linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_format.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_trans_priv.h"
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
  28#include "xfs_mount.h"
  29#include "xfs_da_btree.h"
  30#include "xfs_dir2_format.h"
  31#include "xfs_dir2.h"
  32#include "xfs_bmap_btree.h"
  33#include "xfs_alloc_btree.h"
  34#include "xfs_ialloc_btree.h"
  35#include "xfs_dinode.h"
  36#include "xfs_inode.h"
  37#include "xfs_btree.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_alloc.h"
  40#include "xfs_rtalloc.h"
  41#include "xfs_bmap.h"
  42#include "xfs_error.h"
  43#include "xfs_quota.h"
  44#include "xfs_fsops.h"
  45#include "xfs_trace.h"
  46#include "xfs_icache.h"
  47#include "xfs_cksum.h"
  48#include "xfs_buf_item.h"
  49
  50
  51#ifdef HAVE_PERCPU_SB
  52STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
  53                                                int);
  54STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
  55                                                int);
  56STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
  57#else
  58
  59#define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
  60#define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
  61#endif
  62
  63static DEFINE_MUTEX(xfs_uuid_table_mutex);
  64static int xfs_uuid_table_size;
  65static uuid_t *xfs_uuid_table;
  66
  67/*
  68 * See if the UUID is unique among mounted XFS filesystems.
  69 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  70 */
  71STATIC int
  72xfs_uuid_mount(
  73        struct xfs_mount        *mp)
  74{
  75        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  76        int                     hole, i;
  77
  78        if (mp->m_flags & XFS_MOUNT_NOUUID)
  79                return 0;
  80
  81        if (uuid_is_nil(uuid)) {
  82                xfs_warn(mp, "Filesystem has nil UUID - can't mount");
  83                return XFS_ERROR(EINVAL);
  84        }
  85
  86        mutex_lock(&xfs_uuid_table_mutex);
  87        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  88                if (uuid_is_nil(&xfs_uuid_table[i])) {
  89                        hole = i;
  90                        continue;
  91                }
  92                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  93                        goto out_duplicate;
  94        }
  95
  96        if (hole < 0) {
  97                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  98                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  99                        xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
 100                        KM_SLEEP);
 101                hole = xfs_uuid_table_size++;
 102        }
 103        xfs_uuid_table[hole] = *uuid;
 104        mutex_unlock(&xfs_uuid_table_mutex);
 105
 106        return 0;
 107
 108 out_duplicate:
 109        mutex_unlock(&xfs_uuid_table_mutex);
 110        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 111        return XFS_ERROR(EINVAL);
 112}
 113
 114STATIC void
 115xfs_uuid_unmount(
 116        struct xfs_mount        *mp)
 117{
 118        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 119        int                     i;
 120
 121        if (mp->m_flags & XFS_MOUNT_NOUUID)
 122                return;
 123
 124        mutex_lock(&xfs_uuid_table_mutex);
 125        for (i = 0; i < xfs_uuid_table_size; i++) {
 126                if (uuid_is_nil(&xfs_uuid_table[i]))
 127                        continue;
 128                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 129                        continue;
 130                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 131                break;
 132        }
 133        ASSERT(i < xfs_uuid_table_size);
 134        mutex_unlock(&xfs_uuid_table_mutex);
 135}
 136
 137
 138STATIC void
 139__xfs_free_perag(
 140        struct rcu_head *head)
 141{
 142        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 143
 144        ASSERT(atomic_read(&pag->pag_ref) == 0);
 145        kmem_free(pag);
 146}
 147
 148/*
 149 * Free up the per-ag resources associated with the mount structure.
 150 */
 151STATIC void
 152xfs_free_perag(
 153        xfs_mount_t     *mp)
 154{
 155        xfs_agnumber_t  agno;
 156        struct xfs_perag *pag;
 157
 158        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 159                spin_lock(&mp->m_perag_lock);
 160                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 161                spin_unlock(&mp->m_perag_lock);
 162                ASSERT(pag);
 163                ASSERT(atomic_read(&pag->pag_ref) == 0);
 164                call_rcu(&pag->rcu_head, __xfs_free_perag);
 165        }
 166}
 167
 168/*
 169 * Check size of device based on the (data/realtime) block count.
 170 * Note: this check is used by the growfs code as well as mount.
 171 */
 172int
 173xfs_sb_validate_fsb_count(
 174        xfs_sb_t        *sbp,
 175        __uint64_t      nblocks)
 176{
 177        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 178        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 179
 180#if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
 181        if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 182                return EFBIG;
 183#else                  /* Limited by UINT_MAX of sectors */
 184        if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
 185                return EFBIG;
 186#endif
 187        return 0;
 188}
 189
 190int
 191xfs_initialize_perag(
 192        xfs_mount_t     *mp,
 193        xfs_agnumber_t  agcount,
 194        xfs_agnumber_t  *maxagi)
 195{
 196        xfs_agnumber_t  index;
 197        xfs_agnumber_t  first_initialised = 0;
 198        xfs_perag_t     *pag;
 199        xfs_agino_t     agino;
 200        xfs_ino_t       ino;
 201        xfs_sb_t        *sbp = &mp->m_sb;
 202        int             error = -ENOMEM;
 203
 204        /*
 205         * Walk the current per-ag tree so we don't try to initialise AGs
 206         * that already exist (growfs case). Allocate and insert all the
 207         * AGs we don't find ready for initialisation.
 208         */
 209        for (index = 0; index < agcount; index++) {
 210                pag = xfs_perag_get(mp, index);
 211                if (pag) {
 212                        xfs_perag_put(pag);
 213                        continue;
 214                }
 215                if (!first_initialised)
 216                        first_initialised = index;
 217
 218                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 219                if (!pag)
 220                        goto out_unwind;
 221                pag->pag_agno = index;
 222                pag->pag_mount = mp;
 223                spin_lock_init(&pag->pag_ici_lock);
 224                mutex_init(&pag->pag_ici_reclaim_lock);
 225                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 226                spin_lock_init(&pag->pag_buf_lock);
 227                pag->pag_buf_tree = RB_ROOT;
 228
 229                if (radix_tree_preload(GFP_NOFS))
 230                        goto out_unwind;
 231
 232                spin_lock(&mp->m_perag_lock);
 233                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 234                        BUG();
 235                        spin_unlock(&mp->m_perag_lock);
 236                        radix_tree_preload_end();
 237                        error = -EEXIST;
 238                        goto out_unwind;
 239                }
 240                spin_unlock(&mp->m_perag_lock);
 241                radix_tree_preload_end();
 242        }
 243
 244        /*
 245         * If we mount with the inode64 option, or no inode overflows
 246         * the legacy 32-bit address space clear the inode32 option.
 247         */
 248        agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 249        ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 250
 251        if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 252                mp->m_flags |= XFS_MOUNT_32BITINODES;
 253        else
 254                mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 255
 256        if (mp->m_flags & XFS_MOUNT_32BITINODES)
 257                index = xfs_set_inode32(mp);
 258        else
 259                index = xfs_set_inode64(mp);
 260
 261        if (maxagi)
 262                *maxagi = index;
 263        return 0;
 264
 265out_unwind:
 266        kmem_free(pag);
 267        for (; index > first_initialised; index--) {
 268                pag = radix_tree_delete(&mp->m_perag_tree, index);
 269                kmem_free(pag);
 270        }
 271        return error;
 272}
 273
 274/*
 275 * xfs_readsb
 276 *
 277 * Does the initial read of the superblock.
 278 */
 279int
 280xfs_readsb(
 281        struct xfs_mount *mp,
 282        int             flags)
 283{
 284        unsigned int    sector_size;
 285        struct xfs_buf  *bp;
 286        struct xfs_sb   *sbp = &mp->m_sb;
 287        int             error;
 288        int             loud = !(flags & XFS_MFSI_QUIET);
 289
 290        ASSERT(mp->m_sb_bp == NULL);
 291        ASSERT(mp->m_ddev_targp != NULL);
 292
 293        /*
 294         * Allocate a (locked) buffer to hold the superblock.
