
3173        if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3174            (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3175             (bctl->meta.target & ~allowed))) {
3176                printk(KERN_ERR "btrfs: unable to start balance with target "
3177                       "metadata profile %llu\n",
3178                       bctl->meta.target);
3179                ret = -EINVAL;
3180                goto out;
3181        }
3182        if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3183            (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3184             (bctl->sys.target & ~allowed))) {
3185                printk(KERN_ERR "btrfs: unable to start balance with target "
3186                       "system profile %llu\n",
3187                       bctl->sys.target);
3188                ret = -EINVAL;
3189                goto out;
3190        }
3191
3192        /* allow dup'ed data chunks only in mixed mode */
3193        if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3194            (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3195                printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3196                ret = -EINVAL;
3197                goto out;
3198        }
3199
3200        /* allow to reduce meta or sys integrity only if force set */
3201        allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3202                        BTRFS_BLOCK_GROUP_RAID10 |
3203                        BTRFS_BLOCK_GROUP_RAID5 |
3204                        BTRFS_BLOCK_GROUP_RAID6;
3205        do {
3206                seq = read_seqbegin(&fs_info->profiles_lock);
3207
3208                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3209                     (fs_info->avail_system_alloc_bits & allowed) &&
3210                     !(bctl->sys.target & allowed)) ||
3211                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3212                     (fs_info->avail_metadata_alloc_bits & allowed) &&
3213                     !(bctl->meta.target & allowed))) {
3214                        if (bctl->flags & BTRFS_BALANCE_FORCE) {
3215                                printk(KERN_INFO "btrfs: force reducing metadata "
3216                                       "integrity\n");
3217                        } else {
3218                                printk(KERN_ERR "btrfs: balance will reduce metadata "
3219                                       "integrity, use force if you want this\n");
3220                                ret = -EINVAL;
3221                                goto out;
3222                        }
3223                }
3224        } while (read_seqretry(&fs_info->profiles_lock, seq));
3225
3226        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3227                int num_tolerated_disk_barrier_failures;
3228                u64 target = bctl->sys.target;
3229
3230                num_tolerated_disk_barrier_failures =
3231                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3232                if (num_tolerated_disk_barrier_failures > 0 &&
3233                    (target &
3234                     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3235                      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3236                        num_tolerated_disk_barrier_failures = 0;
3237                else if (num_tolerated_disk_barrier_failures > 1 &&
3238                         (target &
3239                          (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3240                        num_tolerated_disk_barrier_failures = 1;
3241
3242                fs_info->num_tolerated_disk_barrier_failures =
3243                        num_tolerated_disk_barrier_failures;
3244        }
3245
3246        ret = insert_balance_item(fs_info->tree_root, bctl);
3247        if (ret && ret != -EEXIST)
3248                goto out;
3249
3250        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3251                BUG_ON(ret == -EEXIST);
3252                set_balance_control(bctl);
3253        } else {
3254                BUG_ON(ret != -EEXIST);
3255                spin_lock(&fs_info->balance_lock);
3256                update_balance_args(bctl);
3257                spin_unlock(&fs_info->balance_lock);
3258        }
3259
3260        atomic_inc(&fs_info->balance_running);
3261        mutex_unlock(&fs_info->balance_mutex);
3262
3263        ret = __btrfs_balance(fs_info);
3264
3265        mutex_lock(&fs_info->balance_mutex);
3266        atomic_dec(&fs_info->balance_running);
3267
3268        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3269                fs_info->num_tolerated_disk_barrier_failures =
3270                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3271        }
3272
3273        if (bargs) {
3274                memset(bargs, 0, sizeof(*bargs));
3275                update_ioctl_balance_args(fs_info, 0, bargs);
3276        }
3277
3278        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3279            balance_need_close(fs_info)) {
3280                __cancel_balance(fs_info);
3281        }
3282
3283        wake_up(&fs_info->balance_wait_q);
3284
3285        return ret;
3286out:
3287        if (bctl->flags & BTRFS_BALANCE_RESUME)
3288                __cancel_balance(fs_info);
3289        else {
3290                kfree(bctl);
3291                atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3292        }
3293        return ret;
3294}
3295
3296static int balance_kthread(void *data)
3297{
3298        struct btrfs_fs_info *fs_info = data;
3299        int ret = 0;
3300
3301        mutex_lock(&fs_info->volume_mutex);
3302        mutex_lock(&fs_info->balance_mutex);
3303
3304        if (fs_info->balance_ctl) {
3305                printk(KERN_INFO "btrfs: continuing balance\n");
3306                ret = btrfs_balance(fs_info->balance_ctl, NULL);
3307        }
3308
3309        mutex_unlock(&fs_info->balance_mutex);
3310        mutex_unlock(&fs_info->volume_mutex);
3311
3312        return ret;
3313}
3314
3315int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3316{
3317        struct task_struct *tsk;
3318
3319        spin_lock(&fs_info->balance_lock);
3320        if (!fs_info->balance_ctl) {
3321                spin_unlock(&fs_info->balance_lock);
3322                return 0;
3323        }
3324        spin_unlock(&fs_info->balance_lock);
3325
3326        if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3327                printk(KERN_INFO "btrfs: force skipping balance\n");
3328                return 0;
3329        }
3330
3331        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3332        return PTR_ERR_OR_ZERO(tsk);
3333}
3334
3335int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3336{
3337        struct btrfs_balance_control *bctl;
3338        struct btrfs_balance_item *item;
3339        struct btrfs_disk_balance_args disk_bargs;
3340        struct btrfs_path *path;
3341        struct extent_buffer *leaf;
3342        struct btrfs_key key;
3343        int ret;
3344
3345        path = btrfs_alloc_path();
3346        if (!path)
3347                return -ENOMEM;
3348
3349        key.objectid = BTRFS_BALANCE_OBJECTID;
3350        key.type = BTRFS_BALANCE_ITEM_KEY;
3351        key.offset = 0;
3352
3353        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3354        if (ret < 0)
3355                goto out;
3356        if (ret > 0) { /* ret = -ENOENT; */
3357                ret = 0;
3358                goto out;
3359        }
3360
3361        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3362        if (!bctl) {
3363                ret = -ENOMEM;
3364                goto out;
3365        }
3366
3367        leaf = path->nodes[0];
3368        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3369
3370        bctl->fs_info = fs_info;
3371        bctl->flags = btrfs_balance_flags(leaf, item);
3372        bctl->flags |= BTRFS_BALANCE_RESUME;
3373
3374        btrfs_balance_data(leaf, item, &disk_bargs);
3375        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3376        btrfs_balance_meta(leaf, item, &disk_bargs);
3377        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3378        btrfs_balance_sys(leaf, item, &disk_bargs);
3379        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3380
3381        WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3382
3383        mutex_lock(&fs_info->volume_mutex);
3384        mutex_lock(&fs_info->balance_mutex);
3385
3386        set_balance_control(bctl);
3387
3388        mutex_unlock(&fs_info->balance_mutex);
3389        mutex_unlock(&fs_info->volume_mutex);
3390out:
3391        btrfs_free_path(path);
3392        return ret;
3393}
3394
3395int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3396{
3397        int ret = 0;
3398
3399        mutex_lock(&fs_info->balance_mutex);
3400        if (!fs_info->balance_ctl) {
3401                mutex_unlock(&fs_info->balance_mutex);
3402                return -ENOTCONN;
3403        }
3404
3405        if (atomic_read(&fs_info->balance_running)) {
3406                atomic_inc(&fs_info->balance_pause_req);
3407                mutex_unlock(&fs_info->balance_mutex);
3408
3409                wait_event(fs_info->balance_wait_q,
3410                           atomic_read(&fs_info->balance_running) == 0);
3411
3412                mutex_lock(&fs_info->balance_mutex);
3413                /* we are good with balance_ctl ripped off from under us */
3414                BUG_ON(atomic_read(&fs_info->balance_running));
3415                atomic_dec(&fs_info->balance_pause_req);
3416        } else {
3417                ret = -ENOTCONN;
3418        }
3419
3420        mutex_unlock(&fs_info->balance_mutex);
3421        return ret;
3422}
3423
3424int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3425{
3426        mutex_lock(&fs_info->balance_mutex);
3427        if (!fs_info->balance_ctl) {
3428                mutex_unlock(&fs_info->balance_mutex);
3429                return -ENOTCONN;
3430        }
3431
3432        atomic_inc(&fs_info->balance_cancel_req);
3433        /*
3434         * if we are running just wait and return, balance item is
3435         * deleted in btrfs_balance in this case
3436         */
3437        if (atomic_read(&fs_info->balance_running)) {
3438                mutex_unlock(&fs_info->balance_mutex);
3439                wait_event(fs_info->balance_wait_q,
3440                           atomic_read(&fs_info->balance_running) == 0);
3441                mutex_lock(&fs_info->balance_mutex);
3442        } else {
3443                /* __cancel_balance needs volume_mutex */
3444                mutex_unlock(&fs_info->balance_mutex);
3445                mutex_lock(&fs_info->volume_mutex);
3446                mutex_lock(&fs_info->balance_mutex);
3447
3448                if (fs_info->balance_ctl)
3449                        __cancel_balance(fs_info);
3450
3451                mutex_unlock(&fs_info->volume_mutex);
3452        }
3453
3454        BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3455        atomic_dec(&fs_info->balance_cancel_req);
3456        mutex_unlock(&fs_info->balance_mutex);
3457        return 0;
3458}
3459
3460static int btrfs_uuid_scan_kthread(void *data)
3461{
3462        struct btrfs_fs_info *fs_info = data;
3463        struct btrfs_root *root = fs_info->tree_root;
3464        struct btrfs_key key;
3465        struct btrfs_key max_key;
3466        struct btrfs_path *path = NULL;
3467        int ret = 0;
3468        struct extent_buffer *eb;
3469        int slot;
3470        struct btrfs_root_item root_item;
3471        u32 item_size;
3472        struct btrfs_trans_handle *trans = NULL;
3473
3474        path = btrfs_alloc_path();
3475        if (!path) {
3476                ret = -ENOMEM;
3477                goto out;
3478        }
3479
3480        key.objectid = 0;
3481        key.type = BTRFS_ROOT_ITEM_KEY;
3482        key.offset = 0;
3483
3484        max_key.objectid = (u64)-1;
3485        max_key.type = BTRFS_ROOT_ITEM_KEY;
3486        max_key.offset = (u64)-1;
3487
3488        path->keep_locks = 1;
3489
3490        while (1) {
3491                ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3492                if (ret) {
3493                        if (ret > 0)
3494                                ret = 0;
3495                        break;
3496                }
3497
3498                if (key.type != BTRFS_ROOT_ITEM_KEY ||
3499                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3500                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3501                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3502                        goto skip;
3503
3504                eb = path->nodes[0];
3505                slot = path->slots[0];
3506                item_size = btrfs_item_size_nr(eb, slot);
3507                if (item_size < sizeof(root_item))
3508                        goto skip;
3509
3510                read_extent_buffer(eb, &root_item,
3511                                   btrfs_item_ptr_offset(eb, slot),
3512                                   (int)sizeof(root_item));
3513                if (btrfs_root_refs(&root_item) == 0)
3514                        goto skip;
3515
3516                if (!btrfs_is_empty_uuid(root_item.uuid) ||
3517                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3518                        if (trans)
3519                                goto update_tree;
3520
3521                        btrfs_release_path(path);
3522                        /*
3523                         * 1 - subvol uuid item
3524                         * 1 - received_subvol uuid item
3525                         */
3526                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3527                        if (IS_ERR(trans)) {
3528                                ret = PTR_ERR(trans);
3529                                break;
3530                        }
3531                        continue;
3532                } else {
3533                        goto skip;
3534                }
3535update_tree:
3536                if (!btrfs_is_empty_uuid(root_item.uuid)) {
3537                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3538                                                  root_item.uuid,
3539                                                  BTRFS_UUID_KEY_SUBVOL,
3540                                                  key.objectid);
3541                        if (ret < 0) {
3542                                pr_warn("btrfs: uuid_tree_add failed %d\n",
3543                                        ret);
3544                                break;
3545                        }
3546                }
3547
3548                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3549                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3550                                                  root_item.received_uuid,
3551                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3552                                                  key.objectid);
3553                        if (ret < 0) {
3554                                pr_warn("btrfs: uuid_tree_add failed %d\n",
3555                                        ret);
3556                                break;
3557                        }
3558                }
3559
3560skip:
3561                if (trans) {
3562                        ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3563                        trans = NULL;
3564                        if (ret)
3565                                break;
3566                }
3567
3568                btrfs_release_path(path);
3569                if (key.offset < (u64)-1) {
3570                        key.offset++;
3571                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3572                        key.offset = 0;
3573                        key.type = BTRFS_ROOT_ITEM_KEY;
3574                } else if (key.objectid < (u64)-1) {
3575                        key.offset = 0;
3576                        key.type = BTRFS_ROOT_ITEM_KEY;
3577                        key.objectid++;
3578                } else {
3579                        break;
3580                }
3581                cond_resched();
3582        }
3583
3584out:
3585        btrfs_free_path(path);
3586        if (trans && !IS_ERR(trans))
3587                btrfs_end_transaction(trans, fs_info->uuid_root);
3588        if (ret)
3589                pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
3590        else
3591                fs_info->update_uuid_tree_gen = 1;
3592        up(&fs_info->uuid_tree_rescan_sem);
3593        return 0;
3594}
3595
3596/*
3597 * Callback for btrfs_uuid_tree_iterate().
