linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/gfp.h>
   9#include <linux/bug.h>
  10#include <linux/list.h>
  11#include <linux/mmzone.h>
  12#include <linux/rbtree.h>
  13#include <linux/atomic.h>
  14#include <linux/debug_locks.h>
  15#include <linux/mm_types.h>
  16#include <linux/range.h>
  17#include <linux/pfn.h>
  18#include <linux/bit_spinlock.h>
  19#include <linux/shrinker.h>
  20
  21struct mempolicy;
  22struct anon_vma;
  23struct anon_vma_chain;
  24struct file_ra_state;
  25struct user_struct;
  26struct writeback_control;
  27
  28#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  29extern unsigned long max_mapnr;
  30
  31static inline void set_max_mapnr(unsigned long limit)
  32{
  33        max_mapnr = limit;
  34}
  35#else
  36static inline void set_max_mapnr(unsigned long limit) { }
  37#endif
  38
  39extern unsigned long totalram_pages;
  40extern void * high_memory;
  41extern int page_cluster;
  42
  43#ifdef CONFIG_SYSCTL
  44extern int sysctl_legacy_va_layout;
  45#else
  46#define sysctl_legacy_va_layout 0
  47#endif
  48
  49#include <asm/page.h>
  50#include <asm/pgtable.h>
  51#include <asm/processor.h>
  52
  53extern unsigned long sysctl_user_reserve_kbytes;
  54extern unsigned long sysctl_admin_reserve_kbytes;
  55
  56#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  57
  58/* to align the pointer to the (next) page boundary */
  59#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  60
  61/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  62#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  63
  64/*
  65 * Linux kernel virtual memory manager primitives.
  66 * The idea being to have a "virtual" mm in the same way
  67 * we have a virtual fs - giving a cleaner interface to the
  68 * mm details, and allowing different kinds of memory mappings
  69 * (from shared memory to executable loading to arbitrary
  70 * mmap() functions).
  71 */
  72
  73extern struct kmem_cache *vm_area_cachep;
  74
  75#ifndef CONFIG_MMU
  76extern struct rb_root nommu_region_tree;
  77extern struct rw_semaphore nommu_region_sem;
  78
  79extern unsigned int kobjsize(const void *objp);
  80#endif
  81
  82/*
  83 * vm_flags in vm_area_struct, see mm_types.h.
  84 */
  85#define VM_NONE         0x00000000
  86
  87#define VM_READ         0x00000001      /* currently active flags */
  88#define VM_WRITE        0x00000002
  89#define VM_EXEC         0x00000004
  90#define VM_SHARED       0x00000008
  91
  92/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  93#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
  94#define VM_MAYWRITE     0x00000020
  95#define VM_MAYEXEC      0x00000040
  96#define VM_MAYSHARE     0x00000080
  97
  98#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
  99#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 100#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 101
 102#define VM_LOCKED       0x00002000
 103#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 104
 105                                        /* Used by sys_madvise() */
 106#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 107#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 108
 109#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 110#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 111#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 112#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 113#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 114#define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
 115#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 116#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 117
 118#ifdef CONFIG_MEM_SOFT_DIRTY
 119# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 120#else
 121# define VM_SOFTDIRTY   0
 122#endif
 123
 124#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 125#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 126#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 127#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 128
 129#if defined(CONFIG_X86)
 130# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 131#elif defined(CONFIG_PPC)
 132# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 133#elif defined(CONFIG_PARISC)
 134# define VM_GROWSUP     VM_ARCH_1
 135#elif defined(CONFIG_METAG)
 136# define VM_GROWSUP     VM_ARCH_1
 137#elif defined(CONFIG_IA64)
 138# define VM_GROWSUP     VM_ARCH_1
 139#elif !defined(CONFIG_MMU)
 140# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 141#endif
 142
 143#ifndef VM_GROWSUP
 144# define VM_GROWSUP     VM_NONE
 145#endif
 146
 147/* Bits set in the VMA until the stack is in its final location */
 148#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 149
 150#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 151#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 152#endif
 153
 154#ifdef CONFIG_STACK_GROWSUP
 155#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 156#else
 157#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 158#endif
 159
 160/*
 161 * Special vmas that are non-mergable, non-mlock()able.
 162 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 163 */
 164#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
 165
 166/*
 167 * mapping from the currently active vm_flags protection bits (the
 168 * low four bits) to a page protection mask..
 169 */
 170extern pgprot_t protection_map[16];
 171
 172#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 173#define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
 174#define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
 175#define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
 176#define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
 177#define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
 178#define FAULT_FLAG_TRIED        0x40    /* second try */
 179#define FAULT_FLAG_USER         0x80    /* The fault originated in userspace */
 180
 181/*
 182 * vm_fault is filled by the the pagefault handler and passed to the vma's
 183 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 184 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 185 *
 186 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 187 * is used, one may implement ->remap_pages to get nonlinear mapping support.
 188 */
 189struct vm_fault {
 190        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 191        pgoff_t pgoff;                  /* Logical page offset based on vma */
 192        void __user *virtual_address;   /* Faulting virtual address */
 193
 194        struct page *page;              /* ->fault handlers should return a
 195                                         * page here, unless VM_FAULT_NOPAGE
 196                                         * is set (which is also implied by
 197                                         * VM_FAULT_ERROR).
 198                                         */
 199};
 200
 201/*
 202 * These are the virtual MM functions - opening of an area, closing and
 203 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 204 * to the functions called when a no-page or a wp-page exception occurs. 
 205 */
 206struct vm_operations_struct {
 207        void (*open)(struct vm_area_struct * area);
 208        void (*close)(struct vm_area_struct * area);
 209        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 210
 211        /* notification that a previously read-only page is about to become
 212         * writable, if an error is returned it will cause a SIGBUS */
 213        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 214
 215        /* called by access_process_vm when get_user_pages() fails, typically
 216         * for use by special VMAs that can switch between memory and hardware
 217         */
 218        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 219                      void *buf, int len, int write);
 220#ifdef CONFIG_NUMA
 221        /*
 222         * set_policy() op must add a reference to any non-NULL @new mempolicy
 223         * to hold the policy upon return.  Caller should pass NULL @new to
 224         * remove a policy and fall back to surrounding context--i.e. do not
 225         * install a MPOL_DEFAULT policy, nor the task or system default
 226         * mempolicy.
 227         */
 228        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 229
 230        /*
 231         * get_policy() op must add reference [mpol_get()] to any policy at
 232         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 233         * in mm/mempolicy.c will do this automatically.
 234         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 235         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 236         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 237         * must return NULL--i.e., do not "fallback" to task or system default
 238         * policy.