 295         * This will be kept around at all times to optimize
 296         * access to the superblock.
 297         */
 298        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 299
 300reread:
 301        bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 302                                   BTOBB(sector_size), 0,
 303                                   loud ? &xfs_sb_buf_ops
 304                                        : &xfs_sb_quiet_buf_ops);
 305        if (!bp) {
 306                if (loud)
 307                        xfs_warn(mp, "SB buffer read failed");
 308                return EIO;
 309        }
 310        if (bp->b_error) {
 311                error = bp->b_error;
 312                if (loud)
 313                        xfs_warn(mp, "SB validate failed with error %d.", error);
 314                goto release_buf;
 315        }
 316
 317        /*
 318         * Initialize the mount structure from the superblock.
 319         */
 320        xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
 321        xfs_sb_quota_from_disk(&mp->m_sb);
 322
 323        /*
 324         * We must be able to do sector-sized and sector-aligned IO.
 325         */
 326        if (sector_size > sbp->sb_sectsize) {
 327                if (loud)
 328                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 329                                sector_size, sbp->sb_sectsize);
 330                error = ENOSYS;
 331                goto release_buf;
 332        }
 333
 334        /*
 335         * If device sector size is smaller than the superblock size,
 336         * re-read the superblock so the buffer is correctly sized.
 337         */
 338        if (sector_size < sbp->sb_sectsize) {
 339                xfs_buf_relse(bp);
 340                sector_size = sbp->sb_sectsize;
 341                goto reread;
 342        }
 343
 344        /* Initialize per-cpu counters */
 345        xfs_icsb_reinit_counters(mp);
 346
 347        /* no need to be quiet anymore, so reset the buf ops */
 348        bp->b_ops = &xfs_sb_buf_ops;
 349
 350        mp->m_sb_bp = bp;
 351        xfs_buf_unlock(bp);
 352        return 0;
 353
 354release_buf:
 355        xfs_buf_relse(bp);
 356        return error;
 357}
 358
 359/*
 360 * Update alignment values based on mount options and sb values
 361 */
 362STATIC int
 363xfs_update_alignment(xfs_mount_t *mp)
 364{
 365        xfs_sb_t        *sbp = &(mp->m_sb);
 366
 367        if (mp->m_dalign) {
 368                /*
 369                 * If stripe unit and stripe width are not multiples
 370                 * of the fs blocksize turn off alignment.
 371                 */
 372                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 373                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 374                        xfs_warn(mp,
 375                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 376                                sbp->sb_blocksize);
 377                        return XFS_ERROR(EINVAL);
 378                } else {
 379                        /*
 380                         * Convert the stripe unit and width to FSBs.
 381                         */
 382                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 383                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 384                                xfs_warn(mp,
 385                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 386                                         sbp->sb_agblocks);
 387                                return XFS_ERROR(EINVAL);
 388                        } else if (mp->m_dalign) {
 389                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 390                        } else {
 391                                xfs_warn(mp,
 392                        "alignment check failed: sunit(%d) less than bsize(%d)",
 393                                         mp->m_dalign, sbp->sb_blocksize);
 394                                return XFS_ERROR(EINVAL);
 395                        }
 396                }
 397
 398                /*
 399                 * Update superblock with new values
 400                 * and log changes
 401                 */
 402                if (xfs_sb_version_hasdalign(sbp)) {
 403                        if (sbp->sb_unit != mp->m_dalign) {
 404                                sbp->sb_unit = mp->m_dalign;
 405                                mp->m_update_flags |= XFS_SB_UNIT;
 406                        }
 407                        if (sbp->sb_width != mp->m_swidth) {
 408                                sbp->sb_width = mp->m_swidth;
 409                                mp->m_update_flags |= XFS_SB_WIDTH;
 410                        }
 411                } else {
 412                        xfs_warn(mp,
 413        "cannot change alignment: superblock does not support data alignment");
 414                        return XFS_ERROR(EINVAL);
 415                }
 416        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 417                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 418                        mp->m_dalign = sbp->sb_unit;
 419                        mp->m_swidth = sbp->sb_width;
 420        }
 421
 422        return 0;
 423}
 424
 425/*
 426 * Set the maximum inode count for this filesystem
 427 */
 428STATIC void
 429xfs_set_maxicount(xfs_mount_t *mp)
 430{
 431        xfs_sb_t        *sbp = &(mp->m_sb);
 432        __uint64_t      icount;
 433
 434        if (sbp->sb_imax_pct) {
 435                /*
 436                 * Make sure the maximum inode count is a multiple
 437                 * of the units we allocate inodes in.
 438                 */
 439                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 440                do_div(icount, 100);
 441                do_div(icount, mp->m_ialloc_blks);
 442                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 443                                   sbp->sb_inopblog;
 444        } else {
 445                mp->m_maxicount = 0;
 446        }
 447}
 448
 449/*
 450 * Set the default minimum read and write sizes unless
 451 * already specified in a mount option.
 452 * We use smaller I/O sizes when the file system
 453 * is being used for NFS service (wsync mount option).
 454 */
 455STATIC void
 456xfs_set_rw_sizes(xfs_mount_t *mp)
 457{
 458        xfs_sb_t        *sbp = &(mp->m_sb);
 459        int             readio_log, writeio_log;
 460
 461        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 462                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 463                        readio_log = XFS_WSYNC_READIO_LOG;
 464                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 465                } else {
 466                        readio_log = XFS_READIO_LOG_LARGE;
 467                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 468                }
 469        } else {
 470                readio_log = mp->m_readio_log;
 471                writeio_log = mp->m_writeio_log;
 472        }
 473
 474        if (sbp->sb_blocklog > readio_log) {
 475                mp->m_readio_log = sbp->sb_blocklog;
 476        } else {
 477                mp->m_readio_log = readio_log;
 478        }
 479        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 480        if (sbp->sb_blocklog > writeio_log) {
 481                mp->m_writeio_log = sbp->sb_blocklog;
 482        } else {
 483                mp->m_writeio_log = writeio_log;
 484        }
 485        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 486}
 487
 488/*
 489 * precalculate the low space thresholds for dynamic speculative preallocation.
 490 */
 491void
 492xfs_set_low_space_thresholds(
 493        struct xfs_mount        *mp)
 494{
 495        int i;
 496
 497        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 498                __uint64_t space = mp->m_sb.sb_dblocks;
 499
 500                do_div(space, 100);
 501                mp->m_low_space[i] = space * (i + 1);
 502        }
 503}
 504
 505
 506/*
 507 * Set whether we're using inode alignment.
 508 */
 509STATIC void
 510xfs_set_inoalignment(xfs_mount_t *mp)
 511{
 512        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 513            mp->m_sb.sb_inoalignmt >=
 514            XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 515                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 516        else
 517                mp->m_inoalign_mask = 0;
 518        /*
 519         * If we are using stripe alignment, check whether
 520         * the stripe unit is a multiple of the inode alignment
 521         */
 522        if (mp->m_dalign && mp->m_inoalign_mask &&
 523            !(mp->m_dalign & mp->m_inoalign_mask))
 524                mp->m_sinoalign = mp->m_dalign;
 525        else
 526                mp->m_sinoalign = 0;
 527}
 528
 529/*
 530 * Check that the data (and log if separate) is an ok size.
