linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46#include "nfstrace.h"
  47
  48/* #define NFS_DEBUG_VERBOSE 1 */
  49
  50static int nfs_opendir(struct inode *, struct file *);
  51static int nfs_closedir(struct inode *, struct file *);
  52static int nfs_readdir(struct file *, struct dir_context *);
  53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  55static void nfs_readdir_clear_array(struct page*);
  56
  57const struct file_operations nfs_dir_operations = {
  58        .llseek         = nfs_llseek_dir,
  59        .read           = generic_read_dir,
  60        .iterate        = nfs_readdir,
  61        .open           = nfs_opendir,
  62        .release        = nfs_closedir,
  63        .fsync          = nfs_fsync_dir,
  64};
  65
  66const struct address_space_operations nfs_dir_aops = {
  67        .freepage = nfs_readdir_clear_array,
  68};
  69
  70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
  71{
  72        struct nfs_open_dir_context *ctx;
  73        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  74        if (ctx != NULL) {
  75                ctx->duped = 0;
  76                ctx->attr_gencount = NFS_I(dir)->attr_gencount;
  77                ctx->dir_cookie = 0;
  78                ctx->dup_cookie = 0;
  79                ctx->cred = get_rpccred(cred);
  80                return ctx;
  81        }
  82        return  ERR_PTR(-ENOMEM);
  83}
  84
  85static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
  86{
  87        put_rpccred(ctx->cred);
  88        kfree(ctx);
  89}
  90
  91/*
  92 * Open file
  93 */
  94static int
  95nfs_opendir(struct inode *inode, struct file *filp)
  96{
  97        int res = 0;
  98        struct nfs_open_dir_context *ctx;
  99        struct rpc_cred *cred;
 100
 101        dfprintk(FILE, "NFS: open dir(%s/%s)\n",
 102                        filp->f_path.dentry->d_parent->d_name.name,
 103                        filp->f_path.dentry->d_name.name);
 104
 105        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 106
 107        cred = rpc_lookup_cred();
 108        if (IS_ERR(cred))
 109                return PTR_ERR(cred);
 110        ctx = alloc_nfs_open_dir_context(inode, cred);
 111        if (IS_ERR(ctx)) {
 112                res = PTR_ERR(ctx);
 113                goto out;
 114        }
 115        filp->private_data = ctx;
 116        if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 117                /* This is a mountpoint, so d_revalidate will never
 118                 * have been called, so we need to refresh the
 119                 * inode (for close-open consistency) ourselves.
 120                 */
 121                __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 122        }
 123out:
 124        put_rpccred(cred);
 125        return res;
 126}
 127
 128static int
 129nfs_closedir(struct inode *inode, struct file *filp)
 130{
 131        put_nfs_open_dir_context(filp->private_data);
 132        return 0;
 133}
 134
 135struct nfs_cache_array_entry {
 136        u64 cookie;
 137        u64 ino;
 138        struct qstr string;
 139        unsigned char d_type;
 140};
 141
 142struct nfs_cache_array {
 143        int size;
 144        int eof_index;
 145        u64 last_cookie;
 146        struct nfs_cache_array_entry array[0];
 147};
 148
 149typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 150typedef struct {
 151        struct file     *file;
 152        struct page     *page;
 153        struct dir_context *ctx;
 154        unsigned long   page_index;
 155        u64             *dir_cookie;
 156        u64             last_cookie;
 157        loff_t          current_index;
 158        decode_dirent_t decode;
 159
 160        unsigned long   timestamp;
 161        unsigned long   gencount;
 162        unsigned int    cache_entry_index;
 163        unsigned int    plus:1;
 164        unsigned int    eof:1;
 165} nfs_readdir_descriptor_t;
 166
 167/*
 168 * The caller is responsible for calling nfs_readdir_release_array(page)
 169 */
 170static
 171struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 172{
 173        void *ptr;
 174        if (page == NULL)
 175                return ERR_PTR(-EIO);
 176        ptr = kmap(page);
 177        if (ptr == NULL)
 178                return ERR_PTR(-ENOMEM);
 179        return ptr;
 180}
 181
 182static
 183void nfs_readdir_release_array(struct page *page)
 184{
 185        kunmap(page);
 186}
 187
 188/*
 189 * we are freeing strings created by nfs_add_to_readdir_array()
 190 */
 191static
 192void nfs_readdir_clear_array(struct page *page)
 193{
 194        struct nfs_cache_array *array;
 195        int i;
 196
 197        array = kmap_atomic(page);
 198        for (i = 0; i < array->size; i++)
 199                kfree(array->array[i].string.name);
 200        kunmap_atomic(array);
 201}
 202
 203/*
 204 * the caller is responsible for freeing qstr.name
 205 * when called by nfs_readdir_add_to_array, the strings will be freed in
 206 * nfs_clear_readdir_array()
 207 */
 208static
 209int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 210{
 211        string->len = len;
 212        string->name = kmemdup(name, len, GFP_KERNEL);
 213        if (string->name == NULL)
 214                return -ENOMEM;
 215        /*
 216         * Avoid a kmemleak false positive. The pointer to the name is stored
 217         * in a page cache page which kmemleak does not scan.
 218         */
 219        kmemleak_not_leak(string->name);
 220        string->hash = full_name_hash(name, len);
 221        return 0;
 222}
 223
 224static
 225int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 226{
 227        struct nfs_cache_array *array = nfs_readdir_get_array(page);
 228        struct nfs_cache_array_entry *cache_entry;
 229        int ret;
 230
 231        if (IS_ERR(array))
 232                return PTR_ERR(array);
 233
 234        cache_entry = &array->array[array->size];
 235
 236        /* Check that this entry lies within the page bounds */
 237        ret = -ENOSPC;
 238        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 239                goto out;
 240
 241        cache_entry->cookie = entry->prev_cookie;
 242        cache_entry->ino = entry->ino;
 243        cache_entry->d_type = entry->d_type;
 244        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 245        if (ret)
 246                goto out;
 247        array->last_cookie = entry->cookie;
 248        array->size++;
 249        if (entry->eof != 0)
 250                array->eof_index = array->size;
 251out:
 252        nfs_readdir_release_array(page);
 253        return ret;
 254}
 255
 256static
 257int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 258{
 259        loff_t diff = desc->ctx->pos - desc->current_index;
 260        unsigned int index;
 261
 262        if (diff < 0)
 263                goto out_eof;
 264        if (diff >= array->size) {
 265                if (array->eof_index >= 0)
 266                        goto out_eof;
 267                return -EAGAIN;
 268        }
 269
 270        index = (unsigned int)diff;
 271        *desc->dir_cookie = array->array[index].cookie;
 272        desc->cache_entry_index = index;
 273        return 0;
 274out_eof:
 275        desc->eof = 1;
 276        return -EBADCOOKIE;
 277}
 278
 279static
 280int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 281{
 282        int i;
 283        loff_t new_pos;
 284        int status = -EAGAIN;
 285
 286        for (i = 0; i < array->size; i++) {
 287                if (array->array[i].cookie == *desc->dir_cookie) {
 288                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 289                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 290
 291                        new_pos = desc->current_index + i;
 292                        if (ctx->attr_gencount != nfsi->attr_gencount
 293                            || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
 294                                ctx->duped = 0;
 295                                ctx->attr_gencount = nfsi->attr_gencount;
 296                        } else if (new_pos < desc->ctx->pos) {
 297                                if (ctx->duped > 0
 298                                    && ctx->dup_cookie == *desc->dir_cookie) {
 299                                        if (printk_ratelimit()) {
 300                                                pr_notice("NFS: directory %s/%s contains a readdir loop."