 239         */
 240        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 241                                        unsigned long addr);
 242        int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
 243                const nodemask_t *to, unsigned long flags);
 244#endif
 245        /* called by sys_remap_file_pages() to populate non-linear mapping */
 246        int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
 247                           unsigned long size, pgoff_t pgoff);
 248};
 249
 250struct mmu_gather;
 251struct inode;
 252
 253#define page_private(page)              ((page)->private)
 254#define set_page_private(page, v)       ((page)->private = (v))
 255
 256/* It's valid only if the page is free path or free_list */
 257static inline void set_freepage_migratetype(struct page *page, int migratetype)
 258{
 259        page->index = migratetype;
 260}
 261
 262/* It's valid only if the page is free path or free_list */
 263static inline int get_freepage_migratetype(struct page *page)
 264{
 265        return page->index;
 266}
 267
 268/*
 269 * FIXME: take this include out, include page-flags.h in
 270 * files which need it (119 of them)
 271 */
 272#include <linux/page-flags.h>
 273#include <linux/huge_mm.h>
 274
 275/*
 276 * Methods to modify the page usage count.
 277 *
 278 * What counts for a page usage:
 279 * - cache mapping   (page->mapping)
 280 * - private data    (page->private)
 281 * - page mapped in a task's page tables, each mapping
 282 *   is counted separately
 283 *
 284 * Also, many kernel routines increase the page count before a critical
 285 * routine so they can be sure the page doesn't go away from under them.
 286 */
 287
 288/*
 289 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 290 */
 291static inline int put_page_testzero(struct page *page)
 292{
 293        VM_BUG_ON(atomic_read(&page->_count) == 0);
 294        return atomic_dec_and_test(&page->_count);
 295}
 296
 297/*
 298 * Try to grab a ref unless the page has a refcount of zero, return false if
 299 * that is the case.
 300 */
 301static inline int get_page_unless_zero(struct page *page)
 302{
 303        return atomic_inc_not_zero(&page->_count);
 304}
 305
 306extern int page_is_ram(unsigned long pfn);
 307
 308/* Support for virtually mapped pages */
 309struct page *vmalloc_to_page(const void *addr);
 310unsigned long vmalloc_to_pfn(const void *addr);
 311
 312/*
 313 * Determine if an address is within the vmalloc range
 314 *
 315 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 316 * is no special casing required.
 317 */
 318static inline int is_vmalloc_addr(const void *x)
 319{
 320#ifdef CONFIG_MMU
 321        unsigned long addr = (unsigned long)x;
 322
 323        return addr >= VMALLOC_START && addr < VMALLOC_END;
 324#else
 325        return 0;
 326#endif
 327}
 328#ifdef CONFIG_MMU
 329extern int is_vmalloc_or_module_addr(const void *x);
 330#else
 331static inline int is_vmalloc_or_module_addr(const void *x)
 332{
 333        return 0;
 334}
 335#endif
 336
 337static inline void compound_lock(struct page *page)
 338{
 339#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 340        VM_BUG_ON(PageSlab(page));
 341        bit_spin_lock(PG_compound_lock, &page->flags);
 342#endif
 343}
 344
 345static inline void compound_unlock(struct page *page)
 346{
 347#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 348        VM_BUG_ON(PageSlab(page));
 349        bit_spin_unlock(PG_compound_lock, &page->flags);
 350#endif
 351}
 352
 353static inline unsigned long compound_lock_irqsave(struct page *page)
 354{
 355        unsigned long uninitialized_var(flags);
 356#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 357        local_irq_save(flags);
 358        compound_lock(page);
 359#endif
 360        return flags;
 361}
 362
 363static inline void compound_unlock_irqrestore(struct page *page,
 364                                              unsigned long flags)
 365{
 366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 367        compound_unlock(page);
 368        local_irq_restore(flags);
 369#endif
 370}
 371
 372static inline struct page *compound_head(struct page *page)
 373{
 374        if (unlikely(PageTail(page)))
 375                return page->first_page;
 376        return page;
 377}
 378
 379/*
 380 * The atomic page->_mapcount, starts from -1: so that transitions
 381 * both from it and to it can be tracked, using atomic_inc_and_test
 382 * and atomic_add_negative(-1).
 383 */
 384static inline void page_mapcount_reset(struct page *page)
 385{
 386        atomic_set(&(page)->_mapcount, -1);
 387}
 388
 389static inline int page_mapcount(struct page *page)
 390{
 391        return atomic_read(&(page)->_mapcount) + 1;
 392}
 393
 394static inline int page_count(struct page *page)
 395{
 396        return atomic_read(&compound_head(page)->_count);
 397}
 398
 399static inline void get_huge_page_tail(struct page *page)
 400{
 401        /*
 402         * __split_huge_page_refcount() cannot run
 403         * from under us.
 404         */
 405        VM_BUG_ON(page_mapcount(page) < 0);
 406        VM_BUG_ON(atomic_read(&page->_count) != 0);
 407        atomic_inc(&page->_mapcount);
 408}
 409
 410extern bool __get_page_tail(struct page *page);
 411
 412static inline void get_page(struct page *page)
 413{
 414        if (unlikely(PageTail(page)))
 415                if (likely(__get_page_tail(page)))
 416                        return;
 417        /*
 418         * Getting a normal page or the head of a compound page
 419         * requires to already have an elevated page->_count.
 420         */
 421        VM_BUG_ON(atomic_read(&page->_count) <= 0);
 422        atomic_inc(&page->_count);
 423}
 424
 425static inline struct page *virt_to_head_page(const void *x)
 426{
 427        struct page *page = virt_to_page(x);
 428        return compound_head(page);
 429}
 430
 431/*
 432 * Setup the page count before being freed into the page allocator for
 433 * the first time (boot or memory hotplug)
 434 */
 435static inline void init_page_count(struct page *page)
 436{
 437        atomic_set(&page->_count, 1);
 438}
 439
 440/*
 441 * PageBuddy() indicate that the page is free and in the buddy system
 442 * (see mm/page_alloc.c).
 443 *
 444 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
 445 * -2 so that an underflow of the page_mapcount() won't be mistaken
 446 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
 447 * efficiently by most CPU architectures.
 448 */
 449#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
 450
 451static inline int PageBuddy(struct page *page)
 452{
 453        return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
 454}
 455
 456static inline void __SetPageBuddy(struct page *page)
 457{
 458        VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
 459        atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
 460}
 461
 462static inline void __ClearPageBuddy(struct page *page)
 463{
 464        VM_BUG_ON(!PageBuddy(page));
 465        atomic_set(&page->_mapcount, -1);
 466}
 467
 468void put_page(struct page *page);
 469void put_pages_list(struct list_head *pages);
 470
 471void split_page(struct page *page, unsigned int order);
 472int split_free_page(struct page *page);
 473
 474/*
 475 * Compound pages have a destructor function.  Provide a
 476 * prototype for that function and accessor functions.
 477 * These are _only_ valid on the head of a PG_compound page.
 478 */
 479typedef void compound_page_dtor(struct page *);
 480
 481static inline void set_compound_page_dtor(struct page *page,
 482                                                compound_page_dtor *dtor)
 483{
 484        page[1].lru.next = (void *)dtor;
 485}
 486
 487static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 488{
 489        return (compound_page_dtor *)page[1].lru.next;
 490}
 491
 492static inline int compound_order(struct page *page)
 493{
 494        if (!PageHead(page))
 495                return 0;
 496        return (unsigned long)page[1].lru.prev;
 497}
 498
 499static inline void set_compound_order(struct page *page, unsigned long order)
 500{
 501        page[1].lru.prev = (void *)order;
 502}
 503
 504#ifdef CONFIG_MMU
 505/*
 506 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 507 * servicing faults for write access.  In the normal case, do always want
 508 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 509 * that do not have writing enabled, when used by access_process_vm.