3598 * returns:
3599 * 0    check succeeded, the entry is not outdated.
3600 * < 0  if an error occured.
3601 * > 0  if the check failed, which means the caller shall remove the entry.
3602 */
3603static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3604                                       u8 *uuid, u8 type, u64 subid)
3605{
3606        struct btrfs_key key;
3607        int ret = 0;
3608        struct btrfs_root *subvol_root;
3609
3610        if (type != BTRFS_UUID_KEY_SUBVOL &&
3611            type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3612                goto out;
3613
3614        key.objectid = subid;
3615        key.type = BTRFS_ROOT_ITEM_KEY;
3616        key.offset = (u64)-1;
3617        subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3618        if (IS_ERR(subvol_root)) {
3619                ret = PTR_ERR(subvol_root);
3620                if (ret == -ENOENT)
3621                        ret = 1;
3622                goto out;
3623        }
3624
3625        switch (type) {
3626        case BTRFS_UUID_KEY_SUBVOL:
3627                if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3628                        ret = 1;
3629                break;
3630        case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3631                if (memcmp(uuid, subvol_root->root_item.received_uuid,
3632                           BTRFS_UUID_SIZE))
3633                        ret = 1;
3634                break;
3635        }
3636
3637out:
3638        return ret;
3639}
3640
3641static int btrfs_uuid_rescan_kthread(void *data)
3642{
3643        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3644        int ret;
3645
3646        /*
3647         * 1st step is to iterate through the existing UUID tree and
3648         * to delete all entries that contain outdated data.
3649         * 2nd step is to add all missing entries to the UUID tree.
3650         */
3651        ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3652        if (ret < 0) {
3653                pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3654                up(&fs_info->uuid_tree_rescan_sem);
3655                return ret;
3656        }
3657        return btrfs_uuid_scan_kthread(data);
3658}
3659
3660int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3661{
3662        struct btrfs_trans_handle *trans;
3663        struct btrfs_root *tree_root = fs_info->tree_root;
3664        struct btrfs_root *uuid_root;
3665        struct task_struct *task;
3666        int ret;
3667
3668        /*
3669         * 1 - root node
3670         * 1 - root item
3671         */
3672        trans = btrfs_start_transaction(tree_root, 2);
3673        if (IS_ERR(trans))
3674                return PTR_ERR(trans);
3675
3676        uuid_root = btrfs_create_tree(trans, fs_info,
3677                                      BTRFS_UUID_TREE_OBJECTID);
3678        if (IS_ERR(uuid_root)) {
3679                btrfs_abort_transaction(trans, tree_root,
3680                                        PTR_ERR(uuid_root));
3681                return PTR_ERR(uuid_root);
3682        }
3683
3684        fs_info->uuid_root = uuid_root;
3685
3686        ret = btrfs_commit_transaction(trans, tree_root);
3687        if (ret)
3688                return ret;
3689
3690        down(&fs_info->uuid_tree_rescan_sem);
3691        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3692        if (IS_ERR(task)) {
3693                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3694                pr_warn("btrfs: failed to start uuid_scan task\n");
3695                up(&fs_info->uuid_tree_rescan_sem);
3696                return PTR_ERR(task);
3697        }
3698
3699        return 0;
3700}
3701
3702int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3703{
3704        struct task_struct *task;
3705
3706        down(&fs_info->uuid_tree_rescan_sem);
3707        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3708        if (IS_ERR(task)) {
3709                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3710                pr_warn("btrfs: failed to start uuid_rescan task\n");
3711                up(&fs_info->uuid_tree_rescan_sem);
3712                return PTR_ERR(task);
3713        }
3714
3715        return 0;
3716}
3717
3718/*
3719 * shrinking a device means finding all of the device extents past
3720 * the new size, and then following the back refs to the chunks.
3721 * The chunk relocation code actually frees the device extent
3722 */
3723int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3724{
3725        struct btrfs_trans_handle *trans;
3726        struct btrfs_root *root = device->dev_root;
3727        struct btrfs_dev_extent *dev_extent = NULL;
3728        struct btrfs_path *path;
3729        u64 length;
3730        u64 chunk_tree;
3731        u64 chunk_objectid;
3732        u64 chunk_offset;
3733        int ret;
3734        int slot;
3735        int failed = 0;
3736        bool retried = false;
3737        struct extent_buffer *l;
3738        struct btrfs_key key;
3739        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3740        u64 old_total = btrfs_super_total_bytes(super_copy);
3741        u64 old_size = device->total_bytes;
3742        u64 diff = device->total_bytes - new_size;
3743
3744        if (device->is_tgtdev_for_dev_replace)
3745                return -EINVAL;
3746
3747        path = btrfs_alloc_path();
3748        if (!path)
3749                return -ENOMEM;
3750
3751        path->reada = 2;
3752
3753        lock_chunks(root);
3754
3755        device->total_bytes = new_size;
3756        if (device->writeable) {
3757                device->fs_devices->total_rw_bytes -= diff;
3758                spin_lock(&root->fs_info->free_chunk_lock);
3759                root->fs_info->free_chunk_space -= diff;
3760                spin_unlock(&root->fs_info->free_chunk_lock);
3761        }
3762        unlock_chunks(root);
3763
3764again:
3765        key.objectid = device->devid;
3766        key.offset = (u64)-1;
3767        key.type = BTRFS_DEV_EXTENT_KEY;
3768
3769        do {
3770                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3771                if (ret < 0)
3772                        goto done;
3773
3774                ret = btrfs_previous_item(root, path, 0, key.type);
3775                if (ret < 0)
3776                        goto done;
3777                if (ret) {
3778                        ret = 0;
3779                        btrfs_release_path(path);
3780                        break;
3781                }
3782
3783                l = path->nodes[0];
3784                slot = path->slots[0];
3785                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3786
3787                if (key.objectid != device->devid) {
3788                        btrfs_release_path(path);
3789                        break;
3790                }
3791
3792                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3793                length = btrfs_dev_extent_length(l, dev_extent);
3794
3795                if (key.offset + length <= new_size) {
3796                        btrfs_release_path(path);
3797                        break;
3798                }
3799
3800                chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3801                chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3802                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3803                btrfs_release_path(path);
3804
3805                ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3806                                           chunk_offset);
3807                if (ret && ret != -ENOSPC)
3808                        goto done;
3809                if (ret == -ENOSPC)
3810                        failed++;
3811        } while (key.offset-- > 0);
3812
3813        if (failed && !retried) {
3814                failed = 0;
3815                retried = true;
3816                goto again;
3817        } else if (failed && retried) {
3818                ret = -ENOSPC;
3819                lock_chunks(root);
3820
3821                device->total_bytes = old_size;
3822                if (device->writeable)
3823                        device->fs_devices->total_rw_bytes += diff;
3824                spin_lock(&root->fs_info->free_chunk_lock);
3825                root->fs_info->free_chunk_space += diff;
3826                spin_unlock(&root->fs_info->free_chunk_lock);
3827                unlock_chunks(root);
3828                goto done;
3829        }
3830
3831        /* Shrinking succeeded, else we would be at "done". */
3832        trans = btrfs_start_transaction(root, 0);
3833        if (IS_ERR(trans)) {
3834                ret = PTR_ERR(trans);
3835                goto done;
3836        }
3837
3838        lock_chunks(root);
3839
3840        device->disk_total_bytes = new_size;
3841        /* Now btrfs_update_device() will change the on-disk size. */
3842        ret = btrfs_update_device(trans, device);
3843        if (ret) {
3844                unlock_chunks(root);
3845                btrfs_end_transaction(trans, root);
3846                goto done;
3847        }
3848        WARN_ON(diff > old_total);
3849        btrfs_set_super_total_bytes(super_copy, old_total - diff);
3850        unlock_chunks(root);
3851        btrfs_end_transaction(trans, root);
3852done:
3853        btrfs_free_path(path);
3854        return ret;
3855}
3856
3857static int btrfs_add_system_chunk(struct btrfs_root *root,
3858                           struct btrfs_key *key,
3859                           struct btrfs_chunk *chunk, int item_size)
3860{
3861        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3862        struct btrfs_disk_key disk_key;
3863        u32 array_size;
3864        u8 *ptr;
3865
3866        array_size = btrfs_super_sys_array_size(super_copy);
3867        if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3868                return -EFBIG;
3869
3870        ptr = super_copy->sys_chunk_array + array_size;
3871        btrfs_cpu_key_to_disk(&disk_key, key);
3872        memcpy(ptr, &disk_key, sizeof(disk_key));
3873        ptr += sizeof(disk_key);
3874        memcpy(ptr, chunk, item_size);
3875        item_size += sizeof(disk_key);
3876        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3877        return 0;
3878}
3879
3880/*
3881 * sort the devices in descending order by max_avail, total_avail
3882 */
3883static int btrfs_cmp_device_info(const void *a, const void *b)
3884{
3885        const struct btrfs_device_info *di_a = a;
3886        const struct btrfs_device_info *di_b = b;
3887
3888        if (di_a->max_avail > di_b->max_avail)
3889                return -1;
3890        if (di_a->max_avail < di_b->max_avail)
3891                return 1;
3892        if (di_a->total_avail > di_b->total_avail)
3893                return -1;
3894        if (di_a->total_avail < di_b->total_avail)
3895                return 1;
3896        return 0;
3897}
3898
3899static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3900        [BTRFS_RAID_RAID10] = {
3901                .sub_stripes    = 2,
3902                .dev_stripes    = 1,
3903                .devs_max       = 0,    /* 0 == as many as possible */
3904                .devs_min       = 4,
3905                .devs_increment = 2,
3906                .ncopies        = 2,
3907        },
3908        [BTRFS_RAID_RAID1] = {
3909                .sub_stripes    = 1,
3910                .dev_stripes    = 1,
3911                .devs_max       = 2,
3912                .devs_min       = 2,
3913                .devs_increment = 2,
3914                .ncopies        = 2,
3915        },
3916        [BTRFS_RAID_DUP] = {
3917                .sub_stripes    = 1,
3918                .dev_stripes    = 2,
3919                .devs_max       = 1,
3920                .devs_min       = 1,
3921                .devs_increment = 1,
3922                .ncopies        = 2,
3923        },
3924        [BTRFS_RAID_RAID0] = {
3925                .sub_stripes    = 1,
3926                .dev_stripes    = 1,
3927                .devs_max       = 0,
3928                .devs_min       = 2,
3929                .devs_increment = 1,
3930                .ncopies        = 1,
3931        },
3932        [BTRFS_RAID_SINGLE] = {
3933                .sub_stripes    = 1,
3934                .dev_stripes    = 1,
3935                .devs_max       = 1,
3936                .devs_min       = 1,
3937                .devs_increment = 1,
3938                .ncopies        = 1,
3939        },
3940        [BTRFS_RAID_RAID5] = {
3941                .sub_stripes    = 1,
3942                .dev_stripes    = 1,
3943                .devs_max       = 0,
3944                .devs_min       = 2,
3945                .devs_increment = 1,
3946                .ncopies        = 2,
3947        },
3948        [BTRFS_RAID_RAID6] = {
3949                .sub_stripes    = 1,
3950                .dev_stripes    = 1,
3951                .devs_max       = 0,
3952                .devs_min       = 3,
3953                .devs_increment = 1,
3954                .ncopies        = 3,
3955        },
3956};
3957
3958static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3959{
3960        /* TODO allow them to set a preferred stripe size */
3961        return 64 * 1024;
3962}
3963
3964static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3965{
3966        if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3967                return;
3968
3969        btrfs_set_fs_incompat(info, RAID56);
3970}
3971
3972static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3973                               struct btrfs_root *extent_root, u64 start,
3974                               u64 type)
3975{
3976        struct btrfs_fs_info *info = extent_root->fs_info;
3977        struct btrfs_fs_devices *fs_devices = info->fs_devices;
3978        struct list_head *cur;
3979        struct map_lookup *map = NULL;
3980        struct extent_map_tree *em_tree;
3981        struct extent_map *em;
3982        struct btrfs_device_info *devices_info = NULL;
3983        u64 total_avail;
3984        int num_stripes;        /* total number of stripes to allocate */
3985        int data_stripes;       /* number of stripes that count for
3986                                   block group size */
3987        int sub_stripes;        /* sub_stripes info for map */
3988        int dev_stripes;        /* stripes per dev */
3989        int devs_max;           /* max devs to use */
3990        int devs_min;           /* min devs needed */
3991        int devs_increment;     /* ndevs has to be a multiple of this */
3992        int ncopies;            /* how many copies to data has */
3993        int ret;
3994        u64 max_stripe_size;
3995        u64 max_chunk_size;
3996        u64 stripe_size;
3997        u64 num_bytes;
3998        u64 raid_stripe_len = BTRFS_STRIPE_LEN;
3999        int ndevs;
4000        int i;
4001        int j;
4002        int index;
4003
4004        BUG_ON(!alloc_profile_is_valid(type, 0));
4005
4006        if (list_empty(&fs_devices->alloc_list))
4007                return -ENOSPC;
4008
4009        index = __get_raid_index(type);
4010
4011        sub_stripes = btrfs_raid_array[index].sub_stripes;
4012        dev_stripes = btrfs_raid_array[index].dev_stripes;
4013        devs_max = btrfs_raid_array[index].devs_max;
4014        devs_min = btrfs_raid_array[index].devs_min;
4015        devs_increment = btrfs_raid_array[index].devs_increment;
4016        ncopies = btrfs_raid_array[index].ncopies;
4017
4018        if (type & BTRFS_BLOCK_GROUP_DATA) {
4019                max_stripe_size = 1024 * 1024 * 1024;
4020                max_chunk_size = 10 * max_stripe_size;
4021        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4022                /* for larger filesystems, use larger metadata chunks */
4023                if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4024                        max_stripe_size = 1024 * 1024 * 1024;
4025                else
4026                        max_stripe_size = 256 * 1024 * 1024;
4027                max_chunk_size = max_stripe_size;
4028        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4029                max_stripe_size = 32 * 1024 * 1024;
4030                max_chunk_size = 2 * max_stripe_size;
4031        } else {
4032                printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4033                       type);
4034                BUG_ON(1);
4035        }
4036
4037        /* we don't want a chunk larger than 10% of writeable space */
4038        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4039                             max_chunk_size);
4040
4041        devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4042                               GFP_NOFS);
4043        if (!devices_info)
4044                return -ENOMEM;
4045
4046        cur = fs_devices->alloc_list.next;
4047
4048        /*
4049         * in the first pass through the devices list, we gather information
4050         * about the available holes on each device.