 301                                                                "Please contact your server vendor.  "
 302                                                                "The file: %s has duplicate cookie %llu\n",
 303                                                                desc->file->f_dentry->d_parent->d_name.name,
 304                                                                desc->file->f_dentry->d_name.name,
 305                                                                array->array[i].string.name,
 306                                                                *desc->dir_cookie);
 307                                        }
 308                                        status = -ELOOP;
 309                                        goto out;
 310                                }
 311                                ctx->dup_cookie = *desc->dir_cookie;
 312                                ctx->duped = -1;
 313                        }
 314                        desc->ctx->pos = new_pos;
 315                        desc->cache_entry_index = i;
 316                        return 0;
 317                }
 318        }
 319        if (array->eof_index >= 0) {
 320                status = -EBADCOOKIE;
 321                if (*desc->dir_cookie == array->last_cookie)
 322                        desc->eof = 1;
 323        }
 324out:
 325        return status;
 326}
 327
 328static
 329int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 330{
 331        struct nfs_cache_array *array;
 332        int status;
 333
 334        array = nfs_readdir_get_array(desc->page);
 335        if (IS_ERR(array)) {
 336                status = PTR_ERR(array);
 337                goto out;
 338        }
 339
 340        if (*desc->dir_cookie == 0)
 341                status = nfs_readdir_search_for_pos(array, desc);
 342        else
 343                status = nfs_readdir_search_for_cookie(array, desc);
 344
 345        if (status == -EAGAIN) {
 346                desc->last_cookie = array->last_cookie;
 347                desc->current_index += array->size;
 348                desc->page_index++;
 349        }
 350        nfs_readdir_release_array(desc->page);
 351out:
 352        return status;
 353}
 354
 355/* Fill a page with xdr information before transferring to the cache page */
 356static
 357int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 358                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 359{
 360        struct nfs_open_dir_context *ctx = file->private_data;
 361        struct rpc_cred *cred = ctx->cred;
 362        unsigned long   timestamp, gencount;
 363        int             error;
 364
 365 again:
 366        timestamp = jiffies;
 367        gencount = nfs_inc_attr_generation_counter();
 368        error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
 369                                          NFS_SERVER(inode)->dtsize, desc->plus);
 370        if (error < 0) {
 371                /* We requested READDIRPLUS, but the server doesn't grok it */
 372                if (error == -ENOTSUPP && desc->plus) {
 373                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 374                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 375                        desc->plus = 0;
 376                        goto again;
 377                }
 378                goto error;
 379        }
 380        desc->timestamp = timestamp;
 381        desc->gencount = gencount;
 382error:
 383        return error;
 384}
 385
 386static int xdr_decode(nfs_readdir_descriptor_t *desc,
 387                      struct nfs_entry *entry, struct xdr_stream *xdr)
 388{
 389        int error;
 390
 391        error = desc->decode(xdr, entry, desc->plus);
 392        if (error)
 393                return error;
 394        entry->fattr->time_start = desc->timestamp;
 395        entry->fattr->gencount = desc->gencount;
 396        return 0;
 397}
 398
 399static
 400int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 401{
 402        if (dentry->d_inode == NULL)
 403                goto different;
 404        if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
 405                goto different;
 406        return 1;
 407different:
 408        return 0;
 409}
 410
 411static
 412bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 413{
 414        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 415                return false;
 416        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 417                return true;
 418        if (ctx->pos == 0)
 419                return true;
 420        return false;
 421}
 422
 423/*
 424 * This function is called by the lookup code to request the use of
 425 * readdirplus to accelerate any future lookups in the same
 426 * directory.
 427 */
 428static
 429void nfs_advise_use_readdirplus(struct inode *dir)
 430{
 431        set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
 432}
 433
 434static
 435void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 436{
 437        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 438        struct dentry *dentry;
 439        struct dentry *alias;
 440        struct inode *dir = parent->d_inode;
 441        struct inode *inode;
 442        int status;
 443
 444        if (filename.name[0] == '.') {
 445                if (filename.len == 1)
 446                        return;
 447                if (filename.len == 2 && filename.name[1] == '.')
 448                        return;
 449        }
 450        filename.hash = full_name_hash(filename.name, filename.len);
 451
 452        dentry = d_lookup(parent, &filename);
 453        if (dentry != NULL) {
 454                if (nfs_same_file(dentry, entry)) {
 455                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 456                        status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
 457                        if (!status)
 458                                nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
 459                        goto out;
 460                } else {
 461                        if (d_invalidate(dentry) != 0)
 462                                goto out;
 463                        dput(dentry);
 464                }
 465        }
 466
 467        dentry = d_alloc(parent, &filename);
 468        if (dentry == NULL)
 469                return;
 470
 471        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 472        if (IS_ERR(inode))
 473                goto out;
 474
 475        alias = d_materialise_unique(dentry, inode);
 476        if (IS_ERR(alias))
 477                goto out;
 478        else if (alias) {
 479                nfs_set_verifier(alias, nfs_save_change_attribute(dir));
 480                dput(alias);
 481        } else
 482                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 483
 484out:
 485        dput(dentry);
 486}
 487
 488/* Perform conversion from xdr to cache array */
 489static
 490int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 491                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 492{
 493        struct xdr_stream stream;
 494        struct xdr_buf buf;
 495        struct page *scratch;
 496        struct nfs_cache_array *array;
 497        unsigned int count = 0;
 498        int status;
 499
 500        scratch = alloc_page(GFP_KERNEL);
 501        if (scratch == NULL)
 502                return -ENOMEM;
 503
 504        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 505        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 506
 507        do {
 508                status = xdr_decode(desc, entry, &stream);
 509                if (status != 0) {
 510                        if (status == -EAGAIN)
 511                                status = 0;
 512                        break;
 513                }
 514
 515                count++;
 516
 517                if (desc->plus != 0)
 518                        nfs_prime_dcache(desc->file->f_path.dentry, entry);
 519
 520                status = nfs_readdir_add_to_array(entry, page);
 521                if (status != 0)
 522                        break;
 523        } while (!entry->eof);
 524
 525        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 526                array = nfs_readdir_get_array(page);
 527                if (!IS_ERR(array)) {
 528                        array->eof_index = array->size;
 529                        status = 0;
 530                        nfs_readdir_release_array(page);
 531                } else
 532                        status = PTR_ERR(array);
 533        }
 534
 535        put_page(scratch);
 536        return status;
 537}
 538
 539static
 540void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
 541{
 542        unsigned int i;
 543        for (i = 0; i < npages; i++)
 544                put_page(pages[i]);
 545}
 546
 547static
 548void nfs_readdir_free_large_page(void *ptr, struct page **pages,
 549                unsigned int npages)
 550{
 551        nfs_readdir_free_pagearray(pages, npages);
 552}
 553
 554/*
 555 * nfs_readdir_large_page will allocate pages that must be freed with a call
 556 * to nfs_readdir_free_large_page
 557 */
 558static
 559int nfs_readdir_large_page(struct page **pages, unsigned int npages)
 560{
 561        unsigned int i;
 562
 563        for (i = 0; i < npages; i++) {
 564                struct page *page = alloc_page(GFP_KERNEL);
 565                if (page == NULL)
 566                        goto out_freepages;
 567                pages[i] = page;
 568        }
 569        return 0;
 570
 571out_freepages:
 572        nfs_readdir_free_pagearray(pages, i);
 573        return -ENOMEM;
 574}
 575
 576static
 577int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 578{
 579        struct page *pages[NFS_MAX_READDIR_PAGES];
 580        void *pages_ptr = NULL;
 581        struct nfs_entry entry;
 582        struct file     *file = desc->file;
 583        struct nfs_cache_array *array;
 584        int status = -ENOMEM;
 585        unsigned int array_size = ARRAY_SIZE(pages);
 586
 587        entry.prev_cookie = 0;
 588        entry.cookie = desc->last_cookie;
 589        entry.eof = 0;
 590        entry.fh = nfs_alloc_fhandle();
 591        entry.fattr = nfs_alloc_fattr();
 592        entry.server = NFS_SERVER(inode);
 593        if (entry.fh == NULL || entry.fattr == NULL)
 594                goto out;
 595
 596        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 597        if (IS_ERR(entry.label)) {
 598                status = PTR_ERR(entry.label);
 599                goto out;
 600        }
 601
 602        array = nfs_readdir_get_array(page);
 603        if (IS_ERR(array)) {
 604                status = PTR_ERR(array);
 605                goto out_label_free;
 606        }
 607        memset(array, 0, sizeof(struct nfs_cache_array));
 608        array->eof_index = -1;
 609
 610        status = nfs_readdir_large_page(pages, array_size);
 611        if (status < 0)
 612                goto out_release_array;
 613        do {
 614                unsigned int pglen;
 615                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 616
 617                if (status < 0)
 618                        break;
 619                pglen = status;
 620                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 621                if (status < 0) {
 622                        if (status == -ENOSPC)
 623                                status = 0;
 624                        break;
 625                }
 626        } while (array->eof_index < 0);
 627
 628        nfs_readdir_free_large_page(pages_ptr, pages, array_size);
 629out_release_array:
 630        nfs_readdir_release_array(page);
 631out_label_free:
 632        nfs4_label_free(entry.label);
 633out:
 634        nfs_free_fattr(entry.fattr);
 635        nfs_free_fhandle(entry.fh);
 636        return status;
 637}
 638
 639/*
 640 * Now we cache directories properly, by converting xdr information
 641 * to an array that can be used for lookups later.  This results in
 642 * fewer cache pages, since we can store more information on each page.
