linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31
  32#include <cluster/masklog.h>
  33
  34#include "ocfs2.h"
  35
  36#include "alloc.h"
  37#include "aops.h"
  38#include "dlmglue.h"
  39#include "extent_map.h"
  40#include "file.h"
  41#include "inode.h"
  42#include "journal.h"
  43#include "suballoc.h"
  44#include "super.h"
  45#include "symlink.h"
  46#include "refcounttree.h"
  47#include "ocfs2_trace.h"
  48
  49#include "buffer_head_io.h"
  50
  51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  52                                   struct buffer_head *bh_result, int create)
  53{
  54        int err = -EIO;
  55        int status;
  56        struct ocfs2_dinode *fe = NULL;
  57        struct buffer_head *bh = NULL;
  58        struct buffer_head *buffer_cache_bh = NULL;
  59        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  60        void *kaddr;
  61
  62        trace_ocfs2_symlink_get_block(
  63                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  64                        (unsigned long long)iblock, bh_result, create);
  65
  66        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  67
  68        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  69                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  70                     (unsigned long long)iblock);
  71                goto bail;
  72        }
  73
  74        status = ocfs2_read_inode_block(inode, &bh);
  75        if (status < 0) {
  76                mlog_errno(status);
  77                goto bail;
  78        }
  79        fe = (struct ocfs2_dinode *) bh->b_data;
  80
  81        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  82                                                    le32_to_cpu(fe->i_clusters))) {
  83                mlog(ML_ERROR, "block offset is outside the allocated size: "
  84                     "%llu\n", (unsigned long long)iblock);
  85                goto bail;
  86        }
  87
  88        /* We don't use the page cache to create symlink data, so if
  89         * need be, copy it over from the buffer cache. */
  90        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  91                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  92                            iblock;
  93                buffer_cache_bh = sb_getblk(osb->sb, blkno);
  94                if (!buffer_cache_bh) {
  95                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  96                        goto bail;
  97                }
  98
  99                /* we haven't locked out transactions, so a commit
 100                 * could've happened. Since we've got a reference on
 101                 * the bh, even if it commits while we're doing the
 102                 * copy, the data is still good. */
 103                if (buffer_jbd(buffer_cache_bh)
 104                    && ocfs2_inode_is_new(inode)) {
 105                        kaddr = kmap_atomic(bh_result->b_page);
 106                        if (!kaddr) {
 107                                mlog(ML_ERROR, "couldn't kmap!\n");
 108                                goto bail;
 109                        }
 110                        memcpy(kaddr + (bh_result->b_size * iblock),
 111                               buffer_cache_bh->b_data,
 112                               bh_result->b_size);
 113                        kunmap_atomic(kaddr);
 114                        set_buffer_uptodate(bh_result);
 115                }
 116                brelse(buffer_cache_bh);
 117        }
 118
 119        map_bh(bh_result, inode->i_sb,
 120               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 121
 122        err = 0;
 123
 124bail:
 125        brelse(bh);
 126
 127        return err;
 128}
 129
 130int ocfs2_get_block(struct inode *inode, sector_t iblock,
 131                    struct buffer_head *bh_result, int create)
 132{
 133        int err = 0;
 134        unsigned int ext_flags;
 135        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 136        u64 p_blkno, count, past_eof;
 137        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 138
 139        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 140                              (unsigned long long)iblock, bh_result, create);
 141
 142        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 143                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 144                     inode, inode->i_ino);
 145
 146        if (S_ISLNK(inode->i_mode)) {
 147                /* this always does I/O for some reason. */
 148                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 149                goto bail;
 150        }
 151
 152        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 153                                          &ext_flags);
 154        if (err) {
 155                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 156                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 157                     (unsigned long long)p_blkno);
 158                goto bail;
 159        }
 160
 161        if (max_blocks < count)
 162                count = max_blocks;
 163
 164        /*
 165         * ocfs2 never allocates in this function - the only time we
 166         * need to use BH_New is when we're extending i_size on a file
 167         * system which doesn't support holes, in which case BH_New
 168         * allows __block_write_begin() to zero.
 169         *
 170         * If we see this on a sparse file system, then a truncate has
 171         * raced us and removed the cluster. In this case, we clear
 172         * the buffers dirty and uptodate bits and let the buffer code
 173         * ignore it as a hole.
 174         */
 175        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 176                clear_buffer_dirty(bh_result);
 177                clear_buffer_uptodate(bh_result);
 178                goto bail;
 179        }
 180
 181        /* Treat the unwritten extent as a hole for zeroing purposes. */
 182        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 183                map_bh(bh_result, inode->i_sb, p_blkno);
 184
 185        bh_result->b_size = count << inode->i_blkbits;
 186
 187        if (!ocfs2_sparse_alloc(osb)) {
 188                if (p_blkno == 0) {
 189                        err = -EIO;
 190                        mlog(ML_ERROR,
 191                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 192                             (unsigned long long)iblock,
 193                             (unsigned long long)p_blkno,
 194                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 195                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 196                        dump_stack();
 197                        goto bail;
 198                }
 199        }
 200
 201        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 202
 203        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 204                                  (unsigned long long)past_eof);
 205        if (create && (iblock >= past_eof))
 206                set_buffer_new(bh_result);
 207
 208bail:
 209        if (err < 0)
 210                err = -EIO;
 211
 212        return err;
 213}
 214
 215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 216                           struct buffer_head *di_bh)
 217{
 218        void *kaddr;
 219        loff_t size;
 220        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 221
 222        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 223                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 224                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 225                return -EROFS;
 226        }
 227
 228        size = i_size_read(inode);
 229
 230        if (size > PAGE_CACHE_SIZE ||
 231            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 232                ocfs2_error(inode->i_sb,
 233                            "Inode %llu has with inline data has bad size: %Lu",
 234                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 235                            (unsigned long long)size);
 236                return -EROFS;
 237        }
 238
 239        kaddr = kmap_atomic(page);
 240        if (size)
 241                memcpy(kaddr, di->id2.i_data.id_data, size);
 242        /* Clear the remaining part of the page */
 243        memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 244        flush_dcache_page(page);
 245        kunmap_atomic(kaddr);
 246
 247        SetPageUptodate(page);
 248
 249        return 0;
 250}
 251
 252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 253{
 254        int ret;
 255        struct buffer_head *di_bh = NULL;
 256
 257        BUG_ON(!PageLocked(page));
 258        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 259
 260        ret = ocfs2_read_inode_block(inode, &di_bh);
 261        if (ret) {
 262                mlog_errno(ret);
 263                goto out;
 264        }
 265
 266        ret = ocfs2_read_inline_data(inode, page, di_bh);
 267out:
 268        unlock_page(page);
 269
 270        brelse(di_bh);
 271        return ret;
 272}
 273
 274static int ocfs2_readpage(struct file *file, struct page *page)
 275{
 276        struct inode *inode = page->mapping->host;
 277        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 278        loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 279        int ret, unlock = 1;
 280
 281        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 282                             (page ? page->index : 0));
 283
 284        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 285        if (ret != 0) {
 286                if (ret == AOP_TRUNCATED_PAGE)
 287                        unlock = 0;
 288                mlog_errno(ret);
 289                goto out;
 290        }
 291
 292        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 293                /*
 294                 * Unlock the page and cycle ip_alloc_sem so that we don't
 295                 * busyloop waiting for ip_alloc_sem to unlock
 296                 */
 297                ret = AOP_TRUNCATED_PAGE;
 298                unlock_page(page);
 299                unlock = 0;
 300                down_read(&oi->ip_alloc_sem);
 301                up_read(&oi->ip_alloc_sem);
 302                goto out_inode_unlock;
 303        }
 304
 305        /*
 306         * i_size might have just been updated as we grabed the meta lock.  We
 307         * might now be discovering a truncate that hit on another node.
