linux/fs/xfs/xfs_aops.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_log.h"
  20#include "xfs_sb.h"
  21#include "xfs_ag.h"
  22#include "xfs_trans.h"
  23#include "xfs_mount.h"
  24#include "xfs_bmap_btree.h"
  25#include "xfs_dinode.h"
  26#include "xfs_inode.h"
  27#include "xfs_inode_item.h"
  28#include "xfs_alloc.h"
  29#include "xfs_error.h"
  30#include "xfs_iomap.h"
  31#include "xfs_trace.h"
  32#include "xfs_bmap.h"
  33#include "xfs_bmap_util.h"
  34#include <linux/aio.h>
  35#include <linux/gfp.h>
  36#include <linux/mpage.h>
  37#include <linux/pagevec.h>
  38#include <linux/writeback.h>
  39
  40void
  41xfs_count_page_state(
  42        struct page             *page,
  43        int                     *delalloc,
  44        int                     *unwritten)
  45{
  46        struct buffer_head      *bh, *head;
  47
  48        *delalloc = *unwritten = 0;
  49
  50        bh = head = page_buffers(page);
  51        do {
  52                if (buffer_unwritten(bh))
  53                        (*unwritten) = 1;
  54                else if (buffer_delay(bh))
  55                        (*delalloc) = 1;
  56        } while ((bh = bh->b_this_page) != head);
  57}
  58
  59STATIC struct block_device *
  60xfs_find_bdev_for_inode(
  61        struct inode            *inode)
  62{
  63        struct xfs_inode        *ip = XFS_I(inode);
  64        struct xfs_mount        *mp = ip->i_mount;
  65
  66        if (XFS_IS_REALTIME_INODE(ip))
  67                return mp->m_rtdev_targp->bt_bdev;
  68        else
  69                return mp->m_ddev_targp->bt_bdev;
  70}
  71
  72/*
  73 * We're now finished for good with this ioend structure.
  74 * Update the page state via the associated buffer_heads,
  75 * release holds on the inode and bio, and finally free
  76 * up memory.  Do not use the ioend after this.
  77 */
  78STATIC void
  79xfs_destroy_ioend(
  80        xfs_ioend_t             *ioend)
  81{
  82        struct buffer_head      *bh, *next;
  83
  84        for (bh = ioend->io_buffer_head; bh; bh = next) {
  85                next = bh->b_private;
  86                bh->b_end_io(bh, !ioend->io_error);
  87        }
  88
  89        mempool_free(ioend, xfs_ioend_pool);
  90}
  91
  92/*
  93 * Fast and loose check if this write could update the on-disk inode size.
  94 */
  95static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
  96{
  97        return ioend->io_offset + ioend->io_size >
  98                XFS_I(ioend->io_inode)->i_d.di_size;
  99}
 100
 101STATIC int
 102xfs_setfilesize_trans_alloc(
 103        struct xfs_ioend        *ioend)
 104{
 105        struct xfs_mount        *mp = XFS_I(ioend->io_inode)->i_mount;
 106        struct xfs_trans        *tp;
 107        int                     error;
 108
 109        tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 110
 111        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
 112        if (error) {
 113                xfs_trans_cancel(tp, 0);
 114                return error;
 115        }
 116
 117        ioend->io_append_trans = tp;
 118
 119        /*
 120         * We may pass freeze protection with a transaction.  So tell lockdep
 121         * we released it.
 122         */
 123        rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
 124                      1, _THIS_IP_);
 125        /*
 126         * We hand off the transaction to the completion thread now, so
 127         * clear the flag here.
 128         */
 129        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 130        return 0;
 131}
 132
 133/*
 134 * Update on-disk file size now that data has been written to disk.
 135 */
 136STATIC int
 137xfs_setfilesize(
 138        struct xfs_ioend        *ioend)
 139{
 140        struct xfs_inode        *ip = XFS_I(ioend->io_inode);
 141        struct xfs_trans        *tp = ioend->io_append_trans;
 142        xfs_fsize_t             isize;
 143
 144        /*
 145         * The transaction may have been allocated in the I/O submission thread,
 146         * thus we need to mark ourselves as beeing in a transaction manually.
 147         * Similarly for freeze protection.
 148         */
 149        current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 150        rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
 151                           0, 1, _THIS_IP_);
 152
 153        xfs_ilock(ip, XFS_ILOCK_EXCL);
 154        isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
 155        if (!isize) {
 156                xfs_iunlock(ip, XFS_ILOCK_EXCL);
 157                xfs_trans_cancel(tp, 0);
 158                return 0;
 159        }
 160
 161        trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
 162
 163        ip->i_d.di_size = isize;
 164        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 165        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 166
 167        return xfs_trans_commit(tp, 0);
 168}
 169
 170/*
 171 * Schedule IO completion handling on the final put of an ioend.
 172 *
 173 * If there is no work to do we might as well call it a day and free the
 174 * ioend right now.
 175 */
 176STATIC void
 177xfs_finish_ioend(
 178        struct xfs_ioend        *ioend)
 179{
 180        if (atomic_dec_and_test(&ioend->io_remaining)) {
 181                struct xfs_mount        *mp = XFS_I(ioend->io_inode)->i_mount;
 182
 183                if (ioend->io_type == XFS_IO_UNWRITTEN)
 184                        queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 185                else if (ioend->io_append_trans ||
 186                         (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
 187                        queue_work(mp->m_data_workqueue, &ioend->io_work);
 188                else
 189                        xfs_destroy_ioend(ioend);
 190        }
 191}
 192
 193/*
 194 * IO write completion.
 195 */
 196STATIC void
 197xfs_end_io(
 198        struct work_struct *work)
 199{
 200        xfs_ioend_t     *ioend = container_of(work, xfs_ioend_t, io_work);
 201        struct xfs_inode *ip = XFS_I(ioend->io_inode);
 202        int             error = 0;
 203
 204        if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 205                ioend->io_error = -EIO;
 206                goto done;
 207        }
 208        if (ioend->io_error)
 209                goto done;
 210
 211        /*
 212         * For unwritten extents we need to issue transactions to convert a
 213         * range to normal written extens after the data I/O has finished.
 214         */
 215        if (ioend->io_type == XFS_IO_UNWRITTEN) {
 216                error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 217                                                  ioend->io_size);
 218        } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
 219                /*
 220                 * For direct I/O we do not know if we need to allocate blocks
 221                 * or not so we can't preallocate an append transaction as that
 222                 * results in nested reservations and log space deadlocks. Hence
 223                 * allocate the transaction here. While this is sub-optimal and
 224                 * can block IO completion for some time, we're stuck with doing
 225                 * it this way until we can pass the ioend to the direct IO
 226                 * allocation callbacks and avoid nesting that way.