 643 * We only need to convert from xdr once so future lookups are much simpler
 644 */
 645static
 646int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 647{
 648        struct inode    *inode = file_inode(desc->file);
 649        int ret;
 650
 651        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 652        if (ret < 0)
 653                goto error;
 654        SetPageUptodate(page);
 655
 656        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 657                /* Should never happen */
 658                nfs_zap_mapping(inode, inode->i_mapping);
 659        }
 660        unlock_page(page);
 661        return 0;
 662 error:
 663        unlock_page(page);
 664        return ret;
 665}
 666
 667static
 668void cache_page_release(nfs_readdir_descriptor_t *desc)
 669{
 670        if (!desc->page->mapping)
 671                nfs_readdir_clear_array(desc->page);
 672        page_cache_release(desc->page);
 673        desc->page = NULL;
 674}
 675
 676static
 677struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 678{
 679        return read_cache_page(file_inode(desc->file)->i_mapping,
 680                        desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 681}
 682
 683/*
 684 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 685 */
 686static
 687int find_cache_page(nfs_readdir_descriptor_t *desc)
 688{
 689        int res;
 690
 691        desc->page = get_cache_page(desc);
 692        if (IS_ERR(desc->page))
 693                return PTR_ERR(desc->page);
 694
 695        res = nfs_readdir_search_array(desc);
 696        if (res != 0)
 697                cache_page_release(desc);
 698        return res;
 699}
 700
 701/* Search for desc->dir_cookie from the beginning of the page cache */
 702static inline
 703int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 704{
 705        int res;
 706
 707        if (desc->page_index == 0) {
 708                desc->current_index = 0;
 709                desc->last_cookie = 0;
 710        }
 711        do {
 712                res = find_cache_page(desc);
 713        } while (res == -EAGAIN);
 714        return res;
 715}
 716
 717/*
 718 * Once we've found the start of the dirent within a page: fill 'er up...
 719 */
 720static 
 721int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 722{
 723        struct file     *file = desc->file;
 724        int i = 0;
 725        int res = 0;
 726        struct nfs_cache_array *array = NULL;
 727        struct nfs_open_dir_context *ctx = file->private_data;
 728
 729        array = nfs_readdir_get_array(desc->page);
 730        if (IS_ERR(array)) {
 731                res = PTR_ERR(array);
 732                goto out;
 733        }
 734
 735        for (i = desc->cache_entry_index; i < array->size; i++) {
 736                struct nfs_cache_array_entry *ent;
 737
 738                ent = &array->array[i];
 739                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 740                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 741                        desc->eof = 1;
 742                        break;
 743                }
 744                desc->ctx->pos++;
 745                if (i < (array->size-1))
 746                        *desc->dir_cookie = array->array[i+1].cookie;
 747                else
 748                        *desc->dir_cookie = array->last_cookie;
 749                if (ctx->duped != 0)
 750                        ctx->duped = 1;
 751        }
 752        if (array->eof_index >= 0)
 753                desc->eof = 1;
 754
 755        nfs_readdir_release_array(desc->page);
 756out:
 757        cache_page_release(desc);
 758        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 759                        (unsigned long long)*desc->dir_cookie, res);
 760        return res;
 761}
 762
 763/*
 764 * If we cannot find a cookie in our cache, we suspect that this is
 765 * because it points to a deleted file, so we ask the server to return
 766 * whatever it thinks is the next entry. We then feed this to filldir.
 767 * If all goes well, we should then be able to find our way round the
 768 * cache on the next call to readdir_search_pagecache();
 769 *
 770 * NOTE: we cannot add the anonymous page to the pagecache because
 771 *       the data it contains might not be page aligned. Besides,
 772 *       we should already have a complete representation of the
 773 *       directory in the page cache by the time we get here.
 774 */
 775static inline
 776int uncached_readdir(nfs_readdir_descriptor_t *desc)
 777{
 778        struct page     *page = NULL;
 779        int             status;
 780        struct inode *inode = file_inode(desc->file);
 781        struct nfs_open_dir_context *ctx = desc->file->private_data;
 782
 783        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 784                        (unsigned long long)*desc->dir_cookie);
 785
 786        page = alloc_page(GFP_HIGHUSER);
 787        if (!page) {
 788                status = -ENOMEM;
 789                goto out;
 790        }
 791
 792        desc->page_index = 0;
 793        desc->last_cookie = *desc->dir_cookie;
 794        desc->page = page;
 795        ctx->duped = 0;
 796
 797        status = nfs_readdir_xdr_to_array(desc, page, inode);
 798        if (status < 0)
 799                goto out_release;
 800
 801        status = nfs_do_filldir(desc);
 802
 803 out:
 804        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 805                        __func__, status);
 806        return status;
 807 out_release:
 808        cache_page_release(desc);
 809        goto out;
 810}
 811
 812/* The file offset position represents the dirent entry number.  A
 813   last cookie cache takes care of the common case of reading the
 814   whole directory.
 815 */
 816static int nfs_readdir(struct file *file, struct dir_context *ctx)
 817{
 818        struct dentry   *dentry = file->f_path.dentry;
 819        struct inode    *inode = dentry->d_inode;
 820        nfs_readdir_descriptor_t my_desc,
 821                        *desc = &my_desc;
 822        struct nfs_open_dir_context *dir_ctx = file->private_data;
 823        int res = 0;
 824
 825        dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
 826                        dentry->d_parent->d_name.name, dentry->d_name.name,
 827                        (long long)ctx->pos);
 828        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 829
 830        /*
 831         * ctx->pos points to the dirent entry number.
 832         * *desc->dir_cookie has the cookie for the next entry. We have
 833         * to either find the entry with the appropriate number or
 834         * revalidate the cookie.
 835         */
 836        memset(desc, 0, sizeof(*desc));
 837
 838        desc->file = file;
 839        desc->ctx = ctx;
 840        desc->dir_cookie = &dir_ctx->dir_cookie;
 841        desc->decode = NFS_PROTO(inode)->decode_dirent;
 842        desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
 843
 844        nfs_block_sillyrename(dentry);
 845        if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 846                res = nfs_revalidate_mapping(inode, file->f_mapping);
 847        if (res < 0)
 848                goto out;
 849
 850        do {
 851                res = readdir_search_pagecache(desc);
 852
 853                if (res == -EBADCOOKIE) {
 854                        res = 0;
 855                        /* This means either end of directory */
 856                        if (*desc->dir_cookie && desc->eof == 0) {
 857                                /* Or that the server has 'lost' a cookie */
 858                                res = uncached_readdir(desc);
 859                                if (res == 0)
 860                                        continue;
 861                        }
 862                        break;
 863                }
 864                if (res == -ETOOSMALL && desc->plus) {
 865                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 866                        nfs_zap_caches(inode);
 867                        desc->page_index = 0;
 868                        desc->plus = 0;
 869                        desc->eof = 0;
 870                        continue;
 871                }
 872                if (res < 0)
 873                        break;
 874
 875                res = nfs_do_filldir(desc);
 876                if (res < 0)
 877                        break;
 878        } while (!desc->eof);
 879out:
 880        nfs_unblock_sillyrename(dentry);
 881        if (res > 0)
 882                res = 0;
 883        dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
 884                        dentry->d_parent->d_name.name, dentry->d_name.name,
 885                        res);
 886        return res;
 887}
 888
 889static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 890{
 891        struct dentry *dentry = filp->f_path.dentry;
 892        struct inode *inode = dentry->d_inode;
 893        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 894
 895        dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
 896                        dentry->d_parent->d_name.name,
 897                        dentry->d_name.name,
 898                        offset, whence);
 899
 900        mutex_lock(&inode->i_mutex);
 901        switch (whence) {
 902                case 1:
 903                        offset += filp->f_pos;
 904                case 0:
 905                        if (offset >= 0)
 906                                break;
 907                default:
 908                        offset = -EINVAL;
 909                        goto out;
 910        }
 911        if (offset != filp->f_pos) {
 912                filp->f_pos = offset;
 913                dir_ctx->dir_cookie = 0;
 914                dir_ctx->duped = 0;
 915        }
 916out:
 917        mutex_unlock(&inode->i_mutex);
 918        return offset;
 919}
 920
 921/*
 922 * All directory operations under NFS are synchronous, so fsync()
 923 * is a dummy operation.