4051         */
4052        ndevs = 0;
4053        while (cur != &fs_devices->alloc_list) {
4054                struct btrfs_device *device;
4055                u64 max_avail;
4056                u64 dev_offset;
4057
4058                device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4059
4060                cur = cur->next;
4061
4062                if (!device->writeable) {
4063                        WARN(1, KERN_ERR
4064                               "btrfs: read-only device in alloc_list\n");
4065                        continue;
4066                }
4067
4068                if (!device->in_fs_metadata ||
4069                    device->is_tgtdev_for_dev_replace)
4070                        continue;
4071
4072                if (device->total_bytes > device->bytes_used)
4073                        total_avail = device->total_bytes - device->bytes_used;
4074                else
4075                        total_avail = 0;
4076
4077                /* If there is no space on this device, skip it. */
4078                if (total_avail == 0)
4079                        continue;
4080
4081                ret = find_free_dev_extent(trans, device,
4082                                           max_stripe_size * dev_stripes,
4083                                           &dev_offset, &max_avail);
4084                if (ret && ret != -ENOSPC)
4085                        goto error;
4086
4087                if (ret == 0)
4088                        max_avail = max_stripe_size * dev_stripes;
4089
4090                if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4091                        continue;
4092
4093                if (ndevs == fs_devices->rw_devices) {
4094                        WARN(1, "%s: found more than %llu devices\n",
4095                             __func__, fs_devices->rw_devices);
4096                        break;
4097                }
4098                devices_info[ndevs].dev_offset = dev_offset;
4099                devices_info[ndevs].max_avail = max_avail;
4100                devices_info[ndevs].total_avail = total_avail;
4101                devices_info[ndevs].dev = device;
4102                ++ndevs;
4103        }
4104
4105        /*
4106         * now sort the devices by hole size / available space
4107         */
4108        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4109             btrfs_cmp_device_info, NULL);
4110
4111        /* round down to number of usable stripes */
4112        ndevs -= ndevs % devs_increment;
4113
4114        if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4115                ret = -ENOSPC;
4116                goto error;
4117        }
4118
4119        if (devs_max && ndevs > devs_max)
4120                ndevs = devs_max;
4121        /*
4122         * the primary goal is to maximize the number of stripes, so use as many
4123         * devices as possible, even if the stripes are not maximum sized.
4124         */
4125        stripe_size = devices_info[ndevs-1].max_avail;
4126        num_stripes = ndevs * dev_stripes;
4127
4128        /*
4129         * this will have to be fixed for RAID1 and RAID10 over
4130         * more drives
4131         */
4132        data_stripes = num_stripes / ncopies;
4133
4134        if (type & BTRFS_BLOCK_GROUP_RAID5) {
4135                raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4136                                 btrfs_super_stripesize(info->super_copy));
4137                data_stripes = num_stripes - 1;
4138        }
4139        if (type & BTRFS_BLOCK_GROUP_RAID6) {
4140                raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4141                                 btrfs_super_stripesize(info->super_copy));
4142                data_stripes = num_stripes - 2;
4143        }
4144
4145        /*
4146         * Use the number of data stripes to figure out how big this chunk
4147         * is really going to be in terms of logical address space,
4148         * and compare that answer with the max chunk size
4149         */
4150        if (stripe_size * data_stripes > max_chunk_size) {
4151                u64 mask = (1ULL << 24) - 1;
4152                stripe_size = max_chunk_size;
4153                do_div(stripe_size, data_stripes);
4154
4155                /* bump the answer up to a 16MB boundary */
4156                stripe_size = (stripe_size + mask) & ~mask;
4157
4158                /* but don't go higher than the limits we found
4159                 * while searching for free extents
4160                 */
4161                if (stripe_size > devices_info[ndevs-1].max_avail)
4162                        stripe_size = devices_info[ndevs-1].max_avail;
4163        }
4164
4165        do_div(stripe_size, dev_stripes);
4166
4167        /* align to BTRFS_STRIPE_LEN */
4168        do_div(stripe_size, raid_stripe_len);
4169        stripe_size *= raid_stripe_len;
4170
4171        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4172        if (!map) {
4173                ret = -ENOMEM;
4174                goto error;
4175        }
4176        map->num_stripes = num_stripes;
4177
4178        for (i = 0; i < ndevs; ++i) {
4179                for (j = 0; j < dev_stripes; ++j) {
4180                        int s = i * dev_stripes + j;
4181                        map->stripes[s].dev = devices_info[i].dev;
4182                        map->stripes[s].physical = devices_info[i].dev_offset +
4183                                                   j * stripe_size;
4184                }
4185        }
4186        map->sector_size = extent_root->sectorsize;
4187        map->stripe_len = raid_stripe_len;
4188        map->io_align = raid_stripe_len;
4189        map->io_width = raid_stripe_len;
4190        map->type = type;
4191        map->sub_stripes = sub_stripes;
4192
4193        num_bytes = stripe_size * data_stripes;
4194
4195        trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4196
4197        em = alloc_extent_map();
4198        if (!em) {
4199                ret = -ENOMEM;
4200                goto error;
4201        }
4202        em->bdev = (struct block_device *)map;
4203        em->start = start;
4204        em->len = num_bytes;
4205        em->block_start = 0;
4206        em->block_len = em->len;
4207        em->orig_block_len = stripe_size;
4208
4209        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4210        write_lock(&em_tree->lock);
4211        ret = add_extent_mapping(em_tree, em, 0);
4212        if (!ret) {
4213                list_add_tail(&em->list, &trans->transaction->pending_chunks);
4214                atomic_inc(&em->refs);
4215        }
4216        write_unlock(&em_tree->lock);
4217        if (ret) {
4218                free_extent_map(em);
4219                goto error;
4220        }
4221
4222        ret = btrfs_make_block_group(trans, extent_root, 0, type,
4223                                     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4224                                     start, num_bytes);
4225        if (ret)
4226                goto error_del_extent;
4227
4228        free_extent_map(em);
4229        check_raid56_incompat_flag(extent_root->fs_info, type);
4230
4231        kfree(devices_info);
4232        return 0;
4233
4234error_del_extent:
4235        write_lock(&em_tree->lock);
4236        remove_extent_mapping(em_tree, em);
4237        write_unlock(&em_tree->lock);
4238
4239        /* One for our allocation */
4240        free_extent_map(em);
4241        /* One for the tree reference */
4242        free_extent_map(em);
4243error:
4244        kfree(map);
4245        kfree(devices_info);
4246        return ret;
4247}
4248
4249int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4250                                struct btrfs_root *extent_root,
4251                                u64 chunk_offset, u64 chunk_size)
4252{
4253        struct btrfs_key key;
4254        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4255        struct btrfs_device *device;
4256        struct btrfs_chunk *chunk;
4257        struct btrfs_stripe *stripe;
4258        struct extent_map_tree *em_tree;
4259        struct extent_map *em;
4260        struct map_lookup *map;
4261        size_t item_size;
4262        u64 dev_offset;
4263        u64 stripe_size;
4264        int i = 0;
4265        int ret;
4266
4267        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4268        read_lock(&em_tree->lock);
4269        em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4270        read_unlock(&em_tree->lock);
4271
4272        if (!em) {
4273                btrfs_crit(extent_root->fs_info, "unable to find logical "
4274                           "%Lu len %Lu", chunk_offset, chunk_size);
4275                return -EINVAL;
4276        }
4277
4278        if (em->start != chunk_offset || em->len != chunk_size) {
4279                btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4280                          " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4281                          chunk_size, em->start, em->len);
4282                free_extent_map(em);
4283                return -EINVAL;
4284        }
4285
4286        map = (struct map_lookup *)em->bdev;
4287        item_size = btrfs_chunk_item_size(map->num_stripes);
4288        stripe_size = em->orig_block_len;
4289
4290        chunk = kzalloc(item_size, GFP_NOFS);
4291        if (!chunk) {
4292                ret = -ENOMEM;
4293                goto out;
4294        }
4295
4296        for (i = 0; i < map->num_stripes; i++) {
4297                device = map->stripes[i].dev;
4298                dev_offset = map->stripes[i].physical;
4299
4300                device->bytes_used += stripe_size;
4301                ret = btrfs_update_device(trans, device);
4302                if (ret)
4303                        goto out;
4304                ret = btrfs_alloc_dev_extent(trans, device,
4305                                             chunk_root->root_key.objectid,
4306                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4307                                             chunk_offset, dev_offset,
4308                                             stripe_size);
4309                if (ret)
4310                        goto out;
4311        }
4312
4313        spin_lock(&extent_root->fs_info->free_chunk_lock);
4314        extent_root->fs_info->free_chunk_space -= (stripe_size *
4315                                                   map->num_stripes);
4316        spin_unlock(&extent_root->fs_info->free_chunk_lock);
4317
4318        stripe = &chunk->stripe;
4319        for (i = 0; i < map->num_stripes; i++) {
4320                device = map->stripes[i].dev;
4321                dev_offset = map->stripes[i].physical;
4322
4323                btrfs_set_stack_stripe_devid(stripe, device->devid);
4324                btrfs_set_stack_stripe_offset(stripe, dev_offset);
4325                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4326                stripe++;
4327        }
4328
4329        btrfs_set_stack_chunk_length(chunk, chunk_size);
4330        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4331        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4332        btrfs_set_stack_chunk_type(chunk, map->type);
4333        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4334        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4335        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4336        btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4337        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4338
4339        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4340        key.type = BTRFS_CHUNK_ITEM_KEY;
4341        key.offset = chunk_offset;
4342
4343        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4344        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4345                /*
4346                 * TODO: Cleanup of inserted chunk root in case of
4347                 * failure.