 510 */
 511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 512{
 513        if (likely(vma->vm_flags & VM_WRITE))
 514                pte = pte_mkwrite(pte);
 515        return pte;
 516}
 517#endif
 518
 519/*
 520 * Multiple processes may "see" the same page. E.g. for untouched
 521 * mappings of /dev/null, all processes see the same page full of
 522 * zeroes, and text pages of executables and shared libraries have
 523 * only one copy in memory, at most, normally.
 524 *
 525 * For the non-reserved pages, page_count(page) denotes a reference count.
 526 *   page_count() == 0 means the page is free. page->lru is then used for
 527 *   freelist management in the buddy allocator.
 528 *   page_count() > 0  means the page has been allocated.
 529 *
 530 * Pages are allocated by the slab allocator in order to provide memory
 531 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 533 * unless a particular usage is carefully commented. (the responsibility of
 534 * freeing the kmalloc memory is the caller's, of course).
 535 *
 536 * A page may be used by anyone else who does a __get_free_page().
 537 * In this case, page_count still tracks the references, and should only
 538 * be used through the normal accessor functions. The top bits of page->flags
 539 * and page->virtual store page management information, but all other fields
 540 * are unused and could be used privately, carefully. The management of this
 541 * page is the responsibility of the one who allocated it, and those who have
 542 * subsequently been given references to it.
 543 *
 544 * The other pages (we may call them "pagecache pages") are completely
 545 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 546 * The following discussion applies only to them.
 547 *
 548 * A pagecache page contains an opaque `private' member, which belongs to the
 549 * page's address_space. Usually, this is the address of a circular list of
 550 * the page's disk buffers. PG_private must be set to tell the VM to call
 551 * into the filesystem to release these pages.
 552 *
 553 * A page may belong to an inode's memory mapping. In this case, page->mapping
 554 * is the pointer to the inode, and page->index is the file offset of the page,
 555 * in units of PAGE_CACHE_SIZE.
 556 *
 557 * If pagecache pages are not associated with an inode, they are said to be
 558 * anonymous pages. These may become associated with the swapcache, and in that
 559 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 560 *
 561 * In either case (swapcache or inode backed), the pagecache itself holds one
 562 * reference to the page. Setting PG_private should also increment the
 563 * refcount. The each user mapping also has a reference to the page.
 564 *
 565 * The pagecache pages are stored in a per-mapping radix tree, which is
 566 * rooted at mapping->page_tree, and indexed by offset.
 567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 568 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 569 *
 570 * All pagecache pages may be subject to I/O:
 571 * - inode pages may need to be read from disk,
 572 * - inode pages which have been modified and are MAP_SHARED may need
 573 *   to be written back to the inode on disk,
 574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 575 *   modified may need to be swapped out to swap space and (later) to be read
 576 *   back into memory.
 577 */
 578
 579/*
 580 * The zone field is never updated after free_area_init_core()
 581 * sets it, so none of the operations on it need to be atomic.
 582 */
 583
 584/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
 585#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 586#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 587#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 588#define LAST_NID_PGOFF          (ZONES_PGOFF - LAST_NID_WIDTH)
 589
 590/*
 591 * Define the bit shifts to access each section.  For non-existent
 592 * sections we define the shift as 0; that plus a 0 mask ensures
 593 * the compiler will optimise away reference to them.
 594 */
 595#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 596#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 597#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 598#define LAST_NID_PGSHIFT        (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
 599
 600/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 601#ifdef NODE_NOT_IN_PAGE_FLAGS
 602#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 603#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 604                                                SECTIONS_PGOFF : ZONES_PGOFF)
 605#else
 606#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 607#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 608                                                NODES_PGOFF : ZONES_PGOFF)
 609#endif
 610
 611#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 612
 613#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 614#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 615#endif
 616
 617#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 618#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 619#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 620#define LAST_NID_MASK           ((1UL << LAST_NID_WIDTH) - 1)
 621#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 622
 623static inline enum zone_type page_zonenum(const struct page *page)
 624{
 625        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 626}
 627
 628#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 629#define SECTION_IN_PAGE_FLAGS
 630#endif
 631
 632/*
 633 * The identification function is mainly used by the buddy allocator for
 634 * determining if two pages could be buddies. We are not really identifying
 635 * the zone since we could be using the section number id if we do not have
 636 * node id available in page flags.
 637 * We only guarantee that it will return the same value for two combinable
 638 * pages in a zone.
 639 */
 640static inline int page_zone_id(struct page *page)
 641{
 642        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 643}
 644
 645static inline int zone_to_nid(struct zone *zone)
 646{
 647#ifdef CONFIG_NUMA
 648        return zone->node;
 649#else
 650        return 0;
 651#endif
 652}
 653
 654#ifdef NODE_NOT_IN_PAGE_FLAGS
 655extern int page_to_nid(const struct page *page);
 656#else
 657static inline int page_to_nid(const struct page *page)
 658{
 659        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 660}
 661#endif
 662
 663#ifdef CONFIG_NUMA_BALANCING
 664#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
 665static inline int page_nid_xchg_last(struct page *page, int nid)
 666{
 667        return xchg(&page->_last_nid, nid);
 668}
 669
 670static inline int page_nid_last(struct page *page)
 671{
 672        return page->_last_nid;
 673}
 674static inline void page_nid_reset_last(struct page *page)
 675{
 676        page->_last_nid = -1;
 677}
 678#else
 679static inline int page_nid_last(struct page *page)
 680{
 681        return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
 682}
 683
 684extern int page_nid_xchg_last(struct page *page, int nid);
 685
 686static inline void page_nid_reset_last(struct page *page)
 687{
 688        int nid = (1 << LAST_NID_SHIFT) - 1;
 689
 690        page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
 691        page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
 692}
 693#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
 694#else
 695static inline int page_nid_xchg_last(struct page *page, int nid)
 696{
 697        return page_to_nid(page);
 698}
 699
 700static inline int page_nid_last(struct page *page)
 701{
 702        return page_to_nid(page);
 703}
 704
 705static inline void page_nid_reset_last(struct page *page)
 706{
 707}
 708#endif
 709
 710static inline struct zone *page_zone(const struct page *page)
 711{
 712        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 713}
 714
 715#ifdef SECTION_IN_PAGE_FLAGS
 716static inline void set_page_section(struct page *page, unsigned long section)
 717{
 718        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 719        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 720}
 721
 722static inline unsigned long page_to_section(const struct page *page)
 723{
 724        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 725}
 726#endif
 727
 728static inline void set_page_zone(struct page *page, enum zone_type zone)
 729{
 730        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 731        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 732}
 733
 734static inline void set_page_node(struct page *page, unsigned long node)
 735{
 736        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 737        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 738}
 739
 740static inline void set_page_links(struct page *page, enum zone_type zone,
 741        unsigned long node, unsigned long pfn)
 742{
 743        set_page_zone(page, zone);
 744        set_page_node(page, node);
 745#ifdef SECTION_IN_PAGE_FLAGS
 746        set_page_section(page, pfn_to_section_nr(pfn));
 747#endif
 748}
 749
 750/*
 751 * Some inline functions in vmstat.h depend on page_zone()
 752 */
 753#include <linux/vmstat.h>
 754
 755static __always_inline void *lowmem_page_address(const struct page *page)
 756{
 757        return __va(PFN_PHYS(page_to_pfn(page)));
 758}
 759
 760#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 761#define HASHED_PAGE_VIRTUAL
 762#endif
 763
 764#if defined(WANT_PAGE_VIRTUAL)
 765#define page_address(page) ((page)->virtual)
 766#define set_page_address(page, address)                 \
 767        do {                                            \
 768                (page)->virtual = (address);            \
 769        } while(0)
 770#define page_address_init()  do { } while(0)
 771#endif
 772
 773#if defined(HASHED_PAGE_VIRTUAL)
 774void *page_address(const struct page *page);
 775void set_page_address(struct page *page, void *virtual);
 776void page_address_init(void);
 777#endif
 778
 779#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 780#define page_address(page) lowmem_page_address(page)
 781#define set_page_address(page, address)  do { } while(0)
 782#define page_address_init()  do { } while(0)
 783#endif
 784
 785/*
 786 * On an anonymous page mapped into a user virtual memory area,
 787 * page->mapping points to its anon_vma, not to a struct address_space;
 788 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 789 *
 790 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 791 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 792 * and then page->mapping points, not to an anon_vma, but to a private
 793 * structure which KSM associates with that merged page.  See ksm.h.