 924 */
 925static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 926                         int datasync)
 927{
 928        struct dentry *dentry = filp->f_path.dentry;
 929        struct inode *inode = dentry->d_inode;
 930
 931        dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
 932                        dentry->d_parent->d_name.name, dentry->d_name.name,
 933                        datasync);
 934
 935        mutex_lock(&inode->i_mutex);
 936        nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
 937        mutex_unlock(&inode->i_mutex);
 938        return 0;
 939}
 940
 941/**
 942 * nfs_force_lookup_revalidate - Mark the directory as having changed
 943 * @dir - pointer to directory inode
 944 *
 945 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 946 * full lookup on all child dentries of 'dir' whenever a change occurs
 947 * on the server that might have invalidated our dcache.
 948 *
 949 * The caller should be holding dir->i_lock
 950 */
 951void nfs_force_lookup_revalidate(struct inode *dir)
 952{
 953        NFS_I(dir)->cache_change_attribute++;
 954}
 955EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
 956
 957/*
 958 * A check for whether or not the parent directory has changed.
 959 * In the case it has, we assume that the dentries are untrustworthy
 960 * and may need to be looked up again.
 961 */
 962static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
 963{
 964        if (IS_ROOT(dentry))
 965                return 1;
 966        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
 967                return 0;
 968        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 969                return 0;
 970        /* Revalidate nfsi->cache_change_attribute before we declare a match */
 971        if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
 972                return 0;
 973        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 974                return 0;
 975        return 1;
 976}
 977
 978/*
 979 * Use intent information to check whether or not we're going to do
 980 * an O_EXCL create using this path component.
 981 */
 982static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
 983{
 984        if (NFS_PROTO(dir)->version == 2)
 985                return 0;
 986        return flags & LOOKUP_EXCL;
 987}
 988
 989/*
 990 * Inode and filehandle revalidation for lookups.
 991 *
 992 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
 993 * or if the intent information indicates that we're about to open this
 994 * particular file and the "nocto" mount flag is not set.
 995 *
 996 */
 997static
 998int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
 999{
1000        struct nfs_server *server = NFS_SERVER(inode);
1001        int ret;
1002
1003        if (IS_AUTOMOUNT(inode))
1004                return 0;
1005        /* VFS wants an on-the-wire revalidation */
1006        if (flags & LOOKUP_REVAL)
1007                goto out_force;
1008        /* This is an open(2) */
1009        if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1010            (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1011                goto out_force;
1012out:
1013        return (inode->i_nlink == 0) ? -ENOENT : 0;
1014out_force:
1015        ret = __nfs_revalidate_inode(server, inode);
1016        if (ret != 0)
1017                return ret;
1018        goto out;
1019}
1020
1021/*
1022 * We judge how long we want to trust negative
1023 * dentries by looking at the parent inode mtime.
1024 *
1025 * If parent mtime has changed, we revalidate, else we wait for a
1026 * period corresponding to the parent's attribute cache timeout value.
1027 */
1028static inline
1029int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1030                       unsigned int flags)
1031{
1032        /* Don't revalidate a negative dentry if we're creating a new file */
1033        if (flags & LOOKUP_CREATE)
1034                return 0;
1035        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1036                return 1;
1037        return !nfs_check_verifier(dir, dentry);
1038}
1039
1040/*
1041 * This is called every time the dcache has a lookup hit,
1042 * and we should check whether we can really trust that
1043 * lookup.
1044 *
1045 * NOTE! The hit can be a negative hit too, don't assume
1046 * we have an inode!
1047 *
1048 * If the parent directory is seen to have changed, we throw out the
1049 * cached dentry and do a new lookup.
1050 */
1051static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1052{
1053        struct inode *dir;
1054        struct inode *inode;
1055        struct dentry *parent;
1056        struct nfs_fh *fhandle = NULL;
1057        struct nfs_fattr *fattr = NULL;
1058        struct nfs4_label *label = NULL;
1059        int error;
1060
1061        if (flags & LOOKUP_RCU)
1062                return -ECHILD;
1063
1064        parent = dget_parent(dentry);
1065        dir = parent->d_inode;
1066        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1067        inode = dentry->d_inode;
1068
1069        if (!inode) {
1070                if (nfs_neg_need_reval(dir, dentry, flags))
1071                        goto out_bad;
1072                goto out_valid_noent;
1073        }
1074
1075        if (is_bad_inode(inode)) {
1076                dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1077                                __func__, dentry->d_parent->d_name.name,
1078                                dentry->d_name.name);
1079                goto out_bad;
1080        }
1081
1082        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1083                goto out_set_verifier;
1084
1085        /* Force a full look up iff the parent directory has changed */
1086        if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1087                if (nfs_lookup_verify_inode(inode, flags))
1088                        goto out_zap_parent;
1089                goto out_valid;
1090        }
1091
1092        if (NFS_STALE(inode))
1093                goto out_bad;
1094
1095        error = -ENOMEM;
1096        fhandle = nfs_alloc_fhandle();
1097        fattr = nfs_alloc_fattr();
1098        if (fhandle == NULL || fattr == NULL)
1099                goto out_error;
1100
1101        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1102        if (IS_ERR(label))
1103                goto out_error;
1104
1105        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1106        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1107        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1108        if (error)
1109                goto out_bad;
1110        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1111                goto out_bad;
1112        if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1113                goto out_bad;
1114
1115        nfs_setsecurity(inode, fattr, label);
1116
1117        nfs_free_fattr(fattr);
1118        nfs_free_fhandle(fhandle);
1119        nfs4_label_free(label);
1120
1121out_set_verifier:
1122        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1123 out_valid:
1124        /* Success: notify readdir to use READDIRPLUS */
1125        nfs_advise_use_readdirplus(dir);
1126 out_valid_noent:
1127        dput(parent);
1128        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1129                        __func__, dentry->d_parent->d_name.name,
1130                        dentry->d_name.name);
1131        return 1;
1132out_zap_parent:
1133        nfs_zap_caches(dir);
1134 out_bad:
1135        nfs_free_fattr(fattr);
1136        nfs_free_fhandle(fhandle);
1137        nfs4_label_free(label);
1138        nfs_mark_for_revalidate(dir);
1139        if (inode && S_ISDIR(inode->i_mode)) {
1140                /* Purge readdir caches. */
1141                nfs_zap_caches(inode);
1142                if (dentry->d_flags & DCACHE_DISCONNECTED)
1143                        goto out_valid;
1144        }
1145        /* If we have submounts, don't unhash ! */
1146        if (check_submounts_and_drop(dentry) != 0)
1147                goto out_valid;
1148
1149        dput(parent);
1150        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1151                        __func__, dentry->d_parent->d_name.name,
1152                        dentry->d_name.name);
1153        return 0;
1154out_error:
1155        nfs_free_fattr(fattr);
1156        nfs_free_fhandle(fhandle);
1157        nfs4_label_free(label);
1158        dput(parent);
1159        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1160                        __func__, dentry->d_parent->d_name.name,
1161                        dentry->d_name.name, error);
1162        return error;
1163}
1164
1165/*
1166 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1167 * when we don't really care about the dentry name. This is called when a
1168 * pathwalk ends on a dentry that was not found via a normal lookup in the
1169 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1170 *
1171 * In this situation, we just want to verify that the inode itself is OK
1172 * since the dentry might have changed on the server.
1173 */
1174static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1175{
1176        int error;
1177        struct inode *inode = dentry->d_inode;
1178
1179        /*
1180         * I believe we can only get a negative dentry here in the case of a
1181         * procfs-style symlink. Just assume it's correct for now, but we may
1182         * eventually need to do something more here.
1183         */
1184        if (!inode) {
1185                dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1186                                __func__, dentry->d_parent->d_name.name,
1187                                dentry->d_name.name);
1188                return 1;
1189        }
1190
1191        if (is_bad_inode(inode)) {
1192                dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1193                                __func__, dentry->d_parent->d_name.name,
1194                                dentry->d_name.name);
1195                return 0;
1196        }
1197
1198        error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1199        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1200                        __func__, inode->i_ino, error ? "invalid" : "valid");
1201        return !error;
1202}
1203
1204/*
1205 * This is called from dput() when d_count is going to 0.