4348                 */
4349                ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4350                                             item_size);
4351        }
4352
4353out:
4354        kfree(chunk);
4355        free_extent_map(em);
4356        return ret;
4357}
4358
4359/*
4360 * Chunk allocation falls into two parts. The first part does works
4361 * that make the new allocated chunk useable, but not do any operation
4362 * that modifies the chunk tree. The second part does the works that
4363 * require modifying the chunk tree. This division is important for the
4364 * bootstrap process of adding storage to a seed btrfs.
4365 */
4366int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4367                      struct btrfs_root *extent_root, u64 type)
4368{
4369        u64 chunk_offset;
4370
4371        chunk_offset = find_next_chunk(extent_root->fs_info);
4372        return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4373}
4374
4375static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4376                                         struct btrfs_root *root,
4377                                         struct btrfs_device *device)
4378{
4379        u64 chunk_offset;
4380        u64 sys_chunk_offset;
4381        u64 alloc_profile;
4382        struct btrfs_fs_info *fs_info = root->fs_info;
4383        struct btrfs_root *extent_root = fs_info->extent_root;
4384        int ret;
4385
4386        chunk_offset = find_next_chunk(fs_info);
4387        alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4388        ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4389                                  alloc_profile);
4390        if (ret)
4391                return ret;
4392
4393        sys_chunk_offset = find_next_chunk(root->fs_info);
4394        alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4395        ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4396                                  alloc_profile);
4397        if (ret) {
4398                btrfs_abort_transaction(trans, root, ret);
4399                goto out;
4400        }
4401
4402        ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4403        if (ret)
4404                btrfs_abort_transaction(trans, root, ret);
4405out:
4406        return ret;
4407}
4408
4409int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4410{
4411        struct extent_map *em;
4412        struct map_lookup *map;
4413        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4414        int readonly = 0;
4415        int i;
4416
4417        read_lock(&map_tree->map_tree.lock);
4418        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4419        read_unlock(&map_tree->map_tree.lock);
4420        if (!em)
4421                return 1;
4422
4423        if (btrfs_test_opt(root, DEGRADED)) {
4424                free_extent_map(em);
4425                return 0;
4426        }
4427
4428        map = (struct map_lookup *)em->bdev;
4429        for (i = 0; i < map->num_stripes; i++) {
4430                if (!map->stripes[i].dev->writeable) {
4431                        readonly = 1;
4432                        break;
4433                }
4434        }
4435        free_extent_map(em);
4436        return readonly;
4437}
4438
4439void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4440{
4441        extent_map_tree_init(&tree->map_tree);
4442}
4443
4444void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4445{
4446        struct extent_map *em;
4447
4448        while (1) {
4449                write_lock(&tree->map_tree.lock);
4450                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4451                if (em)
4452                        remove_extent_mapping(&tree->map_tree, em);
4453                write_unlock(&tree->map_tree.lock);
4454                if (!em)
4455                        break;
4456                kfree(em->bdev);
4457                /* once for us */
4458                free_extent_map(em);
4459                /* once for the tree */
4460                free_extent_map(em);
4461        }
4462}
4463
4464int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4465{
4466        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4467        struct extent_map *em;
4468        struct map_lookup *map;
4469        struct extent_map_tree *em_tree = &map_tree->map_tree;
4470        int ret;
4471
4472        read_lock(&em_tree->lock);
4473        em = lookup_extent_mapping(em_tree, logical, len);
4474        read_unlock(&em_tree->lock);
4475
4476        /*
4477         * We could return errors for these cases, but that could get ugly and
4478         * we'd probably do the same thing which is just not do anything else
4479         * and exit, so return 1 so the callers don't try to use other copies.
4480         */
4481        if (!em) {
4482                btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
4483                            logical+len);
4484                return 1;
4485        }
4486
4487        if (em->start > logical || em->start + em->len < logical) {
4488                btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4489                            "%Lu-%Lu\n", logical, logical+len, em->start,
4490                            em->start + em->len);
4491                return 1;
4492        }
4493
4494        map = (struct map_lookup *)em->bdev;
4495        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4496                ret = map->num_stripes;
4497        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4498                ret = map->sub_stripes;
4499        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4500                ret = 2;
4501        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4502                ret = 3;
4503        else
4504                ret = 1;
4505        free_extent_map(em);
4506
4507        btrfs_dev_replace_lock(&fs_info->dev_replace);
4508        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4509                ret++;
4510        btrfs_dev_replace_unlock(&fs_info->dev_replace);
4511
4512        return ret;
4513}
4514
4515unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4516                                    struct btrfs_mapping_tree *map_tree,
4517                                    u64 logical)
4518{
4519        struct extent_map *em;
4520        struct map_lookup *map;
4521        struct extent_map_tree *em_tree = &map_tree->map_tree;
4522        unsigned long len = root->sectorsize;
4523
4524        read_lock(&em_tree->lock);
4525        em = lookup_extent_mapping(em_tree, logical, len);
4526        read_unlock(&em_tree->lock);
4527        BUG_ON(!em);
4528
4529        BUG_ON(em->start > logical || em->start + em->len < logical);
4530        map = (struct map_lookup *)em->bdev;
4531        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4532                         BTRFS_BLOCK_GROUP_RAID6)) {
4533                len = map->stripe_len * nr_data_stripes(map);
4534        }
4535        free_extent_map(em);
4536        return len;
4537}
4538
4539int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4540                           u64 logical, u64 len, int mirror_num)
4541{
4542        struct extent_map *em;
4543        struct map_lookup *map;
4544        struct extent_map_tree *em_tree = &map_tree->map_tree;
4545        int ret = 0;
4546
4547        read_lock(&em_tree->lock);
4548        em = lookup_extent_mapping(em_tree, logical, len);
4549        read_unlock(&em_tree->lock);
4550        BUG_ON(!em);
4551
4552        BUG_ON(em->start > logical || em->start + em->len < logical);
4553        map = (struct map_lookup *)em->bdev;
4554        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4555                         BTRFS_BLOCK_GROUP_RAID6))
4556                ret = 1;
4557        free_extent_map(em);
4558        return ret;
4559}
4560
4561static int find_live_mirror(struct btrfs_fs_info *fs_info,
4562                            struct map_lookup *map, int first, int num,
4563                            int optimal, int dev_replace_is_ongoing)
4564{
4565        int i;
4566        int tolerance;
4567        struct btrfs_device *srcdev;
4568
4569        if (dev_replace_is_ongoing &&
4570            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4571             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4572                srcdev = fs_info->dev_replace.srcdev;
4573        else
4574                srcdev = NULL;
4575
4576        /*
4577         * try to avoid the drive that is the source drive for a
4578         * dev-replace procedure, only choose it if no other non-missing
4579         * mirror is available
4580         */
4581        for (tolerance = 0; tolerance < 2; tolerance++) {
4582                if (map->stripes[optimal].dev->bdev &&
4583                    (tolerance || map->stripes[optimal].dev != srcdev))
4584                        return optimal;
4585                for (i = first; i < first + num; i++) {
4586                        if (map->stripes[i].dev->bdev &&
4587                            (tolerance || map->stripes[i].dev != srcdev))
4588                                return i;
4589                }
4590        }
4591
4592        /* we couldn't find one that doesn't fail.  Just return something
4593         * and the io error handling code will clean up eventually
4594         */
4595        return optimal;
4596}
4597
4598static inline int parity_smaller(u64 a, u64 b)
4599{
4600        return a > b;
4601}
4602
4603/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4604static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4605{
4606        struct btrfs_bio_stripe s;
4607        int i;
4608        u64 l;
4609        int again = 1;
4610
4611        while (again) {
4612                again = 0;
4613                for (i = 0; i < bbio->num_stripes - 1; i++) {
4614                        if (parity_smaller(raid_map[i], raid_map[i+1])) {
4615                                s = bbio->stripes[i];
4616                                l = raid_map[i];
4617                                bbio->stripes[i] = bbio->stripes[i+1];
4618                                raid_map[i] = raid_map[i+1];
4619                                bbio->stripes[i+1] = s;
4620                                raid_map[i+1] = l;
4621                                again = 1;
4622                        }
4623                }
4624        }
4625}
4626
4627static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4628                             u64 logical, u64 *length,
4629                             struct btrfs_bio **bbio_ret,
4630                             int mirror_num, u64 **raid_map_ret)
4631{
4632        struct extent_map *em;
4633        struct map_lookup *map;
4634        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4635        struct extent_map_tree *em_tree = &map_tree->map_tree;
4636        u64 offset;
4637        u64 stripe_offset;
4638        u64 stripe_end_offset;
4639        u64 stripe_nr;
4640        u64 stripe_nr_orig;
4641        u64 stripe_nr_end;
4642        u64 stripe_len;
4643        u64 *raid_map = NULL;
4644        int stripe_index;
4645        int i;
4646        int ret = 0;
4647        int num_stripes;
4648        int max_errors = 0;
4649        struct btrfs_bio *bbio = NULL;
4650        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4651        int dev_replace_is_ongoing = 0;
4652        int num_alloc_stripes;
4653        int patch_the_first_stripe_for_dev_replace = 0;
4654        u64 physical_to_patch_in_first_stripe = 0;
4655        u64 raid56_full_stripe_start = (u64)-1;
4656
4657        read_lock(&em_tree->lock);
4658        em = lookup_extent_mapping(em_tree, logical, *length);
4659        read_unlock(&em_tree->lock);
4660
4661        if (!em) {
4662                btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4663                        logical, *length);
4664                return -EINVAL;
4665        }
4666
4667        if (em->start > logical || em->start + em->len < logical) {
4668                btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4669                           "found %Lu-%Lu\n", logical, em->start,
4670                           em->start + em->len);
4671                return -EINVAL;
4672        }
4673
4674        map = (struct map_lookup *)em->bdev;
4675        offset = logical - em->start;
4676
4677        stripe_len = map->stripe_len;
4678        stripe_nr = offset;
4679        /*
4680         * stripe_nr counts the total number of stripes we have to stride
4681         * to get to this block
4682         */
4683        do_div(stripe_nr, stripe_len);
4684
4685        stripe_offset = stripe_nr * stripe_len;
4686        BUG_ON(offset < stripe_offset);
4687
4688        /* stripe_offset is the offset of this block in its stripe*/
4689        stripe_offset = offset - stripe_offset;
4690
4691        /* if we're here for raid56, we need to know the stripe aligned start */
4692        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4693                unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4694                raid56_full_stripe_start = offset;
4695
4696                /* allow a write of a full stripe, but make sure we don't
4697                 * allow straddling of stripes
4698                 */
4699                do_div(raid56_full_stripe_start, full_stripe_len);
4700                raid56_full_stripe_start *= full_stripe_len;
4701        }
4702
4703        if (rw & REQ_DISCARD) {
4704                /* we don't discard raid56 yet */
4705                if (map->type &
4706                    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4707                        ret = -EOPNOTSUPP;
4708                        goto out;
4709                }
4710                *length = min_t(u64, em->len - offset, *length);
4711        } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4712                u64 max_len;
4713                /* For writes to RAID[56], allow a full stripeset across all disks.
4714                   For other RAID types and for RAID[56] reads, just allow a single
4715                   stripe (on a single disk). */
4716                if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4717                    (rw & REQ_WRITE)) {
4718                        max_len = stripe_len * nr_data_stripes(map) -
4719                                (offset - raid56_full_stripe_start);
4720                } else {
4721                        /* we limit the length of each bio to what fits in a stripe */
4722                        max_len = stripe_len - stripe_offset;
4723                }
4724                *length = min_t(u64, em->len - offset, max_len);
4725        } else {
4726                *length = em->len - offset;
4727        }
4728
4729        /* This is for when we're called from btrfs_merge_bio_hook() and all
4730           it cares about is the length */
4731        if (!bbio_ret)
4732                goto out;
4733
4734        btrfs_dev_replace_lock(dev_replace);
4735        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4736        if (!dev_replace_is_ongoing)
4737                btrfs_dev_replace_unlock(dev_replace);
4738
4739        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4740            !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4741            dev_replace->tgtdev != NULL) {
4742                /*
4743                 * in dev-replace case, for repair case (that's the only
4744                 * case where the mirror is selected explicitly when
4745                 * calling btrfs_map_block), blocks left of the left cursor
4746                 * can also be read from the target drive.
