linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/memcontrol.h>
  58#include <linux/res_counter.h>
  59#include <linux/static_key.h>
  60#include <linux/aio.h>
  61#include <linux/sched.h>
  62
  63#include <linux/filter.h>
  64#include <linux/rculist_nulls.h>
  65#include <linux/poll.h>
  66
  67#include <linux/atomic.h>
  68#include <net/dst.h>
  69#include <net/checksum.h>
  70
  71struct cgroup;
  72struct cgroup_subsys;
  73#ifdef CONFIG_NET
  74int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
  75void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
  76#else
  77static inline
  78int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  79{
  80        return 0;
  81}
  82static inline
  83void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  84{
  85}
  86#endif
  87/*
  88 * This structure really needs to be cleaned up.
  89 * Most of it is for TCP, and not used by any of
  90 * the other protocols.
  91 */
  92
  93/* Define this to get the SOCK_DBG debugging facility. */
  94#define SOCK_DEBUGGING
  95#ifdef SOCK_DEBUGGING
  96#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  97                                        printk(KERN_DEBUG msg); } while (0)
  98#else
  99/* Validate arguments and do nothing */
 100static inline __printf(2, 3)
 101void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
 102{
 103}
 104#endif
 105
 106/* This is the per-socket lock.  The spinlock provides a synchronization
 107 * between user contexts and software interrupt processing, whereas the
 108 * mini-semaphore synchronizes multiple users amongst themselves.
 109 */
 110typedef struct {
 111        spinlock_t              slock;
 112        int                     owned;
 113        wait_queue_head_t       wq;
 114        /*
 115         * We express the mutex-alike socket_lock semantics
 116         * to the lock validator by explicitly managing
 117         * the slock as a lock variant (in addition to
 118         * the slock itself):
 119         */
 120#ifdef CONFIG_DEBUG_LOCK_ALLOC
 121        struct lockdep_map dep_map;
 122#endif
 123} socket_lock_t;
 124
 125struct sock;
 126struct proto;
 127struct net;
 128
 129typedef __u32 __bitwise __portpair;
 130typedef __u64 __bitwise __addrpair;
 131
 132/**
 133 *      struct sock_common - minimal network layer representation of sockets
 134 *      @skc_daddr: Foreign IPv4 addr
 135 *      @skc_rcv_saddr: Bound local IPv4 addr
 136 *      @skc_hash: hash value used with various protocol lookup tables
 137 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 138 *      @skc_dport: placeholder for inet_dport/tw_dport
 139 *      @skc_num: placeholder for inet_num/tw_num
 140 *      @skc_family: network address family
 141 *      @skc_state: Connection state
 142 *      @skc_reuse: %SO_REUSEADDR setting
 143 *      @skc_reuseport: %SO_REUSEPORT setting
 144 *      @skc_bound_dev_if: bound device index if != 0
 145 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 146 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 147 *      @skc_prot: protocol handlers inside a network family
 148 *      @skc_net: reference to the network namespace of this socket
 149 *      @skc_node: main hash linkage for various protocol lookup tables
 150 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 151 *      @skc_tx_queue_mapping: tx queue number for this connection
 152 *      @skc_refcnt: reference count
 153 *
 154 *      This is the minimal network layer representation of sockets, the header
 155 *      for struct sock and struct inet_timewait_sock.