1206 */
1207static int nfs_dentry_delete(const struct dentry *dentry)
1208{
1209        dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1210                dentry->d_parent->d_name.name, dentry->d_name.name,
1211                dentry->d_flags);
1212
1213        /* Unhash any dentry with a stale inode */
1214        if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1215                return 1;
1216
1217        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1218                /* Unhash it, so that ->d_iput() would be called */
1219                return 1;
1220        }
1221        if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1222                /* Unhash it, so that ancestors of killed async unlink
1223                 * files will be cleaned up during umount */
1224                return 1;
1225        }
1226        return 0;
1227
1228}
1229
1230/* Ensure that we revalidate inode->i_nlink */
1231static void nfs_drop_nlink(struct inode *inode)
1232{
1233        spin_lock(&inode->i_lock);
1234        /* drop the inode if we're reasonably sure this is the last link */
1235        if (inode->i_nlink == 1)
1236                clear_nlink(inode);
1237        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1238        spin_unlock(&inode->i_lock);
1239}
1240
1241/*
1242 * Called when the dentry loses inode.
1243 * We use it to clean up silly-renamed files.
1244 */
1245static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1246{
1247        if (S_ISDIR(inode->i_mode))
1248                /* drop any readdir cache as it could easily be old */
1249                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1250
1251        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1252                nfs_complete_unlink(dentry, inode);
1253                nfs_drop_nlink(inode);
1254        }
1255        iput(inode);
1256}
1257
1258static void nfs_d_release(struct dentry *dentry)
1259{
1260        /* free cached devname value, if it survived that far */
1261        if (unlikely(dentry->d_fsdata)) {
1262                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1263                        WARN_ON(1);
1264                else
1265                        kfree(dentry->d_fsdata);
1266        }
1267}
1268
1269const struct dentry_operations nfs_dentry_operations = {
1270        .d_revalidate   = nfs_lookup_revalidate,
1271        .d_weak_revalidate      = nfs_weak_revalidate,
1272        .d_delete       = nfs_dentry_delete,
1273        .d_iput         = nfs_dentry_iput,
1274        .d_automount    = nfs_d_automount,
1275        .d_release      = nfs_d_release,
1276};
1277EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1278
1279struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1280{
1281        struct dentry *res;
1282        struct dentry *parent;
1283        struct inode *inode = NULL;
1284        struct nfs_fh *fhandle = NULL;
1285        struct nfs_fattr *fattr = NULL;
1286        struct nfs4_label *label = NULL;
1287        int error;
1288
1289        dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1290                dentry->d_parent->d_name.name, dentry->d_name.name);
1291        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1292
1293        res = ERR_PTR(-ENAMETOOLONG);
1294        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1295                goto out;
1296
1297        /*
1298         * If we're doing an exclusive create, optimize away the lookup
1299         * but don't hash the dentry.
1300         */
1301        if (nfs_is_exclusive_create(dir, flags)) {
1302                d_instantiate(dentry, NULL);
1303                res = NULL;
1304                goto out;
1305        }
1306
1307        res = ERR_PTR(-ENOMEM);
1308        fhandle = nfs_alloc_fhandle();
1309        fattr = nfs_alloc_fattr();
1310        if (fhandle == NULL || fattr == NULL)
1311                goto out;
1312
1313        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1314        if (IS_ERR(label))
1315                goto out;
1316
1317        parent = dentry->d_parent;
1318        /* Protect against concurrent sillydeletes */
1319        trace_nfs_lookup_enter(dir, dentry, flags);
1320        nfs_block_sillyrename(parent);
1321        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1322        if (error == -ENOENT)
1323                goto no_entry;
1324        if (error < 0) {
1325                res = ERR_PTR(error);
1326                goto out_unblock_sillyrename;
1327        }
1328        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1329        res = ERR_CAST(inode);
1330        if (IS_ERR(res))
1331                goto out_unblock_sillyrename;
1332
1333        /* Success: notify readdir to use READDIRPLUS */
1334        nfs_advise_use_readdirplus(dir);
1335
1336no_entry:
1337        res = d_materialise_unique(dentry, inode);
1338        if (res != NULL) {
1339                if (IS_ERR(res))
1340                        goto out_unblock_sillyrename;
1341                dentry = res;
1342        }
1343        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1344out_unblock_sillyrename:
1345        nfs_unblock_sillyrename(parent);
1346        trace_nfs_lookup_exit(dir, dentry, flags, error);
1347        nfs4_label_free(label);
1348out:
1349        nfs_free_fattr(fattr);
1350        nfs_free_fhandle(fhandle);
1351        return res;
1352}
1353EXPORT_SYMBOL_GPL(nfs_lookup);
1354
1355#if IS_ENABLED(CONFIG_NFS_V4)
1356static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1357
1358const struct dentry_operations nfs4_dentry_operations = {
1359        .d_revalidate   = nfs4_lookup_revalidate,
1360        .d_delete       = nfs_dentry_delete,
1361        .d_iput         = nfs_dentry_iput,
1362        .d_automount    = nfs_d_automount,
1363        .d_release      = nfs_d_release,
1364};
1365EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1366
1367static fmode_t flags_to_mode(int flags)
1368{
1369        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1370        if ((flags & O_ACCMODE) != O_WRONLY)
1371                res |= FMODE_READ;
1372        if ((flags & O_ACCMODE) != O_RDONLY)
1373                res |= FMODE_WRITE;
1374        return res;
1375}
1376
1377static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1378{
1379        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1380}
1381
1382static int do_open(struct inode *inode, struct file *filp)
1383{
1384        nfs_fscache_set_inode_cookie(inode, filp);
1385        return 0;
1386}
1387
1388static int nfs_finish_open(struct nfs_open_context *ctx,
1389                           struct dentry *dentry,
1390                           struct file *file, unsigned open_flags,
1391                           int *opened)
1392{
1393        int err;
1394
1395        if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1396                *opened |= FILE_CREATED;
1397
1398        err = finish_open(file, dentry, do_open, opened);
1399        if (err)
1400                goto out;
1401        nfs_file_set_open_context(file, ctx);
1402
1403out:
1404        return err;
1405}
1406
1407int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1408                    struct file *file, unsigned open_flags,
1409                    umode_t mode, int *opened)
1410{
1411        struct nfs_open_context *ctx;
1412        struct dentry *res;
1413        struct iattr attr = { .ia_valid = ATTR_OPEN };
1414        struct inode *inode;
1415        unsigned int lookup_flags = 0;
1416        int err;
1417
1418        /* Expect a negative dentry */
1419        BUG_ON(dentry->d_inode);
1420
1421        dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1422                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1423
1424        err = nfs_check_flags(open_flags);
1425        if (err)
1426                return err;
1427
1428        /* NFS only supports OPEN on regular files */
1429        if ((open_flags & O_DIRECTORY)) {
1430                if (!d_unhashed(dentry)) {
1431                        /*
1432                         * Hashed negative dentry with O_DIRECTORY: dentry was
1433                         * revalidated and is fine, no need to perform lookup
1434                         * again
1435                         */
1436                        return -ENOENT;
1437                }
1438                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1439                goto no_open;
1440        }
1441
1442        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1443                return -ENAMETOOLONG;
1444
1445        if (open_flags & O_CREAT) {
1446                attr.ia_valid |= ATTR_MODE;
1447                attr.ia_mode = mode & ~current_umask();
1448        }
1449        if (open_flags & O_TRUNC) {
1450                attr.ia_valid |= ATTR_SIZE;
1451                attr.ia_size = 0;
1452        }
1453
1454        ctx = create_nfs_open_context(dentry, open_flags);
1455        err = PTR_ERR(ctx);
1456        if (IS_ERR(ctx))
1457                goto out;
1458
1459        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1460        nfs_block_sillyrename(dentry->d_parent);
1461        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1462        nfs_unblock_sillyrename(dentry->d_parent);
1463        if (IS_ERR(inode)) {
1464                err = PTR_ERR(inode);
1465                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1466                put_nfs_open_context(ctx);
1467                switch (err) {
1468                case -ENOENT:
1469                        d_drop(dentry);
1470                        d_add(dentry, NULL);
1471                        break;
1472                case -EISDIR:
1473                case -ENOTDIR:
1474                        goto no_open;
1475                case -ELOOP:
1476                        if (!(open_flags & O_NOFOLLOW))
1477                                goto no_open;
1478                        break;
1479                        /* case -EINVAL: */
1480                default:
1481                        break;
1482                }
1483                goto out;
1484        }
1485
1486        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1487        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1488        put_nfs_open_context(ctx);
1489out:
1490        return err;
1491
1492no_open:
1493        res = nfs_lookup(dir, dentry, lookup_flags);
1494        err = PTR_ERR(res);
1495        if (IS_ERR(res))
1496                goto out;
1497
1498        return finish_no_open(file, res);
1499}
1500EXPORT_SYMBOL_GPL(nfs_atomic_open);
1501
1502static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1503{
1504        struct dentry *parent = NULL;
1505        struct inode *inode;
1506        struct inode *dir;
1507        int ret = 0;
1508
1509        if (flags & LOOKUP_RCU)
1510                return -ECHILD;
1511
1512        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1513                goto no_open;
1514        if (d_mountpoint(dentry))
1515                goto no_open;
1516        if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1517                goto no_open;
1518
1519        inode = dentry->d_inode;
1520        parent = dget_parent(dentry);
1521        dir = parent->d_inode;
1522
1523        /* We can't create new files in nfs_open_revalidate(), so we
1524         * optimize away revalidation of negative dentries.