 531 */
 532STATIC int
 533xfs_check_sizes(xfs_mount_t *mp)
 534{
 535        xfs_buf_t       *bp;
 536        xfs_daddr_t     d;
 537
 538        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 539        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 540                xfs_warn(mp, "filesystem size mismatch detected");
 541                return XFS_ERROR(EFBIG);
 542        }
 543        bp = xfs_buf_read_uncached(mp->m_ddev_targp,
 544                                        d - XFS_FSS_TO_BB(mp, 1),
 545                                        XFS_FSS_TO_BB(mp, 1), 0, NULL);
 546        if (!bp) {
 547                xfs_warn(mp, "last sector read failed");
 548                return EIO;
 549        }
 550        xfs_buf_relse(bp);
 551
 552        if (mp->m_logdev_targp != mp->m_ddev_targp) {
 553                d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 554                if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 555                        xfs_warn(mp, "log size mismatch detected");
 556                        return XFS_ERROR(EFBIG);
 557                }
 558                bp = xfs_buf_read_uncached(mp->m_logdev_targp,
 559                                        d - XFS_FSB_TO_BB(mp, 1),
 560                                        XFS_FSB_TO_BB(mp, 1), 0, NULL);
 561                if (!bp) {
 562                        xfs_warn(mp, "log device read failed");
 563                        return EIO;
 564                }
 565                xfs_buf_relse(bp);
 566        }
 567        return 0;
 568}
 569
 570/*
 571 * Clear the quotaflags in memory and in the superblock.
 572 */
 573int
 574xfs_mount_reset_sbqflags(
 575        struct xfs_mount        *mp)
 576{
 577        int                     error;
 578        struct xfs_trans        *tp;
 579
 580        mp->m_qflags = 0;
 581
 582        /*
 583         * It is OK to look at sb_qflags here in mount path,
 584         * without m_sb_lock.
 585         */
 586        if (mp->m_sb.sb_qflags == 0)
 587                return 0;
 588        spin_lock(&mp->m_sb_lock);
 589        mp->m_sb.sb_qflags = 0;
 590        spin_unlock(&mp->m_sb_lock);
 591
 592        /*
 593         * If the fs is readonly, let the incore superblock run
 594         * with quotas off but don't flush the update out to disk
 595         */
 596        if (mp->m_flags & XFS_MOUNT_RDONLY)
 597                return 0;
 598
 599        tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
 600        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
 601        if (error) {
 602                xfs_trans_cancel(tp, 0);
 603                xfs_alert(mp, "%s: Superblock update failed!", __func__);
 604                return error;
 605        }
 606
 607        xfs_mod_sb(tp, XFS_SB_QFLAGS);
 608        return xfs_trans_commit(tp, 0);
 609}
 610
 611__uint64_t
 612xfs_default_resblks(xfs_mount_t *mp)
 613{
 614        __uint64_t resblks;
 615
 616        /*
 617         * We default to 5% or 8192 fsbs of space reserved, whichever is
 618         * smaller.  This is intended to cover concurrent allocation
 619         * transactions when we initially hit enospc. These each require a 4
 620         * block reservation. Hence by default we cover roughly 2000 concurrent
 621         * allocation reservations.
 622         */
 623        resblks = mp->m_sb.sb_dblocks;
 624        do_div(resblks, 20);
 625        resblks = min_t(__uint64_t, resblks, 8192);
 626        return resblks;
 627}
 628
 629/*
 630 * This function does the following on an initial mount of a file system:
 631 *      - reads the superblock from disk and init the mount struct
 632 *      - if we're a 32-bit kernel, do a size check on the superblock
 633 *              so we don't mount terabyte filesystems
 634 *      - init mount struct realtime fields
 635 *      - allocate inode hash table for fs
 636 *      - init directory manager
 637 *      - perform recovery and init the log manager
 638 */
 639int
 640xfs_mountfs(
 641        xfs_mount_t     *mp)
 642{
 643        xfs_sb_t        *sbp = &(mp->m_sb);
 644        xfs_inode_t     *rip;
 645        __uint64_t      resblks;
 646        uint            quotamount = 0;
 647        uint            quotaflags = 0;
 648        int             error = 0;
 649
 650        xfs_sb_mount_common(mp, sbp);
 651
 652        /*
 653         * Check for a mismatched features2 values.  Older kernels
 654         * read & wrote into the wrong sb offset for sb_features2
 655         * on some platforms due to xfs_sb_t not being 64bit size aligned
 656         * when sb_features2 was added, which made older superblock
 657         * reading/writing routines swap it as a 64-bit value.
 658         *
 659         * For backwards compatibility, we make both slots equal.
 660         *
 661         * If we detect a mismatched field, we OR the set bits into the
 662         * existing features2 field in case it has already been modified; we
 663         * don't want to lose any features.  We then update the bad location
 664         * with the ORed value so that older kernels will see any features2
 665         * flags, and mark the two fields as needing updates once the
 666         * transaction subsystem is online.
 667         */
 668        if (xfs_sb_has_mismatched_features2(sbp)) {
 669                xfs_warn(mp, "correcting sb_features alignment problem");
 670                sbp->sb_features2 |= sbp->sb_bad_features2;
 671                sbp->sb_bad_features2 = sbp->sb_features2;
 672                mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
 673
 674                /*
 675                 * Re-check for ATTR2 in case it was found in bad_features2
 676                 * slot.
 677                 */
 678                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 679                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 680                        mp->m_flags |= XFS_MOUNT_ATTR2;
 681        }
 682
 683        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 684           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 685                xfs_sb_version_removeattr2(&mp->m_sb);
 686                mp->m_update_flags |= XFS_SB_FEATURES2;
 687
 688                /* update sb_versionnum for the clearing of the morebits */
 689                if (!sbp->sb_features2)
 690                        mp->m_update_flags |= XFS_SB_VERSIONNUM;
 691        }
 692
 693        /*
 694         * Check if sb_agblocks is aligned at stripe boundary
 695         * If sb_agblocks is NOT aligned turn off m_dalign since
 696         * allocator alignment is within an ag, therefore ag has
 697         * to be aligned at stripe boundary.
 698         */
 699        error = xfs_update_alignment(mp);
 700        if (error)
 701                goto out;
 702
 703        xfs_alloc_compute_maxlevels(mp);
 704        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 705        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 706        xfs_ialloc_compute_maxlevels(mp);
 707
 708        xfs_set_maxicount(mp);
 709
 710        error = xfs_uuid_mount(mp);
 711        if (error)
 712                goto out;
 713
 714        /*
 715         * Set the minimum read and write sizes
 716         */
 717        xfs_set_rw_sizes(mp);
 718
 719        /* set the low space thresholds for dynamic preallocation */
 720        xfs_set_low_space_thresholds(mp);
 721
 722        /*
 723         * Set the inode cluster size.
 724         * This may still be overridden by the file system
 725         * block size if it is larger than the chosen cluster size.
 726         */
 727        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 728
 729        /*
 730         * Set inode alignment fields
 731         */
 732        xfs_set_inoalignment(mp);
 733
 734        /*
 735         * Check that the data (and log if separate) is an ok size.
 736         */
 737        error = xfs_check_sizes(mp);
 738        if (error)
 739                goto out_remove_uuid;
 740
 741        /*
 742         * Initialize realtime fields in the mount structure
 743         */
 744        error = xfs_rtmount_init(mp);
 745        if (error) {
 746                xfs_warn(mp, "RT mount failed");
 747                goto out_remove_uuid;
 748        }
 749
 750        /*
 751         *  Copies the low order bits of the timestamp and the randomly
 752         *  set "sequence" number out of a UUID.
 753         */
 754        uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 755
 756        mp->m_dmevmask = 0;     /* not persistent; set after each mount */
 757
 758        xfs_dir_mount(mp);
 759
 760        /*
 761         * Initialize the attribute manager's entries.
 762         */
 763        mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
 764
 765        /*
 766         * Initialize the precomputed transaction reservations values.
 767         */
 768        xfs_trans_init(mp);
 769
 770        /*
 771         * Allocate and initialize the per-ag data.