 156 */
 157struct sock_common {
 158        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 159         * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
 160         */
 161        union {
 162                __addrpair      skc_addrpair;
 163                struct {
 164                        __be32  skc_daddr;
 165                        __be32  skc_rcv_saddr;
 166                };
 167        };
 168        union  {
 169                unsigned int    skc_hash;
 170                __u16           skc_u16hashes[2];
 171        };
 172        /* skc_dport && skc_num must be grouped as well */
 173        union {
 174                __portpair      skc_portpair;
 175                struct {
 176                        __be16  skc_dport;
 177                        __u16   skc_num;
 178                };
 179        };
 180
 181        unsigned short          skc_family;
 182        volatile unsigned char  skc_state;
 183        unsigned char           skc_reuse:4;
 184        unsigned char           skc_reuseport:4;
 185        int                     skc_bound_dev_if;
 186        union {
 187                struct hlist_node       skc_bind_node;
 188                struct hlist_nulls_node skc_portaddr_node;
 189        };
 190        struct proto            *skc_prot;
 191#ifdef CONFIG_NET_NS
 192        struct net              *skc_net;
 193#endif
 194        /*
 195         * fields between dontcopy_begin/dontcopy_end
 196         * are not copied in sock_copy()
 197         */
 198        /* private: */
 199        int                     skc_dontcopy_begin[0];
 200        /* public: */
 201        union {
 202                struct hlist_node       skc_node;
 203                struct hlist_nulls_node skc_nulls_node;
 204        };
 205        int                     skc_tx_queue_mapping;
 206        atomic_t                skc_refcnt;
 207        /* private: */
 208        int                     skc_dontcopy_end[0];
 209        /* public: */
 210};
 211
 212struct cg_proto;
 213/**
 214  *     struct sock - network layer representation of sockets
 215  *     @__sk_common: shared layout with inet_timewait_sock
 216  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 217  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 218  *     @sk_lock:       synchronizer
 219  *     @sk_rcvbuf: size of receive buffer in bytes
 220  *     @sk_wq: sock wait queue and async head
 221  *     @sk_rx_dst: receive input route used by early tcp demux
 222  *     @sk_dst_cache: destination cache
 223  *     @sk_dst_lock: destination cache lock
 224  *     @sk_policy: flow policy
 225  *     @sk_receive_queue: incoming packets
 226  *     @sk_wmem_alloc: transmit queue bytes committed
 227  *     @sk_write_queue: Packet sending queue
 228  *     @sk_async_wait_queue: DMA copied packets
 229  *     @sk_omem_alloc: "o" is "option" or "other"
 230  *     @sk_wmem_queued: persistent queue size
 231  *     @sk_forward_alloc: space allocated forward
 232  *     @sk_napi_id: id of the last napi context to receive data for sk
 233  *     @sk_ll_usec: usecs to busypoll when there is no data
 234  *     @sk_allocation: allocation mode
 235  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 236  *     @sk_sndbuf: size of send buffer in bytes
 237  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 238  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 239  *     @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
 240  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 241  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 242  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 243  *     @sk_gso_max_size: Maximum GSO segment size to build
 244  *     @sk_gso_max_segs: Maximum number of GSO segments
 245  *     @sk_lingertime: %SO_LINGER l_linger setting
 246  *     @sk_backlog: always used with the per-socket spinlock held
 247  *     @sk_callback_lock: used with the callbacks in the end of this struct
 248  *     @sk_error_queue: rarely used
 249  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 250  *                       IPV6_ADDRFORM for instance)
 251  *     @sk_err: last error
 252  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 253  *                   persistent failure not just 'timed out'
 254  *     @sk_drops: raw/udp drops counter
 255  *     @sk_ack_backlog: current listen backlog
 256  *     @sk_max_ack_backlog: listen backlog set in listen()
 257  *     @sk_priority: %SO_PRIORITY setting
 258  *     @sk_cgrp_prioidx: socket group's priority map index
 259  *     @sk_type: socket type (%SOCK_STREAM, etc)
 260  *     @sk_protocol: which protocol this socket belongs in this network family
 261  *     @sk_peer_pid: &struct pid for this socket's peer
 262  *     @sk_peer_cred: %SO_PEERCRED setting
 263  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 264  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 265  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 266  *     @sk_rxhash: flow hash received from netif layer
 267  *     @sk_filter: socket filtering instructions
 268  *     @sk_protinfo: private area, net family specific, when not using slab
 269  *     @sk_timer: sock cleanup timer
 270  *     @sk_stamp: time stamp of last packet received
 271  *     @sk_socket: Identd and reporting IO signals
 272  *     @sk_user_data: RPC layer private data
 273  *     @sk_frag: cached page frag
 274  *     @sk_peek_off: current peek_offset value
 275  *     @sk_send_head: front of stuff to transmit
 276  *     @sk_security: used by security modules
 277  *     @sk_mark: generic packet mark
 278  *     @sk_classid: this socket's cgroup classid
 279  *     @sk_cgrp: this socket's cgroup-specific proto data
 280  *     @sk_write_pending: a write to stream socket waits to start
 281  *     @sk_state_change: callback to indicate change in the state of the sock
 282  *     @sk_data_ready: callback to indicate there is data to be processed
 283  *     @sk_write_space: callback to indicate there is bf sending space available
 284  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 285  *     @sk_backlog_rcv: callback to process the backlog
 286  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 287 */
 288struct sock {
 289        /*
 290         * Now struct inet_timewait_sock also uses sock_common, so please just
 291         * don't add nothing before this first member (__sk_common) --acme
 292         */
 293        struct sock_common      __sk_common;
 294#define sk_node                 __sk_common.skc_node
 295#define sk_nulls_node           __sk_common.skc_nulls_node
 296#define sk_refcnt               __sk_common.skc_refcnt
 297#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 298
 299#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 300#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 301#define sk_hash                 __sk_common.skc_hash
 302#define sk_family               __sk_common.skc_family
 303#define sk_state                __sk_common.skc_state
 304#define sk_reuse                __sk_common.skc_reuse
 305#define sk_reuseport            __sk_common.skc_reuseport
 306#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 307#define sk_bind_node            __sk_common.skc_bind_node
 308#define sk_prot                 __sk_common.skc_prot
 309#define sk_net                  __sk_common.skc_net
 310        socket_lock_t           sk_lock;
 311        struct sk_buff_head     sk_receive_queue;
 312        /*
 313         * The backlog queue is special, it is always used with
 314         * the per-socket spinlock held and requires low latency
 315         * access. Therefore we special case it's implementation.