1525         */
1526        if (inode == NULL) {
1527                if (!nfs_neg_need_reval(dir, dentry, flags))
1528                        ret = 1;
1529                goto out;
1530        }
1531
1532        /* NFS only supports OPEN on regular files */
1533        if (!S_ISREG(inode->i_mode))
1534                goto no_open_dput;
1535        /* We cannot do exclusive creation on a positive dentry */
1536        if (flags & LOOKUP_EXCL)
1537                goto no_open_dput;
1538
1539        /* Let f_op->open() actually open (and revalidate) the file */
1540        ret = 1;
1541
1542out:
1543        dput(parent);
1544        return ret;
1545
1546no_open_dput:
1547        dput(parent);
1548no_open:
1549        return nfs_lookup_revalidate(dentry, flags);
1550}
1551
1552#endif /* CONFIG_NFSV4 */
1553
1554/*
1555 * Code common to create, mkdir, and mknod.
1556 */
1557int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1558                                struct nfs_fattr *fattr,
1559                                struct nfs4_label *label)
1560{
1561        struct dentry *parent = dget_parent(dentry);
1562        struct inode *dir = parent->d_inode;
1563        struct inode *inode;
1564        int error = -EACCES;
1565
1566        d_drop(dentry);
1567
1568        /* We may have been initialized further down */
1569        if (dentry->d_inode)
1570                goto out;
1571        if (fhandle->size == 0) {
1572                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1573                if (error)
1574                        goto out_error;
1575        }
1576        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1577        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1578                struct nfs_server *server = NFS_SB(dentry->d_sb);
1579                error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1580                if (error < 0)
1581                        goto out_error;
1582        }
1583        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1584        error = PTR_ERR(inode);
1585        if (IS_ERR(inode))
1586                goto out_error;
1587        d_add(dentry, inode);
1588out:
1589        dput(parent);
1590        return 0;
1591out_error:
1592        nfs_mark_for_revalidate(dir);
1593        dput(parent);
1594        return error;
1595}
1596EXPORT_SYMBOL_GPL(nfs_instantiate);
1597
1598/*
1599 * Following a failed create operation, we drop the dentry rather
1600 * than retain a negative dentry. This avoids a problem in the event
1601 * that the operation succeeded on the server, but an error in the
1602 * reply path made it appear to have failed.
1603 */
1604int nfs_create(struct inode *dir, struct dentry *dentry,
1605                umode_t mode, bool excl)
1606{
1607        struct iattr attr;
1608        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1609        int error;
1610
1611        dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1612                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1613
1614        attr.ia_mode = mode;
1615        attr.ia_valid = ATTR_MODE;
1616
1617        trace_nfs_create_enter(dir, dentry, open_flags);
1618        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1619        trace_nfs_create_exit(dir, dentry, open_flags, error);
1620        if (error != 0)
1621                goto out_err;
1622        return 0;
1623out_err:
1624        d_drop(dentry);
1625        return error;
1626}
1627EXPORT_SYMBOL_GPL(nfs_create);
1628
1629/*
1630 * See comments for nfs_proc_create regarding failed operations.
1631 */
1632int
1633nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1634{
1635        struct iattr attr;
1636        int status;
1637
1638        dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1639                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1640
1641        if (!new_valid_dev(rdev))
1642                return -EINVAL;
1643
1644        attr.ia_mode = mode;
1645        attr.ia_valid = ATTR_MODE;
1646
1647        trace_nfs_mknod_enter(dir, dentry);
1648        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1649        trace_nfs_mknod_exit(dir, dentry, status);
1650        if (status != 0)
1651                goto out_err;
1652        return 0;
1653out_err:
1654        d_drop(dentry);
1655        return status;
1656}
1657EXPORT_SYMBOL_GPL(nfs_mknod);
1658
1659/*
1660 * See comments for nfs_proc_create regarding failed operations.
1661 */
1662int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1663{
1664        struct iattr attr;
1665        int error;
1666
1667        dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1668                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1669
1670        attr.ia_valid = ATTR_MODE;
1671        attr.ia_mode = mode | S_IFDIR;
1672
1673        trace_nfs_mkdir_enter(dir, dentry);
1674        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1675        trace_nfs_mkdir_exit(dir, dentry, error);
1676        if (error != 0)
1677                goto out_err;
1678        return 0;
1679out_err:
1680        d_drop(dentry);
1681        return error;
1682}
1683EXPORT_SYMBOL_GPL(nfs_mkdir);
1684
1685static void nfs_dentry_handle_enoent(struct dentry *dentry)
1686{
1687        if (dentry->d_inode != NULL && !d_unhashed(dentry))
1688                d_delete(dentry);
1689}
1690
1691int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1692{
1693        int error;
1694
1695        dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1696                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1697
1698        trace_nfs_rmdir_enter(dir, dentry);
1699        if (dentry->d_inode) {
1700                nfs_wait_on_sillyrename(dentry);
1701                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1702                /* Ensure the VFS deletes this inode */
1703                switch (error) {
1704                case 0:
1705                        clear_nlink(dentry->d_inode);
1706                        break;
1707                case -ENOENT:
1708                        nfs_dentry_handle_enoent(dentry);
1709                }
1710        } else
1711                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1712        trace_nfs_rmdir_exit(dir, dentry, error);
1713
1714        return error;
1715}
1716EXPORT_SYMBOL_GPL(nfs_rmdir);
1717
1718/*
1719 * Remove a file after making sure there are no pending writes,
1720 * and after checking that the file has only one user. 
1721 *
1722 * We invalidate the attribute cache and free the inode prior to the operation
1723 * to avoid possible races if the server reuses the inode.
1724 */
1725static int nfs_safe_remove(struct dentry *dentry)
1726{
1727        struct inode *dir = dentry->d_parent->d_inode;
1728        struct inode *inode = dentry->d_inode;
1729        int error = -EBUSY;
1730                
1731        dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1732                dentry->d_parent->d_name.name, dentry->d_name.name);
1733
1734        /* If the dentry was sillyrenamed, we simply call d_delete() */
1735        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1736                error = 0;
1737                goto out;
1738        }
1739
1740        trace_nfs_remove_enter(dir, dentry);
1741        if (inode != NULL) {
1742                NFS_PROTO(inode)->return_delegation(inode);
1743                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1744                if (error == 0)
1745                        nfs_drop_nlink(inode);
1746        } else
1747                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1748        if (error == -ENOENT)
1749                nfs_dentry_handle_enoent(dentry);
1750        trace_nfs_remove_exit(dir, dentry, error);
1751out:
1752        return error;
1753}
1754
1755/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1756 *  belongs to an active ".nfs..." file and we return -EBUSY.
1757 *
1758 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1759 */
1760int nfs_unlink(struct inode *dir, struct dentry *dentry)
1761{
1762        int error;
1763        int need_rehash = 0;
1764
1765        dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1766                dir->i_ino, dentry->d_name.name);
1767
1768        trace_nfs_unlink_enter(dir, dentry);
1769        spin_lock(&dentry->d_lock);
1770        if (d_count(dentry) > 1) {
1771                spin_unlock(&dentry->d_lock);
1772                /* Start asynchronous writeout of the inode */
1773                write_inode_now(dentry->d_inode, 0);
1774                error = nfs_sillyrename(dir, dentry);
1775                goto out;
1776        }
1777        if (!d_unhashed(dentry)) {
1778                __d_drop(dentry);
1779                need_rehash = 1;
1780        }
1781        spin_unlock(&dentry->d_lock);
1782        error = nfs_safe_remove(dentry);
1783        if (!error || error == -ENOENT) {
1784                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1785        } else if (need_rehash)
1786                d_rehash(dentry);
1787out:
1788        trace_nfs_unlink_exit(dir, dentry, error);
1789        return error;
1790}
1791EXPORT_SYMBOL_GPL(nfs_unlink);
1792
1793/*
1794 * To create a symbolic link, most file systems instantiate a new inode,
1795 * add a page to it containing the path, then write it out to the disk
1796 * using prepare_write/commit_write.