 772         */
 773        spin_lock_init(&mp->m_perag_lock);
 774        INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 775        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 776        if (error) {
 777                xfs_warn(mp, "Failed per-ag init: %d", error);
 778                goto out_remove_uuid;
 779        }
 780
 781        if (!sbp->sb_logblocks) {
 782                xfs_warn(mp, "no log defined");
 783                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 784                error = XFS_ERROR(EFSCORRUPTED);
 785                goto out_free_perag;
 786        }
 787
 788        /*
 789         * log's mount-time initialization. Perform 1st part recovery if needed
 790         */
 791        error = xfs_log_mount(mp, mp->m_logdev_targp,
 792                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 793                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 794        if (error) {
 795                xfs_warn(mp, "log mount failed");
 796                goto out_fail_wait;
 797        }
 798
 799        /*
 800         * Now the log is mounted, we know if it was an unclean shutdown or
 801         * not. If it was, with the first phase of recovery has completed, we
 802         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 803         * but they are recovered transactionally in the second recovery phase
 804         * later.
 805         *
 806         * Hence we can safely re-initialise incore superblock counters from
 807         * the per-ag data. These may not be correct if the filesystem was not
 808         * cleanly unmounted, so we need to wait for recovery to finish before
 809         * doing this.
 810         *
 811         * If the filesystem was cleanly unmounted, then we can trust the
 812         * values in the superblock to be correct and we don't need to do
 813         * anything here.
 814         *
 815         * If we are currently making the filesystem, the initialisation will
 816         * fail as the perag data is in an undefined state.
 817         */
 818        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 819            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 820             !mp->m_sb.sb_inprogress) {
 821                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 822                if (error)
 823                        goto out_fail_wait;
 824        }
 825
 826        /*
 827         * Get and sanity-check the root inode.
 828         * Save the pointer to it in the mount structure.
 829         */
 830        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 831        if (error) {
 832                xfs_warn(mp, "failed to read root inode");
 833                goto out_log_dealloc;
 834        }
 835
 836        ASSERT(rip != NULL);
 837
 838        if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
 839                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 840                        (unsigned long long)rip->i_ino);
 841                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 842                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 843                                 mp);
 844                error = XFS_ERROR(EFSCORRUPTED);
 845                goto out_rele_rip;
 846        }
 847        mp->m_rootip = rip;     /* save it */
 848
 849        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 850
 851        /*
 852         * Initialize realtime inode pointers in the mount structure
 853         */
 854        error = xfs_rtmount_inodes(mp);
 855        if (error) {
 856                /*
 857                 * Free up the root inode.
 858                 */
 859                xfs_warn(mp, "failed to read RT inodes");
 860                goto out_rele_rip;
 861        }
 862
 863        /*
 864         * If this is a read-only mount defer the superblock updates until
 865         * the next remount into writeable mode.  Otherwise we would never
 866         * perform the update e.g. for the root filesystem.
 867         */
 868        if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 869                error = xfs_mount_log_sb(mp, mp->m_update_flags);
 870                if (error) {
 871                        xfs_warn(mp, "failed to write sb changes");
 872                        goto out_rtunmount;
 873                }
 874        }
 875
 876        /*
 877         * Initialise the XFS quota management subsystem for this mount
 878         */
 879        if (XFS_IS_QUOTA_RUNNING(mp)) {
 880                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 881                if (error)
 882                        goto out_rtunmount;
 883        } else {
 884                ASSERT(!XFS_IS_QUOTA_ON(mp));
 885
 886                /*
 887                 * If a file system had quotas running earlier, but decided to
 888                 * mount without -o uquota/pquota/gquota options, revoke the
 889                 * quotachecked license.
 890                 */
 891                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 892                        xfs_notice(mp, "resetting quota flags");
 893                        error = xfs_mount_reset_sbqflags(mp);
 894                        if (error)
 895                                return error;
 896                }
 897        }
 898
 899        /*
 900         * Finish recovering the file system.  This part needed to be
 901         * delayed until after the root and real-time bitmap inodes
 902         * were consistently read in.
 903         */
 904        error = xfs_log_mount_finish(mp);
 905        if (error) {
 906                xfs_warn(mp, "log mount finish failed");
 907                goto out_rtunmount;
 908        }
 909
 910        /*
 911         * Complete the quota initialisation, post-log-replay component.
 912         */
 913        if (quotamount) {
 914                ASSERT(mp->m_qflags == 0);
 915                mp->m_qflags = quotaflags;
 916
 917                xfs_qm_mount_quotas(mp);
 918        }
 919
 920        /*
 921         * Now we are mounted, reserve a small amount of unused space for
 922         * privileged transactions. This is needed so that transaction
 923         * space required for critical operations can dip into this pool
 924         * when at ENOSPC. This is needed for operations like create with
 925         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 926         * are not allowed to use this reserved space.
 927         *
 928         * This may drive us straight to ENOSPC on mount, but that implies
 929         * we were already there on the last unmount. Warn if this occurs.
 930         */
 931        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 932                resblks = xfs_default_resblks(mp);
 933                error = xfs_reserve_blocks(mp, &resblks, NULL);
 934                if (error)
 935                        xfs_warn(mp,
 936        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 937        }
 938
 939        return 0;
 940
 941 out_rtunmount:
 942        xfs_rtunmount_inodes(mp);
 943 out_rele_rip:
 944        IRELE(rip);
 945 out_log_dealloc:
 946        xfs_log_unmount(mp);
 947 out_fail_wait:
 948        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 949                xfs_wait_buftarg(mp->m_logdev_targp);
 950        xfs_wait_buftarg(mp->m_ddev_targp);
 951 out_free_perag:
 952        xfs_free_perag(mp);
 953 out_remove_uuid:
 954        xfs_uuid_unmount(mp);
 955 out:
 956        return error;
 957}
 958
 959/*
 960 * This flushes out the inodes,dquots and the superblock, unmounts the
 961 * log and makes sure that incore structures are freed.
 962 */
 963void
 964xfs_unmountfs(
 965        struct xfs_mount        *mp)
 966{
 967        __uint64_t              resblks;
 968        int                     error;
 969
 970        cancel_delayed_work_sync(&mp->m_eofblocks_work);
 971
 972        xfs_qm_unmount_quotas(mp);
 973        xfs_rtunmount_inodes(mp);
 974        IRELE(mp->m_rootip);
 975
 976        /*
 977         * We can potentially deadlock here if we have an inode cluster
 978         * that has been freed has its buffer still pinned in memory because
 979         * the transaction is still sitting in a iclog. The stale inodes
 980         * on that buffer will have their flush locks held until the
 981         * transaction hits the disk and the callbacks run. the inode
 982         * flush takes the flush lock unconditionally and with nothing to
 983         * push out the iclog we will never get that unlocked. hence we
 984         * need to force the log first.
 985         */
 986        xfs_log_force(mp, XFS_LOG_SYNC);
 987
 988        /*
 989         * Flush all pending changes from the AIL.
 990         */
 991        xfs_ail_push_all_sync(mp->m_ail);
 992
 993        /*
 994         * And reclaim all inodes.  At this point there should be no dirty
 995         * inodes and none should be pinned or locked, but use synchronous
 996         * reclaim just to be sure. We can stop background inode reclaim
 997         * here as well if it is still running.
 998         */
 999        cancel_delayed_work_sync(&mp->m_reclaim_work);
1000        xfs_reclaim_inodes(mp, SYNC_WAIT);
1001
1002        xfs_qm_unmount(mp);
1003
1004        /*
1005         * Unreserve any blocks we have so that when we unmount we don't account
1006         * the reserved free space as used. This is really only necessary for
1007         * lazy superblock counting because it trusts the incore superblock
1008         * counters to be absolutely correct on clean unmount.
1009         *
1010         * We don't bother correcting this elsewhere for lazy superblock
1011         * counting because on mount of an unclean filesystem we reconstruct the
1012         * correct counter value and this is irrelevant.
1013         *
1014         * For non-lazy counter filesystems, this doesn't matter at all because
1015         * we only every apply deltas to the superblock and hence the incore
1016         * value does not matter....