 308         * block_read_full_page->get_block freaks out if it is asked to read
 309         * beyond the end of a file, so we check here.  Callers
 310         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 311         * and notice that the page they just read isn't needed.
 312         *
 313         * XXX sys_readahead() seems to get that wrong?
 314         */
 315        if (start >= i_size_read(inode)) {
 316                zero_user(page, 0, PAGE_SIZE);
 317                SetPageUptodate(page);
 318                ret = 0;
 319                goto out_alloc;
 320        }
 321
 322        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 323                ret = ocfs2_readpage_inline(inode, page);
 324        else
 325                ret = block_read_full_page(page, ocfs2_get_block);
 326        unlock = 0;
 327
 328out_alloc:
 329        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 330out_inode_unlock:
 331        ocfs2_inode_unlock(inode, 0);
 332out:
 333        if (unlock)
 334                unlock_page(page);
 335        return ret;
 336}
 337
 338/*
 339 * This is used only for read-ahead. Failures or difficult to handle
 340 * situations are safe to ignore.
 341 *
 342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 343 * are quite large (243 extents on 4k blocks), so most inodes don't
 344 * grow out to a tree. If need be, detecting boundary extents could
 345 * trivially be added in a future version of ocfs2_get_block().
 346 */
 347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 348                           struct list_head *pages, unsigned nr_pages)
 349{
 350        int ret, err = -EIO;
 351        struct inode *inode = mapping->host;
 352        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 353        loff_t start;
 354        struct page *last;
 355
 356        /*
 357         * Use the nonblocking flag for the dlm code to avoid page
 358         * lock inversion, but don't bother with retrying.
 359         */
 360        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 361        if (ret)
 362                return err;
 363
 364        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 365                ocfs2_inode_unlock(inode, 0);
 366                return err;
 367        }
 368
 369        /*
 370         * Don't bother with inline-data. There isn't anything
 371         * to read-ahead in that case anyway...
 372         */
 373        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 374                goto out_unlock;
 375
 376        /*
 377         * Check whether a remote node truncated this file - we just
 378         * drop out in that case as it's not worth handling here.
 379         */
 380        last = list_entry(pages->prev, struct page, lru);
 381        start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 382        if (start >= i_size_read(inode))
 383                goto out_unlock;
 384
 385        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 386
 387out_unlock:
 388        up_read(&oi->ip_alloc_sem);
 389        ocfs2_inode_unlock(inode, 0);
 390
 391        return err;
 392}
 393
 394/* Note: Because we don't support holes, our allocation has
 395 * already happened (allocation writes zeros to the file data)
 396 * so we don't have to worry about ordered writes in
 397 * ocfs2_writepage.
 398 *
 399 * ->writepage is called during the process of invalidating the page cache
 400 * during blocked lock processing.  It can't block on any cluster locks
 401 * to during block mapping.  It's relying on the fact that the block
 402 * mapping can't have disappeared under the dirty pages that it is
 403 * being asked to write back.
 404 */
 405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 406{
 407        trace_ocfs2_writepage(
 408                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 409                page->index);
 410
 411        return block_write_full_page(page, ocfs2_get_block, wbc);
 412}
 413
 414/* Taken from ext3. We don't necessarily need the full blown
 415 * functionality yet, but IMHO it's better to cut and paste the whole
 416 * thing so we can avoid introducing our own bugs (and easily pick up
 417 * their fixes when they happen) --Mark */
 418int walk_page_buffers(  handle_t *handle,
 419                        struct buffer_head *head,
 420                        unsigned from,
 421                        unsigned to,
 422                        int *partial,
 423                        int (*fn)(      handle_t *handle,
 424                                        struct buffer_head *bh))
 425{
 426        struct buffer_head *bh;
 427        unsigned block_start, block_end;
 428        unsigned blocksize = head->b_size;
 429        int err, ret = 0;
 430        struct buffer_head *next;
 431
 432        for (   bh = head, block_start = 0;
 433                ret == 0 && (bh != head || !block_start);
 434                block_start = block_end, bh = next)
 435        {
 436                next = bh->b_this_page;
 437                block_end = block_start + blocksize;
 438                if (block_end <= from || block_start >= to) {
 439                        if (partial && !buffer_uptodate(bh))
 440                                *partial = 1;
 441                        continue;
 442                }
 443                err = (*fn)(handle, bh);
 444                if (!ret)
 445                        ret = err;
 446        }
 447        return ret;
 448}
 449
 450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 451{
 452        sector_t status;
 453        u64 p_blkno = 0;
 454        int err = 0;
 455        struct inode *inode = mapping->host;
 456
 457        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 458                         (unsigned long long)block);
 459
 460        /* We don't need to lock journal system files, since they aren't
 461         * accessed concurrently from multiple nodes.
 462         */
 463        if (!INODE_JOURNAL(inode)) {
 464                err = ocfs2_inode_lock(inode, NULL, 0);
 465                if (err) {
 466                        if (err != -ENOENT)
 467                                mlog_errno(err);
 468                        goto bail;
 469                }
 470                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 471        }
 472
 473        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 474                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 475                                                  NULL);
 476
 477        if (!INODE_JOURNAL(inode)) {
 478                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 479                ocfs2_inode_unlock(inode, 0);
 480        }
 481
 482        if (err) {
 483                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 484                     (unsigned long long)block);
 485                mlog_errno(err);
 486                goto bail;
 487        }
 488
 489bail:
 490        status = err ? 0 : p_blkno;
 491
 492        return status;
 493}
 494
 495/*
 496 * TODO: Make this into a generic get_blocks function.
 497 *
 498 * From do_direct_io in direct-io.c:
 499 *  "So what we do is to permit the ->get_blocks function to populate
 500 *   bh.b_size with the size of IO which is permitted at this offset and
 501 *   this i_blkbits."
 502 *
 503 * This function is called directly from get_more_blocks in direct-io.c.
 504 *
 505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 506 *                                      fs_count, map_bh, dio->rw == WRITE);
 507 *
 508 * Note that we never bother to allocate blocks here, and thus ignore the
 509 * create argument.
 510 */
 511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 512                                     struct buffer_head *bh_result, int create)
 513{
 514        int ret;
 515        u64 p_blkno, inode_blocks, contig_blocks;
 516        unsigned int ext_flags;
 517        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 518        unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 519
 520        /* This function won't even be called if the request isn't all
 521         * nicely aligned and of the right size, so there's no need
 522         * for us to check any of that. */
 523
 524        inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 525
 526        /* This figures out the size of the next contiguous block, and
 527         * our logical offset */
 528        ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 529                                          &contig_blocks, &ext_flags);
 530        if (ret) {
 531                mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 532                     (unsigned long long)iblock);
 533                ret = -EIO;
 534                goto bail;
 535        }
 536
 537        /* We should already CoW the refcounted extent in case of create. */
 538        BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 539
 540        /*
 541         * get_more_blocks() expects us to describe a hole by clearing
 542         * the mapped bit on bh_result().
 543         *
 544         * Consider an unwritten extent as a hole.
 545         */
 546        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 547                map_bh(bh_result, inode->i_sb, p_blkno);
 548        else
 549                clear_buffer_mapped(bh_result);
 550
 551        /* make sure we don't map more than max_blocks blocks here as
 552           that's all the kernel will handle at this point. */
 553        if (max_blocks < contig_blocks)
 554                contig_blocks = max_blocks;
 555        bh_result->b_size = contig_blocks << blocksize_bits;
 556bail:
 557        return ret;
 558}
 559
 560/*
 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 562 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 563 * to protect io on one node from truncation on another.