 794 *
 795 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 796 *
 797 * Please note that, confusingly, "page_mapping" refers to the inode
 798 * address_space which maps the page from disk; whereas "page_mapped"
 799 * refers to user virtual address space into which the page is mapped.
 800 */
 801#define PAGE_MAPPING_ANON       1
 802#define PAGE_MAPPING_KSM        2
 803#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
 804
 805extern struct address_space *page_mapping(struct page *page);
 806
 807/* Neutral page->mapping pointer to address_space or anon_vma or other */
 808static inline void *page_rmapping(struct page *page)
 809{
 810        return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
 811}
 812
 813extern struct address_space *__page_file_mapping(struct page *);
 814
 815static inline
 816struct address_space *page_file_mapping(struct page *page)
 817{
 818        if (unlikely(PageSwapCache(page)))
 819                return __page_file_mapping(page);
 820
 821        return page->mapping;
 822}
 823
 824static inline int PageAnon(struct page *page)
 825{
 826        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 827}
 828
 829/*
 830 * Return the pagecache index of the passed page.  Regular pagecache pages
 831 * use ->index whereas swapcache pages use ->private
 832 */
 833static inline pgoff_t page_index(struct page *page)
 834{
 835        if (unlikely(PageSwapCache(page)))
 836                return page_private(page);
 837        return page->index;
 838}
 839
 840extern pgoff_t __page_file_index(struct page *page);
 841
 842/*
 843 * Return the file index of the page. Regular pagecache pages use ->index
 844 * whereas swapcache pages use swp_offset(->private)
 845 */
 846static inline pgoff_t page_file_index(struct page *page)
 847{
 848        if (unlikely(PageSwapCache(page)))
 849                return __page_file_index(page);
 850
 851        return page->index;
 852}
 853
 854/*
 855 * Return true if this page is mapped into pagetables.
 856 */
 857static inline int page_mapped(struct page *page)
 858{
 859        return atomic_read(&(page)->_mapcount) >= 0;
 860}
 861
 862/*
 863 * Different kinds of faults, as returned by handle_mm_fault().
 864 * Used to decide whether a process gets delivered SIGBUS or
 865 * just gets major/minor fault counters bumped up.
 866 */
 867
 868#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
 869
 870#define VM_FAULT_OOM    0x0001
 871#define VM_FAULT_SIGBUS 0x0002
 872#define VM_FAULT_MAJOR  0x0004
 873#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
 874#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
 875#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
 876
 877#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
 878#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
 879#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
 880#define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
 881
 882#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
 883
 884#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
 885                         VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
 886
 887/* Encode hstate index for a hwpoisoned large page */
 888#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
 889#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
 890
 891/*
 892 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 893 */
 894extern void pagefault_out_of_memory(void);
 895
 896#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
 897
 898/*
 899 * Flags passed to show_mem() and show_free_areas() to suppress output in
 900 * various contexts.
 901 */
 902#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
 903#define SHOW_MEM_FILTER_PAGE_COUNT      (0x0002u)       /* page type count */
 904
 905extern void show_free_areas(unsigned int flags);
 906extern bool skip_free_areas_node(unsigned int flags, int nid);
 907
 908int shmem_zero_setup(struct vm_area_struct *);
 909
 910extern int can_do_mlock(void);
 911extern int user_shm_lock(size_t, struct user_struct *);
 912extern void user_shm_unlock(size_t, struct user_struct *);
 913
 914/*
 915 * Parameter block passed down to zap_pte_range in exceptional cases.
 916 */
 917struct zap_details {
 918        struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
 919        struct address_space *check_mapping;    /* Check page->mapping if set */
 920        pgoff_t first_index;                    /* Lowest page->index to unmap */
 921        pgoff_t last_index;                     /* Highest page->index to unmap */
 922};
 923
 924struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 925                pte_t pte);
 926
 927int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 928                unsigned long size);
 929void zap_page_range(struct vm_area_struct *vma, unsigned long address,
 930                unsigned long size, struct zap_details *);
 931void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 932                unsigned long start, unsigned long end);
 933
 934/**
 935 * mm_walk - callbacks for walk_page_range
 936 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
 937 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 938 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 939 *             this handler is required to be able to handle
 940 *             pmd_trans_huge() pmds.  They may simply choose to
 941 *             split_huge_page() instead of handling it explicitly.
 942 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 943 * @pte_hole: if set, called for each hole at all levels
 944 * @hugetlb_entry: if set, called for each hugetlb entry
 945 *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
 946 *                            is used.