1017         */
1018        resblks = 0;
1019        error = xfs_reserve_blocks(mp, &resblks, NULL);
1020        if (error)
1021                xfs_warn(mp, "Unable to free reserved block pool. "
1022                                "Freespace may not be correct on next mount.");
1023
1024        error = xfs_log_sbcount(mp);
1025        if (error)
1026                xfs_warn(mp, "Unable to update superblock counters. "
1027                                "Freespace may not be correct on next mount.");
1028
1029        xfs_log_unmount(mp);
1030        xfs_uuid_unmount(mp);
1031
1032#if defined(DEBUG)
1033        xfs_errortag_clearall(mp, 0);
1034#endif
1035        xfs_free_perag(mp);
1036}
1037
1038int
1039xfs_fs_writable(xfs_mount_t *mp)
1040{
1041        return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1042                (mp->m_flags & XFS_MOUNT_RDONLY));
1043}
1044
1045/*
1046 * xfs_log_sbcount
1047 *
1048 * Sync the superblock counters to disk.
1049 *
1050 * Note this code can be called during the process of freezing, so
1051 * we may need to use the transaction allocator which does not
1052 * block when the transaction subsystem is in its frozen state.
1053 */
1054int
1055xfs_log_sbcount(xfs_mount_t *mp)
1056{
1057        xfs_trans_t     *tp;
1058        int             error;
1059
1060        if (!xfs_fs_writable(mp))
1061                return 0;
1062
1063        xfs_icsb_sync_counters(mp, 0);
1064
1065        /*
1066         * we don't need to do this if we are updating the superblock
1067         * counters on every modification.
1068         */
1069        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1070                return 0;
1071
1072        tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1073        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1074        if (error) {
1075                xfs_trans_cancel(tp, 0);
1076                return error;
1077        }
1078
1079        xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1080        xfs_trans_set_sync(tp);
1081        error = xfs_trans_commit(tp, 0);
1082        return error;
1083}
1084
1085/*
1086 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1087 * a delta to a specified field in the in-core superblock.  Simply
1088 * switch on the field indicated and apply the delta to that field.
1089 * Fields are not allowed to dip below zero, so if the delta would
1090 * do this do not apply it and return EINVAL.
1091 *
1092 * The m_sb_lock must be held when this routine is called.
1093 */
1094STATIC int
1095xfs_mod_incore_sb_unlocked(
1096        xfs_mount_t     *mp,
1097        xfs_sb_field_t  field,
1098        int64_t         delta,
1099        int             rsvd)
1100{
1101        int             scounter;       /* short counter for 32 bit fields */
1102        long long       lcounter;       /* long counter for 64 bit fields */
1103        long long       res_used, rem;
1104
1105        /*
1106         * With the in-core superblock spin lock held, switch
1107         * on the indicated field.  Apply the delta to the
1108         * proper field.  If the fields value would dip below
1109         * 0, then do not apply the delta and return EINVAL.
1110         */
1111        switch (field) {
1112        case XFS_SBS_ICOUNT:
1113                lcounter = (long long)mp->m_sb.sb_icount;
1114                lcounter += delta;
1115                if (lcounter < 0) {
1116                        ASSERT(0);
1117                        return XFS_ERROR(EINVAL);
1118                }
1119                mp->m_sb.sb_icount = lcounter;
1120                return 0;
1121        case XFS_SBS_IFREE:
1122                lcounter = (long long)mp->m_sb.sb_ifree;
1123                lcounter += delta;
1124                if (lcounter < 0) {
1125                        ASSERT(0);
1126                        return XFS_ERROR(EINVAL);
1127                }
1128                mp->m_sb.sb_ifree = lcounter;
1129                return 0;
1130        case XFS_SBS_FDBLOCKS:
1131                lcounter = (long long)
1132                        mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1133                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1134
1135                if (delta > 0) {                /* Putting blocks back */
1136                        if (res_used > delta) {
1137                                mp->m_resblks_avail += delta;
1138                        } else {
1139                                rem = delta - res_used;
1140                                mp->m_resblks_avail = mp->m_resblks;
1141                                lcounter += rem;
1142                        }
1143                } else {                                /* Taking blocks away */
1144                        lcounter += delta;
1145                        if (lcounter >= 0) {
1146                                mp->m_sb.sb_fdblocks = lcounter +
1147                                                        XFS_ALLOC_SET_ASIDE(mp);
1148                                return 0;
1149                        }
1150
1151                        /*
1152                         * We are out of blocks, use any available reserved
1153                         * blocks if were allowed to.
1154                         */
1155                        if (!rsvd)
1156                                return XFS_ERROR(ENOSPC);
1157
1158                        lcounter = (long long)mp->m_resblks_avail + delta;
1159                        if (lcounter >= 0) {
1160                                mp->m_resblks_avail = lcounter;
1161                                return 0;
1162                        }
1163                        printk_once(KERN_WARNING
1164                                "Filesystem \"%s\": reserve blocks depleted! "
1165                                "Consider increasing reserve pool size.",
1166                                mp->m_fsname);
1167                        return XFS_ERROR(ENOSPC);
1168                }
1169
1170                mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1171                return 0;
1172        case XFS_SBS_FREXTENTS:
1173                lcounter = (long long)mp->m_sb.sb_frextents;
1174                lcounter += delta;
1175                if (lcounter < 0) {
1176                        return XFS_ERROR(ENOSPC);
1177                }
1178                mp->m_sb.sb_frextents = lcounter;
1179                return 0;
1180        case XFS_SBS_DBLOCKS:
1181                lcounter = (long long)mp->m_sb.sb_dblocks;
1182                lcounter += delta;
1183                if (lcounter < 0) {
1184                        ASSERT(0);
1185                        return XFS_ERROR(EINVAL);
1186                }
1187                mp->m_sb.sb_dblocks = lcounter;
1188                return 0;
1189        case XFS_SBS_AGCOUNT:
1190                scounter = mp->m_sb.sb_agcount;
1191                scounter += delta;
1192                if (scounter < 0) {
1193                        ASSERT(0);
1194                        return XFS_ERROR(EINVAL);
1195                }
1196                mp->m_sb.sb_agcount = scounter;
1197                return 0;
1198        case XFS_SBS_IMAX_PCT:
1199                scounter = mp->m_sb.sb_imax_pct;
1200                scounter += delta;
1201                if (scounter < 0) {
1202                        ASSERT(0);
1203                        return XFS_ERROR(EINVAL);
1204                }
1205                mp->m_sb.sb_imax_pct = scounter;
1206                return 0;
1207        case XFS_SBS_REXTSIZE:
1208                scounter = mp->m_sb.sb_rextsize;
1209                scounter += delta;
1210                if (scounter < 0) {
1211                        ASSERT(0);
1212                        return XFS_ERROR(EINVAL);
1213                }
1214                mp->m_sb.sb_rextsize = scounter;
1215                return 0;
1216        case XFS_SBS_RBMBLOCKS:
1217                scounter = mp->m_sb.sb_rbmblocks;
1218                scounter += delta;
1219                if (scounter < 0) {
1220                        ASSERT(0);
1221                        return XFS_ERROR(EINVAL);
1222                }
1223                mp->m_sb.sb_rbmblocks = scounter;
1224                return 0;
1225        case XFS_SBS_RBLOCKS:
1226                lcounter = (long long)mp->m_sb.sb_rblocks;
1227                lcounter += delta;
1228                if (lcounter < 0) {
1229                        ASSERT(0);
1230                        return XFS_ERROR(EINVAL);
1231                }
1232                mp->m_sb.sb_rblocks = lcounter;
1233                return 0;
1234        case XFS_SBS_REXTENTS:
1235                lcounter = (long long)mp->m_sb.sb_rextents;
1236                lcounter += delta;
1237                if (lcounter < 0) {
1238                        ASSERT(0);
1239                        return XFS_ERROR(EINVAL);
1240                }
1241                mp->m_sb.sb_rextents = lcounter;
1242                return 0;
1243        case XFS_SBS_REXTSLOG:
1244                scounter = mp->m_sb.sb_rextslog;
1245                scounter += delta;
1246                if (scounter < 0) {
1247                        ASSERT(0);
1248                        return XFS_ERROR(EINVAL);
1249                }
1250                mp->m_sb.sb_rextslog = scounter;
1251                return 0;
1252        default:
1253                ASSERT(0);
1254                return XFS_ERROR(EINVAL);
1255        }
1256}
1257
1258/*
1259 * xfs_mod_incore_sb() is used to change a field in the in-core
1260 * superblock structure by the specified delta.  This modification
1261 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1262 * routine to do the work.