 564 */
 565static void ocfs2_dio_end_io(struct kiocb *iocb,
 566                             loff_t offset,
 567                             ssize_t bytes,
 568                             void *private)
 569{
 570        struct inode *inode = file_inode(iocb->ki_filp);
 571        int level;
 572        wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
 573
 574        /* this io's submitter should not have unlocked this before we could */
 575        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 576
 577        if (ocfs2_iocb_is_sem_locked(iocb))
 578                ocfs2_iocb_clear_sem_locked(iocb);
 579
 580        if (ocfs2_iocb_is_unaligned_aio(iocb)) {
 581                ocfs2_iocb_clear_unaligned_aio(iocb);
 582
 583                if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
 584                    waitqueue_active(wq)) {
 585                        wake_up_all(wq);
 586                }
 587        }
 588
 589        ocfs2_iocb_clear_rw_locked(iocb);
 590
 591        level = ocfs2_iocb_rw_locked_level(iocb);
 592        ocfs2_rw_unlock(inode, level);
 593}
 594
 595/*
 596 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 597 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 598 * do journalled data.
 599 */
 600static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
 601                                 unsigned int length)
 602{
 603        journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 604
 605        jbd2_journal_invalidatepage(journal, page, offset, length);
 606}
 607
 608static int ocfs2_releasepage(struct page *page, gfp_t wait)
 609{
 610        journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 611
 612        if (!page_has_buffers(page))
 613                return 0;
 614        return jbd2_journal_try_to_free_buffers(journal, page, wait);
 615}
 616
 617static ssize_t ocfs2_direct_IO(int rw,
 618                               struct kiocb *iocb,
 619                               const struct iovec *iov,
 620                               loff_t offset,
 621                               unsigned long nr_segs)
 622{
 623        struct file *file = iocb->ki_filp;
 624        struct inode *inode = file_inode(file)->i_mapping->host;
 625
 626        /*
 627         * Fallback to buffered I/O if we see an inode without
 628         * extents.
 629         */
 630        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 631                return 0;
 632
 633        /* Fallback to buffered I/O if we are appending. */
 634        if (i_size_read(inode) <= offset)
 635                return 0;
 636
 637        return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
 638                                    iov, offset, nr_segs,
 639                                    ocfs2_direct_IO_get_blocks,
 640                                    ocfs2_dio_end_io, NULL, 0);
 641}
 642
 643static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 644                                            u32 cpos,
 645                                            unsigned int *start,
 646                                            unsigned int *end)
 647{
 648        unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 649
 650        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 651                unsigned int cpp;
 652
 653                cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 654
 655                cluster_start = cpos % cpp;
 656                cluster_start = cluster_start << osb->s_clustersize_bits;
 657
 658                cluster_end = cluster_start + osb->s_clustersize;
 659        }
 660
 661        BUG_ON(cluster_start > PAGE_SIZE);
 662        BUG_ON(cluster_end > PAGE_SIZE);
 663
 664        if (start)
 665                *start = cluster_start;
 666        if (end)
 667                *end = cluster_end;
 668}
 669
 670/*
 671 * 'from' and 'to' are the region in the page to avoid zeroing.
 672 *
 673 * If pagesize > clustersize, this function will avoid zeroing outside
 674 * of the cluster boundary.
 675 *
 676 * from == to == 0 is code for "zero the entire cluster region"
 677 */
 678static void ocfs2_clear_page_regions(struct page *page,
 679                                     struct ocfs2_super *osb, u32 cpos,
 680                                     unsigned from, unsigned to)
 681{
 682        void *kaddr;
 683        unsigned int cluster_start, cluster_end;
 684
 685        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 686
 687        kaddr = kmap_atomic(page);
 688
 689        if (from || to) {
 690                if (from > cluster_start)
 691                        memset(kaddr + cluster_start, 0, from - cluster_start);
 692                if (to < cluster_end)
 693                        memset(kaddr + to, 0, cluster_end - to);
 694        } else {
 695                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 696        }
 697
 698        kunmap_atomic(kaddr);
 699}
 700
 701/*
 702 * Nonsparse file systems fully allocate before we get to the write
 703 * code. This prevents ocfs2_write() from tagging the write as an
 704 * allocating one, which means ocfs2_map_page_blocks() might try to
 705 * read-in the blocks at the tail of our file. Avoid reading them by
 706 * testing i_size against each block offset.
 707 */
 708static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 709                                 unsigned int block_start)
 710{
 711        u64 offset = page_offset(page) + block_start;
 712
 713        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 714                return 1;
 715
 716        if (i_size_read(inode) > offset)
 717                return 1;
 718
 719        return 0;
 720}
 721
 722/*
 723 * Some of this taken from __block_write_begin(). We already have our
 724 * mapping by now though, and the entire write will be allocating or
 725 * it won't, so not much need to use BH_New.
 726 *
 727 * This will also skip zeroing, which is handled externally.
 728 */
 729int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 730                          struct inode *inode, unsigned int from,
 731                          unsigned int to, int new)
 732{
 733        int ret = 0;
 734        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 735        unsigned int block_end, block_start;
 736        unsigned int bsize = 1 << inode->i_blkbits;
 737
 738        if (!page_has_buffers(page))
 739                create_empty_buffers(page, bsize, 0);
 740
 741        head = page_buffers(page);
 742        for (bh = head, block_start = 0; bh != head || !block_start;
 743             bh = bh->b_this_page, block_start += bsize) {
 744                block_end = block_start + bsize;
 745
 746                clear_buffer_new(bh);
 747
 748                /*
 749                 * Ignore blocks outside of our i/o range -
 750                 * they may belong to unallocated clusters.
 751                 */
 752                if (block_start >= to || block_end <= from) {
 753                        if (PageUptodate(page))
 754                                set_buffer_uptodate(bh);
 755                        continue;
 756                }
 757
 758                /*
 759                 * For an allocating write with cluster size >= page
 760                 * size, we always write the entire page.
 761                 */
 762                if (new)
 763                        set_buffer_new(bh);
 764
 765                if (!buffer_mapped(bh)) {
 766                        map_bh(bh, inode->i_sb, *p_blkno);
 767                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 768                }
 769
 770                if (PageUptodate(page)) {
 771                        if (!buffer_uptodate(bh))
 772                                set_buffer_uptodate(bh);
 773                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 774                           !buffer_new(bh) &&
 775                           ocfs2_should_read_blk(inode, page, block_start) &&
 776                           (block_start < from || block_end > to)) {
 777                        ll_rw_block(READ, 1, &bh);
 778                        *wait_bh++=bh;
 779                }
 780
 781                *p_blkno = *p_blkno + 1;
 782        }
 783
 784        /*
 785         * If we issued read requests - let them complete.
 786         */
 787        while(wait_bh > wait) {
 788                wait_on_buffer(*--wait_bh);
 789                if (!buffer_uptodate(*wait_bh))
 790                        ret = -EIO;
 791        }
 792
 793        if (ret == 0 || !new)
 794                return ret;
 795
 796        /*
 797         * If we get -EIO above, zero out any newly allocated blocks
 798         * to avoid exposing stale data.