 227                 */
 228                error = xfs_setfilesize_trans_alloc(ioend);
 229                if (error)
 230                        goto done;
 231                error = xfs_setfilesize(ioend);
 232        } else if (ioend->io_append_trans) {
 233                error = xfs_setfilesize(ioend);
 234        } else {
 235                ASSERT(!xfs_ioend_is_append(ioend));
 236        }
 237
 238done:
 239        if (error)
 240                ioend->io_error = -error;
 241        xfs_destroy_ioend(ioend);
 242}
 243
 244/*
 245 * Call IO completion handling in caller context on the final put of an ioend.
 246 */
 247STATIC void
 248xfs_finish_ioend_sync(
 249        struct xfs_ioend        *ioend)
 250{
 251        if (atomic_dec_and_test(&ioend->io_remaining))
 252                xfs_end_io(&ioend->io_work);
 253}
 254
 255/*
 256 * Allocate and initialise an IO completion structure.
 257 * We need to track unwritten extent write completion here initially.
 258 * We'll need to extend this for updating the ondisk inode size later
 259 * (vs. incore size).
 260 */
 261STATIC xfs_ioend_t *
 262xfs_alloc_ioend(
 263        struct inode            *inode,
 264        unsigned int            type)
 265{
 266        xfs_ioend_t             *ioend;
 267
 268        ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 269
 270        /*
 271         * Set the count to 1 initially, which will prevent an I/O
 272         * completion callback from happening before we have started
 273         * all the I/O from calling the completion routine too early.
 274         */
 275        atomic_set(&ioend->io_remaining, 1);
 276        ioend->io_isdirect = 0;
 277        ioend->io_error = 0;
 278        ioend->io_list = NULL;
 279        ioend->io_type = type;
 280        ioend->io_inode = inode;
 281        ioend->io_buffer_head = NULL;
 282        ioend->io_buffer_tail = NULL;
 283        ioend->io_offset = 0;
 284        ioend->io_size = 0;
 285        ioend->io_append_trans = NULL;
 286
 287        INIT_WORK(&ioend->io_work, xfs_end_io);
 288        return ioend;
 289}
 290
 291STATIC int
 292xfs_map_blocks(
 293        struct inode            *inode,
 294        loff_t                  offset,
 295        struct xfs_bmbt_irec    *imap,
 296        int                     type,
 297        int                     nonblocking)
 298{
 299        struct xfs_inode        *ip = XFS_I(inode);
 300        struct xfs_mount        *mp = ip->i_mount;
 301        ssize_t                 count = 1 << inode->i_blkbits;
 302        xfs_fileoff_t           offset_fsb, end_fsb;
 303        int                     error = 0;
 304        int                     bmapi_flags = XFS_BMAPI_ENTIRE;
 305        int                     nimaps = 1;
 306
 307        if (XFS_FORCED_SHUTDOWN(mp))
 308                return -XFS_ERROR(EIO);
 309
 310        if (type == XFS_IO_UNWRITTEN)
 311                bmapi_flags |= XFS_BMAPI_IGSTATE;
 312
 313        if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
 314                if (nonblocking)
 315                        return -XFS_ERROR(EAGAIN);
 316                xfs_ilock(ip, XFS_ILOCK_SHARED);
 317        }
 318
 319        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 320               (ip->i_df.if_flags & XFS_IFEXTENTS));
 321        ASSERT(offset <= mp->m_super->s_maxbytes);
 322
 323        if (offset + count > mp->m_super->s_maxbytes)
 324                count = mp->m_super->s_maxbytes - offset;
 325        end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 326        offset_fsb = XFS_B_TO_FSBT(mp, offset);
 327        error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 328                                imap, &nimaps, bmapi_flags);
 329        xfs_iunlock(ip, XFS_ILOCK_SHARED);
 330
 331        if (error)
 332                return -XFS_ERROR(error);
 333
 334        if (type == XFS_IO_DELALLOC &&
 335            (!nimaps || isnullstartblock(imap->br_startblock))) {
 336                error = xfs_iomap_write_allocate(ip, offset, count, imap);
 337                if (!error)
 338                        trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 339                return -XFS_ERROR(error);
 340        }
 341
 342#ifdef DEBUG
 343        if (type == XFS_IO_UNWRITTEN) {
 344                ASSERT(nimaps);
 345                ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 346                ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 347        }
 348#endif
 349        if (nimaps)
 350                trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 351        return 0;
 352}
 353
 354STATIC int
 355xfs_imap_valid(
 356        struct inode            *inode,
 357        struct xfs_bmbt_irec    *imap,
 358        xfs_off_t               offset)
 359{
 360        offset >>= inode->i_blkbits;
 361
 362        return offset >= imap->br_startoff &&
 363                offset < imap->br_startoff + imap->br_blockcount;
 364}
 365
 366/*
 367 * BIO completion handler for buffered IO.
 368 */
 369STATIC void
 370xfs_end_bio(
 371        struct bio              *bio,
 372        int                     error)
 373{
 374        xfs_ioend_t             *ioend = bio->bi_private;
 375
 376        ASSERT(atomic_read(&bio->bi_cnt) >= 1);
 377        ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
 378
 379        /* Toss bio and pass work off to an xfsdatad thread */
 380        bio->bi_private = NULL;
 381        bio->bi_end_io = NULL;
 382        bio_put(bio);
 383
 384        xfs_finish_ioend(ioend);
 385}
 386
 387STATIC void
 388xfs_submit_ioend_bio(
 389        struct writeback_control *wbc,
 390        xfs_ioend_t             *ioend,
 391        struct bio              *bio)
 392{
 393        atomic_inc(&ioend->io_remaining);
 394        bio->bi_private = ioend;
 395        bio->bi_end_io = xfs_end_bio;
 396        submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 397}
 398
 399STATIC struct bio *
 400xfs_alloc_ioend_bio(
 401        struct buffer_head      *bh)
 402{
 403        int                     nvecs = bio_get_nr_vecs(bh->b_bdev);
 404        struct bio              *bio = bio_alloc(GFP_NOIO, nvecs);
 405
 406        ASSERT(bio->bi_private == NULL);
 407        bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 408        bio->bi_bdev = bh->b_bdev;
 409        return bio;
 410}
 411
 412STATIC void
 413xfs_start_buffer_writeback(
 414        struct buffer_head      *bh)
 415{
 416        ASSERT(buffer_mapped(bh));
 417        ASSERT(buffer_locked(bh));
 418        ASSERT(!buffer_delay(bh));
 419        ASSERT(!buffer_unwritten(bh));
 420
 421        mark_buffer_async_write(bh);
 422        set_buffer_uptodate(bh);
 423        clear_buffer_dirty(bh);
 424}
 425
 426STATIC void
 427xfs_start_page_writeback(
 428        struct page             *page,
 429        int                     clear_dirty,
 430        int                     buffers)
 431{
 432        ASSERT(PageLocked(page));
 433        ASSERT(!PageWriteback(page));
 434        if (clear_dirty)
 435                clear_page_dirty_for_io(page);
 436        set_page_writeback(page);
 437        unlock_page(page);
 438        /* If no buffers on the page are to be written, finish it here */
 439        if (!buffers)
 440                end_page_writeback(page);
 441}
 442
 443static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 444{
 445        return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 446}
 447
 448/*
 449 * Submit all of the bios for all of the ioends we have saved up, covering the
 450 * initial writepage page and also any probed pages.