1263 */
1264int
1265xfs_mod_incore_sb(
1266        struct xfs_mount        *mp,
1267        xfs_sb_field_t          field,
1268        int64_t                 delta,
1269        int                     rsvd)
1270{
1271        int                     status;
1272
1273#ifdef HAVE_PERCPU_SB
1274        ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1275#endif
1276        spin_lock(&mp->m_sb_lock);
1277        status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1278        spin_unlock(&mp->m_sb_lock);
1279
1280        return status;
1281}
1282
1283/*
1284 * Change more than one field in the in-core superblock structure at a time.
1285 *
1286 * The fields and changes to those fields are specified in the array of
1287 * xfs_mod_sb structures passed in.  Either all of the specified deltas
1288 * will be applied or none of them will.  If any modified field dips below 0,
1289 * then all modifications will be backed out and EINVAL will be returned.
1290 *
1291 * Note that this function may not be used for the superblock values that
1292 * are tracked with the in-memory per-cpu counters - a direct call to
1293 * xfs_icsb_modify_counters is required for these.
1294 */
1295int
1296xfs_mod_incore_sb_batch(
1297        struct xfs_mount        *mp,
1298        xfs_mod_sb_t            *msb,
1299        uint                    nmsb,
1300        int                     rsvd)
1301{
1302        xfs_mod_sb_t            *msbp;
1303        int                     error = 0;
1304
1305        /*
1306         * Loop through the array of mod structures and apply each individually.
1307         * If any fail, then back out all those which have already been applied.
1308         * Do all of this within the scope of the m_sb_lock so that all of the
1309         * changes will be atomic.
1310         */
1311        spin_lock(&mp->m_sb_lock);
1312        for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1313                ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1314                       msbp->msb_field > XFS_SBS_FDBLOCKS);
1315
1316                error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1317                                                   msbp->msb_delta, rsvd);
1318                if (error)
1319                        goto unwind;
1320        }
1321        spin_unlock(&mp->m_sb_lock);
1322        return 0;
1323
1324unwind:
1325        while (--msbp >= msb) {
1326                error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1327                                                   -msbp->msb_delta, rsvd);
1328                ASSERT(error == 0);
1329        }
1330        spin_unlock(&mp->m_sb_lock);
1331        return error;
1332}
1333
1334/*
1335 * xfs_getsb() is called to obtain the buffer for the superblock.
1336 * The buffer is returned locked and read in from disk.
1337 * The buffer should be released with a call to xfs_brelse().
1338 *
1339 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1340 * the superblock buffer if it can be locked without sleeping.
1341 * If it can't then we'll return NULL.
1342 */
1343struct xfs_buf *
1344xfs_getsb(
1345        struct xfs_mount        *mp,
1346        int                     flags)
1347{
1348        struct xfs_buf          *bp = mp->m_sb_bp;
1349
1350        if (!xfs_buf_trylock(bp)) {
1351                if (flags & XBF_TRYLOCK)
1352                        return NULL;
1353                xfs_buf_lock(bp);
1354        }
1355
1356        xfs_buf_hold(bp);
1357        ASSERT(XFS_BUF_ISDONE(bp));
1358        return bp;
1359}
1360
1361/*
1362 * Used to free the superblock along various error paths.
1363 */
1364void
1365xfs_freesb(
1366        struct xfs_mount        *mp)
1367{
1368        struct xfs_buf          *bp = mp->m_sb_bp;
1369
1370        xfs_buf_lock(bp);
1371        mp->m_sb_bp = NULL;
1372        xfs_buf_relse(bp);
1373}
1374
1375/*
1376 * Used to log changes to the superblock unit and width fields which could
1377 * be altered by the mount options, as well as any potential sb_features2
1378 * fixup. Only the first superblock is updated.
1379 */
1380int
1381xfs_mount_log_sb(
1382        xfs_mount_t     *mp,
1383        __int64_t       fields)
1384{
1385        xfs_trans_t     *tp;
1386        int             error;
1387
1388        ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1389                         XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1390                         XFS_SB_VERSIONNUM));
1391
1392        tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1393        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1394        if (error) {
1395                xfs_trans_cancel(tp, 0);
1396                return error;
1397        }
1398        xfs_mod_sb(tp, fields);
1399        error = xfs_trans_commit(tp, 0);
1400        return error;
1401}
1402
1403/*
1404 * If the underlying (data/log/rt) device is readonly, there are some
1405 * operations that cannot proceed.
1406 */
1407int
1408xfs_dev_is_read_only(
1409        struct xfs_mount        *mp,
1410        char                    *message)
1411{
1412        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1413            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1414            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1415                xfs_notice(mp, "%s required on read-only device.", message);
1416                xfs_notice(mp, "write access unavailable, cannot proceed.");
1417                return EROFS;
1418        }
1419        return 0;
1420}
1421
1422#ifdef HAVE_PERCPU_SB
1423/*
1424 * Per-cpu incore superblock counters
1425 *
1426 * Simple concept, difficult implementation
1427 *
1428 * Basically, replace the incore superblock counters with a distributed per cpu
1429 * counter for contended fields (e.g.  free block count).
1430 *
1431 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1432 * hence needs to be accurately read when we are running low on space. Hence
1433 * there is a method to enable and disable the per-cpu counters based on how
1434 * much "stuff" is available in them.
1435 *
1436 * Basically, a counter is enabled if there is enough free resource to justify
1437 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1438 * ENOSPC), then we disable the counters to synchronise all callers and
1439 * re-distribute the available resources.
1440 *
1441 * If, once we redistributed the available resources, we still get a failure,
1442 * we disable the per-cpu counter and go through the slow path.
1443 *
1444 * The slow path is the current xfs_mod_incore_sb() function.  This means that
1445 * when we disable a per-cpu counter, we need to drain its resources back to
1446 * the global superblock. We do this after disabling the counter to prevent
1447 * more threads from queueing up on the counter.
1448 *
1449 * Essentially, this means that we still need a lock in the fast path to enable
1450 * synchronisation between the global counters and the per-cpu counters. This
1451 * is not a problem because the lock will be local to a CPU almost all the time
1452 * and have little contention except when we get to ENOSPC conditions.
1453 *
1454 * Basically, this lock becomes a barrier that enables us to lock out the fast
1455 * path while we do things like enabling and disabling counters and
1456 * synchronising the counters.
1457 *
1458 * Locking rules:
1459 *
1460 *      1. m_sb_lock before picking up per-cpu locks
1461 *      2. per-cpu locks always picked up via for_each_online_cpu() order
1462 *      3. accurate counter sync requires m_sb_lock + per cpu locks
1463 *      4. modifying per-cpu counters requires holding per-cpu lock
1464 *      5. modifying global counters requires holding m_sb_lock
1465 *      6. enabling or disabling a counter requires holding the m_sb_lock 
1466 *         and _none_ of the per-cpu locks.
1467 *
1468 * Disabled counters are only ever re-enabled by a balance operation
1469 * that results in more free resources per CPU than a given threshold.