 799         */
 800        bh = head;
 801        block_start = 0;
 802        do {
 803                block_end = block_start + bsize;
 804                if (block_end <= from)
 805                        goto next_bh;
 806                if (block_start >= to)
 807                        break;
 808
 809                zero_user(page, block_start, bh->b_size);
 810                set_buffer_uptodate(bh);
 811                mark_buffer_dirty(bh);
 812
 813next_bh:
 814                block_start = block_end;
 815                bh = bh->b_this_page;
 816        } while (bh != head);
 817
 818        return ret;
 819}
 820
 821#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 822#define OCFS2_MAX_CTXT_PAGES    1
 823#else
 824#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
 825#endif
 826
 827#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 828
 829/*
 830 * Describe the state of a single cluster to be written to.
 831 */
 832struct ocfs2_write_cluster_desc {
 833        u32             c_cpos;
 834        u32             c_phys;
 835        /*
 836         * Give this a unique field because c_phys eventually gets
 837         * filled.
 838         */
 839        unsigned        c_new;
 840        unsigned        c_unwritten;
 841        unsigned        c_needs_zero;
 842};
 843
 844struct ocfs2_write_ctxt {
 845        /* Logical cluster position / len of write */
 846        u32                             w_cpos;
 847        u32                             w_clen;
 848
 849        /* First cluster allocated in a nonsparse extend */
 850        u32                             w_first_new_cpos;
 851
 852        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 853
 854        /*
 855         * This is true if page_size > cluster_size.
 856         *
 857         * It triggers a set of special cases during write which might
 858         * have to deal with allocating writes to partial pages.
 859         */
 860        unsigned int                    w_large_pages;
 861
 862        /*
 863         * Pages involved in this write.
 864         *
 865         * w_target_page is the page being written to by the user.
 866         *
 867         * w_pages is an array of pages which always contains
 868         * w_target_page, and in the case of an allocating write with
 869         * page_size < cluster size, it will contain zero'd and mapped
 870         * pages adjacent to w_target_page which need to be written
 871         * out in so that future reads from that region will get
 872         * zero's.
 873         */
 874        unsigned int                    w_num_pages;
 875        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 876        struct page                     *w_target_page;
 877
 878        /*
 879         * w_target_locked is used for page_mkwrite path indicating no unlocking
 880         * against w_target_page in ocfs2_write_end_nolock.
 881         */
 882        unsigned int                    w_target_locked:1;
 883
 884        /*
 885         * ocfs2_write_end() uses this to know what the real range to
 886         * write in the target should be.
 887         */
 888        unsigned int                    w_target_from;
 889        unsigned int                    w_target_to;
 890
 891        /*
 892         * We could use journal_current_handle() but this is cleaner,
 893         * IMHO -Mark
 894         */
 895        handle_t                        *w_handle;
 896
 897        struct buffer_head              *w_di_bh;
 898
 899        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 900};
 901
 902void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 903{
 904        int i;
 905
 906        for(i = 0; i < num_pages; i++) {
 907                if (pages[i]) {
 908                        unlock_page(pages[i]);
 909                        mark_page_accessed(pages[i]);
 910                        page_cache_release(pages[i]);
 911                }
 912        }
 913}
 914
 915static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
 916{
 917        int i;
 918
 919        /*
 920         * w_target_locked is only set to true in the page_mkwrite() case.
 921         * The intent is to allow us to lock the target page from write_begin()
 922         * to write_end(). The caller must hold a ref on w_target_page.
 923         */
 924        if (wc->w_target_locked) {
 925                BUG_ON(!wc->w_target_page);
 926                for (i = 0; i < wc->w_num_pages; i++) {
 927                        if (wc->w_target_page == wc->w_pages[i]) {
 928                                wc->w_pages[i] = NULL;
 929                                break;
 930                        }
 931                }
 932                mark_page_accessed(wc->w_target_page);
 933                page_cache_release(wc->w_target_page);
 934        }
 935        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 936
 937        brelse(wc->w_di_bh);
 938        kfree(wc);
 939}
 940
 941static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 942                                  struct ocfs2_super *osb, loff_t pos,
 943                                  unsigned len, struct buffer_head *di_bh)
 944{
 945        u32 cend;
 946        struct ocfs2_write_ctxt *wc;
 947
 948        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 949        if (!wc)
 950                return -ENOMEM;
 951
 952        wc->w_cpos = pos >> osb->s_clustersize_bits;
 953        wc->w_first_new_cpos = UINT_MAX;
 954        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 955        wc->w_clen = cend - wc->w_cpos + 1;
 956        get_bh(di_bh);
 957        wc->w_di_bh = di_bh;
 958
 959        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
 960                wc->w_large_pages = 1;
 961        else
 962                wc->w_large_pages = 0;
 963
 964        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 965
 966        *wcp = wc;
 967
 968        return 0;
 969}
 970
 971/*
 972 * If a page has any new buffers, zero them out here, and mark them uptodate
 973 * and dirty so they'll be written out (in order to prevent uninitialised
 974 * block data from leaking). And clear the new bit.
 975 */
 976static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 977{
 978        unsigned int block_start, block_end;
 979        struct buffer_head *head, *bh;
 980
 981        BUG_ON(!PageLocked(page));
 982        if (!page_has_buffers(page))
 983                return;
 984
 985        bh = head = page_buffers(page);
 986        block_start = 0;
 987        do {
 988                block_end = block_start + bh->b_size;
 989
 990                if (buffer_new(bh)) {
 991                        if (block_end > from && block_start < to) {
 992                                if (!PageUptodate(page)) {
 993                                        unsigned start, end;
 994
 995                                        start = max(from, block_start);
 996                                        end = min(to, block_end);
 997
 998                                        zero_user_segment(page, start, end);
 999                                        set_buffer_uptodate(bh);
1000                                }
1001
1002                                clear_buffer_new(bh);
1003                                mark_buffer_dirty(bh);
1004                        }
1005                }
1006
1007                block_start = block_end;
1008                bh = bh->b_this_page;
1009        } while (bh != head);
1010}
1011
1012/*
1013 * Only called when we have a failure during allocating write to write
1014 * zero's to the newly allocated region.
1015 */
1016static void ocfs2_write_failure(struct inode *inode,
1017                                struct ocfs2_write_ctxt *wc,
1018                                loff_t user_pos, unsigned user_len)
1019{
1020        int i;
1021        unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1022                to = user_pos + user_len;
1023        struct page *tmppage;
1024
1025        ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1026
1027        for(i = 0; i < wc->w_num_pages; i++) {
1028                tmppage = wc->w_pages[i];
1029
1030                if (page_has_buffers(tmppage)) {
1031                        if (ocfs2_should_order_data(inode))
1032                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
1033
1034                        block_commit_write(tmppage, from, to);
1035                }
1036        }
1037}
1038
1039static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1040                                        struct ocfs2_write_ctxt *wc,
1041                                        struct page *page, u32 cpos,
1042                                        loff_t user_pos, unsigned user_len,
1043                                        int new)
1044{
1045        int ret;
1046        unsigned int map_from = 0, map_to = 0;
1047        unsigned int cluster_start, cluster_end;
1048        unsigned int user_data_from = 0, user_data_to = 0;
1049
1050        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1051                                        &cluster_start, &cluster_end);
1052
1053        /* treat the write as new if the a hole/lseek spanned across
1054         * the page boundary.