 947 *
 948 * (see walk_page_range for more details)
 949 */
 950struct mm_walk {
 951        int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
 952                         unsigned long next, struct mm_walk *walk);
 953        int (*pud_entry)(pud_t *pud, unsigned long addr,
 954                         unsigned long next, struct mm_walk *walk);
 955        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
 956                         unsigned long next, struct mm_walk *walk);
 957        int (*pte_entry)(pte_t *pte, unsigned long addr,
 958                         unsigned long next, struct mm_walk *walk);
 959        int (*pte_hole)(unsigned long addr, unsigned long next,
 960                        struct mm_walk *walk);
 961        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
 962                             unsigned long addr, unsigned long next,
 963                             struct mm_walk *walk);
 964        struct mm_struct *mm;
 965        void *private;
 966};
 967
 968int walk_page_range(unsigned long addr, unsigned long end,
 969                struct mm_walk *walk);
 970void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
 971                unsigned long end, unsigned long floor, unsigned long ceiling);
 972int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
 973                        struct vm_area_struct *vma);
 974void unmap_mapping_range(struct address_space *mapping,
 975                loff_t const holebegin, loff_t const holelen, int even_cows);
 976int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 977        unsigned long *pfn);
 978int follow_phys(struct vm_area_struct *vma, unsigned long address,
 979                unsigned int flags, unsigned long *prot, resource_size_t *phys);
 980int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 981                        void *buf, int len, int write);
 982
 983static inline void unmap_shared_mapping_range(struct address_space *mapping,
 984                loff_t const holebegin, loff_t const holelen)
 985{
 986        unmap_mapping_range(mapping, holebegin, holelen, 0);
 987}
 988
 989extern void truncate_pagecache(struct inode *inode, loff_t new);
 990extern void truncate_setsize(struct inode *inode, loff_t newsize);
 991void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
 992int truncate_inode_page(struct address_space *mapping, struct page *page);
 993int generic_error_remove_page(struct address_space *mapping, struct page *page);
 994int invalidate_inode_page(struct page *page);
 995
 996#ifdef CONFIG_MMU
 997extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 998                        unsigned long address, unsigned int flags);
 999extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1000                            unsigned long address, unsigned int fault_flags);
1001#else
1002static inline int handle_mm_fault(struct mm_struct *mm,
1003                        struct vm_area_struct *vma, unsigned long address,
1004                        unsigned int flags)
1005{
1006        /* should never happen if there's no MMU */
1007        BUG();
1008        return VM_FAULT_SIGBUS;
1009}
1010static inline int fixup_user_fault(struct task_struct *tsk,
1011                struct mm_struct *mm, unsigned long address,
1012                unsigned int fault_flags)
1013{
1014        /* should never happen if there's no MMU */
1015        BUG();
1016        return -EFAULT;
1017}
1018#endif
1019
1020extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1021extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1022                void *buf, int len, int write);
1023
1024long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1025                      unsigned long start, unsigned long nr_pages,
1026                      unsigned int foll_flags, struct page **pages,
1027                      struct vm_area_struct **vmas, int *nonblocking);
1028long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1029                    unsigned long start, unsigned long nr_pages,
1030                    int write, int force, struct page **pages,
1031                    struct vm_area_struct **vmas);
1032int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1033                        struct page **pages);
1034struct kvec;
1035int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1036                        struct page **pages);
1037int get_kernel_page(unsigned long start, int write, struct page **pages);
1038struct page *get_dump_page(unsigned long addr);
1039
1040extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1041extern void do_invalidatepage(struct page *page, unsigned int offset,
1042                              unsigned int length);
1043
1044int __set_page_dirty_nobuffers(struct page *page);
1045int __set_page_dirty_no_writeback(struct page *page);
1046int redirty_page_for_writepage(struct writeback_control *wbc,
1047                                struct page *page);
1048void account_page_dirtied(struct page *page, struct address_space *mapping);
1049void account_page_writeback(struct page *page);
1050int set_page_dirty(struct page *page);
1051int set_page_dirty_lock(struct page *page);
1052int clear_page_dirty_for_io(struct page *page);
1053
1054/* Is the vma a continuation of the stack vma above it? */
1055static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1056{
1057        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1058}
1059
1060static inline int stack_guard_page_start(struct vm_area_struct *vma,
1061                                             unsigned long addr)
1062{
1063        return (vma->vm_flags & VM_GROWSDOWN) &&
1064                (vma->vm_start == addr) &&
1065                !vma_growsdown(vma->vm_prev, addr);
1066}
1067
1068/* Is the vma a continuation of the stack vma below it? */
1069static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1070{
1071        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1072}
1073
1074static inline int stack_guard_page_end(struct vm_area_struct *vma,
1075                                           unsigned long addr)
1076{
1077        return (vma->vm_flags & VM_GROWSUP) &&
1078                (vma->vm_end == addr) &&
1079                !vma_growsup(vma->vm_next, addr);
1080}
1081
1082extern pid_t
1083vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1084
1085extern unsigned long move_page_tables(struct vm_area_struct *vma,
1086                unsigned long old_addr, struct vm_area_struct *new_vma,
1087                unsigned long new_addr, unsigned long len,
1088                bool need_rmap_locks);
1089extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1090                              unsigned long end, pgprot_t newprot,
1091                              int dirty_accountable, int prot_numa);
1092extern int mprotect_fixup(struct vm_area_struct *vma,
1093                          struct vm_area_struct **pprev, unsigned long start,
1094                          unsigned long end, unsigned long newflags);
1095
1096/*
1097 * doesn't attempt to fault and will return short.
1098 */
1099int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1100                          struct page **pages);
1101/*
1102 * per-process(per-mm_struct) statistics.
1103 */
1104static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1105{
1106        long val = atomic_long_read(&mm->rss_stat.count[member]);
1107
1108#ifdef SPLIT_RSS_COUNTING
1109        /*
1110         * counter is updated in asynchronous manner and may go to minus.
1111         * But it's never be expected number for users.
1112         */
1113        if (val < 0)
1114                val = 0;
1115#endif
1116        return (unsigned long)val;
1117}
1118
1119static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1120{
1121        atomic_long_add(value, &mm->rss_stat.count[member]);
1122}
1123
1124static inline void inc_mm_counter(struct mm_struct *mm, int member)
1125{
1126        atomic_long_inc(&mm->rss_stat.count[member]);
1127}
1128
1129static inline void dec_mm_counter(struct mm_struct *mm, int member)
1130{
1131        atomic_long_dec(&mm->rss_stat.count[member]);
1132}
1133
1134static inline unsigned long get_mm_rss(struct mm_struct *mm)
1135{
1136        return get_mm_counter(mm, MM_FILEPAGES) +
1137                get_mm_counter(mm, MM_ANONPAGES);
1138}
1139
1140static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1141{
1142        return max(mm->hiwater_rss, get_mm_rss(mm));
1143}
1144
1145static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1146{
1147        return max(mm->hiwater_vm, mm->total_vm);
1148}
1149
1150static inline void update_hiwater_rss(struct mm_struct *mm)
1151{
1152        unsigned long _rss = get_mm_rss(mm);
1153
1154        if ((mm)->hiwater_rss < _rss)
1155                (mm)->hiwater_rss = _rss;
1156}
1157
1158static inline void update_hiwater_vm(struct mm_struct *mm)
1159{
1160        if (mm->hiwater_vm < mm->total_vm)
1161                mm->hiwater_vm = mm->total_vm;
1162}
1163
1164static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1165                                         struct mm_struct *mm)
1166{
1167        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1168
1169        if (*maxrss < hiwater_rss)
1170                *maxrss = hiwater_rss;
1171}
1172
1173#if defined(SPLIT_RSS_COUNTING)
1174void sync_mm_rss(struct mm_struct *mm);
1175#else
1176static inline void sync_mm_rss(struct mm_struct *mm)
1177{
1178}
1179#endif
1180
1181int vma_wants_writenotify(struct vm_area_struct *vma);
1182
1183extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1184                               spinlock_t **ptl);
1185static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1186                                    spinlock_t **ptl)
1187{
1188        pte_t *ptep;
1189        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1190        return ptep;
1191}
1192
1193#ifdef __PAGETABLE_PUD_FOLDED
1194static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1195                                                unsigned long address)
1196{
1197        return 0;
1198}
1199#else
1200int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1201#endif
1202
1203#ifdef __PAGETABLE_PMD_FOLDED
1204static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1205                                                unsigned long address)
1206{
1207        return 0;
1208}
1209#else
1210int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1211#endif
1212
1213int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1214                pmd_t *pmd, unsigned long address);
1215int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1216
1217/*
1218 * The following ifdef needed to get the 4level-fixup.h header to work.