 451 *
 452 * Because we may have multiple ioends spanning a page, we need to start
 453 * writeback on all the buffers before we submit them for I/O. If we mark the
 454 * buffers as we got, then we can end up with a page that only has buffers
 455 * marked async write and I/O complete on can occur before we mark the other
 456 * buffers async write.
 457 *
 458 * The end result of this is that we trip a bug in end_page_writeback() because
 459 * we call it twice for the one page as the code in end_buffer_async_write()
 460 * assumes that all buffers on the page are started at the same time.
 461 *
 462 * The fix is two passes across the ioend list - one to start writeback on the
 463 * buffer_heads, and then submit them for I/O on the second pass.
 464 *
 465 * If @fail is non-zero, it means that we have a situation where some part of
 466 * the submission process has failed after we have marked paged for writeback
 467 * and unlocked them. In this situation, we need to fail the ioend chain rather
 468 * than submit it to IO. This typically only happens on a filesystem shutdown.
 469 */
 470STATIC void
 471xfs_submit_ioend(
 472        struct writeback_control *wbc,
 473        xfs_ioend_t             *ioend,
 474        int                     fail)
 475{
 476        xfs_ioend_t             *head = ioend;
 477        xfs_ioend_t             *next;
 478        struct buffer_head      *bh;
 479        struct bio              *bio;
 480        sector_t                lastblock = 0;
 481
 482        /* Pass 1 - start writeback */
 483        do {
 484                next = ioend->io_list;
 485                for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
 486                        xfs_start_buffer_writeback(bh);
 487        } while ((ioend = next) != NULL);
 488
 489        /* Pass 2 - submit I/O */
 490        ioend = head;
 491        do {
 492                next = ioend->io_list;
 493                bio = NULL;
 494
 495                /*
 496                 * If we are failing the IO now, just mark the ioend with an
 497                 * error and finish it. This will run IO completion immediately
 498                 * as there is only one reference to the ioend at this point in
 499                 * time.
 500                 */
 501                if (fail) {
 502                        ioend->io_error = -fail;
 503                        xfs_finish_ioend(ioend);
 504                        continue;
 505                }
 506
 507                for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 508
 509                        if (!bio) {
 510 retry:
 511                                bio = xfs_alloc_ioend_bio(bh);
 512                        } else if (bh->b_blocknr != lastblock + 1) {
 513                                xfs_submit_ioend_bio(wbc, ioend, bio);
 514                                goto retry;
 515                        }
 516
 517                        if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
 518                                xfs_submit_ioend_bio(wbc, ioend, bio);
 519                                goto retry;
 520                        }
 521
 522                        lastblock = bh->b_blocknr;
 523                }
 524                if (bio)
 525                        xfs_submit_ioend_bio(wbc, ioend, bio);
 526                xfs_finish_ioend(ioend);
 527        } while ((ioend = next) != NULL);
 528}
 529
 530/*
 531 * Cancel submission of all buffer_heads so far in this endio.
 532 * Toss the endio too.  Only ever called for the initial page
 533 * in a writepage request, so only ever one page.
 534 */
 535STATIC void
 536xfs_cancel_ioend(
 537        xfs_ioend_t             *ioend)
 538{
 539        xfs_ioend_t             *next;
 540        struct buffer_head      *bh, *next_bh;
 541
 542        do {
 543                next = ioend->io_list;
 544                bh = ioend->io_buffer_head;
 545                do {
 546                        next_bh = bh->b_private;
 547                        clear_buffer_async_write(bh);
 548                        unlock_buffer(bh);
 549                } while ((bh = next_bh) != NULL);
 550
 551                mempool_free(ioend, xfs_ioend_pool);
 552        } while ((ioend = next) != NULL);
 553}
 554
 555/*
 556 * Test to see if we've been building up a completion structure for
 557 * earlier buffers -- if so, we try to append to this ioend if we
 558 * can, otherwise we finish off any current ioend and start another.
 559 * Return true if we've finished the given ioend.
 560 */
 561STATIC void
 562xfs_add_to_ioend(
 563        struct inode            *inode,
 564        struct buffer_head      *bh,
 565        xfs_off_t               offset,
 566        unsigned int            type,
 567        xfs_ioend_t             **result,
 568        int                     need_ioend)
 569{
 570        xfs_ioend_t             *ioend = *result;
 571
 572        if (!ioend || need_ioend || type != ioend->io_type) {
 573                xfs_ioend_t     *previous = *result;
 574
 575                ioend = xfs_alloc_ioend(inode, type);
 576                ioend->io_offset = offset;
 577                ioend->io_buffer_head = bh;
 578                ioend->io_buffer_tail = bh;
 579                if (previous)
 580                        previous->io_list = ioend;
 581                *result = ioend;
 582        } else {
 583                ioend->io_buffer_tail->b_private = bh;
 584                ioend->io_buffer_tail = bh;
 585        }
 586
 587        bh->b_private = NULL;
 588        ioend->io_size += bh->b_size;
 589}
 590
 591STATIC void
 592xfs_map_buffer(
 593        struct inode            *inode,
 594        struct buffer_head      *bh,
 595        struct xfs_bmbt_irec    *imap,
 596        xfs_off_t               offset)
 597{
 598        sector_t                bn;
 599        struct xfs_mount        *m = XFS_I(inode)->i_mount;
 600        xfs_off_t               iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 601        xfs_daddr_t             iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 602
 603        ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 604        ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 605
 606        bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 607              ((offset - iomap_offset) >> inode->i_blkbits);
 608
 609        ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 610
 611        bh->b_blocknr = bn;
 612        set_buffer_mapped(bh);
 613}
 614
 615STATIC void
 616xfs_map_at_offset(
 617        struct inode            *inode,
 618        struct buffer_head      *bh,
 619        struct xfs_bmbt_irec    *imap,
 620        xfs_off_t               offset)
 621{
 622        ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 623        ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 624
 625        xfs_map_buffer(inode, bh, imap, offset);
 626        set_buffer_mapped(bh);
 627        clear_buffer_delay(bh);
 628        clear_buffer_unwritten(bh);
 629}
 630
 631/*
 632 * Test if a given page is suitable for writing as part of an unwritten
 633 * or delayed allocate extent.