1055         */
1056        new = new | ((i_size_read(inode) <= page_offset(page)) &&
1057                        (page_offset(page) <= user_pos));
1058
1059        if (page == wc->w_target_page) {
1060                map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1061                map_to = map_from + user_len;
1062
1063                if (new)
1064                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1065                                                    cluster_start, cluster_end,
1066                                                    new);
1067                else
1068                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1069                                                    map_from, map_to, new);
1070                if (ret) {
1071                        mlog_errno(ret);
1072                        goto out;
1073                }
1074
1075                user_data_from = map_from;
1076                user_data_to = map_to;
1077                if (new) {
1078                        map_from = cluster_start;
1079                        map_to = cluster_end;
1080                }
1081        } else {
1082                /*
1083                 * If we haven't allocated the new page yet, we
1084                 * shouldn't be writing it out without copying user
1085                 * data. This is likely a math error from the caller.
1086                 */
1087                BUG_ON(!new);
1088
1089                map_from = cluster_start;
1090                map_to = cluster_end;
1091
1092                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1093                                            cluster_start, cluster_end, new);
1094                if (ret) {
1095                        mlog_errno(ret);
1096                        goto out;
1097                }
1098        }
1099
1100        /*
1101         * Parts of newly allocated pages need to be zero'd.
1102         *
1103         * Above, we have also rewritten 'to' and 'from' - as far as
1104         * the rest of the function is concerned, the entire cluster
1105         * range inside of a page needs to be written.
1106         *
1107         * We can skip this if the page is up to date - it's already
1108         * been zero'd from being read in as a hole.
1109         */
1110        if (new && !PageUptodate(page))
1111                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1112                                         cpos, user_data_from, user_data_to);
1113
1114        flush_dcache_page(page);
1115
1116out:
1117        return ret;
1118}
1119
1120/*
1121 * This function will only grab one clusters worth of pages.
1122 */
1123static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1124                                      struct ocfs2_write_ctxt *wc,
1125                                      u32 cpos, loff_t user_pos,
1126                                      unsigned user_len, int new,
1127                                      struct page *mmap_page)
1128{
1129        int ret = 0, i;
1130        unsigned long start, target_index, end_index, index;
1131        struct inode *inode = mapping->host;
1132        loff_t last_byte;
1133
1134        target_index = user_pos >> PAGE_CACHE_SHIFT;
1135
1136        /*
1137         * Figure out how many pages we'll be manipulating here. For
1138         * non allocating write, we just change the one
1139         * page. Otherwise, we'll need a whole clusters worth.  If we're
1140         * writing past i_size, we only need enough pages to cover the
1141         * last page of the write.
1142         */
1143        if (new) {
1144                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1145                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1146                /*
1147                 * We need the index *past* the last page we could possibly
1148                 * touch.  This is the page past the end of the write or
1149                 * i_size, whichever is greater.
1150                 */
1151                last_byte = max(user_pos + user_len, i_size_read(inode));
1152                BUG_ON(last_byte < 1);
1153                end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1154                if ((start + wc->w_num_pages) > end_index)
1155                        wc->w_num_pages = end_index - start;
1156        } else {
1157                wc->w_num_pages = 1;
1158                start = target_index;
1159        }
1160
1161        for(i = 0; i < wc->w_num_pages; i++) {
1162                index = start + i;
1163
1164                if (index == target_index && mmap_page) {
1165                        /*
1166                         * ocfs2_pagemkwrite() is a little different
1167                         * and wants us to directly use the page
1168                         * passed in.
1169                         */
1170                        lock_page(mmap_page);
1171
1172                        /* Exit and let the caller retry */
1173                        if (mmap_page->mapping != mapping) {
1174                                WARN_ON(mmap_page->mapping);
1175                                unlock_page(mmap_page);
1176                                ret = -EAGAIN;
1177                                goto out;
1178                        }
1179
1180                        page_cache_get(mmap_page);
1181                        wc->w_pages[i] = mmap_page;
1182                        wc->w_target_locked = true;
1183                } else {
1184                        wc->w_pages[i] = find_or_create_page(mapping, index,
1185                                                             GFP_NOFS);
1186                        if (!wc->w_pages[i]) {
1187                                ret = -ENOMEM;
1188                                mlog_errno(ret);
1189                                goto out;
1190                        }
1191                }
1192                wait_for_stable_page(wc->w_pages[i]);
1193
1194                if (index == target_index)
1195                        wc->w_target_page = wc->w_pages[i];
1196        }
1197out:
1198        if (ret)
1199                wc->w_target_locked = false;
1200        return ret;
1201}
1202
1203/*
1204 * Prepare a single cluster for write one cluster into the file.
1205 */
1206static int ocfs2_write_cluster(struct address_space *mapping,
1207                               u32 phys, unsigned int unwritten,
1208                               unsigned int should_zero,
1209                               struct ocfs2_alloc_context *data_ac,
1210                               struct ocfs2_alloc_context *meta_ac,
1211                               struct ocfs2_write_ctxt *wc, u32 cpos,
1212                               loff_t user_pos, unsigned user_len)
1213{
1214        int ret, i, new;
1215        u64 v_blkno, p_blkno;
1216        struct inode *inode = mapping->host;
1217        struct ocfs2_extent_tree et;
1218
1219        new = phys == 0 ? 1 : 0;
1220        if (new) {
1221                u32 tmp_pos;
1222
1223                /*
1224                 * This is safe to call with the page locks - it won't take
1225                 * any additional semaphores or cluster locks.
1226                 */
1227                tmp_pos = cpos;
1228                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1229                                           &tmp_pos, 1, 0, wc->w_di_bh,
1230                                           wc->w_handle, data_ac,
1231                                           meta_ac, NULL);
1232                /*
1233                 * This shouldn't happen because we must have already
1234                 * calculated the correct meta data allocation required. The
1235                 * internal tree allocation code should know how to increase
1236                 * transaction credits itself.
1237                 *
1238                 * If need be, we could handle -EAGAIN for a
1239                 * RESTART_TRANS here.
1240                 */
1241                mlog_bug_on_msg(ret == -EAGAIN,
1242                                "Inode %llu: EAGAIN return during allocation.\n",
1243                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1244                if (ret < 0) {
1245                        mlog_errno(ret);
1246                        goto out;
1247                }
1248        } else if (unwritten) {
1249                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1250                                              wc->w_di_bh);
1251                ret = ocfs2_mark_extent_written(inode, &et,
1252                                                wc->w_handle, cpos, 1, phys,
1253                                                meta_ac, &wc->w_dealloc);
1254                if (ret < 0) {
1255                        mlog_errno(ret);
1256                        goto out;
1257                }
1258        }
1259
1260        if (should_zero)
1261                v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1262        else
1263                v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1264
1265        /*
1266         * The only reason this should fail is due to an inability to
1267         * find the extent added.
1268         */
1269        ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1270                                          NULL);
1271        if (ret < 0) {
1272                ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1273                            "at logical block %llu",
1274                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
1275                            (unsigned long long)v_blkno);
1276                goto out;
1277        }
1278
1279        BUG_ON(p_blkno == 0);
1280
1281        for(i = 0; i < wc->w_num_pages; i++) {
1282                int tmpret;
1283
1284                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1285                                                      wc->w_pages[i], cpos,
1286                                                      user_pos, user_len,
1287                                                      should_zero);
1288                if (tmpret) {
1289                        mlog_errno(tmpret);
1290                        if (ret == 0)
1291                                ret = tmpret;
1292                }
1293        }
1294
1295        /*
1296         * We only have cleanup to do in case of allocating write.