1797 *
1798 * Unfortunately the NFS client can't create the in-core inode first
1799 * because it needs a file handle to create an in-core inode (see
1800 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1801 * symlink request has completed on the server.
1802 *
1803 * So instead we allocate a raw page, copy the symname into it, then do
1804 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1805 * now have a new file handle and can instantiate an in-core NFS inode
1806 * and move the raw page into its mapping.
1807 */
1808int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1809{
1810        struct page *page;
1811        char *kaddr;
1812        struct iattr attr;
1813        unsigned int pathlen = strlen(symname);
1814        int error;
1815
1816        dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1817                dir->i_ino, dentry->d_name.name, symname);
1818
1819        if (pathlen > PAGE_SIZE)
1820                return -ENAMETOOLONG;
1821
1822        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1823        attr.ia_valid = ATTR_MODE;
1824
1825        page = alloc_page(GFP_HIGHUSER);
1826        if (!page)
1827                return -ENOMEM;
1828
1829        kaddr = kmap_atomic(page);
1830        memcpy(kaddr, symname, pathlen);
1831        if (pathlen < PAGE_SIZE)
1832                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1833        kunmap_atomic(kaddr);
1834
1835        trace_nfs_symlink_enter(dir, dentry);
1836        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1837        trace_nfs_symlink_exit(dir, dentry, error);
1838        if (error != 0) {
1839                dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1840                        dir->i_sb->s_id, dir->i_ino,
1841                        dentry->d_name.name, symname, error);
1842                d_drop(dentry);
1843                __free_page(page);
1844                return error;
1845        }
1846
1847        /*
1848         * No big deal if we can't add this page to the page cache here.
1849         * READLINK will get the missing page from the server if needed.
1850         */
1851        if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1852                                                        GFP_KERNEL)) {
1853                SetPageUptodate(page);
1854                unlock_page(page);
1855        } else
1856                __free_page(page);
1857
1858        return 0;
1859}
1860EXPORT_SYMBOL_GPL(nfs_symlink);
1861
1862int
1863nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1864{
1865        struct inode *inode = old_dentry->d_inode;
1866        int error;
1867
1868        dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1869                old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1870                dentry->d_parent->d_name.name, dentry->d_name.name);
1871
1872        trace_nfs_link_enter(inode, dir, dentry);
1873        NFS_PROTO(inode)->return_delegation(inode);
1874
1875        d_drop(dentry);
1876        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1877        if (error == 0) {
1878                ihold(inode);
1879                d_add(dentry, inode);
1880        }
1881        trace_nfs_link_exit(inode, dir, dentry, error);
1882        return error;
1883}
1884EXPORT_SYMBOL_GPL(nfs_link);
1885
1886/*
1887 * RENAME
1888 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1889 * different file handle for the same inode after a rename (e.g. when
1890 * moving to a different directory). A fail-safe method to do so would
1891 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1892 * rename the old file using the sillyrename stuff. This way, the original
1893 * file in old_dir will go away when the last process iput()s the inode.
1894 *
1895 * FIXED.
1896 * 
1897 * It actually works quite well. One needs to have the possibility for
1898 * at least one ".nfs..." file in each directory the file ever gets
1899 * moved or linked to which happens automagically with the new
1900 * implementation that only depends on the dcache stuff instead of
1901 * using the inode layer
1902 *
1903 * Unfortunately, things are a little more complicated than indicated
1904 * above. For a cross-directory move, we want to make sure we can get
1905 * rid of the old inode after the operation.  This means there must be
1906 * no pending writes (if it's a file), and the use count must be 1.
1907 * If these conditions are met, we can drop the dentries before doing
1908 * the rename.
1909 */
1910int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1911                      struct inode *new_dir, struct dentry *new_dentry)
1912{
1913        struct inode *old_inode = old_dentry->d_inode;
1914        struct inode *new_inode = new_dentry->d_inode;
1915        struct dentry *dentry = NULL, *rehash = NULL;
1916        int error = -EBUSY;
1917
1918        dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1919                 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1920                 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1921                 d_count(new_dentry));
1922
1923        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1924        /*
1925         * For non-directories, check whether the target is busy and if so,
1926         * make a copy of the dentry and then do a silly-rename. If the
1927         * silly-rename succeeds, the copied dentry is hashed and becomes
1928         * the new target.
1929         */
1930        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1931                /*
1932                 * To prevent any new references to the target during the
1933                 * rename, we unhash the dentry in advance.
1934                 */
1935                if (!d_unhashed(new_dentry)) {
1936                        d_drop(new_dentry);
1937                        rehash = new_dentry;
1938                }
1939
1940                if (d_count(new_dentry) > 2) {
1941                        int err;
1942
1943                        /* copy the target dentry's name */
1944                        dentry = d_alloc(new_dentry->d_parent,
1945                                         &new_dentry->d_name);
1946                        if (!dentry)
1947                                goto out;
1948
1949                        /* silly-rename the existing target ... */
1950                        err = nfs_sillyrename(new_dir, new_dentry);
1951                        if (err)
1952                                goto out;
1953
1954                        new_dentry = dentry;
1955                        rehash = NULL;
1956                        new_inode = NULL;
1957                }
1958        }
1959
1960        NFS_PROTO(old_inode)->return_delegation(old_inode);
1961        if (new_inode != NULL)
1962                NFS_PROTO(new_inode)->return_delegation(new_inode);
1963
1964        error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1965                                           new_dir, &new_dentry->d_name);
1966        nfs_mark_for_revalidate(old_inode);
1967out:
1968        if (rehash)
1969                d_rehash(rehash);
1970        trace_nfs_rename_exit(old_dir, old_dentry,
1971                        new_dir, new_dentry, error);
1972        if (!error) {
1973                if (new_inode != NULL)
1974                        nfs_drop_nlink(new_inode);
1975                d_move(old_dentry, new_dentry);
1976                nfs_set_verifier(new_dentry,
1977                                        nfs_save_change_attribute(new_dir));
1978        } else if (error == -ENOENT)
1979                nfs_dentry_handle_enoent(old_dentry);
1980
1981        /* new dentry created? */
1982        if (dentry)
1983                dput(dentry);
1984        return error;
1985}
1986EXPORT_SYMBOL_GPL(nfs_rename);
1987
1988static DEFINE_SPINLOCK(nfs_access_lru_lock);
1989static LIST_HEAD(nfs_access_lru_list);
1990static atomic_long_t nfs_access_nr_entries;
1991
1992static void nfs_access_free_entry(struct nfs_access_entry *entry)
1993{
1994        put_rpccred(entry->cred);
1995        kfree(entry);
1996        smp_mb__before_atomic_dec();
1997        atomic_long_dec(&nfs_access_nr_entries);
1998        smp_mb__after_atomic_dec();
1999}
2000
2001static void nfs_access_free_list(struct list_head *head)
2002{
2003        struct nfs_access_entry *cache;
2004
2005        while (!list_empty(head)) {
2006                cache = list_entry(head->next, struct nfs_access_entry, lru);
2007                list_del(&cache->lru);
2008                nfs_access_free_entry(cache);
2009        }
2010}
2011
2012unsigned long
2013nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2014{
2015        LIST_HEAD(head);
2016        struct nfs_inode *nfsi, *next;
2017        struct nfs_access_entry *cache;
2018        int nr_to_scan = sc->nr_to_scan;
2019        gfp_t gfp_mask = sc->gfp_mask;
2020        long freed = 0;
2021
2022        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2023                return SHRINK_STOP;
2024
2025        spin_lock(&nfs_access_lru_lock);
2026        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2027                struct inode *inode;
2028
2029                if (nr_to_scan-- == 0)
2030                        break;
2031                inode = &nfsi->vfs_inode;
2032                spin_lock(&inode->i_lock);
2033                if (list_empty(&nfsi->access_cache_entry_lru))
2034                        goto remove_lru_entry;
2035                cache = list_entry(nfsi->access_cache_entry_lru.next,
2036                                struct nfs_access_entry, lru);
2037                list_move(&cache->lru, &head);
2038                rb_erase(&cache->rb_node, &nfsi->access_cache);
2039                freed++;
2040                if (!list_empty(&nfsi->access_cache_entry_lru))
2041                        list_move_tail(&nfsi->access_cache_inode_lru,
2042                                        &nfs_access_lru_list);
2043                else {
2044remove_lru_entry:
2045                        list_del_init(&nfsi->access_cache_inode_lru);
2046                        smp_mb__before_clear_bit();
2047                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2048                        smp_mb__after_clear_bit();