 634 */
 635STATIC int
 636xfs_check_page_type(
 637        struct page             *page,
 638        unsigned int            type)
 639{
 640        if (PageWriteback(page))
 641                return 0;
 642
 643        if (page->mapping && page_has_buffers(page)) {
 644                struct buffer_head      *bh, *head;
 645                int                     acceptable = 0;
 646
 647                bh = head = page_buffers(page);
 648                do {
 649                        if (buffer_unwritten(bh))
 650                                acceptable += (type == XFS_IO_UNWRITTEN);
 651                        else if (buffer_delay(bh))
 652                                acceptable += (type == XFS_IO_DELALLOC);
 653                        else if (buffer_dirty(bh) && buffer_mapped(bh))
 654                                acceptable += (type == XFS_IO_OVERWRITE);
 655                        else
 656                                break;
 657                } while ((bh = bh->b_this_page) != head);
 658
 659                if (acceptable)
 660                        return 1;
 661        }
 662
 663        return 0;
 664}
 665
 666/*
 667 * Allocate & map buffers for page given the extent map. Write it out.
 668 * except for the original page of a writepage, this is called on
 669 * delalloc/unwritten pages only, for the original page it is possible
 670 * that the page has no mapping at all.
 671 */
 672STATIC int
 673xfs_convert_page(
 674        struct inode            *inode,
 675        struct page             *page,
 676        loff_t                  tindex,
 677        struct xfs_bmbt_irec    *imap,
 678        xfs_ioend_t             **ioendp,
 679        struct writeback_control *wbc)
 680{
 681        struct buffer_head      *bh, *head;
 682        xfs_off_t               end_offset;
 683        unsigned long           p_offset;
 684        unsigned int            type;
 685        int                     len, page_dirty;
 686        int                     count = 0, done = 0, uptodate = 1;
 687        xfs_off_t               offset = page_offset(page);
 688
 689        if (page->index != tindex)
 690                goto fail;
 691        if (!trylock_page(page))
 692                goto fail;
 693        if (PageWriteback(page))
 694                goto fail_unlock_page;
 695        if (page->mapping != inode->i_mapping)
 696                goto fail_unlock_page;
 697        if (!xfs_check_page_type(page, (*ioendp)->io_type))
 698                goto fail_unlock_page;
 699
 700        /*
 701         * page_dirty is initially a count of buffers on the page before
 702         * EOF and is decremented as we move each into a cleanable state.
 703         *
 704         * Derivation:
 705         *
 706         * End offset is the highest offset that this page should represent.
 707         * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 708         * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 709         * hence give us the correct page_dirty count. On any other page,
 710         * it will be zero and in that case we need page_dirty to be the
 711         * count of buffers on the page.
 712         */
 713        end_offset = min_t(unsigned long long,
 714                        (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 715                        i_size_read(inode));
 716
 717        /*
 718         * If the current map does not span the entire page we are about to try
 719         * to write, then give up. The only way we can write a page that spans
 720         * multiple mappings in a single writeback iteration is via the
 721         * xfs_vm_writepage() function. Data integrity writeback requires the
 722         * entire page to be written in a single attempt, otherwise the part of
 723         * the page we don't write here doesn't get written as part of the data
 724         * integrity sync.
 725         *
 726         * For normal writeback, we also don't attempt to write partial pages
 727         * here as it simply means that write_cache_pages() will see it under
 728         * writeback and ignore the page until some point in the future, at
 729         * which time this will be the only page in the file that needs
 730         * writeback.  Hence for more optimal IO patterns, we should always
 731         * avoid partial page writeback due to multiple mappings on a page here.
 732         */
 733        if (!xfs_imap_valid(inode, imap, end_offset))
 734                goto fail_unlock_page;
 735
 736        len = 1 << inode->i_blkbits;
 737        p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 738                                        PAGE_CACHE_SIZE);
 739        p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 740        page_dirty = p_offset / len;
 741
 742        bh = head = page_buffers(page);
 743        do {
 744                if (offset >= end_offset)
 745                        break;
 746                if (!buffer_uptodate(bh))
 747                        uptodate = 0;
 748                if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 749                        done = 1;
 750                        continue;
 751                }
 752
 753                if (buffer_unwritten(bh) || buffer_delay(bh) ||
 754                    buffer_mapped(bh)) {
 755                        if (buffer_unwritten(bh))
 756                                type = XFS_IO_UNWRITTEN;
 757                        else if (buffer_delay(bh))
 758                                type = XFS_IO_DELALLOC;
 759                        else
 760                                type = XFS_IO_OVERWRITE;
 761
 762                        if (!xfs_imap_valid(inode, imap, offset)) {
 763                                done = 1;
 764                                continue;
 765                        }
 766
 767                        lock_buffer(bh);
 768                        if (type != XFS_IO_OVERWRITE)
 769                                xfs_map_at_offset(inode, bh, imap, offset);
 770                        xfs_add_to_ioend(inode, bh, offset, type,
 771                                         ioendp, done);
 772
 773                        page_dirty--;
 774                        count++;
 775                } else {
 776                        done = 1;
 777                }
 778        } while (offset += len, (bh = bh->b_this_page) != head);
 779
 780        if (uptodate && bh == head)
 781                SetPageUptodate(page);
 782
 783        if (count) {
 784                if (--wbc->nr_to_write <= 0 &&
 785                    wbc->sync_mode == WB_SYNC_NONE)
 786                        done = 1;
 787        }
 788        xfs_start_page_writeback(page, !page_dirty, count);
 789
 790        return done;
 791 fail_unlock_page:
 792        unlock_page(page);
 793 fail:
 794        return 1;
 795}
 796
 797/*
 798 * Convert & write out a cluster of pages in the same extent as defined
 799 * by mp and following the start page.
 800 */
 801STATIC void
 802xfs_cluster_write(
 803        struct inode            *inode,
 804        pgoff_t                 tindex,
 805        struct xfs_bmbt_irec    *imap,
 806        xfs_ioend_t             **ioendp,
 807        struct writeback_control *wbc,
 808        pgoff_t                 tlast)
 809{
 810        struct pagevec          pvec;
 811        int                     done = 0, i;
 812
 813        pagevec_init(&pvec, 0);
 814        while (!done && tindex <= tlast) {
 815                unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 816
 817                if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 818                        break;
 819
 820                for (i = 0; i < pagevec_count(&pvec); i++) {
 821                        done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 822                                        imap, ioendp, wbc);
 823                        if (done)
 824                                break;
 825                }
 826
 827                pagevec_release(&pvec);
 828                cond_resched();
 829        }
 830}
 831
 832STATIC void
 833xfs_vm_invalidatepage(
 834        struct page             *page,
 835        unsigned int            offset,
 836        unsigned int            length)
 837{
 838        trace_xfs_invalidatepage(page->mapping->host, page, offset,
 839                                 length);
 840        block_invalidatepage(page, offset, length);
 841}
 842
 843/*
 844 * If the page has delalloc buffers on it, we need to punch them out before we
 845 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 846 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 847 * is done on that same region - the delalloc extent is returned when none is
 848 * supposed to be there.