1297         */
1298        if (ret && new)
1299                ocfs2_write_failure(inode, wc, user_pos, user_len);
1300
1301out:
1302
1303        return ret;
1304}
1305
1306static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1307                                       struct ocfs2_alloc_context *data_ac,
1308                                       struct ocfs2_alloc_context *meta_ac,
1309                                       struct ocfs2_write_ctxt *wc,
1310                                       loff_t pos, unsigned len)
1311{
1312        int ret, i;
1313        loff_t cluster_off;
1314        unsigned int local_len = len;
1315        struct ocfs2_write_cluster_desc *desc;
1316        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1317
1318        for (i = 0; i < wc->w_clen; i++) {
1319                desc = &wc->w_desc[i];
1320
1321                /*
1322                 * We have to make sure that the total write passed in
1323                 * doesn't extend past a single cluster.
1324                 */
1325                local_len = len;
1326                cluster_off = pos & (osb->s_clustersize - 1);
1327                if ((cluster_off + local_len) > osb->s_clustersize)
1328                        local_len = osb->s_clustersize - cluster_off;
1329
1330                ret = ocfs2_write_cluster(mapping, desc->c_phys,
1331                                          desc->c_unwritten,
1332                                          desc->c_needs_zero,
1333                                          data_ac, meta_ac,
1334                                          wc, desc->c_cpos, pos, local_len);
1335                if (ret) {
1336                        mlog_errno(ret);
1337                        goto out;
1338                }
1339
1340                len -= local_len;
1341                pos += local_len;
1342        }
1343
1344        ret = 0;
1345out:
1346        return ret;
1347}
1348
1349/*
1350 * ocfs2_write_end() wants to know which parts of the target page it
1351 * should complete the write on. It's easiest to compute them ahead of
1352 * time when a more complete view of the write is available.
1353 */
1354static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1355                                        struct ocfs2_write_ctxt *wc,
1356                                        loff_t pos, unsigned len, int alloc)
1357{
1358        struct ocfs2_write_cluster_desc *desc;
1359
1360        wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1361        wc->w_target_to = wc->w_target_from + len;
1362
1363        if (alloc == 0)
1364                return;
1365
1366        /*
1367         * Allocating write - we may have different boundaries based
1368         * on page size and cluster size.
1369         *
1370         * NOTE: We can no longer compute one value from the other as
1371         * the actual write length and user provided length may be
1372         * different.
1373         */
1374
1375        if (wc->w_large_pages) {
1376                /*
1377                 * We only care about the 1st and last cluster within
1378                 * our range and whether they should be zero'd or not. Either
1379                 * value may be extended out to the start/end of a
1380                 * newly allocated cluster.
1381                 */
1382                desc = &wc->w_desc[0];
1383                if (desc->c_needs_zero)
1384                        ocfs2_figure_cluster_boundaries(osb,
1385                                                        desc->c_cpos,
1386                                                        &wc->w_target_from,
1387                                                        NULL);
1388
1389                desc = &wc->w_desc[wc->w_clen - 1];
1390                if (desc->c_needs_zero)
1391                        ocfs2_figure_cluster_boundaries(osb,
1392                                                        desc->c_cpos,
1393                                                        NULL,
1394                                                        &wc->w_target_to);
1395        } else {
1396                wc->w_target_from = 0;
1397                wc->w_target_to = PAGE_CACHE_SIZE;
1398        }
1399}
1400
1401/*
1402 * Populate each single-cluster write descriptor in the write context
1403 * with information about the i/o to be done.
1404 *
1405 * Returns the number of clusters that will have to be allocated, as
1406 * well as a worst case estimate of the number of extent records that
1407 * would have to be created during a write to an unwritten region.
1408 */
1409static int ocfs2_populate_write_desc(struct inode *inode,
1410                                     struct ocfs2_write_ctxt *wc,
1411                                     unsigned int *clusters_to_alloc,
1412                                     unsigned int *extents_to_split)
1413{
1414        int ret;
1415        struct ocfs2_write_cluster_desc *desc;
1416        unsigned int num_clusters = 0;
1417        unsigned int ext_flags = 0;
1418        u32 phys = 0;
1419        int i;
1420
1421        *clusters_to_alloc = 0;
1422        *extents_to_split = 0;
1423
1424        for (i = 0; i < wc->w_clen; i++) {
1425                desc = &wc->w_desc[i];
1426                desc->c_cpos = wc->w_cpos + i;
1427
1428                if (num_clusters == 0) {
1429                        /*
1430                         * Need to look up the next extent record.
1431                         */
1432                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1433                                                 &num_clusters, &ext_flags);
1434                        if (ret) {
1435                                mlog_errno(ret);
1436                                goto out;
1437                        }
1438
1439                        /* We should already CoW the refcountd extent. */
1440                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1441
1442                        /*
1443                         * Assume worst case - that we're writing in
1444                         * the middle of the extent.
1445                         *
1446                         * We can assume that the write proceeds from
1447                         * left to right, in which case the extent
1448                         * insert code is smart enough to coalesce the
1449                         * next splits into the previous records created.
1450                         */
1451                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1452                                *extents_to_split = *extents_to_split + 2;
1453                } else if (phys) {
1454                        /*
1455                         * Only increment phys if it doesn't describe
1456                         * a hole.
1457                         */
1458                        phys++;
1459                }
1460
1461                /*
1462                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1463                 * file that got extended.  w_first_new_cpos tells us
1464                 * where the newly allocated clusters are so we can
1465                 * zero them.
1466                 */
1467                if (desc->c_cpos >= wc->w_first_new_cpos) {
1468                        BUG_ON(phys == 0);
1469                        desc->c_needs_zero = 1;
1470                }
1471
1472                desc->c_phys = phys;
1473                if (phys == 0) {
1474                        desc->c_new = 1;
1475                        desc->c_needs_zero = 1;
1476                        *clusters_to_alloc = *clusters_to_alloc + 1;
1477                }
1478
1479                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480                        desc->c_unwritten = 1;
1481                        desc->c_needs_zero = 1;
1482                }
1483
1484                num_clusters--;
1485        }
1486
1487        ret = 0;
1488out:
1489        return ret;
1490}
1491
1492static int ocfs2_write_begin_inline(struct address_space *mapping,
1493                                    struct inode *inode,
1494                                    struct ocfs2_write_ctxt *wc)
1495{
1496        int ret;
1497        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1498        struct page *page;
1499        handle_t *handle;
1500        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1501
1502        page = find_or_create_page(mapping, 0, GFP_NOFS);
1503        if (!page) {
1504                ret = -ENOMEM;
1505                mlog_errno(ret);
1506                goto out;
1507        }
1508        /*
1509         * If we don't set w_num_pages then this page won't get unlocked
1510         * and freed on cleanup of the write context.
1511         */
1512        wc->w_pages[0] = wc->w_target_page = page;
1513        wc->w_num_pages = 1;
1514
1515        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1516        if (IS_ERR(handle)) {
1517                ret = PTR_ERR(handle);
1518                mlog_errno(ret);
1519                goto out;
1520        }
1521
1522        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1523                                      OCFS2_JOURNAL_ACCESS_WRITE);
1524        if (ret) {
1525                ocfs2_commit_trans(osb, handle);
1526
1527                mlog_errno(ret);
1528                goto out;
1529        }
1530
1531        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1532                ocfs2_set_inode_data_inline(inode, di);
1533
1534        if (!PageUptodate(page)) {
1535                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1536                if (ret) {
1537                        ocfs2_commit_trans(osb, handle);
1538
1539                        goto out;
1540                }
1541        }
1542
1543        wc->w_handle = handle;
1544out:
1545        return ret;
1546}
1547
1548int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1549{
1550        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1551
1552        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1553                return 1;
1554        return 0;
1555}
1556
1557static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1558                                          struct inode *inode, loff_t pos,
1559                                          unsigned len, struct page *mmap_page,
1560                                          struct ocfs2_write_ctxt *wc)
1561{
1562        int ret, written = 0;
1563        loff_t end = pos + len;
1564        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1565        struct ocfs2_dinode *di = NULL;
1566
1567        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1568                                             len, (unsigned long long)pos,
1569                                             oi->ip_dyn_features);
1570
1571        /*
1572         * Handle inodes which already have inline data 1st.