1219 * Remove it when 4level-fixup.h has been removed.
1220 */
1221#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1222static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1223{
1224        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1225                NULL: pud_offset(pgd, address);
1226}
1227
1228static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1229{
1230        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1231                NULL: pmd_offset(pud, address);
1232}
1233#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1234
1235#if USE_SPLIT_PTLOCKS
1236/*
1237 * We tuck a spinlock to guard each pagetable page into its struct page,
1238 * at page->private, with BUILD_BUG_ON to make sure that this will not
1239 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1240 * When freeing, reset page->mapping so free_pages_check won't complain.
1241 */
1242#define __pte_lockptr(page)     &((page)->ptl)
1243#define pte_lock_init(_page)    do {                                    \
1244        spin_lock_init(__pte_lockptr(_page));                           \
1245} while (0)
1246#define pte_lock_deinit(page)   ((page)->mapping = NULL)
1247#define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1248#else   /* !USE_SPLIT_PTLOCKS */
1249/*
1250 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1251 */
1252#define pte_lock_init(page)     do {} while (0)
1253#define pte_lock_deinit(page)   do {} while (0)
1254#define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1255#endif /* USE_SPLIT_PTLOCKS */
1256
1257static inline void pgtable_page_ctor(struct page *page)
1258{
1259        pte_lock_init(page);
1260        inc_zone_page_state(page, NR_PAGETABLE);
1261}
1262
1263static inline void pgtable_page_dtor(struct page *page)
1264{
1265        pte_lock_deinit(page);
1266        dec_zone_page_state(page, NR_PAGETABLE);
1267}
1268
1269#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1270({                                                      \
1271        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1272        pte_t *__pte = pte_offset_map(pmd, address);    \
1273        *(ptlp) = __ptl;                                \
1274        spin_lock(__ptl);                               \
1275        __pte;                                          \
1276})
1277
1278#define pte_unmap_unlock(pte, ptl)      do {            \
1279        spin_unlock(ptl);                               \
1280        pte_unmap(pte);                                 \
1281} while (0)
1282
1283#define pte_alloc_map(mm, vma, pmd, address)                            \
1284        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1285                                                        pmd, address))? \
1286         NULL: pte_offset_map(pmd, address))
1287
1288#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1289        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1290                                                        pmd, address))? \
1291                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1292
1293#define pte_alloc_kernel(pmd, address)                  \
1294        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1295                NULL: pte_offset_kernel(pmd, address))
1296
1297extern void free_area_init(unsigned long * zones_size);
1298extern void free_area_init_node(int nid, unsigned long * zones_size,
1299                unsigned long zone_start_pfn, unsigned long *zholes_size);
1300extern void free_initmem(void);
1301
1302/*
1303 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1304 * into the buddy system. The freed pages will be poisoned with pattern
1305 * "poison" if it's within range [0, UCHAR_MAX].
1306 * Return pages freed into the buddy system.
1307 */
1308extern unsigned long free_reserved_area(void *start, void *end,
1309                                        int poison, char *s);
1310
1311#ifdef  CONFIG_HIGHMEM
1312/*
1313 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1314 * and totalram_pages.
1315 */
1316extern void free_highmem_page(struct page *page);
1317#endif
1318
1319extern void adjust_managed_page_count(struct page *page, long count);
1320extern void mem_init_print_info(const char *str);
1321
1322/* Free the reserved page into the buddy system, so it gets managed. */
1323static inline void __free_reserved_page(struct page *page)
1324{
1325        ClearPageReserved(page);
1326        init_page_count(page);
1327        __free_page(page);
1328}
1329
1330static inline void free_reserved_page(struct page *page)
1331{
1332        __free_reserved_page(page);
1333        adjust_managed_page_count(page, 1);
1334}
1335
1336static inline void mark_page_reserved(struct page *page)
1337{
1338        SetPageReserved(page);
1339        adjust_managed_page_count(page, -1);
1340}
1341
1342/*
1343 * Default method to free all the __init memory into the buddy system.
1344 * The freed pages will be poisoned with pattern "poison" if it's within
1345 * range [0, UCHAR_MAX].
1346 * Return pages freed into the buddy system.
1347 */
1348static inline unsigned long free_initmem_default(int poison)
1349{
1350        extern char __init_begin[], __init_end[];
1351
1352        return free_reserved_area(&__init_begin, &__init_end,
1353                                  poison, "unused kernel");
1354}
1355
1356static inline unsigned long get_num_physpages(void)
1357{
1358        int nid;
1359        unsigned long phys_pages = 0;
1360
1361        for_each_online_node(nid)
1362                phys_pages += node_present_pages(nid);
1363
1364        return phys_pages;
1365}
1366
1367#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1368/*
1369 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1370 * zones, allocate the backing mem_map and account for memory holes in a more
1371 * architecture independent manner. This is a substitute for creating the
1372 * zone_sizes[] and zholes_size[] arrays and passing them to
1373 * free_area_init_node()
1374 *
1375 * An architecture is expected to register range of page frames backed by
1376 * physical memory with memblock_add[_node]() before calling
1377 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1378 * usage, an architecture is expected to do something like
1379 *
1380 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1381 *                                                       max_highmem_pfn};
1382 * for_each_valid_physical_page_range()
1383 *      memblock_add_node(base, size, nid)
1384 * free_area_init_nodes(max_zone_pfns);
1385 *
1386 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1387 * registered physical page range.  Similarly
1388 * sparse_memory_present_with_active_regions() calls memory_present() for
1389 * each range when SPARSEMEM is enabled.