4747                 * For REQ_GET_READ_MIRRORS, the target drive is added as
4748                 * the last one to the array of stripes. For READ, it also
4749                 * needs to be supported using the same mirror number.
4750                 * If the requested block is not left of the left cursor,
4751                 * EIO is returned. This can happen because btrfs_num_copies()
4752                 * returns one more in the dev-replace case.
4753                 */
4754                u64 tmp_length = *length;
4755                struct btrfs_bio *tmp_bbio = NULL;
4756                int tmp_num_stripes;
4757                u64 srcdev_devid = dev_replace->srcdev->devid;
4758                int index_srcdev = 0;
4759                int found = 0;
4760                u64 physical_of_found = 0;
4761
4762                ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4763                             logical, &tmp_length, &tmp_bbio, 0, NULL);
4764                if (ret) {
4765                        WARN_ON(tmp_bbio != NULL);
4766                        goto out;
4767                }
4768
4769                tmp_num_stripes = tmp_bbio->num_stripes;
4770                if (mirror_num > tmp_num_stripes) {
4771                        /*
4772                         * REQ_GET_READ_MIRRORS does not contain this
4773                         * mirror, that means that the requested area
4774                         * is not left of the left cursor
4775                         */
4776                        ret = -EIO;
4777                        kfree(tmp_bbio);
4778                        goto out;
4779                }
4780
4781                /*
4782                 * process the rest of the function using the mirror_num
4783                 * of the source drive. Therefore look it up first.
4784                 * At the end, patch the device pointer to the one of the
4785                 * target drive.
4786                 */
4787                for (i = 0; i < tmp_num_stripes; i++) {
4788                        if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4789                                /*
4790                                 * In case of DUP, in order to keep it
4791                                 * simple, only add the mirror with the
4792                                 * lowest physical address
4793                                 */
4794                                if (found &&
4795                                    physical_of_found <=
4796                                     tmp_bbio->stripes[i].physical)
4797                                        continue;
4798                                index_srcdev = i;
4799                                found = 1;
4800                                physical_of_found =
4801                                        tmp_bbio->stripes[i].physical;
4802                        }
4803                }
4804
4805                if (found) {
4806                        mirror_num = index_srcdev + 1;
4807                        patch_the_first_stripe_for_dev_replace = 1;
4808                        physical_to_patch_in_first_stripe = physical_of_found;
4809                } else {
4810                        WARN_ON(1);
4811                        ret = -EIO;
4812                        kfree(tmp_bbio);
4813                        goto out;
4814                }
4815
4816                kfree(tmp_bbio);
4817        } else if (mirror_num > map->num_stripes) {
4818                mirror_num = 0;
4819        }
4820
4821        num_stripes = 1;
4822        stripe_index = 0;
4823        stripe_nr_orig = stripe_nr;
4824        stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4825        do_div(stripe_nr_end, map->stripe_len);
4826        stripe_end_offset = stripe_nr_end * map->stripe_len -
4827                            (offset + *length);
4828
4829        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4830                if (rw & REQ_DISCARD)
4831                        num_stripes = min_t(u64, map->num_stripes,
4832                                            stripe_nr_end - stripe_nr_orig);
4833                stripe_index = do_div(stripe_nr, map->num_stripes);
4834        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4835                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4836                        num_stripes = map->num_stripes;
4837                else if (mirror_num)
4838                        stripe_index = mirror_num - 1;
4839                else {
4840                        stripe_index = find_live_mirror(fs_info, map, 0,
4841                                            map->num_stripes,
4842                                            current->pid % map->num_stripes,
4843                                            dev_replace_is_ongoing);
4844                        mirror_num = stripe_index + 1;
4845                }
4846
4847        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4848                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4849                        num_stripes = map->num_stripes;
4850                } else if (mirror_num) {
4851                        stripe_index = mirror_num - 1;
4852                } else {
4853                        mirror_num = 1;
4854                }
4855
4856        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4857                int factor = map->num_stripes / map->sub_stripes;
4858
4859                stripe_index = do_div(stripe_nr, factor);
4860                stripe_index *= map->sub_stripes;
4861
4862                if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4863                        num_stripes = map->sub_stripes;
4864                else if (rw & REQ_DISCARD)
4865                        num_stripes = min_t(u64, map->sub_stripes *
4866                                            (stripe_nr_end - stripe_nr_orig),
4867                                            map->num_stripes);
4868                else if (mirror_num)
4869                        stripe_index += mirror_num - 1;
4870                else {
4871                        int old_stripe_index = stripe_index;
4872                        stripe_index = find_live_mirror(fs_info, map,
4873                                              stripe_index,
4874                                              map->sub_stripes, stripe_index +
4875                                              current->pid % map->sub_stripes,
4876                                              dev_replace_is_ongoing);
4877                        mirror_num = stripe_index - old_stripe_index + 1;
4878                }
4879
4880        } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4881                                BTRFS_BLOCK_GROUP_RAID6)) {
4882                u64 tmp;
4883
4884                if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4885                    && raid_map_ret) {
4886                        int i, rot;
4887
4888                        /* push stripe_nr back to the start of the full stripe */
4889                        stripe_nr = raid56_full_stripe_start;
4890                        do_div(stripe_nr, stripe_len);
4891
4892                        stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4893
4894                        /* RAID[56] write or recovery. Return all stripes */
4895                        num_stripes = map->num_stripes;
4896                        max_errors = nr_parity_stripes(map);
4897
4898                        raid_map = kmalloc(sizeof(u64) * num_stripes,
4899                                           GFP_NOFS);
4900                        if (!raid_map) {
4901                                ret = -ENOMEM;
4902                                goto out;
4903                        }
4904
4905                        /* Work out the disk rotation on this stripe-set */
4906                        tmp = stripe_nr;
4907                        rot = do_div(tmp, num_stripes);
4908
4909                        /* Fill in the logical address of each stripe */
4910                        tmp = stripe_nr * nr_data_stripes(map);
4911                        for (i = 0; i < nr_data_stripes(map); i++)
4912                                raid_map[(i+rot) % num_stripes] =
4913                                        em->start + (tmp + i) * map->stripe_len;
4914
4915                        raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4916                        if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4917                                raid_map[(i+rot+1) % num_stripes] =
4918                                        RAID6_Q_STRIPE;
4919
4920                        *length = map->stripe_len;
4921                        stripe_index = 0;
4922                        stripe_offset = 0;
4923                } else {
4924                        /*
4925                         * Mirror #0 or #1 means the original data block.
4926                         * Mirror #2 is RAID5 parity block.
4927                         * Mirror #3 is RAID6 Q block.
4928                         */
4929                        stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4930                        if (mirror_num > 1)
4931                                stripe_index = nr_data_stripes(map) +
4932                                                mirror_num - 2;
4933
4934                        /* We distribute the parity blocks across stripes */
4935                        tmp = stripe_nr + stripe_index;
4936                        stripe_index = do_div(tmp, map->num_stripes);
4937                }
4938        } else {
4939                /*
4940                 * after this do_div call, stripe_nr is the number of stripes
4941                 * on this device we have to walk to find the data, and
4942                 * stripe_index is the number of our device in the stripe array
4943                 */
4944                stripe_index = do_div(stripe_nr, map->num_stripes);
4945                mirror_num = stripe_index + 1;
4946        }
4947        BUG_ON(stripe_index >= map->num_stripes);
4948
4949        num_alloc_stripes = num_stripes;
4950        if (dev_replace_is_ongoing) {
4951                if (rw & (REQ_WRITE | REQ_DISCARD))
4952                        num_alloc_stripes <<= 1;
4953                if (rw & REQ_GET_READ_MIRRORS)
4954                        num_alloc_stripes++;
4955        }
4956        bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4957        if (!bbio) {
4958                kfree(raid_map);
4959                ret = -ENOMEM;
4960                goto out;
4961        }
4962        atomic_set(&bbio->error, 0);
4963
4964        if (rw & REQ_DISCARD) {
4965                int factor = 0;
4966                int sub_stripes = 0;
4967                u64 stripes_per_dev = 0;
4968                u32 remaining_stripes = 0;
4969                u32 last_stripe = 0;
4970
4971                if (map->type &
4972                    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4973                        if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4974                                sub_stripes = 1;
4975                        else
4976                                sub_stripes = map->sub_stripes;
4977
4978                        factor = map->num_stripes / sub_stripes;
4979                        stripes_per_dev = div_u64_rem(stripe_nr_end -
4980                                                      stripe_nr_orig,
4981                                                      factor,
4982                                                      &remaining_stripes);
4983                        div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4984                        last_stripe *= sub_stripes;
4985                }
4986
4987                for (i = 0; i < num_stripes; i++) {
4988                        bbio->stripes[i].physical =
4989                                map->stripes[stripe_index].physical +
4990                                stripe_offset + stripe_nr * map->stripe_len;
4991                        bbio->stripes[i].dev = map->stripes[stripe_index].dev;
4992
4993                        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4994                                         BTRFS_BLOCK_GROUP_RAID10)) {
4995                                bbio->stripes[i].length = stripes_per_dev *
4996                                                          map->stripe_len;
4997
4998                                if (i / sub_stripes < remaining_stripes)
4999                                        bbio->stripes[i].length +=
5000                                                map->stripe_len;
5001
5002                                /*
5003                                 * Special for the first stripe and
5004                                 * the last stripe:
5005                                 *
5006                                 * |-------|...|-------|
5007                                 *     |----------|
5008                                 *    off     end_off
5009                                 */
5010                                if (i < sub_stripes)
5011                                        bbio->stripes[i].length -=
5012                                                stripe_offset;
5013
5014                                if (stripe_index >= last_stripe &&
5015                                    stripe_index <= (last_stripe +
5016                                                     sub_stripes - 1))
5017                                        bbio->stripes[i].length -=
5018                                                stripe_end_offset;
5019
5020                                if (i == sub_stripes - 1)
5021                                        stripe_offset = 0;
5022                        } else
5023                                bbio->stripes[i].length = *length;
5024
5025                        stripe_index++;
5026                        if (stripe_index == map->num_stripes) {
5027                                /* This could only happen for RAID0/10 */
5028                                stripe_index = 0;
5029                                stripe_nr++;
5030                        }
5031                }
5032        } else {
5033                for (i = 0; i < num_stripes; i++) {
5034                        bbio->stripes[i].physical =
5035                                map->stripes[stripe_index].physical +
5036                                stripe_offset +
5037                                stripe_nr * map->stripe_len;
5038                        bbio->stripes[i].dev =
5039                                map->stripes[stripe_index].dev;
5040                        stripe_index++;
5041                }
5042        }
5043
5044        if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5045                if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5046                                 BTRFS_BLOCK_GROUP_RAID10 |
5047                                 BTRFS_BLOCK_GROUP_RAID5 |
5048                                 BTRFS_BLOCK_GROUP_DUP)) {
5049                        max_errors = 1;
5050                } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5051                        max_errors = 2;
5052                }
5053        }
5054
5055        if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5056            dev_replace->tgtdev != NULL) {
5057                int index_where_to_add;
5058                u64 srcdev_devid = dev_replace->srcdev->devid;
5059
5060                /*
5061                 * duplicate the write operations while the dev replace
5062                 * procedure is running. Since the copying of the old disk
5063                 * to the new disk takes place at run time while the
5064                 * filesystem is mounted writable, the regular write
5065                 * operations to the old disk have to be duplicated to go
5066                 * to the new disk as well.
5067                 * Note that device->missing is handled by the caller, and
5068                 * that the write to the old disk is already set up in the
5069                 * stripes array.