1573         */
1574        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1575                if (mmap_page == NULL &&
1576                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1577                        goto do_inline_write;
1578
1579                /*
1580                 * The write won't fit - we have to give this inode an
1581                 * inline extent list now.
1582                 */
1583                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1584                if (ret)
1585                        mlog_errno(ret);
1586                goto out;
1587        }
1588
1589        /*
1590         * Check whether the inode can accept inline data.
1591         */
1592        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1593                return 0;
1594
1595        /*
1596         * Check whether the write can fit.
1597         */
1598        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1599        if (mmap_page ||
1600            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1601                return 0;
1602
1603do_inline_write:
1604        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1605        if (ret) {
1606                mlog_errno(ret);
1607                goto out;
1608        }
1609
1610        /*
1611         * This signals to the caller that the data can be written
1612         * inline.
1613         */
1614        written = 1;
1615out:
1616        return written ? written : ret;
1617}
1618
1619/*
1620 * This function only does anything for file systems which can't
1621 * handle sparse files.
1622 *
1623 * What we want to do here is fill in any hole between the current end
1624 * of allocation and the end of our write. That way the rest of the
1625 * write path can treat it as an non-allocating write, which has no
1626 * special case code for sparse/nonsparse files.
1627 */
1628static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1629                                        struct buffer_head *di_bh,
1630                                        loff_t pos, unsigned len,
1631                                        struct ocfs2_write_ctxt *wc)
1632{
1633        int ret;
1634        loff_t newsize = pos + len;
1635
1636        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1637
1638        if (newsize <= i_size_read(inode))
1639                return 0;
1640
1641        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1642        if (ret)
1643                mlog_errno(ret);
1644
1645        wc->w_first_new_cpos =
1646                ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1647
1648        return ret;
1649}
1650
1651static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1652                           loff_t pos)
1653{
1654        int ret = 0;
1655
1656        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1657        if (pos > i_size_read(inode))
1658                ret = ocfs2_zero_extend(inode, di_bh, pos);
1659
1660        return ret;
1661}
1662
1663/*
1664 * Try to flush truncate logs if we can free enough clusters from it.
1665 * As for return value, "< 0" means error, "0" no space and "1" means
1666 * we have freed enough spaces and let the caller try to allocate again.
1667 */
1668static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1669                                          unsigned int needed)
1670{
1671        tid_t target;
1672        int ret = 0;
1673        unsigned int truncated_clusters;
1674
1675        mutex_lock(&osb->osb_tl_inode->i_mutex);
1676        truncated_clusters = osb->truncated_clusters;
1677        mutex_unlock(&osb->osb_tl_inode->i_mutex);
1678
1679        /*
1680         * Check whether we can succeed in allocating if we free
1681         * the truncate log.
1682         */
1683        if (truncated_clusters < needed)
1684                goto out;
1685
1686        ret = ocfs2_flush_truncate_log(osb);
1687        if (ret) {
1688                mlog_errno(ret);
1689                goto out;
1690        }
1691
1692        if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1693                jbd2_log_wait_commit(osb->journal->j_journal, target);
1694                ret = 1;
1695        }
1696out:
1697        return ret;
1698}
1699
1700int ocfs2_write_begin_nolock(struct file *filp,
1701                             struct address_space *mapping,
1702                             loff_t pos, unsigned len, unsigned flags,
1703                             struct page **pagep, void **fsdata,
1704                             struct buffer_head *di_bh, struct page *mmap_page)
1705{
1706        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1707        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1708        struct ocfs2_write_ctxt *wc;
1709        struct inode *inode = mapping->host;
1710        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1711        struct ocfs2_dinode *di;
1712        struct ocfs2_alloc_context *data_ac = NULL;
1713        struct ocfs2_alloc_context *meta_ac = NULL;
1714        handle_t *handle;
1715        struct ocfs2_extent_tree et;
1716        int try_free = 1, ret1;
1717
1718try_again:
1719        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1720        if (ret) {
1721                mlog_errno(ret);
1722                return ret;
1723        }
1724
1725        if (ocfs2_supports_inline_data(osb)) {
1726                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1727                                                     mmap_page, wc);
1728                if (ret == 1) {
1729                        ret = 0;
1730                        goto success;
1731                }
1732                if (ret < 0) {
1733                        mlog_errno(ret);
1734                        goto out;
1735                }
1736        }
1737
1738        if (ocfs2_sparse_alloc(osb))
1739                ret = ocfs2_zero_tail(inode, di_bh, pos);
1740        else
1741                ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1742                                                   wc);
1743        if (ret) {
1744                mlog_errno(ret);
1745                goto out;
1746        }
1747
1748        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1749        if (ret < 0) {
1750                mlog_errno(ret);
1751                goto out;
1752        } else if (ret == 1) {
1753                clusters_need = wc->w_clen;
1754                ret = ocfs2_refcount_cow(inode, di_bh,
1755                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1756                if (ret) {
1757                        mlog_errno(ret);
1758                        goto out;
1759                }
1760        }
1761
1762        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1763                                        &extents_to_split);
1764        if (ret) {
1765                mlog_errno(ret);
1766                goto out;
1767        }
1768        clusters_need += clusters_to_alloc;
1769
1770        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1771
1772        trace_ocfs2_write_begin_nolock(
1773                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
1774                        (long long)i_size_read(inode),
1775                        le32_to_cpu(di->i_clusters),
1776                        pos, len, flags, mmap_page,
1777                        clusters_to_alloc, extents_to_split);
1778
1779        /*
1780         * We set w_target_from, w_target_to here so that
1781         * ocfs2_write_end() knows which range in the target page to
1782         * write out. An allocation requires that we write the entire
1783         * cluster range.
1784         */
1785        if (clusters_to_alloc || extents_to_split) {
1786                /*
1787                 * XXX: We are stretching the limits of
1788                 * ocfs2_lock_allocators(). It greatly over-estimates
1789                 * the work to be done.
1790                 */
1791                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1792                                              wc->w_di_bh);
1793                ret = ocfs2_lock_allocators(inode, &et,
1794                                            clusters_to_alloc, extents_to_split,
1795                                            &data_ac, &meta_ac);
1796                if (ret) {
1797                        mlog_errno(ret);
1798                        goto out;
1799                }
1800
1801                if (data_ac)
1802                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1803
1804                credits = ocfs2_calc_extend_credits(inode->i_sb,
1805                                                    &di->id2.i_list,
1806                                                    clusters_to_alloc);
1807
1808        }
1809
1810        /*
1811         * We have to zero sparse allocated clusters, unwritten extent clusters,
1812         * and non-sparse clusters we just extended.  For non-sparse writes,
1813         * we know zeros will only be needed in the first and/or last cluster.
1814         */
1815        if (clusters_to_alloc || extents_to_split ||
1816            (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1817                            wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1818                cluster_of_pages = 1;
1819        else
1820                cluster_of_pages = 0;
1821
1822        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1823
1824        handle = ocfs2_start_trans(osb, credits);
1825        if (IS_ERR(handle)) {
1826                ret = PTR_ERR(handle);
1827                mlog_errno(ret);
1828                goto out;
1829        }
1830
1831        wc->w_handle = handle;
1832
1833        if (clusters_to_alloc) {
1834                ret = dquot_alloc_space_nodirty(inode,
1835                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836                if (ret)
1837                        goto out_commit;
1838        }
1839        /*
1840         * We don't want this to fail in ocfs2_write_end(), so do it
1841         * here.