1390 *
1391 * See mm/page_alloc.c for more information on each function exposed by
1392 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1393 */
1394extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1395unsigned long node_map_pfn_alignment(void);
1396unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1397                                                unsigned long end_pfn);
1398extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1399                                                unsigned long end_pfn);
1400extern void get_pfn_range_for_nid(unsigned int nid,
1401                        unsigned long *start_pfn, unsigned long *end_pfn);
1402extern unsigned long find_min_pfn_with_active_regions(void);
1403extern void free_bootmem_with_active_regions(int nid,
1404                                                unsigned long max_low_pfn);
1405extern void sparse_memory_present_with_active_regions(int nid);
1406
1407#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1408
1409#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1410    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1411static inline int __early_pfn_to_nid(unsigned long pfn)
1412{
1413        return 0;
1414}
1415#else
1416/* please see mm/page_alloc.c */
1417extern int __meminit early_pfn_to_nid(unsigned long pfn);
1418#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1419/* there is a per-arch backend function. */
1420extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1421#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1422#endif
1423
1424extern void set_dma_reserve(unsigned long new_dma_reserve);
1425extern void memmap_init_zone(unsigned long, int, unsigned long,
1426                                unsigned long, enum memmap_context);
1427extern void setup_per_zone_wmarks(void);
1428extern int __meminit init_per_zone_wmark_min(void);
1429extern void mem_init(void);
1430extern void __init mmap_init(void);
1431extern void show_mem(unsigned int flags);
1432extern void si_meminfo(struct sysinfo * val);
1433extern void si_meminfo_node(struct sysinfo *val, int nid);
1434
1435extern __printf(3, 4)
1436void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1437
1438extern void setup_per_cpu_pageset(void);
1439
1440extern void zone_pcp_update(struct zone *zone);
1441extern void zone_pcp_reset(struct zone *zone);
1442
1443/* page_alloc.c */
1444extern int min_free_kbytes;
1445
1446/* nommu.c */
1447extern atomic_long_t mmap_pages_allocated;
1448extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1449
1450/* interval_tree.c */
1451void vma_interval_tree_insert(struct vm_area_struct *node,
1452                              struct rb_root *root);
1453void vma_interval_tree_insert_after(struct vm_area_struct *node,
1454                                    struct vm_area_struct *prev,
1455                                    struct rb_root *root);
1456void vma_interval_tree_remove(struct vm_area_struct *node,
1457                              struct rb_root *root);
1458struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1459                                unsigned long start, unsigned long last);
1460struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1461                                unsigned long start, unsigned long last);
1462
1463#define vma_interval_tree_foreach(vma, root, start, last)               \
1464        for (vma = vma_interval_tree_iter_first(root, start, last);     \
1465             vma; vma = vma_interval_tree_iter_next(vma, start, last))
1466
1467static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1468                                        struct list_head *list)
1469{
1470        list_add_tail(&vma->shared.nonlinear, list);
1471}
1472
1473void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1474                                   struct rb_root *root);
1475void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1476                                   struct rb_root *root);
1477struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1478        struct rb_root *root, unsigned long start, unsigned long last);
1479struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1480        struct anon_vma_chain *node, unsigned long start, unsigned long last);
1481#ifdef CONFIG_DEBUG_VM_RB
1482void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1483#endif
1484
1485#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1486        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1487             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1488
1489/* mmap.c */
1490extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1491extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1492        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1493extern struct vm_area_struct *vma_merge(struct mm_struct *,
1494        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1495        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1496        struct mempolicy *);
1497extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1498extern int split_vma(struct mm_struct *,
1499        struct vm_area_struct *, unsigned long addr, int new_below);
1500extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1501extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1502        struct rb_node **, struct rb_node *);
1503extern void unlink_file_vma(struct vm_area_struct *);
1504extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1505        unsigned long addr, unsigned long len, pgoff_t pgoff,
1506        bool *need_rmap_locks);
1507extern void exit_mmap(struct mm_struct *);
1508
1509extern int mm_take_all_locks(struct mm_struct *mm);
1510extern void mm_drop_all_locks(struct mm_struct *mm);
1511
1512extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1513extern struct file *get_mm_exe_file(struct mm_struct *mm);
1514
1515extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1516extern int install_special_mapping(struct mm_struct *mm,
1517                                   unsigned long addr, unsigned long len,
1518                                   unsigned long flags, struct page **pages);
1519
1520extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1521
1522extern unsigned long mmap_region(struct file *file, unsigned long addr,
1523        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1524extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1525        unsigned long len, unsigned long prot, unsigned long flags,
1526        unsigned long pgoff, unsigned long *populate);
1527extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1528
1529#ifdef CONFIG_MMU
1530extern int __mm_populate(unsigned long addr, unsigned long len,
1531                         int ignore_errors);
1532static inline void mm_populate(unsigned long addr, unsigned long len)
1533{
1534        /* Ignore errors */
1535        (void) __mm_populate(addr, len, 1);
1536}
1537#else
1538static inline void mm_populate(unsigned long addr, unsigned long len) {}
1539#endif
1540
1541/* These take the mm semaphore themselves */
1542extern unsigned long vm_brk(unsigned long, unsigned long);
1543extern int vm_munmap(unsigned long, size_t);
1544extern unsigned long vm_mmap(struct file *, unsigned long,
1545        unsigned long, unsigned long,
1546        unsigned long, unsigned long);
1547
1548struct vm_unmapped_area_info {
1549#define VM_UNMAPPED_AREA_TOPDOWN 1
1550        unsigned long flags;
1551        unsigned long length;
1552        unsigned long low_limit;
1553        unsigned long high_limit;
1554        unsigned long align_mask;
1555        unsigned long align_offset;
1556};
1557
1558extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1559extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1560
1561/*
1562 * Search for an unmapped address range.
1563 *
1564 * We are looking for a range that:
1565 * - does not intersect with any VMA;
1566 * - is contained within the [low_limit, high_limit) interval;
1567 * - is at least the desired size.