5070                 */
5071                index_where_to_add = num_stripes;
5072                for (i = 0; i < num_stripes; i++) {
5073                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5074                                /* write to new disk, too */
5075                                struct btrfs_bio_stripe *new =
5076                                        bbio->stripes + index_where_to_add;
5077                                struct btrfs_bio_stripe *old =
5078                                        bbio->stripes + i;
5079
5080                                new->physical = old->physical;
5081                                new->length = old->length;
5082                                new->dev = dev_replace->tgtdev;
5083                                index_where_to_add++;
5084                                max_errors++;
5085                        }
5086                }
5087                num_stripes = index_where_to_add;
5088        } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5089                   dev_replace->tgtdev != NULL) {
5090                u64 srcdev_devid = dev_replace->srcdev->devid;
5091                int index_srcdev = 0;
5092                int found = 0;
5093                u64 physical_of_found = 0;
5094
5095                /*
5096                 * During the dev-replace procedure, the target drive can
5097                 * also be used to read data in case it is needed to repair
5098                 * a corrupt block elsewhere. This is possible if the
5099                 * requested area is left of the left cursor. In this area,
5100                 * the target drive is a full copy of the source drive.
5101                 */
5102                for (i = 0; i < num_stripes; i++) {
5103                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5104                                /*
5105                                 * In case of DUP, in order to keep it
5106                                 * simple, only add the mirror with the
5107                                 * lowest physical address
5108                                 */
5109                                if (found &&
5110                                    physical_of_found <=
5111                                     bbio->stripes[i].physical)
5112                                        continue;
5113                                index_srcdev = i;
5114                                found = 1;
5115                                physical_of_found = bbio->stripes[i].physical;
5116                        }
5117                }
5118                if (found) {
5119                        u64 length = map->stripe_len;
5120
5121                        if (physical_of_found + length <=
5122                            dev_replace->cursor_left) {
5123                                struct btrfs_bio_stripe *tgtdev_stripe =
5124                                        bbio->stripes + num_stripes;
5125
5126                                tgtdev_stripe->physical = physical_of_found;
5127                                tgtdev_stripe->length =
5128                                        bbio->stripes[index_srcdev].length;
5129                                tgtdev_stripe->dev = dev_replace->tgtdev;
5130
5131                                num_stripes++;
5132                        }
5133                }
5134        }
5135
5136        *bbio_ret = bbio;
5137        bbio->num_stripes = num_stripes;
5138        bbio->max_errors = max_errors;
5139        bbio->mirror_num = mirror_num;
5140
5141        /*
5142         * this is the case that REQ_READ && dev_replace_is_ongoing &&
5143         * mirror_num == num_stripes + 1 && dev_replace target drive is
5144         * available as a mirror
5145         */
5146        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5147                WARN_ON(num_stripes > 1);
5148                bbio->stripes[0].dev = dev_replace->tgtdev;
5149                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5150                bbio->mirror_num = map->num_stripes + 1;
5151        }
5152        if (raid_map) {
5153                sort_parity_stripes(bbio, raid_map);
5154                *raid_map_ret = raid_map;
5155        }
5156out:
5157        if (dev_replace_is_ongoing)
5158                btrfs_dev_replace_unlock(dev_replace);
5159        free_extent_map(em);
5160        return ret;
5161}
5162
5163int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5164                      u64 logical, u64 *length,
5165                      struct btrfs_bio **bbio_ret, int mirror_num)
5166{
5167        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5168                                 mirror_num, NULL);
5169}
5170
5171int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5172                     u64 chunk_start, u64 physical, u64 devid,
5173                     u64 **logical, int *naddrs, int *stripe_len)
5174{
5175        struct extent_map_tree *em_tree = &map_tree->map_tree;
5176        struct extent_map *em;
5177        struct map_lookup *map;
5178        u64 *buf;
5179        u64 bytenr;
5180        u64 length;
5181        u64 stripe_nr;
5182        u64 rmap_len;
5183        int i, j, nr = 0;
5184
5185        read_lock(&em_tree->lock);
5186        em = lookup_extent_mapping(em_tree, chunk_start, 1);
5187        read_unlock(&em_tree->lock);
5188
5189        if (!em) {
5190                printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5191                       chunk_start);
5192                return -EIO;
5193        }
5194
5195        if (em->start != chunk_start) {
5196                printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5197                       em->start, chunk_start);
5198                free_extent_map(em);
5199                return -EIO;
5200        }
5201        map = (struct map_lookup *)em->bdev;
5202
5203        length = em->len;
5204        rmap_len = map->stripe_len;
5205
5206        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5207                do_div(length, map->num_stripes / map->sub_stripes);
5208        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5209                do_div(length, map->num_stripes);
5210        else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5211                              BTRFS_BLOCK_GROUP_RAID6)) {
5212                do_div(length, nr_data_stripes(map));
5213                rmap_len = map->stripe_len * nr_data_stripes(map);
5214        }
5215
5216        buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5217        BUG_ON(!buf); /* -ENOMEM */
5218
5219        for (i = 0; i < map->num_stripes; i++) {
5220                if (devid && map->stripes[i].dev->devid != devid)
5221                        continue;
5222                if (map->stripes[i].physical > physical ||
5223                    map->stripes[i].physical + length <= physical)
5224                        continue;
5225
5226                stripe_nr = physical - map->stripes[i].physical;
5227                do_div(stripe_nr, map->stripe_len);
5228
5229                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5230                        stripe_nr = stripe_nr * map->num_stripes + i;
5231                        do_div(stripe_nr, map->sub_stripes);
5232                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5233                        stripe_nr = stripe_nr * map->num_stripes + i;
5234                } /* else if RAID[56], multiply by nr_data_stripes().
5235                   * Alternatively, just use rmap_len below instead of
5236                   * map->stripe_len */
5237
5238                bytenr = chunk_start + stripe_nr * rmap_len;
5239                WARN_ON(nr >= map->num_stripes);
5240                for (j = 0; j < nr; j++) {
5241                        if (buf[j] == bytenr)
5242                                break;
5243                }
5244                if (j == nr) {
5245                        WARN_ON(nr >= map->num_stripes);
5246                        buf[nr++] = bytenr;
5247                }
5248        }
5249
5250        *logical = buf;
5251        *naddrs = nr;
5252        *stripe_len = rmap_len;
5253
5254        free_extent_map(em);
5255        return 0;
5256}
5257
5258static void btrfs_end_bio(struct bio *bio, int err)
5259{
5260        struct btrfs_bio *bbio = bio->bi_private;
5261        int is_orig_bio = 0;
5262
5263        if (err) {
5264                atomic_inc(&bbio->error);
5265                if (err == -EIO || err == -EREMOTEIO) {
5266                        unsigned int stripe_index =
5267                                btrfs_io_bio(bio)->stripe_index;
5268                        struct btrfs_device *dev;
5269
5270                        BUG_ON(stripe_index >= bbio->num_stripes);
5271                        dev = bbio->stripes[stripe_index].dev;
5272                        if (dev->bdev) {
5273                                if (bio->bi_rw & WRITE)
5274                                        btrfs_dev_stat_inc(dev,
5275                                                BTRFS_DEV_STAT_WRITE_ERRS);
5276                                else
5277                                        btrfs_dev_stat_inc(dev,
5278                                                BTRFS_DEV_STAT_READ_ERRS);
5279                                if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5280                                        btrfs_dev_stat_inc(dev,
5281                                                BTRFS_DEV_STAT_FLUSH_ERRS);
5282                                btrfs_dev_stat_print_on_error(dev);
5283                        }
5284                }
5285        }
5286
5287        if (bio == bbio->orig_bio)
5288                is_orig_bio = 1;
5289
5290        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5291                if (!is_orig_bio) {
5292                        bio_put(bio);
5293                        bio = bbio->orig_bio;
5294                }
5295                bio->bi_private = bbio->private;
5296                bio->bi_end_io = bbio->end_io;
5297                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5298                /* only send an error to the higher layers if it is
5299                 * beyond the tolerance of the btrfs bio
5300                 */
5301                if (atomic_read(&bbio->error) > bbio->max_errors) {
5302                        err = -EIO;
5303                } else {
5304                        /*
5305                         * this bio is actually up to date, we didn't
5306                         * go over the max number of errors
5307                         */
5308                        set_bit(BIO_UPTODATE, &bio->bi_flags);
5309                        err = 0;
5310                }
5311                kfree(bbio);
5312
5313                bio_endio(bio, err);
5314        } else if (!is_orig_bio) {
5315                bio_put(bio);
5316        }
5317}
5318
5319struct async_sched {
5320        struct bio *bio;
5321        int rw;
5322        struct btrfs_fs_info *info;
5323        struct btrfs_work work;
5324};
5325
5326/*
5327 * see run_scheduled_bios for a description of why bios are collected for
5328 * async submit.
5329 *
5330 * This will add one bio to the pending list for a device and make sure
5331 * the work struct is scheduled.
5332 */
5333static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5334                                        struct btrfs_device *device,
5335                                        int rw, struct bio *bio)
5336{
5337        int should_queue = 1;
5338        struct btrfs_pending_bios *pending_bios;
5339
5340        if (device->missing || !device->bdev) {
5341                bio_endio(bio, -EIO);
5342                return;
5343        }
5344
5345        /* don't bother with additional async steps for reads, right now */
5346        if (!(rw & REQ_WRITE)) {
5347                bio_get(bio);
5348                btrfsic_submit_bio(rw, bio);
5349                bio_put(bio);
5350                return;
5351        }
5352
5353        /*
5354         * nr_async_bios allows us to reliably return congestion to the
5355         * higher layers.  Otherwise, the async bio makes it appear we have
5356         * made progress against dirty pages when we've really just put it
5357         * on a queue for later
5358         */
5359        atomic_inc(&root->fs_info->nr_async_bios);
5360        WARN_ON(bio->bi_next);
5361        bio->bi_next = NULL;
5362        bio->bi_rw |= rw;
5363
5364        spin_lock(&device->io_lock);
5365        if (bio->bi_rw & REQ_SYNC)
5366                pending_bios = &device->pending_sync_bios;
5367        else
5368                pending_bios = &device->pending_bios;
5369
5370        if (pending_bios->tail)
5371                pending_bios->tail->bi_next = bio;
5372
5373        pending_bios->tail = bio;
5374        if (!pending_bios->head)
5375                pending_bios->head = bio;
5376        if (device->running_pending)
5377                should_queue = 0;
5378
5379        spin_unlock(&device->io_lock);
5380
5381        if (should_queue)
5382                btrfs_queue_worker(&root->fs_info->submit_workers,
5383                                   &device->work);
5384}
5385
5386static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5387                       sector_t sector)
5388{
5389        struct bio_vec *prev;
5390        struct request_queue *q = bdev_get_queue(bdev);
5391        unsigned short max_sectors = queue_max_sectors(q);
5392        struct bvec_merge_data bvm = {
5393                .bi_bdev = bdev,
5394                .bi_sector = sector,
5395                .bi_rw = bio->bi_rw,
5396        };
5397
5398        if (bio->bi_vcnt == 0) {
5399                WARN_ON(1);
5400                return 1;
5401        }
5402
5403        prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5404        if (bio_sectors(bio) > max_sectors)
5405                return 0;
5406
5407        if (!q->merge_bvec_fn)
5408                return 1;
5409
5410        bvm.bi_size = bio->bi_size - prev->bv_len;
5411        if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5412                return 0;
5413        return 1;
5414}
5415
5416static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5417                              struct bio *bio, u64 physical, int dev_nr,
5418                              int rw, int async)
5419{
5420        struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5421
5422        bio->bi_private = bbio;
5423        btrfs_io_bio(bio)->stripe_index = dev_nr;
5424        bio->bi_end_io = btrfs_end_bio;
5425        bio->bi_sector = physical >> 9;
5426#ifdef DEBUG
5427        {
5428                struct rcu_string *name;
5429
5430                rcu_read_lock();
5431                name = rcu_dereference(dev->name);
5432                pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5433                         "(%s id %llu), size=%u\n", rw,
5434                         (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5435                         name->str, dev->devid, bio->bi_size);
5436                rcu_read_unlock();
5437        }
5438#endif
5439        bio->bi_bdev = dev->bdev;
5440        if (async)
5441                btrfs_schedule_bio(root, dev, rw, bio);
5442        else
5443                btrfsic_submit_bio(rw, bio);
5444}
5445
5446static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5447                              struct bio *first_bio, struct btrfs_device *dev,
5448                              int dev_nr, int rw, int async)
5449{
5450        struct bio_vec *bvec = first_bio->bi_io_vec;
5451        struct bio *bio;
5452        int nr_vecs = bio_get_nr_vecs(dev->bdev);
5453        u64 physical = bbio->stripes[dev_nr].physical;
5454
5455again:
5456        bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5457        if (!bio)
5458                return -ENOMEM;
5459
5460        while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5461                if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5462                                 bvec->bv_offset) < bvec->bv_len) {
5463                        u64 len = bio->bi_size;
5464
5465                        atomic_inc(&bbio->stripes_pending);
5466                        submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5467                                          rw, async);
5468                        physical += len;
5469                        goto again;
5470                }
5471                bvec++;
5472        }
5473
5474        submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5475        return 0;
5476}
5477
5478static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5479{
5480        atomic_inc(&bbio->error);
5481        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5482                bio->bi_private = bbio->private;
5483                bio->bi_end_io = bbio->end_io;
5484                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5485                bio->bi_sector = logical >> 9;
5486                kfree(bbio);
5487                bio_endio(bio, -EIO);
5488        }
5489}
5490
5491int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5492                  int mirror_num, int async_submit)
5493{
5494        struct btrfs_device *dev;
5495        struct bio *first_bio = bio;
5496        u64 logical = (u64)bio->bi_sector << 9;
5497        u64 length = 0;
5498        u64 map_length;
5499        u64 *raid_map = NULL;
5500        int ret;
5501        int dev_nr = 0;
5502        int total_devs = 1;
5503        struct btrfs_bio *bbio = NULL;
5504
5505        length = bio->bi_size;
5506        map_length = length;
5507
5508        ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5509                              mirror_num, &raid_map);
5510        if (ret) /* -ENOMEM */
5511                return ret;
5512
5513        total_devs = bbio->num_stripes;
5514        bbio->orig_bio = first_bio;
5515        bbio->private = first_bio->bi_private;
5516        bbio->end_io = first_bio->bi_end_io;
5517        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5518
5519        if (raid_map) {
5520                /* In this case, map_length has been set to the length of
5521                   a single stripe; not the whole write */
5522                if (rw & WRITE) {
5523                        return raid56_parity_write(root, bio, bbio,
5524                                                   raid_map, map_length);
5525                } else {
5526                        return raid56_parity_recover(root, bio, bbio,
5527                                                     raid_map, map_length,
5528                                                     mirror_num);
5529                }
5530        }
5531
5532        if (map_length < length) {
5533                btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5534                        logical, length, map_length);
5535                BUG();
5536        }
5537
5538        while (dev_nr < total_devs) {
5539                dev = bbio->stripes[dev_nr].dev;
5540                if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5541                        bbio_error(bbio, first_bio, logical);
5542                        dev_nr++;
5543                        continue;
5544                }
5545
5546                /*
5547                 * Check and see if we're ok with this bio based on it's size
5548                 * and offset with the given device.