1842         */
1843        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1844                                      OCFS2_JOURNAL_ACCESS_WRITE);
1845        if (ret) {
1846                mlog_errno(ret);
1847                goto out_quota;
1848        }
1849
1850        /*
1851         * Fill our page array first. That way we've grabbed enough so
1852         * that we can zero and flush if we error after adding the
1853         * extent.
1854         */
1855        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1856                                         cluster_of_pages, mmap_page);
1857        if (ret && ret != -EAGAIN) {
1858                mlog_errno(ret);
1859                goto out_quota;
1860        }
1861
1862        /*
1863         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1864         * the target page. In this case, we exit with no error and no target
1865         * page. This will trigger the caller, page_mkwrite(), to re-try
1866         * the operation.
1867         */
1868        if (ret == -EAGAIN) {
1869                BUG_ON(wc->w_target_page);
1870                ret = 0;
1871                goto out_quota;
1872        }
1873
1874        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1875                                          len);
1876        if (ret) {
1877                mlog_errno(ret);
1878                goto out_quota;
1879        }
1880
1881        if (data_ac)
1882                ocfs2_free_alloc_context(data_ac);
1883        if (meta_ac)
1884                ocfs2_free_alloc_context(meta_ac);
1885
1886success:
1887        *pagep = wc->w_target_page;
1888        *fsdata = wc;
1889        return 0;
1890out_quota:
1891        if (clusters_to_alloc)
1892                dquot_free_space(inode,
1893                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1894out_commit:
1895        ocfs2_commit_trans(osb, handle);
1896
1897out:
1898        ocfs2_free_write_ctxt(wc);
1899
1900        if (data_ac)
1901                ocfs2_free_alloc_context(data_ac);
1902        if (meta_ac)
1903                ocfs2_free_alloc_context(meta_ac);
1904
1905        if (ret == -ENOSPC && try_free) {
1906                /*
1907                 * Try to free some truncate log so that we can have enough
1908                 * clusters to allocate.
1909                 */
1910                try_free = 0;
1911
1912                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1913                if (ret1 == 1)
1914                        goto try_again;
1915
1916                if (ret1 < 0)
1917                        mlog_errno(ret1);
1918        }
1919
1920        return ret;
1921}
1922
1923static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1924                             loff_t pos, unsigned len, unsigned flags,
1925                             struct page **pagep, void **fsdata)
1926{
1927        int ret;
1928        struct buffer_head *di_bh = NULL;
1929        struct inode *inode = mapping->host;
1930
1931        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1932        if (ret) {
1933                mlog_errno(ret);
1934                return ret;
1935        }
1936
1937        /*
1938         * Take alloc sem here to prevent concurrent lookups. That way
1939         * the mapping, zeroing and tree manipulation within
1940         * ocfs2_write() will be safe against ->readpage(). This
1941         * should also serve to lock out allocation from a shared
1942         * writeable region.
1943         */
1944        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1945
1946        ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1947                                       fsdata, di_bh, NULL);
1948        if (ret) {
1949                mlog_errno(ret);
1950                goto out_fail;
1951        }
1952
1953        brelse(di_bh);
1954
1955        return 0;
1956
1957out_fail:
1958        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1959
1960        brelse(di_bh);
1961        ocfs2_inode_unlock(inode, 1);
1962
1963        return ret;
1964}
1965
1966static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1967                                   unsigned len, unsigned *copied,
1968                                   struct ocfs2_dinode *di,
1969                                   struct ocfs2_write_ctxt *wc)
1970{
1971        void *kaddr;
1972
1973        if (unlikely(*copied < len)) {
1974                if (!PageUptodate(wc->w_target_page)) {
1975                        *copied = 0;
1976                        return;
1977                }
1978        }
1979
1980        kaddr = kmap_atomic(wc->w_target_page);
1981        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1982        kunmap_atomic(kaddr);
1983
1984        trace_ocfs2_write_end_inline(
1985             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1986             (unsigned long long)pos, *copied,
1987             le16_to_cpu(di->id2.i_data.id_count),
1988             le16_to_cpu(di->i_dyn_features));
1989}
1990
1991int ocfs2_write_end_nolock(struct address_space *mapping,
1992                           loff_t pos, unsigned len, unsigned copied,
1993                           struct page *page, void *fsdata)
1994{
1995        int i;
1996        unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1997        struct inode *inode = mapping->host;
1998        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1999        struct ocfs2_write_ctxt *wc = fsdata;
2000        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2001        handle_t *handle = wc->w_handle;
2002        struct page *tmppage;
2003
2004        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006                goto out_write_size;
2007        }
2008
2009        if (unlikely(copied < len)) {
2010                if (!PageUptodate(wc->w_target_page))
2011                        copied = 0;
2012
2013                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014                                       start+len);
2015        }
2016        flush_dcache_page(wc->w_target_page);
2017
2018        for(i = 0; i < wc->w_num_pages; i++) {
2019                tmppage = wc->w_pages[i];
2020
2021                if (tmppage == wc->w_target_page) {
2022                        from = wc->w_target_from;
2023                        to = wc->w_target_to;
2024
2025                        BUG_ON(from > PAGE_CACHE_SIZE ||
2026                               to > PAGE_CACHE_SIZE ||
2027                               to < from);
2028                } else {
2029                        /*
2030                         * Pages adjacent to the target (if any) imply
2031                         * a hole-filling write in which case we want
2032                         * to flush their entire range.
2033                         */
2034                        from = 0;
2035                        to = PAGE_CACHE_SIZE;
2036                }
2037
2038                if (page_has_buffers(tmppage)) {
2039                        if (ocfs2_should_order_data(inode))
2040                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
2041                        block_commit_write(tmppage, from, to);
2042                }
2043        }
2044
2045out_write_size:
2046        pos += copied;
2047        if (pos > i_size_read(inode)) {
2048                i_size_write(inode, pos);
2049                mark_inode_dirty(inode);
2050        }
2051        inode->i_blocks = ocfs2_inode_sector_count(inode);
2052        di->i_size = cpu_to_le64((u64)i_size_read(inode));
2053        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2054        di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2055        di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2056        ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058        ocfs2_commit_trans(osb, handle);
2059
2060        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
2062        ocfs2_free_write_ctxt(wc);
2063
2064        return copied;
2065}
2066
2067static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2068                           loff_t pos, unsigned len, unsigned copied,
2069                           struct page *page, void *fsdata)
2070{
2071        int ret;
2072        struct inode *inode = mapping->host;
2073
2074        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2075
2076        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2077        ocfs2_inode_unlock(inode, 1);
2078
2079        return ret;
2080}
2081
2082const struct address_space_operations ocfs2_aops = {
2083        .readpage               = ocfs2_readpage,
2084        .readpages              = ocfs2_readpages,
2085        .writepage              = ocfs2_writepage,
2086        .write_begin            = ocfs2_write_begin,
2087        .write_end              = ocfs2_write_end,
2088        .bmap                   = ocfs2_bmap,
2089        .direct_IO              = ocfs2_direct_IO,
2090        .invalidatepage         = ocfs2_invalidatepage,
2091        .releasepage            = ocfs2_releasepage,
2092        .migratepage            = buffer_migrate_page,
2093        .is_partially_uptodate  = block_is_partially_uptodate,
2094        .error_remove_page      = generic_error_remove_page,
2095};
2096