1568 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1569 */
1570static inline unsigned long
1571vm_unmapped_area(struct vm_unmapped_area_info *info)
1572{
1573        if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1574                return unmapped_area(info);
1575        else
1576                return unmapped_area_topdown(info);
1577}
1578
1579/* truncate.c */
1580extern void truncate_inode_pages(struct address_space *, loff_t);
1581extern void truncate_inode_pages_range(struct address_space *,
1582                                       loff_t lstart, loff_t lend);
1583
1584/* generic vm_area_ops exported for stackable file systems */
1585extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1586extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1587
1588/* mm/page-writeback.c */
1589int write_one_page(struct page *page, int wait);
1590void task_dirty_inc(struct task_struct *tsk);
1591
1592/* readahead.c */
1593#define VM_MAX_READAHEAD        128     /* kbytes */
1594#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1595
1596int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1597                        pgoff_t offset, unsigned long nr_to_read);
1598
1599void page_cache_sync_readahead(struct address_space *mapping,
1600                               struct file_ra_state *ra,
1601                               struct file *filp,
1602                               pgoff_t offset,
1603                               unsigned long size);
1604
1605void page_cache_async_readahead(struct address_space *mapping,
1606                                struct file_ra_state *ra,
1607                                struct file *filp,
1608                                struct page *pg,
1609                                pgoff_t offset,
1610                                unsigned long size);
1611
1612unsigned long max_sane_readahead(unsigned long nr);
1613unsigned long ra_submit(struct file_ra_state *ra,
1614                        struct address_space *mapping,
1615                        struct file *filp);
1616
1617/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1618extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1619
1620/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1621extern int expand_downwards(struct vm_area_struct *vma,
1622                unsigned long address);
1623#if VM_GROWSUP
1624extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1625#else
1626  #define expand_upwards(vma, address) do { } while (0)
1627#endif
1628
1629/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1630extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1631extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1632                                             struct vm_area_struct **pprev);
1633
1634/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1635   NULL if none.  Assume start_addr < end_addr. */
1636static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1637{
1638        struct vm_area_struct * vma = find_vma(mm,start_addr);
1639
1640        if (vma && end_addr <= vma->vm_start)
1641                vma = NULL;
1642        return vma;
1643}
1644
1645static inline unsigned long vma_pages(struct vm_area_struct *vma)
1646{
1647        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1648}
1649
1650/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1651static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1652                                unsigned long vm_start, unsigned long vm_end)
1653{
1654        struct vm_area_struct *vma = find_vma(mm, vm_start);
1655
1656        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1657                vma = NULL;
1658
1659        return vma;
1660}
1661
1662#ifdef CONFIG_MMU
1663pgprot_t vm_get_page_prot(unsigned long vm_flags);
1664#else
1665static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1666{
1667        return __pgprot(0);
1668}
1669#endif
1670
1671#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1672unsigned long change_prot_numa(struct vm_area_struct *vma,
1673                        unsigned long start, unsigned long end);
1674#endif
1675
1676struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1677int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1678                        unsigned long pfn, unsigned long size, pgprot_t);
1679int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1680int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1681                        unsigned long pfn);
1682int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1683                        unsigned long pfn);
1684int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1685
1686
1687struct page *follow_page_mask(struct vm_area_struct *vma,
1688                              unsigned long address, unsigned int foll_flags,
1689                              unsigned int *page_mask);
1690
1691static inline struct page *follow_page(struct vm_area_struct *vma,
1692                unsigned long address, unsigned int foll_flags)
1693{
1694        unsigned int unused_page_mask;
1695        return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1696}
1697
1698#define FOLL_WRITE      0x01    /* check pte is writable */
1699#define FOLL_TOUCH      0x02    /* mark page accessed */
1700#define FOLL_GET        0x04    /* do get_page on page */
1701#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1702#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1703#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1704                                 * and return without waiting upon it */
1705#define FOLL_MLOCK      0x40    /* mark page as mlocked */
1706#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1707#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1708#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
1709#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
1710
1711typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1712                        void *data);
1713extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1714                               unsigned long size, pte_fn_t fn, void *data);
1715
1716#ifdef CONFIG_PROC_FS
1717void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1718#else
1719static inline void vm_stat_account(struct mm_struct *mm,
1720                        unsigned long flags, struct file *file, long pages)
1721{
1722        mm->total_vm += pages;
1723}
1724#endif /* CONFIG_PROC_FS */
1725
1726#ifdef CONFIG_DEBUG_PAGEALLOC
1727extern void kernel_map_pages(struct page *page, int numpages, int enable);
1728#ifdef CONFIG_HIBERNATION
1729extern bool kernel_page_present(struct page *page);
1730#endif /* CONFIG_HIBERNATION */
1731#else
1732static inline void
1733kernel_map_pages(struct page *page, int numpages, int enable) {}
1734#ifdef CONFIG_HIBERNATION
1735static inline bool kernel_page_present(struct page *page) { return true; }
1736#endif /* CONFIG_HIBERNATION */
1737#endif
1738
1739extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1740#ifdef  __HAVE_ARCH_GATE_AREA
1741int in_gate_area_no_mm(unsigned long addr);
1742int in_gate_area(struct mm_struct *mm, unsigned long addr);
1743#else
1744int in_gate_area_no_mm(unsigned long addr);
1745#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1746#endif  /* __HAVE_ARCH_GATE_AREA */
1747
1748#ifdef CONFIG_SYSCTL
1749extern int sysctl_drop_caches;
1750int drop_caches_sysctl_handler(struct ctl_table *, int,
1751                                        void __user *, size_t *, loff_t *);
1752#endif
1753
1754unsigned long shrink_slab(struct shrink_control *shrink,
1755                          unsigned long nr_pages_scanned,
1756                          unsigned long lru_pages);
1757
1758#ifndef CONFIG_MMU
1759#define randomize_va_space 0
1760#else
1761extern int randomize_va_space;
1762#endif
1763
1764const char * arch_vma_name(struct vm_area_struct *vma);
1765void print_vma_addr(char *prefix, unsigned long rip);
1766
1767void sparse_mem_maps_populate_node(struct page **map_map,
1768                                   unsigned long pnum_begin,
1769                                   unsigned long pnum_end,
1770                                   unsigned long map_count,
1771                                   int nodeid);
1772
1773struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1774pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1775pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1776pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1777pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1778void *vmemmap_alloc_block(unsigned long size, int node);
1779void *vmemmap_alloc_block_buf(unsigned long size, int node);
1780void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1781int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1782                               int node);
1783int vmemmap_populate(unsigned long start, unsigned long end, int node);
1784void vmemmap_populate_print_last(void);
1785#ifdef CONFIG_MEMORY_HOTPLUG
1786void vmemmap_free(unsigned long start, unsigned long end);
1787#endif
1788void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1789                                  unsigned long size);
1790
1791enum mf_flags {
1792        MF_COUNT_INCREASED = 1 << 0,
1793        MF_ACTION_REQUIRED = 1 << 1,
1794        MF_MUST_KILL = 1 << 2,
1795        MF_SOFT_OFFLINE = 1 << 3,
1796};
1797extern int memory_failure(unsigned long pfn, int trapno, int flags);
1798extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1799extern int unpoison_memory(unsigned long pfn);
1800extern int sysctl_memory_failure_early_kill;
1801extern int sysctl_memory_failure_recovery;
1802extern void shake_page(struct page *p, int access);
1803extern atomic_long_t num_poisoned_pages;
1804extern int soft_offline_page(struct page *page, int flags);
1805
1806extern void dump_page(struct page *page);
1807
1808#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1809extern void clear_huge_page(struct page *page,
1810                            unsigned long addr,
1811                            unsigned int pages_per_huge_page);
1812extern void copy_user_huge_page(struct page *dst, struct page *src,
1813                                unsigned long addr, struct vm_area_struct *vma,
1814                                unsigned int pages_per_huge_page);
1815#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1816
1817#ifdef CONFIG_DEBUG_PAGEALLOC
1818extern unsigned int _debug_guardpage_minorder;
1819
1820static inline unsigned int debug_guardpage_minorder(void)
1821{
1822        return _debug_guardpage_minorder;
1823}
1824
1825static inline bool page_is_guard(struct page *page)
1826{
1827        return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1828}
1829#else
1830static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1831static inline bool page_is_guard(struct page *page) { return false; }
1832#endif /* CONFIG_DEBUG_PAGEALLOC */
1833
1834#if MAX_NUMNODES > 1
1835void __init setup_nr_node_ids(void);
1836#else
1837static inline void setup_nr_node_ids(void) {}
1838#endif
1839
1840#endif /* __KERNEL__ */
1841#endif /* _LINUX_MM_H */
1842