5549                 */
5550                if (!bio_size_ok(dev->bdev, first_bio,
5551                                 bbio->stripes[dev_nr].physical >> 9)) {
5552                        ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5553                                                 dev_nr, rw, async_submit);
5554                        BUG_ON(ret);
5555                        dev_nr++;
5556                        continue;
5557                }
5558
5559                if (dev_nr < total_devs - 1) {
5560                        bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5561                        BUG_ON(!bio); /* -ENOMEM */
5562                } else {
5563                        bio = first_bio;
5564                }
5565
5566                submit_stripe_bio(root, bbio, bio,
5567                                  bbio->stripes[dev_nr].physical, dev_nr, rw,
5568                                  async_submit);
5569                dev_nr++;
5570        }
5571        return 0;
5572}
5573
5574struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5575                                       u8 *uuid, u8 *fsid)
5576{
5577        struct btrfs_device *device;
5578        struct btrfs_fs_devices *cur_devices;
5579
5580        cur_devices = fs_info->fs_devices;
5581        while (cur_devices) {
5582                if (!fsid ||
5583                    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5584                        device = __find_device(&cur_devices->devices,
5585                                               devid, uuid);
5586                        if (device)
5587                                return device;
5588                }
5589                cur_devices = cur_devices->seed;
5590        }
5591        return NULL;
5592}
5593
5594static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5595                                            u64 devid, u8 *dev_uuid)
5596{
5597        struct btrfs_device *device;
5598        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5599
5600        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5601        if (IS_ERR(device))
5602                return NULL;
5603
5604        list_add(&device->dev_list, &fs_devices->devices);
5605        device->fs_devices = fs_devices;
5606        fs_devices->num_devices++;
5607
5608        device->missing = 1;
5609        fs_devices->missing_devices++;
5610
5611        return device;
5612}
5613
5614/**
5615 * btrfs_alloc_device - allocate struct btrfs_device
5616 * @fs_info:    used only for generating a new devid, can be NULL if
5617 *              devid is provided (i.e. @devid != NULL).
5618 * @devid:      a pointer to devid for this device.  If NULL a new devid
5619 *              is generated.
5620 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5621 *              is generated.
5622 *
5623 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5624 * on error.  Returned struct is not linked onto any lists and can be
5625 * destroyed with kfree() right away.
5626 */
5627struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5628                                        const u64 *devid,
5629                                        const u8 *uuid)
5630{
5631        struct btrfs_device *dev;
5632        u64 tmp;
5633
5634        if (!devid && !fs_info) {
5635                WARN_ON(1);
5636                return ERR_PTR(-EINVAL);
5637        }
5638
5639        dev = __alloc_device();
5640        if (IS_ERR(dev))
5641                return dev;
5642
5643        if (devid)
5644                tmp = *devid;
5645        else {
5646                int ret;
5647
5648                ret = find_next_devid(fs_info, &tmp);
5649                if (ret) {
5650                        kfree(dev);
5651                        return ERR_PTR(ret);
5652                }
5653        }
5654        dev->devid = tmp;
5655
5656        if (uuid)
5657                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5658        else
5659                generate_random_uuid(dev->uuid);
5660
5661        dev->work.func = pending_bios_fn;
5662
5663        return dev;
5664}
5665
5666static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5667                          struct extent_buffer *leaf,
5668                          struct btrfs_chunk *chunk)
5669{
5670        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5671        struct map_lookup *map;
5672        struct extent_map *em;
5673        u64 logical;
5674        u64 length;
5675        u64 devid;
5676        u8 uuid[BTRFS_UUID_SIZE];
5677        int num_stripes;
5678        int ret;
5679        int i;
5680
5681        logical = key->offset;
5682        length = btrfs_chunk_length(leaf, chunk);
5683
5684        read_lock(&map_tree->map_tree.lock);
5685        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5686        read_unlock(&map_tree->map_tree.lock);
5687
5688        /* already mapped? */
5689        if (em && em->start <= logical && em->start + em->len > logical) {
5690                free_extent_map(em);
5691                return 0;
5692        } else if (em) {
5693                free_extent_map(em);
5694        }
5695
5696        em = alloc_extent_map();
5697        if (!em)
5698                return -ENOMEM;
5699        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5700        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5701        if (!map) {
5702                free_extent_map(em);
5703                return -ENOMEM;
5704        }
5705
5706        em->bdev = (struct block_device *)map;
5707        em->start = logical;
5708        em->len = length;
5709        em->orig_start = 0;
5710        em->block_start = 0;
5711        em->block_len = em->len;
5712
5713        map->num_stripes = num_stripes;
5714        map->io_width = btrfs_chunk_io_width(leaf, chunk);
5715        map->io_align = btrfs_chunk_io_align(leaf, chunk);
5716        map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5717        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5718        map->type = btrfs_chunk_type(leaf, chunk);
5719        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5720        for (i = 0; i < num_stripes; i++) {
5721                map->stripes[i].physical =
5722                        btrfs_stripe_offset_nr(leaf, chunk, i);
5723                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5724                read_extent_buffer(leaf, uuid, (unsigned long)
5725                                   btrfs_stripe_dev_uuid_nr(chunk, i),
5726                                   BTRFS_UUID_SIZE);
5727                map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5728                                                        uuid, NULL);
5729                if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5730                        kfree(map);
5731                        free_extent_map(em);
5732                        return -EIO;
5733                }
5734                if (!map->stripes[i].dev) {
5735                        map->stripes[i].dev =
5736                                add_missing_dev(root, devid, uuid);
5737                        if (!map->stripes[i].dev) {
5738                                kfree(map);
5739                                free_extent_map(em);
5740                                return -EIO;
5741                        }
5742                }
5743                map->stripes[i].dev->in_fs_metadata = 1;
5744        }
5745
5746        write_lock(&map_tree->map_tree.lock);
5747        ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5748        write_unlock(&map_tree->map_tree.lock);
5749        BUG_ON(ret); /* Tree corruption */
5750        free_extent_map(em);
5751
5752        return 0;
5753}
5754
5755static void fill_device_from_item(struct extent_buffer *leaf,
5756                                 struct btrfs_dev_item *dev_item,
5757                                 struct btrfs_device *device)
5758{
5759        unsigned long ptr;
5760
5761        device->devid = btrfs_device_id(leaf, dev_item);
5762        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5763        device->total_bytes = device->disk_total_bytes;
5764        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5765        device->type = btrfs_device_type(leaf, dev_item);
5766        device->io_align = btrfs_device_io_align(leaf, dev_item);
5767        device->io_width = btrfs_device_io_width(leaf, dev_item);
5768        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5769        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5770        device->is_tgtdev_for_dev_replace = 0;
5771
5772        ptr = btrfs_device_uuid(dev_item);
5773        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5774}
5775
5776static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5777{
5778        struct btrfs_fs_devices *fs_devices;
5779        int ret;
5780
5781        BUG_ON(!mutex_is_locked(&uuid_mutex));
5782
5783        fs_devices = root->fs_info->fs_devices->seed;
5784        while (fs_devices) {
5785                if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5786                        ret = 0;
5787                        goto out;
5788                }
5789                fs_devices = fs_devices->seed;
5790        }
5791
5792        fs_devices = find_fsid(fsid);
5793        if (!fs_devices) {
5794                ret = -ENOENT;
5795                goto out;
5796        }
5797
5798        fs_devices = clone_fs_devices(fs_devices);
5799        if (IS_ERR(fs_devices)) {
5800                ret = PTR_ERR(fs_devices);
5801                goto out;
5802        }
5803
5804        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5805                                   root->fs_info->bdev_holder);
5806        if (ret) {
5807                free_fs_devices(fs_devices);
5808                goto out;
5809        }
5810
5811        if (!fs_devices->seeding) {
5812                __btrfs_close_devices(fs_devices);
5813                free_fs_devices(fs_devices);
5814                ret = -EINVAL;
5815                goto out;
5816        }
5817
5818        fs_devices->seed = root->fs_info->fs_devices->seed;
5819        root->fs_info->fs_devices->seed = fs_devices;
5820out:
5821        return ret;
5822}
5823
5824static int read_one_dev(struct btrfs_root *root,
5825                        struct extent_buffer *leaf,
5826                        struct btrfs_dev_item *dev_item)
5827{
5828        struct btrfs_device *device;
5829        u64 devid;
5830        int ret;
5831        u8 fs_uuid[BTRFS_UUID_SIZE];
5832        u8 dev_uuid[BTRFS_UUID_SIZE];
5833
5834        devid = btrfs_device_id(leaf, dev_item);
5835        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5836                           BTRFS_UUID_SIZE);
5837        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5838                           BTRFS_UUID_SIZE);
5839
5840        if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5841                ret = open_seed_devices(root, fs_uuid);
5842                if (ret && !btrfs_test_opt(root, DEGRADED))
5843                        return ret;
5844        }
5845
5846        device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5847        if (!device || !device->bdev) {
5848                if (!btrfs_test_opt(root, DEGRADED))
5849                        return -EIO;
5850
5851                if (!device) {
5852                        btrfs_warn(root->fs_info, "devid %llu missing", devid);
5853                        device = add_missing_dev(root, devid, dev_uuid);
5854                        if (!device)
5855                                return -ENOMEM;
5856                } else if (!device->missing) {
5857                        /*
5858                         * this happens when a device that was properly setup
5859                         * in the device info lists suddenly goes bad.