 849 *
 850 * We prevent this by truncating away the delalloc regions on the page before
 851 * invalidating it. Because they are delalloc, we can do this without needing a
 852 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 853 * truncation without a transaction as there is no space left for block
 854 * reservation (typically why we see a ENOSPC in writeback).
 855 *
 856 * This is not a performance critical path, so for now just do the punching a
 857 * buffer head at a time.
 858 */
 859STATIC void
 860xfs_aops_discard_page(
 861        struct page             *page)
 862{
 863        struct inode            *inode = page->mapping->host;
 864        struct xfs_inode        *ip = XFS_I(inode);
 865        struct buffer_head      *bh, *head;
 866        loff_t                  offset = page_offset(page);
 867
 868        if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
 869                goto out_invalidate;
 870
 871        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 872                goto out_invalidate;
 873
 874        xfs_alert(ip->i_mount,
 875                "page discard on page %p, inode 0x%llx, offset %llu.",
 876                        page, ip->i_ino, offset);
 877
 878        xfs_ilock(ip, XFS_ILOCK_EXCL);
 879        bh = head = page_buffers(page);
 880        do {
 881                int             error;
 882                xfs_fileoff_t   start_fsb;
 883
 884                if (!buffer_delay(bh))
 885                        goto next_buffer;
 886
 887                start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 888                error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 889                if (error) {
 890                        /* something screwed, just bail */
 891                        if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 892                                xfs_alert(ip->i_mount,
 893                        "page discard unable to remove delalloc mapping.");
 894                        }
 895                        break;
 896                }
 897next_buffer:
 898                offset += 1 << inode->i_blkbits;
 899
 900        } while ((bh = bh->b_this_page) != head);
 901
 902        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 903out_invalidate:
 904        xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
 905        return;
 906}
 907
 908/*
 909 * Write out a dirty page.
 910 *
 911 * For delalloc space on the page we need to allocate space and flush it.
 912 * For unwritten space on the page we need to start the conversion to
 913 * regular allocated space.
 914 * For any other dirty buffer heads on the page we should flush them.
 915 */
 916STATIC int
 917xfs_vm_writepage(
 918        struct page             *page,
 919        struct writeback_control *wbc)
 920{
 921        struct inode            *inode = page->mapping->host;
 922        struct buffer_head      *bh, *head;
 923        struct xfs_bmbt_irec    imap;
 924        xfs_ioend_t             *ioend = NULL, *iohead = NULL;
 925        loff_t                  offset;
 926        unsigned int            type;
 927        __uint64_t              end_offset;
 928        pgoff_t                 end_index, last_index;
 929        ssize_t                 len;
 930        int                     err, imap_valid = 0, uptodate = 1;
 931        int                     count = 0;
 932        int                     nonblocking = 0;
 933
 934        trace_xfs_writepage(inode, page, 0, 0);
 935
 936        ASSERT(page_has_buffers(page));
 937
 938        /*
 939         * Refuse to write the page out if we are called from reclaim context.
 940         *
 941         * This avoids stack overflows when called from deeply used stacks in
 942         * random callers for direct reclaim or memcg reclaim.  We explicitly
 943         * allow reclaim from kswapd as the stack usage there is relatively low.
 944         *
 945         * This should never happen except in the case of a VM regression so
 946         * warn about it.
 947         */
 948        if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
 949                        PF_MEMALLOC))
 950                goto redirty;
 951
 952        /*
 953         * Given that we do not allow direct reclaim to call us, we should
 954         * never be called while in a filesystem transaction.
 955         */
 956        if (WARN_ON(current->flags & PF_FSTRANS))
 957                goto redirty;
 958
 959        /* Is this page beyond the end of the file? */
 960        offset = i_size_read(inode);
 961        end_index = offset >> PAGE_CACHE_SHIFT;
 962        last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 963        if (page->index >= end_index) {
 964                unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
 965
 966                /*
 967                 * Skip the page if it is fully outside i_size, e.g. due to a
 968                 * truncate operation that is in progress. We must redirty the
 969                 * page so that reclaim stops reclaiming it. Otherwise
 970                 * xfs_vm_releasepage() is called on it and gets confused.
 971                 */
 972                if (page->index >= end_index + 1 || offset_into_page == 0)
 973                        goto redirty;
 974
 975                /*
 976                 * The page straddles i_size.  It must be zeroed out on each
 977                 * and every writepage invocation because it may be mmapped.
 978                 * "A file is mapped in multiples of the page size.  For a file
 979                 * that is not a multiple of the  page size, the remaining
 980                 * memory is zeroed when mapped, and writes to that region are
 981                 * not written out to the file."
 982                 */
 983                zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
 984        }
 985
 986        end_offset = min_t(unsigned long long,
 987                        (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 988                        offset);
 989        len = 1 << inode->i_blkbits;
 990
 991        bh = head = page_buffers(page);
 992        offset = page_offset(page);
 993        type = XFS_IO_OVERWRITE;
 994
 995        if (wbc->sync_mode == WB_SYNC_NONE)
 996                nonblocking = 1;
 997
 998        do {
 999                int new_ioend = 0;
1000
1001                if (offset >= end_offset)
1002                        break;
1003                if (!buffer_uptodate(bh))
1004                        uptodate = 0;
1005
1006                /*
1007                 * set_page_dirty dirties all buffers in a page, independent
1008                 * of their state.  The dirty state however is entirely
1009                 * meaningless for holes (!mapped && uptodate), so skip
1010                 * buffers covering holes here.
1011                 */
1012                if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1013                        imap_valid = 0;
1014                        continue;
1015                }
1016
1017                if (buffer_unwritten(bh)) {
1018                        if (type != XFS_IO_UNWRITTEN) {
1019                                type = XFS_IO_UNWRITTEN;
1020                                imap_valid = 0;
1021                        }
1022                } else if (buffer_delay(bh)) {
1023                        if (type != XFS_IO_DELALLOC) {
1024                                type = XFS_IO_DELALLOC;
1025                                imap_valid = 0;
1026                        }
1027                } else if (buffer_uptodate(bh)) {
1028                        if (type != XFS_IO_OVERWRITE) {
1029                                type = XFS_IO_OVERWRITE;
1030                                imap_valid = 0;
1031                        }
1032                } else {
1033                        if (PageUptodate(page))
1034                                ASSERT(buffer_mapped(bh));
1035                        /*
1036                         * This buffer is not uptodate and will not be
1037                         * written to disk.  Ensure that we will put any
1038                         * subsequent writeable buffers into a new
1039                         * ioend.
1040                         */
1041                        imap_valid = 0;
1042                        continue;
1043                }
1044
1045                if (imap_valid)
1046                        imap_valid = xfs_imap_valid(inode, &imap, offset);
1047                if (!imap_valid) {
1048                        /*
1049                         * If we didn't have a valid mapping then we need to
1050                         * put the new mapping into a separate ioend structure.