1470 * To ensure counters don't remain disabled, they are rebalanced when
1471 * the global resource goes above a higher threshold (i.e. some hysteresis
1472 * is present to prevent thrashing).
1473 */
1474
1475#ifdef CONFIG_HOTPLUG_CPU
1476/*
1477 * hot-plug CPU notifier support.
1478 *
1479 * We need a notifier per filesystem as we need to be able to identify
1480 * the filesystem to balance the counters out. This is achieved by
1481 * having a notifier block embedded in the xfs_mount_t and doing pointer
1482 * magic to get the mount pointer from the notifier block address.
1483 */
1484STATIC int
1485xfs_icsb_cpu_notify(
1486        struct notifier_block *nfb,
1487        unsigned long action,
1488        void *hcpu)
1489{
1490        xfs_icsb_cnts_t *cntp;
1491        xfs_mount_t     *mp;
1492
1493        mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1494        cntp = (xfs_icsb_cnts_t *)
1495                        per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1496        switch (action) {
1497        case CPU_UP_PREPARE:
1498        case CPU_UP_PREPARE_FROZEN:
1499                /* Easy Case - initialize the area and locks, and
1500                 * then rebalance when online does everything else for us. */
1501                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1502                break;
1503        case CPU_ONLINE:
1504        case CPU_ONLINE_FROZEN:
1505                xfs_icsb_lock(mp);
1506                xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1507                xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1508                xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1509                xfs_icsb_unlock(mp);
1510                break;
1511        case CPU_DEAD:
1512        case CPU_DEAD_FROZEN:
1513                /* Disable all the counters, then fold the dead cpu's
1514                 * count into the total on the global superblock and
1515                 * re-enable the counters. */
1516                xfs_icsb_lock(mp);
1517                spin_lock(&mp->m_sb_lock);
1518                xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1519                xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1520                xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1521
1522                mp->m_sb.sb_icount += cntp->icsb_icount;
1523                mp->m_sb.sb_ifree += cntp->icsb_ifree;
1524                mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1525
1526                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1527
1528                xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1529                xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1530                xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1531                spin_unlock(&mp->m_sb_lock);
1532                xfs_icsb_unlock(mp);
1533                break;
1534        }
1535
1536        return NOTIFY_OK;
1537}
1538#endif /* CONFIG_HOTPLUG_CPU */
1539
1540int
1541xfs_icsb_init_counters(
1542        xfs_mount_t     *mp)
1543{
1544        xfs_icsb_cnts_t *cntp;
1545        int             i;
1546
1547        mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1548        if (mp->m_sb_cnts == NULL)
1549                return -ENOMEM;
1550
1551        for_each_online_cpu(i) {
1552                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1553                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1554        }
1555
1556        mutex_init(&mp->m_icsb_mutex);
1557
1558        /*
1559         * start with all counters disabled so that the
1560         * initial balance kicks us off correctly
1561         */
1562        mp->m_icsb_counters = -1;
1563
1564#ifdef CONFIG_HOTPLUG_CPU
1565        mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1566        mp->m_icsb_notifier.priority = 0;
1567        register_hotcpu_notifier(&mp->m_icsb_notifier);
1568#endif /* CONFIG_HOTPLUG_CPU */
1569
1570        return 0;
1571}
1572
1573void
1574xfs_icsb_reinit_counters(
1575        xfs_mount_t     *mp)
1576{
1577        xfs_icsb_lock(mp);
1578        /*
1579         * start with all counters disabled so that the
1580         * initial balance kicks us off correctly
1581         */
1582        mp->m_icsb_counters = -1;
1583        xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1584        xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1585        xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1586        xfs_icsb_unlock(mp);
1587}
1588
1589void
1590xfs_icsb_destroy_counters(
1591        xfs_mount_t     *mp)
1592{
1593        if (mp->m_sb_cnts) {
1594                unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1595                free_percpu(mp->m_sb_cnts);
1596        }
1597        mutex_destroy(&mp->m_icsb_mutex);
1598}
1599
1600STATIC void
1601xfs_icsb_lock_cntr(
1602        xfs_icsb_cnts_t *icsbp)
1603{
1604        while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1605                ndelay(1000);
1606        }
1607}
1608
1609STATIC void
1610xfs_icsb_unlock_cntr(
1611        xfs_icsb_cnts_t *icsbp)
1612{
1613        clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1614}
1615
1616
1617STATIC void
1618xfs_icsb_lock_all_counters(
1619        xfs_mount_t     *mp)
1620{
1621        xfs_icsb_cnts_t *cntp;
1622        int             i;
1623
1624        for_each_online_cpu(i) {
1625                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1626                xfs_icsb_lock_cntr(cntp);
1627        }
1628}
1629
1630STATIC void
1631xfs_icsb_unlock_all_counters(
1632        xfs_mount_t     *mp)
1633{
1634        xfs_icsb_cnts_t *cntp;
1635        int             i;
1636
1637        for_each_online_cpu(i) {
1638                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1639                xfs_icsb_unlock_cntr(cntp);
1640        }
1641}
1642
1643STATIC void
1644xfs_icsb_count(
1645        xfs_mount_t     *mp,
1646        xfs_icsb_cnts_t *cnt,
1647        int             flags)
1648{
1649        xfs_icsb_cnts_t *cntp;
1650        int             i;
1651
1652        memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1653
1654        if (!(flags & XFS_ICSB_LAZY_COUNT))
1655                xfs_icsb_lock_all_counters(mp);
1656
1657        for_each_online_cpu(i) {
1658                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1659                cnt->icsb_icount += cntp->icsb_icount;
1660                cnt->icsb_ifree += cntp->icsb_ifree;
1661                cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1662        }
1663
1664        if (!(flags & XFS_ICSB_LAZY_COUNT))
1665                xfs_icsb_unlock_all_counters(mp);
1666}
1667
1668STATIC int
1669xfs_icsb_counter_disabled(
1670        xfs_mount_t     *mp,
1671        xfs_sb_field_t  field)
1672{
1673        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1674        return test_bit(field, &mp->m_icsb_counters);
1675}
1676
1677STATIC void
1678xfs_icsb_disable_counter(
1679        xfs_mount_t     *mp,
1680        xfs_sb_field_t  field)
1681{
1682        xfs_icsb_cnts_t cnt;
1683
1684        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1685
1686        /*
1687         * If we are already disabled, then there is nothing to do
1688         * here. We check before locking all the counters to avoid
1689         * the expensive lock operation when being called in the
1690         * slow path and the counter is already disabled. This is
1691         * safe because the only time we set or clear this state is under
1692         * the m_icsb_mutex.