5860                         * device->bdev is NULL, and so we have to set
5861                         * device->missing to one here
5862                         */
5863                        root->fs_info->fs_devices->missing_devices++;
5864                        device->missing = 1;
5865                }
5866        }
5867
5868        if (device->fs_devices != root->fs_info->fs_devices) {
5869                BUG_ON(device->writeable);
5870                if (device->generation !=
5871                    btrfs_device_generation(leaf, dev_item))
5872                        return -EINVAL;
5873        }
5874
5875        fill_device_from_item(leaf, dev_item, device);
5876        device->in_fs_metadata = 1;
5877        if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5878                device->fs_devices->total_rw_bytes += device->total_bytes;
5879                spin_lock(&root->fs_info->free_chunk_lock);
5880                root->fs_info->free_chunk_space += device->total_bytes -
5881                        device->bytes_used;
5882                spin_unlock(&root->fs_info->free_chunk_lock);
5883        }
5884        ret = 0;
5885        return ret;
5886}
5887
5888int btrfs_read_sys_array(struct btrfs_root *root)
5889{
5890        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5891        struct extent_buffer *sb;
5892        struct btrfs_disk_key *disk_key;
5893        struct btrfs_chunk *chunk;
5894        u8 *ptr;
5895        unsigned long sb_ptr;
5896        int ret = 0;
5897        u32 num_stripes;
5898        u32 array_size;
5899        u32 len = 0;
5900        u32 cur;
5901        struct btrfs_key key;
5902
5903        sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5904                                          BTRFS_SUPER_INFO_SIZE);
5905        if (!sb)
5906                return -ENOMEM;
5907        btrfs_set_buffer_uptodate(sb);
5908        btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5909        /*
5910         * The sb extent buffer is artifical and just used to read the system array.
5911         * btrfs_set_buffer_uptodate() call does not properly mark all it's
5912         * pages up-to-date when the page is larger: extent does not cover the
5913         * whole page and consequently check_page_uptodate does not find all
5914         * the page's extents up-to-date (the hole beyond sb),
5915         * write_extent_buffer then triggers a WARN_ON.
5916         *
5917         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5918         * but sb spans only this function. Add an explicit SetPageUptodate call
5919         * to silence the warning eg. on PowerPC 64.
5920         */
5921        if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5922                SetPageUptodate(sb->pages[0]);
5923
5924        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5925        array_size = btrfs_super_sys_array_size(super_copy);
5926
5927        ptr = super_copy->sys_chunk_array;
5928        sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5929        cur = 0;
5930
5931        while (cur < array_size) {
5932                disk_key = (struct btrfs_disk_key *)ptr;
5933                btrfs_disk_key_to_cpu(&key, disk_key);
5934
5935                len = sizeof(*disk_key); ptr += len;
5936                sb_ptr += len;
5937                cur += len;
5938
5939                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5940                        chunk = (struct btrfs_chunk *)sb_ptr;
5941                        ret = read_one_chunk(root, &key, sb, chunk);
5942                        if (ret)
5943                                break;
5944                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5945                        len = btrfs_chunk_item_size(num_stripes);
5946                } else {
5947                        ret = -EIO;
5948                        break;
5949                }
5950                ptr += len;
5951                sb_ptr += len;
5952                cur += len;
5953        }
5954        free_extent_buffer(sb);
5955        return ret;
5956}
5957
5958int btrfs_read_chunk_tree(struct btrfs_root *root)
5959{
5960        struct btrfs_path *path;
5961        struct extent_buffer *leaf;
5962        struct btrfs_key key;
5963        struct btrfs_key found_key;
5964        int ret;
5965        int slot;
5966
5967        root = root->fs_info->chunk_root;
5968
5969        path = btrfs_alloc_path();
5970        if (!path)
5971                return -ENOMEM;
5972
5973        mutex_lock(&uuid_mutex);
5974        lock_chunks(root);
5975
5976        /*
5977         * Read all device items, and then all the chunk items. All
5978         * device items are found before any chunk item (their object id
5979         * is smaller than the lowest possible object id for a chunk
5980         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
5981         */
5982        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5983        key.offset = 0;
5984        key.type = 0;
5985        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5986        if (ret < 0)
5987                goto error;
5988        while (1) {
5989                leaf = path->nodes[0];
5990                slot = path->slots[0];
5991                if (slot >= btrfs_header_nritems(leaf)) {
5992                        ret = btrfs_next_leaf(root, path);
5993                        if (ret == 0)
5994                                continue;
5995                        if (ret < 0)
5996                                goto error;
5997                        break;
5998                }
5999                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6000                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6001                        struct btrfs_dev_item *dev_item;
6002                        dev_item = btrfs_item_ptr(leaf, slot,
6003                                                  struct btrfs_dev_item);
6004                        ret = read_one_dev(root, leaf, dev_item);
6005                        if (ret)
6006                                goto error;
6007                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6008                        struct btrfs_chunk *chunk;
6009                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6010                        ret = read_one_chunk(root, &found_key, leaf, chunk);
6011                        if (ret)
6012                                goto error;
6013                }
6014                path->slots[0]++;
6015        }
6016        ret = 0;
6017error:
6018        unlock_chunks(root);
6019        mutex_unlock(&uuid_mutex);
6020
6021        btrfs_free_path(path);
6022        return ret;
6023}
6024
6025void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6026{
6027        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6028        struct btrfs_device *device;
6029
6030        mutex_lock(&fs_devices->device_list_mutex);
6031        list_for_each_entry(device, &fs_devices->devices, dev_list)
6032                device->dev_root = fs_info->dev_root;
6033        mutex_unlock(&fs_devices->device_list_mutex);
6034}
6035
6036static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6037{
6038        int i;
6039
6040        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6041                btrfs_dev_stat_reset(dev, i);
6042}
6043
6044int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6045{
6046        struct btrfs_key key;
6047        struct btrfs_key found_key;
6048        struct btrfs_root *dev_root = fs_info->dev_root;
6049        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6050        struct extent_buffer *eb;
6051        int slot;
6052        int ret = 0;
6053        struct btrfs_device *device;
6054        struct btrfs_path *path = NULL;
6055        int i;
6056
6057        path = btrfs_alloc_path();
6058        if (!path) {
6059                ret = -ENOMEM;
6060                goto out;
6061        }
6062
6063        mutex_lock(&fs_devices->device_list_mutex);
6064        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6065                int item_size;
6066                struct btrfs_dev_stats_item *ptr;
6067
6068                key.objectid = 0;
6069                key.type = BTRFS_DEV_STATS_KEY;
6070                key.offset = device->devid;
6071                ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6072                if (ret) {
6073                        __btrfs_reset_dev_stats(device);
6074                        device->dev_stats_valid = 1;
6075                        btrfs_release_path(path);
6076                        continue;
6077                }
6078                slot = path->slots[0];
6079                eb = path->nodes[0];
6080                btrfs_item_key_to_cpu(eb, &found_key, slot);
6081                item_size = btrfs_item_size_nr(eb, slot);
6082
6083                ptr = btrfs_item_ptr(eb, slot,
6084                                     struct btrfs_dev_stats_item);
6085
6086                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6087                        if (item_size >= (1 + i) * sizeof(__le64))
6088                                btrfs_dev_stat_set(device, i,
6089                                        btrfs_dev_stats_value(eb, ptr, i));
6090                        else
6091                                btrfs_dev_stat_reset(device, i);
6092                }
6093
6094                device->dev_stats_valid = 1;
6095                btrfs_dev_stat_print_on_load(device);
6096                btrfs_release_path(path);
6097        }
6098        mutex_unlock(&fs_devices->device_list_mutex);
6099
6100out:
6101        btrfs_free_path(path);
6102        return ret < 0 ? ret : 0;
6103}
6104
6105static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6106                                struct btrfs_root *dev_root,
6107                                struct btrfs_device *device)
6108{
6109        struct btrfs_path *path;
6110        struct btrfs_key key;
6111        struct extent_buffer *eb;
6112        struct btrfs_dev_stats_item *ptr;
6113        int ret;
6114        int i;
6115
6116        key.objectid = 0;
6117        key.type = BTRFS_DEV_STATS_KEY;
6118        key.offset = device->devid;
6119
6120        path = btrfs_alloc_path();
6121        BUG_ON(!path);
6122        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6123        if (ret < 0) {
6124                printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6125                              ret, rcu_str_deref(device->name));
6126                goto out;
6127        }
6128
6129        if (ret == 0 &&
6130            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6131                /* need to delete old one and insert a new one */
6132                ret = btrfs_del_item(trans, dev_root, path);
6133                if (ret != 0) {
6134                        printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6135                                      rcu_str_deref(device->name), ret);
6136                        goto out;
6137                }
6138                ret = 1;
6139        }
6140
6141        if (ret == 1) {
6142                /* need to insert a new item */
6143                btrfs_release_path(path);
6144                ret = btrfs_insert_empty_item(trans, dev_root, path,
6145                                              &key, sizeof(*ptr));
6146                if (ret < 0) {
6147                        printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6148                                      rcu_str_deref(device->name), ret);
6149                        goto out;
6150                }
6151        }
6152
6153        eb = path->nodes[0];
6154        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6155        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6156                btrfs_set_dev_stats_value(eb, ptr, i,
6157                                          btrfs_dev_stat_read(device, i));
6158        btrfs_mark_buffer_dirty(eb);
6159
6160out:
6161        btrfs_free_path(path);
6162        return ret;
6163}
6164
6165/*
6166 * called from commit_transaction. Writes all changed device stats to disk.
6167 */
6168int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6169                        struct btrfs_fs_info *fs_info)
6170{
6171        struct btrfs_root *dev_root = fs_info->dev_root;
6172        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6173        struct btrfs_device *device;
6174        int ret = 0;
6175
6176        mutex_lock(&fs_devices->device_list_mutex);
6177        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6178                if (!device->dev_stats_valid || !device->dev_stats_dirty)
6179                        continue;
6180
6181                ret = update_dev_stat_item(trans, dev_root, device);
6182                if (!ret)
6183                        device->dev_stats_dirty = 0;
6184        }
6185        mutex_unlock(&fs_devices->device_list_mutex);
6186
6187        return ret;
6188}
6189
6190void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6191{
6192        btrfs_dev_stat_inc(dev, index);
6193        btrfs_dev_stat_print_on_error(dev);
6194}
6195
6196static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6197{
6198        if (!dev->dev_stats_valid)
6199                return;
6200        printk_ratelimited_in_rcu(KERN_ERR
6201                           "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6202                           rcu_str_deref(dev->name),
6203                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6204                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6205                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6206                           btrfs_dev_stat_read(dev,
6207                                               BTRFS_DEV_STAT_CORRUPTION_ERRS),
6208                           btrfs_dev_stat_read(dev,
6209                                               BTRFS_DEV_STAT_GENERATION_ERRS));
6210}
6211
6212static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6213{
6214        int i;
6215
6216        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6217                if (btrfs_dev_stat_read(dev, i) != 0)
6218                        break;
6219        if (i == BTRFS_DEV_STAT_VALUES_MAX)
6220                return; /* all values == 0, suppress message */
6221
6222        printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6223               rcu_str_deref(dev->name),
6224               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6225               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6226               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6227               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6228               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6229}
6230
6231int btrfs_get_dev_stats(struct btrfs_root *root,
6232                        struct btrfs_ioctl_get_dev_stats *stats)
6233{
6234        struct btrfs_device *dev;
6235        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6236        int i;
6237
6238        mutex_lock(&fs_devices->device_list_mutex);
6239        dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6240        mutex_unlock(&fs_devices->device_list_mutex);
6241
6242        if (!dev) {
6243                printk(KERN_WARNING
6244                       "btrfs: get dev_stats failed, device not found\n");
6245                return -ENODEV;
6246        } else if (!dev->dev_stats_valid) {
6247                printk(KERN_WARNING
6248                       "btrfs: get dev_stats failed, not yet valid\n");
6249                return -ENODEV;
6250        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6251                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6252                        if (stats->nr_items > i)
6253                                stats->values[i] =
6254                                        btrfs_dev_stat_read_and_reset(dev, i);
6255                        else
6256                                btrfs_dev_stat_reset(dev, i);
6257                }
6258        } else {
6259                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6260                        if (stats->nr_items > i)
6261                                stats->values[i] = btrfs_dev_stat_read(dev, i);
6262        }
6263        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6264                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6265        return 0;
6266}
6267
6268int btrfs_scratch_superblock(struct btrfs_device *device)
6269{
6270        struct buffer_head *bh;
6271        struct btrfs_super_block *disk_super;
6272
6273        bh = btrfs_read_dev_super(device->bdev);
6274        if (!bh)
6275                return -EINVAL;
6276        disk_super = (struct btrfs_super_block *)bh->b_data;
6277
6278        memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6279        set_buffer_dirty(bh);
6280        sync_dirty_buffer(bh);
6281        brelse(bh);
6282
6283        return 0;
6284}
6285