1051                         * This ensures non-contiguous extents always have
1052                         * separate ioends, which is particularly important
1053                         * for unwritten extent conversion at I/O completion
1054                         * time.
1055                         */
1056                        new_ioend = 1;
1057                        err = xfs_map_blocks(inode, offset, &imap, type,
1058                                             nonblocking);
1059                        if (err)
1060                                goto error;
1061                        imap_valid = xfs_imap_valid(inode, &imap, offset);
1062                }
1063                if (imap_valid) {
1064                        lock_buffer(bh);
1065                        if (type != XFS_IO_OVERWRITE)
1066                                xfs_map_at_offset(inode, bh, &imap, offset);
1067                        xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1068                                         new_ioend);
1069                        count++;
1070                }
1071
1072                if (!iohead)
1073                        iohead = ioend;
1074
1075        } while (offset += len, ((bh = bh->b_this_page) != head));
1076
1077        if (uptodate && bh == head)
1078                SetPageUptodate(page);
1079
1080        xfs_start_page_writeback(page, 1, count);
1081
1082        /* if there is no IO to be submitted for this page, we are done */
1083        if (!ioend)
1084                return 0;
1085
1086        ASSERT(iohead);
1087
1088        /*
1089         * Any errors from this point onwards need tobe reported through the IO
1090         * completion path as we have marked the initial page as under writeback
1091         * and unlocked it.
1092         */
1093        if (imap_valid) {
1094                xfs_off_t               end_index;
1095
1096                end_index = imap.br_startoff + imap.br_blockcount;
1097
1098                /* to bytes */
1099                end_index <<= inode->i_blkbits;
1100
1101                /* to pages */
1102                end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1103
1104                /* check against file size */
1105                if (end_index > last_index)
1106                        end_index = last_index;
1107
1108                xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1109                                  wbc, end_index);
1110        }
1111
1112
1113        /*
1114         * Reserve log space if we might write beyond the on-disk inode size.
1115         */
1116        err = 0;
1117        if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1118                err = xfs_setfilesize_trans_alloc(ioend);
1119
1120        xfs_submit_ioend(wbc, iohead, err);
1121
1122        return 0;
1123
1124error:
1125        if (iohead)
1126                xfs_cancel_ioend(iohead);
1127
1128        if (err == -EAGAIN)
1129                goto redirty;
1130
1131        xfs_aops_discard_page(page);
1132        ClearPageUptodate(page);
1133        unlock_page(page);
1134        return err;
1135
1136redirty:
1137        redirty_page_for_writepage(wbc, page);
1138        unlock_page(page);
1139        return 0;
1140}
1141
1142STATIC int
1143xfs_vm_writepages(
1144        struct address_space    *mapping,
1145        struct writeback_control *wbc)
1146{
1147        xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1148        return generic_writepages(mapping, wbc);
1149}
1150
1151/*
1152 * Called to move a page into cleanable state - and from there
1153 * to be released. The page should already be clean. We always
1154 * have buffer heads in this call.
1155 *
1156 * Returns 1 if the page is ok to release, 0 otherwise.
1157 */
1158STATIC int
1159xfs_vm_releasepage(
1160        struct page             *page,
1161        gfp_t                   gfp_mask)
1162{
1163        int                     delalloc, unwritten;
1164
1165        trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1166
1167        xfs_count_page_state(page, &delalloc, &unwritten);
1168
1169        if (WARN_ON(delalloc))
1170                return 0;
1171        if (WARN_ON(unwritten))
1172                return 0;
1173
1174        return try_to_free_buffers(page);
1175}
1176
1177STATIC int
1178__xfs_get_blocks(
1179        struct inode            *inode,
1180        sector_t                iblock,
1181        struct buffer_head      *bh_result,
1182        int                     create,
1183        int                     direct)
1184{
1185        struct xfs_inode        *ip = XFS_I(inode);
1186        struct xfs_mount        *mp = ip->i_mount;
1187        xfs_fileoff_t           offset_fsb, end_fsb;
1188        int                     error = 0;
1189        int                     lockmode = 0;
1190        struct xfs_bmbt_irec    imap;
1191        int                     nimaps = 1;
1192        xfs_off_t               offset;
1193        ssize_t                 size;
1194        int                     new = 0;
1195
1196        if (XFS_FORCED_SHUTDOWN(mp))
1197                return -XFS_ERROR(EIO);
1198
1199        offset = (xfs_off_t)iblock << inode->i_blkbits;
1200        ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1201        size = bh_result->b_size;
1202
1203        if (!create && direct && offset >= i_size_read(inode))
1204                return 0;
1205
1206        /*
1207         * Direct I/O is usually done on preallocated files, so try getting
1208         * a block mapping without an exclusive lock first.  For buffered
1209         * writes we already have the exclusive iolock anyway, so avoiding
1210         * a lock roundtrip here by taking the ilock exclusive from the
1211         * beginning is a useful micro optimization.
1212         */
1213        if (create && !direct) {
1214                lockmode = XFS_ILOCK_EXCL;
1215                xfs_ilock(ip, lockmode);
1216        } else {
1217                lockmode = xfs_ilock_map_shared(ip);
1218        }
1219
1220        ASSERT(offset <= mp->m_super->s_maxbytes);
1221        if (offset + size > mp->m_super->s_maxbytes)
1222                size = mp->m_super->s_maxbytes - offset;
1223        end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1224        offset_fsb = XFS_B_TO_FSBT(mp, offset);
1225
1226        error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1227                                &imap, &nimaps, XFS_BMAPI_ENTIRE);
1228        if (error)
1229                goto out_unlock;
1230
1231        if (create &&
1232            (!nimaps ||
1233             (imap.br_startblock == HOLESTARTBLOCK ||
1234              imap.br_startblock == DELAYSTARTBLOCK))) {
1235                if (direct || xfs_get_extsz_hint(ip)) {
1236                        /*
1237                         * Drop the ilock in preparation for starting the block
1238                         * allocation transaction.  It will be retaken
1239                         * exclusively inside xfs_iomap_write_direct for the
1240                         * actual allocation.
1241                         */
1242                        xfs_iunlock(ip, lockmode);
1243                        error = xfs_iomap_write_direct(ip, offset, size,
1244                                                       &imap, nimaps);
1245                        if (error)
1246                                return -error;
1247                        new = 1;
1248                } else {
1249                        /*
1250                         * Delalloc reservations do not require a transaction,
1251                         * we can go on without dropping the lock here. If we
1252                         * are allocating a new delalloc block, make sure that
1253                         * we set the new flag so that we mark the buffer new so
1254                         * that we know that it is newly allocated if the write
1255                         * fails.