1693         */
1694        if (xfs_icsb_counter_disabled(mp, field))
1695                return;
1696
1697        xfs_icsb_lock_all_counters(mp);
1698        if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1699                /* drain back to superblock */
1700
1701                xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1702                switch(field) {
1703                case XFS_SBS_ICOUNT:
1704                        mp->m_sb.sb_icount = cnt.icsb_icount;
1705                        break;
1706                case XFS_SBS_IFREE:
1707                        mp->m_sb.sb_ifree = cnt.icsb_ifree;
1708                        break;
1709                case XFS_SBS_FDBLOCKS:
1710                        mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1711                        break;
1712                default:
1713                        BUG();
1714                }
1715        }
1716
1717        xfs_icsb_unlock_all_counters(mp);
1718}
1719
1720STATIC void
1721xfs_icsb_enable_counter(
1722        xfs_mount_t     *mp,
1723        xfs_sb_field_t  field,
1724        uint64_t        count,
1725        uint64_t        resid)
1726{
1727        xfs_icsb_cnts_t *cntp;
1728        int             i;
1729
1730        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1731
1732        xfs_icsb_lock_all_counters(mp);
1733        for_each_online_cpu(i) {
1734                cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1735                switch (field) {
1736                case XFS_SBS_ICOUNT:
1737                        cntp->icsb_icount = count + resid;
1738                        break;
1739                case XFS_SBS_IFREE:
1740                        cntp->icsb_ifree = count + resid;
1741                        break;
1742                case XFS_SBS_FDBLOCKS:
1743                        cntp->icsb_fdblocks = count + resid;
1744                        break;
1745                default:
1746                        BUG();
1747                        break;
1748                }
1749                resid = 0;
1750        }
1751        clear_bit(field, &mp->m_icsb_counters);
1752        xfs_icsb_unlock_all_counters(mp);
1753}
1754
1755void
1756xfs_icsb_sync_counters_locked(
1757        xfs_mount_t     *mp,
1758        int             flags)
1759{
1760        xfs_icsb_cnts_t cnt;
1761
1762        xfs_icsb_count(mp, &cnt, flags);
1763
1764        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1765                mp->m_sb.sb_icount = cnt.icsb_icount;
1766        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1767                mp->m_sb.sb_ifree = cnt.icsb_ifree;
1768        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1769                mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1770}
1771
1772/*
1773 * Accurate update of per-cpu counters to incore superblock
1774 */
1775void
1776xfs_icsb_sync_counters(
1777        xfs_mount_t     *mp,
1778        int             flags)
1779{
1780        spin_lock(&mp->m_sb_lock);
1781        xfs_icsb_sync_counters_locked(mp, flags);
1782        spin_unlock(&mp->m_sb_lock);
1783}
1784
1785/*
1786 * Balance and enable/disable counters as necessary.
1787 *
1788 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1789 * chosen to be the same number as single on disk allocation chunk per CPU, and
1790 * free blocks is something far enough zero that we aren't going thrash when we
1791 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1792 * prevent looping endlessly when xfs_alloc_space asks for more than will
1793 * be distributed to a single CPU but each CPU has enough blocks to be
1794 * reenabled.
1795 *
1796 * Note that we can be called when counters are already disabled.
1797 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1798 * prevent locking every per-cpu counter needlessly.
1799 */
1800
1801#define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
1802#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1803                (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1804STATIC void
1805xfs_icsb_balance_counter_locked(
1806        xfs_mount_t     *mp,
1807        xfs_sb_field_t  field,
1808        int             min_per_cpu)
1809{
1810        uint64_t        count, resid;
1811        int             weight = num_online_cpus();
1812        uint64_t        min = (uint64_t)min_per_cpu;
1813
1814        /* disable counter and sync counter */
1815        xfs_icsb_disable_counter(mp, field);
1816
1817        /* update counters  - first CPU gets residual*/
1818        switch (field) {
1819        case XFS_SBS_ICOUNT:
1820                count = mp->m_sb.sb_icount;
1821                resid = do_div(count, weight);
1822                if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1823                        return;
1824                break;
1825        case XFS_SBS_IFREE:
1826                count = mp->m_sb.sb_ifree;
1827                resid = do_div(count, weight);
1828                if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1829                        return;
1830                break;
1831        case XFS_SBS_FDBLOCKS:
1832                count = mp->m_sb.sb_fdblocks;
1833                resid = do_div(count, weight);
1834                if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1835                        return;
1836                break;
1837        default:
1838                BUG();
1839                count = resid = 0;      /* quiet, gcc */
1840                break;
1841        }
1842
1843        xfs_icsb_enable_counter(mp, field, count, resid);
1844}
1845
1846STATIC void
1847xfs_icsb_balance_counter(
1848        xfs_mount_t     *mp,
1849        xfs_sb_field_t  fields,
1850        int             min_per_cpu)
1851{
1852        spin_lock(&mp->m_sb_lock);
1853        xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1854        spin_unlock(&mp->m_sb_lock);
1855}
1856
1857int
1858xfs_icsb_modify_counters(
1859        xfs_mount_t     *mp,
1860        xfs_sb_field_t  field,
1861        int64_t         delta,
1862        int             rsvd)
1863{
1864        xfs_icsb_cnts_t *icsbp;
1865        long long       lcounter;       /* long counter for 64 bit fields */
1866        int             ret = 0;
1867
1868        might_sleep();
1869again:
1870        preempt_disable();
1871        icsbp = this_cpu_ptr(mp->m_sb_cnts);
1872
1873        /*
1874         * if the counter is disabled, go to slow path
1875         */
1876        if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1877                goto slow_path;
1878        xfs_icsb_lock_cntr(icsbp);
1879        if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1880                xfs_icsb_unlock_cntr(icsbp);
1881                goto slow_path;
1882        }
1883
1884        switch (field) {
1885        case XFS_SBS_ICOUNT:
1886                lcounter = icsbp->icsb_icount;
1887                lcounter += delta;
1888                if (unlikely(lcounter < 0))
1889                        goto balance_counter;
1890                icsbp->icsb_icount = lcounter;
1891                break;
1892
1893        case XFS_SBS_IFREE:
1894                lcounter = icsbp->icsb_ifree;
1895                lcounter += delta;
1896                if (unlikely(lcounter < 0))
1897                        goto balance_counter;
1898                icsbp->icsb_ifree = lcounter;
1899                break;
1900
1901        case XFS_SBS_FDBLOCKS:
1902                BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1903
1904                lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1905                lcounter += delta;
1906                if (unlikely(lcounter < 0))
1907                        goto balance_counter;
1908                icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1909                break;
1910        default:
1911                BUG();
1912                break;
1913        }
1914        xfs_icsb_unlock_cntr(icsbp);
1915        preempt_enable();
1916        return 0;
1917
1918slow_path:
1919        preempt_enable();
1920
1921        /*
1922         * serialise with a mutex so we don't burn lots of cpu on
1923         * the superblock lock. We still need to hold the superblock
1924         * lock, however, when we modify the global structures.
1925         */
1926        xfs_icsb_lock(mp);
1927
1928        /*
1929         * Now running atomically.
1930         *
1931         * If the counter is enabled, someone has beaten us to rebalancing.
1932         * Drop the lock and try again in the fast path....
1933         */
1934        if (!(xfs_icsb_counter_disabled(mp, field))) {
1935                xfs_icsb_unlock(mp);
1936                goto again;
1937        }
1938
1939        /*
1940         * The counter is currently disabled. Because we are
1941         * running atomically here, we know a rebalance cannot
1942         * be in progress. Hence we can go straight to operating
1943         * on the global superblock. We do not call xfs_mod_incore_sb()
1944         * here even though we need to get the m_sb_lock. Doing so
1945         * will cause us to re-enter this function and deadlock.
1946         * Hence we get the m_sb_lock ourselves and then call
1947         * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1948         * directly on the global counters.
1949         */
1950        spin_lock(&mp->m_sb_lock);
1951        ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1952        spin_unlock(&mp->m_sb_lock);
1953
1954        /*
1955         * Now that we've modified the global superblock, we
1956         * may be able to re-enable the distributed counters
1957         * (e.g. lots of space just got freed). After that
1958         * we are done.
1959         */
1960        if (ret != ENOSPC)
1961                xfs_icsb_balance_counter(mp, field, 0);
1962        xfs_icsb_unlock(mp);
1963        return ret;
1964
1965balance_counter:
1966        xfs_icsb_unlock_cntr(icsbp);
1967        preempt_enable();
1968
1969        /*
1970         * We may have multiple threads here if multiple per-cpu
1971         * counters run dry at the same time. This will mean we can
1972         * do more balances than strictly necessary but it is not
1973         * the common slowpath case.
1974         */
1975        xfs_icsb_lock(mp);
1976
1977        /*
1978         * running atomically.
1979         *
1980         * This will leave the counter in the correct state for future
1981         * accesses. After the rebalance, we simply try again and our retry
1982         * will either succeed through the fast path or slow path without
1983         * another balance operation being required.
1984         */
1985        xfs_icsb_balance_counter(mp, field, delta);
1986        xfs_icsb_unlock(mp);
1987        goto again;
1988}
1989
1990#endif
1991