2049                }
2050                spin_unlock(&inode->i_lock);
2051        }
2052        spin_unlock(&nfs_access_lru_lock);
2053        nfs_access_free_list(&head);
2054        return freed;
2055}
2056
2057unsigned long
2058nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2059{
2060        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2061}
2062
2063static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2064{
2065        struct rb_root *root_node = &nfsi->access_cache;
2066        struct rb_node *n;
2067        struct nfs_access_entry *entry;
2068
2069        /* Unhook entries from the cache */
2070        while ((n = rb_first(root_node)) != NULL) {
2071                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2072                rb_erase(n, root_node);
2073                list_move(&entry->lru, head);
2074        }
2075        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2076}
2077
2078void nfs_access_zap_cache(struct inode *inode)
2079{
2080        LIST_HEAD(head);
2081
2082        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2083                return;
2084        /* Remove from global LRU init */
2085        spin_lock(&nfs_access_lru_lock);
2086        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2087                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2088
2089        spin_lock(&inode->i_lock);
2090        __nfs_access_zap_cache(NFS_I(inode), &head);
2091        spin_unlock(&inode->i_lock);
2092        spin_unlock(&nfs_access_lru_lock);
2093        nfs_access_free_list(&head);
2094}
2095EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2096
2097static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2098{
2099        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2100        struct nfs_access_entry *entry;
2101
2102        while (n != NULL) {
2103                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2104
2105                if (cred < entry->cred)
2106                        n = n->rb_left;
2107                else if (cred > entry->cred)
2108                        n = n->rb_right;
2109                else
2110                        return entry;
2111        }
2112        return NULL;
2113}
2114
2115static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2116{
2117        struct nfs_inode *nfsi = NFS_I(inode);
2118        struct nfs_access_entry *cache;
2119        int err = -ENOENT;
2120
2121        spin_lock(&inode->i_lock);
2122        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2123                goto out_zap;
2124        cache = nfs_access_search_rbtree(inode, cred);
2125        if (cache == NULL)
2126                goto out;
2127        if (!nfs_have_delegated_attributes(inode) &&
2128            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2129                goto out_stale;
2130        res->jiffies = cache->jiffies;
2131        res->cred = cache->cred;
2132        res->mask = cache->mask;
2133        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2134        err = 0;
2135out:
2136        spin_unlock(&inode->i_lock);
2137        return err;
2138out_stale:
2139        rb_erase(&cache->rb_node, &nfsi->access_cache);
2140        list_del(&cache->lru);
2141        spin_unlock(&inode->i_lock);
2142        nfs_access_free_entry(cache);
2143        return -ENOENT;
2144out_zap:
2145        spin_unlock(&inode->i_lock);
2146        nfs_access_zap_cache(inode);
2147        return -ENOENT;
2148}
2149
2150static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2151{
2152        struct nfs_inode *nfsi = NFS_I(inode);
2153        struct rb_root *root_node = &nfsi->access_cache;
2154        struct rb_node **p = &root_node->rb_node;
2155        struct rb_node *parent = NULL;
2156        struct nfs_access_entry *entry;
2157
2158        spin_lock(&inode->i_lock);
2159        while (*p != NULL) {
2160                parent = *p;
2161                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2162
2163                if (set->cred < entry->cred)
2164                        p = &parent->rb_left;
2165                else if (set->cred > entry->cred)
2166                        p = &parent->rb_right;
2167                else
2168                        goto found;
2169        }
2170        rb_link_node(&set->rb_node, parent, p);
2171        rb_insert_color(&set->rb_node, root_node);
2172        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2173        spin_unlock(&inode->i_lock);
2174        return;
2175found:
2176        rb_replace_node(parent, &set->rb_node, root_node);
2177        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2178        list_del(&entry->lru);
2179        spin_unlock(&inode->i_lock);
2180        nfs_access_free_entry(entry);
2181}
2182
2183void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2184{
2185        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2186        if (cache == NULL)
2187                return;
2188        RB_CLEAR_NODE(&cache->rb_node);
2189        cache->jiffies = set->jiffies;
2190        cache->cred = get_rpccred(set->cred);
2191        cache->mask = set->mask;
2192
2193        nfs_access_add_rbtree(inode, cache);
2194
2195        /* Update accounting */
2196        smp_mb__before_atomic_inc();
2197        atomic_long_inc(&nfs_access_nr_entries);
2198        smp_mb__after_atomic_inc();
2199
2200        /* Add inode to global LRU list */
2201        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2202                spin_lock(&nfs_access_lru_lock);
2203                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2204                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2205                                        &nfs_access_lru_list);
2206                spin_unlock(&nfs_access_lru_lock);
2207        }
2208}
2209EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2210
2211void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2212{
2213        entry->mask = 0;
2214        if (access_result & NFS4_ACCESS_READ)
2215                entry->mask |= MAY_READ;
2216        if (access_result &
2217            (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2218                entry->mask |= MAY_WRITE;
2219        if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2220                entry->mask |= MAY_EXEC;
2221}
2222EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2223
2224static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2225{
2226        struct nfs_access_entry cache;
2227        int status;
2228
2229        trace_nfs_access_enter(inode);
2230
2231        status = nfs_access_get_cached(inode, cred, &cache);
2232        if (status == 0)
2233                goto out_cached;
2234
2235        /* Be clever: ask server to check for all possible rights */
2236        cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2237        cache.cred = cred;
2238        cache.jiffies = jiffies;
2239        status = NFS_PROTO(inode)->access(inode, &cache);
2240        if (status != 0) {
2241                if (status == -ESTALE) {
2242                        nfs_zap_caches(inode);
2243                        if (!S_ISDIR(inode->i_mode))
2244                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2245                }
2246                goto out;
2247        }
2248        nfs_access_add_cache(inode, &cache);
2249out_cached:
2250        if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2251                status = -EACCES;
2252out:
2253        trace_nfs_access_exit(inode, status);
2254        return status;
2255}
2256
2257static int nfs_open_permission_mask(int openflags)
2258{
2259        int mask = 0;
2260
2261        if (openflags & __FMODE_EXEC) {
2262                /* ONLY check exec rights */
2263                mask = MAY_EXEC;
2264        } else {
2265                if ((openflags & O_ACCMODE) != O_WRONLY)
2266                        mask |= MAY_READ;
2267                if ((openflags & O_ACCMODE) != O_RDONLY)
2268                        mask |= MAY_WRITE;
2269        }
2270
2271        return mask;
2272}
2273
2274int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2275{
2276        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2277}
2278EXPORT_SYMBOL_GPL(nfs_may_open);
2279
2280int nfs_permission(struct inode *inode, int mask)
2281{
2282        struct rpc_cred *cred;
2283        int res = 0;
2284
2285        if (mask & MAY_NOT_BLOCK)
2286                return -ECHILD;
2287
2288        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2289
2290        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2291                goto out;
2292        /* Is this sys_access() ? */
2293        if (mask & (MAY_ACCESS | MAY_CHDIR))
2294                goto force_lookup;
2295
2296        switch (inode->i_mode & S_IFMT) {
2297                case S_IFLNK:
2298                        goto out;
2299                case S_IFREG:
2300                        break;
2301                case S_IFDIR:
2302                        /*
2303                         * Optimize away all write operations, since the server
2304                         * will check permissions when we perform the op.
2305                         */
2306                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2307                                goto out;
2308        }
2309
2310force_lookup:
2311        if (!NFS_PROTO(inode)->access)
2312                goto out_notsup;
2313
2314        cred = rpc_lookup_cred();
2315        if (!IS_ERR(cred)) {
2316                res = nfs_do_access(inode, cred, mask);
2317                put_rpccred(cred);
2318        } else
2319                res = PTR_ERR(cred);
2320out:
2321        if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2322                res = -EACCES;
2323
2324        dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2325                inode->i_sb->s_id, inode->i_ino, mask, res);
2326        return res;
2327out_notsup:
2328        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2329        if (res == 0)
2330                res = generic_permission(inode, mask);
2331        goto out;
2332}
2333EXPORT_SYMBOL_GPL(nfs_permission);
2334
2335/*
2336 * Local variables:
2337 *  version-control: t
2338 *  kept-new-versions: 5
2339 * End:
2340 */
2341