1256                         */
1257                        if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1258                                new = 1;
1259                        error = xfs_iomap_write_delay(ip, offset, size, &imap);
1260                        if (error)
1261                                goto out_unlock;
1262
1263                        xfs_iunlock(ip, lockmode);
1264                }
1265
1266                trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1267        } else if (nimaps) {
1268                trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1269                xfs_iunlock(ip, lockmode);
1270        } else {
1271                trace_xfs_get_blocks_notfound(ip, offset, size);
1272                goto out_unlock;
1273        }
1274
1275        if (imap.br_startblock != HOLESTARTBLOCK &&
1276            imap.br_startblock != DELAYSTARTBLOCK) {
1277                /*
1278                 * For unwritten extents do not report a disk address on
1279                 * the read case (treat as if we're reading into a hole).
1280                 */
1281                if (create || !ISUNWRITTEN(&imap))
1282                        xfs_map_buffer(inode, bh_result, &imap, offset);
1283                if (create && ISUNWRITTEN(&imap)) {
1284                        if (direct) {
1285                                bh_result->b_private = inode;
1286                                set_buffer_defer_completion(bh_result);
1287                        }
1288                        set_buffer_unwritten(bh_result);
1289                }
1290        }
1291
1292        /*
1293         * If this is a realtime file, data may be on a different device.
1294         * to that pointed to from the buffer_head b_bdev currently.
1295         */
1296        bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1297
1298        /*
1299         * If we previously allocated a block out beyond eof and we are now
1300         * coming back to use it then we will need to flag it as new even if it
1301         * has a disk address.
1302         *
1303         * With sub-block writes into unwritten extents we also need to mark
1304         * the buffer as new so that the unwritten parts of the buffer gets
1305         * correctly zeroed.
1306         */
1307        if (create &&
1308            ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1309             (offset >= i_size_read(inode)) ||
1310             (new || ISUNWRITTEN(&imap))))
1311                set_buffer_new(bh_result);
1312
1313        if (imap.br_startblock == DELAYSTARTBLOCK) {
1314                BUG_ON(direct);
1315                if (create) {
1316                        set_buffer_uptodate(bh_result);
1317                        set_buffer_mapped(bh_result);
1318                        set_buffer_delay(bh_result);
1319                }
1320        }
1321
1322        /*
1323         * If this is O_DIRECT or the mpage code calling tell them how large
1324         * the mapping is, so that we can avoid repeated get_blocks calls.
1325         */
1326        if (direct || size > (1 << inode->i_blkbits)) {
1327                xfs_off_t               mapping_size;
1328
1329                mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1330                mapping_size <<= inode->i_blkbits;
1331
1332                ASSERT(mapping_size > 0);
1333                if (mapping_size > size)
1334                        mapping_size = size;
1335                if (mapping_size > LONG_MAX)
1336                        mapping_size = LONG_MAX;
1337
1338                bh_result->b_size = mapping_size;
1339        }
1340
1341        return 0;
1342
1343out_unlock:
1344        xfs_iunlock(ip, lockmode);
1345        return -error;
1346}
1347
1348int
1349xfs_get_blocks(
1350        struct inode            *inode,
1351        sector_t                iblock,
1352        struct buffer_head      *bh_result,
1353        int                     create)
1354{
1355        return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1356}
1357
1358STATIC int
1359xfs_get_blocks_direct(
1360        struct inode            *inode,
1361        sector_t                iblock,
1362        struct buffer_head      *bh_result,
1363        int                     create)
1364{
1365        return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1366}
1367
1368/*
1369 * Complete a direct I/O write request.
1370 *
1371 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1372 * need to issue a transaction to convert the range from unwritten to written
1373 * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1374 * to do this and we are done.  But in case this was a successful AIO
1375 * request this handler is called from interrupt context, from which we
1376 * can't start transactions.  In that case offload the I/O completion to
1377 * the workqueues we also use for buffered I/O completion.
1378 */
1379STATIC void
1380xfs_end_io_direct_write(
1381        struct kiocb            *iocb,
1382        loff_t                  offset,
1383        ssize_t                 size,
1384        void                    *private)
1385{
1386        struct xfs_ioend        *ioend = iocb->private;
1387
1388        /*
1389         * While the generic direct I/O code updates the inode size, it does
1390         * so only after the end_io handler is called, which means our
1391         * end_io handler thinks the on-disk size is outside the in-core
1392         * size.  To prevent this just update it a little bit earlier here.
1393         */
1394        if (offset + size > i_size_read(ioend->io_inode))
1395                i_size_write(ioend->io_inode, offset + size);
1396
1397        /*
1398         * blockdev_direct_IO can return an error even after the I/O
1399         * completion handler was called.  Thus we need to protect
1400         * against double-freeing.
1401         */
1402        iocb->private = NULL;
1403
1404        ioend->io_offset = offset;
1405        ioend->io_size = size;
1406        if (private && size > 0)
1407                ioend->io_type = XFS_IO_UNWRITTEN;
1408
1409        xfs_finish_ioend_sync(ioend);
1410}
1411
1412STATIC ssize_t
1413xfs_vm_direct_IO(
1414        int                     rw,
1415        struct kiocb            *iocb,
1416        const struct iovec      *iov,
1417        loff_t                  offset,
1418        unsigned long           nr_segs)
1419{
1420        struct inode            *inode = iocb->ki_filp->f_mapping->host;
1421        struct block_device     *bdev = xfs_find_bdev_for_inode(inode);
1422        struct xfs_ioend        *ioend = NULL;
1423        ssize_t                 ret;
1424
1425        if (rw & WRITE) {
1426                size_t size = iov_length(iov, nr_segs);
1427
1428                /*
1429                 * We cannot preallocate a size update transaction here as we
1430                 * don't know whether allocation is necessary or not. Hence we
1431                 * can only tell IO completion that one is necessary if we are
1432                 * not doing unwritten extent conversion.
1433                 */
1434                iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1435                if (offset + size > XFS_I(inode)->i_d.di_size)
1436                        ioend->io_isdirect = 1;
1437
1438                ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1439                                            offset, nr_segs,
1440                                            xfs_get_blocks_direct,
1441                                            xfs_end_io_direct_write, NULL, 0);
1442                if (ret != -EIOCBQUEUED && iocb->private)
1443                        goto out_destroy_ioend;
1444        } else {
1445                ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1446                                            offset, nr_segs,
1447                                            xfs_get_blocks_direct,
1448                                            NULL, NULL, 0);
1449        }
1450
1451        return ret;
1452
1453out_destroy_ioend:
1454        xfs_destroy_ioend(ioend);
1455        return ret;
1456}
1457
1458/*
1459 * Punch out the delalloc blocks we have already allocated.
1460 *
1461 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1462 * as the page is still locked at this point.
1463 */
1464STATIC void
1465xfs_vm_kill_delalloc_range(
1466        struct inode            *inode,
1467        loff_t                  start,
1468        loff_t                  end)
1469{
1470        struct xfs_inode        *ip = XFS_I(inode);
1471        xfs_fileoff_t           start_fsb;
1472        xfs_fileoff_t           end_fsb;
1473        int                     error;
1474
1475        start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1476        end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1477        if (end_fsb <= start_fsb)
1478                return;
1479
1480        xfs_ilock(ip, XFS_ILOCK_EXCL);
1481        error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1482                                                end_fsb - start_fsb);
1483        if (error) {
1484                /* something screwed, just bail */
1485                if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1486                        xfs_alert(ip->i_mount,
1487                "xfs_vm_write_failed: unable to clean up ino %lld",
1488                                        ip->i_ino);
1489                }
1490        }
1491        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1492}
1493
1494STATIC void
1495xfs_vm_write_failed(
1496        struct inode            *inode,
1497        struct page             *page,
1498        loff_t                  pos,
1499        unsigned                len)
1500{
1501        loff_t                  block_offset;
1502        loff_t                  block_start;
1503        loff_t                  block_end;
1504        loff_t                  from = pos & (PAGE_CACHE_SIZE - 1);
1505        loff_t                  to = from + len;
1506        struct buffer_head      *bh, *head;
1507
1508        /*
1509         * The request pos offset might be 32 or 64 bit, this is all fine
1510         * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1511         * platform, the high 32-bit will be masked off if we evaluate the
1512         * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1513         * 0xfffff000 as an unsigned long, hence the result is incorrect
1514         * which could cause the following ASSERT failed in most cases.
1515         * In order to avoid this, we can evaluate the block_offset of the
1516         * start of the page by using shifts rather than masks the mismatch
1517         * problem.
1518         */
1519        block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1520
1521        ASSERT(block_offset + from == pos);
1522
1523        head = page_buffers(page);
1524        block_start = 0;
1525        for (bh = head; bh != head || !block_start;
1526             bh = bh->b_this_page, block_start = block_end,
1527                                   block_offset += bh->b_size) {
1528                block_end = block_start + bh->b_size;
1529
1530                /* skip buffers before the write */
1531                if (block_end <= from)
1532                        continue;
1533
1534                /* if the buffer is after the write, we're done */
1535                if (block_start >= to)
1536                        break;
1537
1538                if (!buffer_delay(bh))
1539                        continue;
1540
1541                if (!buffer_new(bh) && block_offset < i_size_read(inode))
1542                        continue;
1543
1544                xfs_vm_kill_delalloc_range(inode, block_offset,
1545                                           block_offset + bh->b_size);
1546        }
1547
1548}
1549
1550/*
1551 * This used to call block_write_begin(), but it unlocks and releases the page
1552 * on error, and we need that page to be able to punch stale delalloc blocks out
1553 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1554 * the appropriate point.
1555 */
1556STATIC int
1557xfs_vm_write_begin(
1558        struct file             *file,
1559        struct address_space    *mapping,
1560        loff_t                  pos,
1561        unsigned                len,
1562        unsigned                flags,
1563        struct page             **pagep,
1564        void                    **fsdata)
1565{
1566        pgoff_t                 index = pos >> PAGE_CACHE_SHIFT;
1567        struct page             *page;
1568        int                     status;
1569
1570        ASSERT(len <= PAGE_CACHE_SIZE);
1571
1572        page = grab_cache_page_write_begin(mapping, index,
1573                                           flags | AOP_FLAG_NOFS);
1574        if (!page)
1575                return -ENOMEM;
1576
1577        status = __block_write_begin(page, pos, len, xfs_get_blocks);
1578        if (unlikely(status)) {
1579                struct inode    *inode = mapping->host;
1580
1581                xfs_vm_write_failed(inode, page, pos, len);
1582                unlock_page(page);
1583
1584                if (pos + len > i_size_read(inode))
1585                        truncate_pagecache(inode, i_size_read(inode));
1586
1587                page_cache_release(page);
1588                page = NULL;
1589        }
1590
1591        *pagep = page;
1592        return status;
1593}
1594
1595/*
1596 * On failure, we only need to kill delalloc blocks beyond EOF because they
1597 * will never be written. For blocks within EOF, generic_write_end() zeros them
1598 * so they are safe to leave alone and be written with all the other valid data.
1599 */
1600STATIC int
1601xfs_vm_write_end(
1602        struct file             *file,
1603        struct address_space    *mapping,
1604        loff_t                  pos,
1605        unsigned                len,
1606        unsigned                copied,
1607        struct page             *page,
1608        void                    *fsdata)
1609{
1610        int                     ret;
1611
1612        ASSERT(len <= PAGE_CACHE_SIZE);
1613
1614        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1615        if (unlikely(ret < len)) {
1616                struct inode    *inode = mapping->host;
1617                size_t          isize = i_size_read(inode);
1618                loff_t          to = pos + len;
1619
1620                if (to > isize) {
1621                        truncate_pagecache(inode, isize);
1622                        xfs_vm_kill_delalloc_range(inode, isize, to);
1623                }
1624        }
1625        return ret;
1626}
1627
1628STATIC sector_t
1629xfs_vm_bmap(
1630        struct address_space    *mapping,
1631        sector_t                block)
1632{
1633        struct inode            *inode = (struct inode *)mapping->host;
1634        struct xfs_inode        *ip = XFS_I(inode);
1635
1636        trace_xfs_vm_bmap(XFS_I(inode));
1637        xfs_ilock(ip, XFS_IOLOCK_SHARED);
1638        filemap_write_and_wait(mapping);
1639        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1640        return generic_block_bmap(mapping, block, xfs_get_blocks);
1641}
1642
1643STATIC int
1644xfs_vm_readpage(
1645        struct file             *unused,
1646        struct page             *page)
1647{
1648        return mpage_readpage(page, xfs_get_blocks);
1649}
1650
1651STATIC int
1652xfs_vm_readpages(
1653        struct file             *unused,
1654        struct address_space    *mapping,
1655        struct list_head        *pages,
1656        unsigned                nr_pages)
1657{
1658        return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1659}
1660
1661const struct address_space_operations xfs_address_space_operations = {
1662        .readpage               = xfs_vm_readpage,
1663        .readpages              = xfs_vm_readpages,
1664        .writepage              = xfs_vm_writepage,
1665        .writepages             = xfs_vm_writepages,
1666        .releasepage            = xfs_vm_releasepage,
1667        .invalidatepage         = xfs_vm_invalidatepage,
1668        .write_begin            = xfs_vm_write_begin,
1669        .write_end              = xfs_vm_write_end,
1670        .bmap                   = xfs_vm_bmap,
1671        .direct_IO              = xfs_vm_direct_IO,
1672        .migratepage            = buffer_migrate_page,
1673        .is_partially_uptodate  = block_is_partially_uptodate,
1674        .error_remove_page      = generic_error_remove_page,
1675};
1676