 316         * Note : rmem_alloc is in this structure to fill a hole
 317         * on 64bit arches, not because its logically part of
 318         * backlog.
 319         */
 320        struct {
 321                atomic_t        rmem_alloc;
 322                int             len;
 323                struct sk_buff  *head;
 324                struct sk_buff  *tail;
 325        } sk_backlog;
 326#define sk_rmem_alloc sk_backlog.rmem_alloc
 327        int                     sk_forward_alloc;
 328#ifdef CONFIG_RPS
 329        __u32                   sk_rxhash;
 330#endif
 331#ifdef CONFIG_NET_RX_BUSY_POLL
 332        unsigned int            sk_napi_id;
 333        unsigned int            sk_ll_usec;
 334#endif
 335        atomic_t                sk_drops;
 336        int                     sk_rcvbuf;
 337
 338        struct sk_filter __rcu  *sk_filter;
 339        struct socket_wq __rcu  *sk_wq;
 340
 341#ifdef CONFIG_NET_DMA
 342        struct sk_buff_head     sk_async_wait_queue;
 343#endif
 344
 345#ifdef CONFIG_XFRM
 346        struct xfrm_policy      *sk_policy[2];
 347#endif
 348        unsigned long           sk_flags;
 349        struct dst_entry        *sk_rx_dst;
 350        struct dst_entry __rcu  *sk_dst_cache;
 351        spinlock_t              sk_dst_lock;
 352        atomic_t                sk_wmem_alloc;
 353        atomic_t                sk_omem_alloc;
 354        int                     sk_sndbuf;
 355        struct sk_buff_head     sk_write_queue;
 356        kmemcheck_bitfield_begin(flags);
 357        unsigned int            sk_shutdown  : 2,
 358                                sk_no_check  : 2,
 359                                sk_userlocks : 4,
 360                                sk_protocol  : 8,
 361                                sk_type      : 16;
 362        kmemcheck_bitfield_end(flags);
 363        int                     sk_wmem_queued;
 364        gfp_t                   sk_allocation;
 365        u32                     sk_pacing_rate; /* bytes per second */
 366        netdev_features_t       sk_route_caps;
 367        netdev_features_t       sk_route_nocaps;
 368        int                     sk_gso_type;
 369        unsigned int            sk_gso_max_size;
 370        u16                     sk_gso_max_segs;
 371        int                     sk_rcvlowat;
 372        unsigned long           sk_lingertime;
 373        struct sk_buff_head     sk_error_queue;
 374        struct proto            *sk_prot_creator;
 375        rwlock_t                sk_callback_lock;
 376        int                     sk_err,
 377                                sk_err_soft;
 378        unsigned short          sk_ack_backlog;
 379        unsigned short          sk_max_ack_backlog;
 380        __u32                   sk_priority;
 381#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
 382        __u32                   sk_cgrp_prioidx;
 383#endif
 384        struct pid              *sk_peer_pid;
 385        const struct cred       *sk_peer_cred;
 386        long                    sk_rcvtimeo;
 387        long                    sk_sndtimeo;
 388        void                    *sk_protinfo;
 389        struct timer_list       sk_timer;
 390        ktime_t                 sk_stamp;
 391        struct socket           *sk_socket;
 392        void                    *sk_user_data;
 393        struct page_frag        sk_frag;
 394        struct sk_buff          *sk_send_head;
 395        __s32                   sk_peek_off;
 396        int                     sk_write_pending;
 397#ifdef CONFIG_SECURITY
 398        void                    *sk_security;
 399#endif
 400        __u32                   sk_mark;
 401        u32                     sk_classid;
 402        struct cg_proto         *sk_cgrp;
 403        void                    (*sk_state_change)(struct sock *sk);
 404        void                    (*sk_data_ready)(struct sock *sk, int bytes);
 405        void                    (*sk_write_space)(struct sock *sk);
 406        void                    (*sk_error_report)(struct sock *sk);
 407        int                     (*sk_backlog_rcv)(struct sock *sk,
 408                                                  struct sk_buff *skb);
 409        void                    (*sk_destruct)(struct sock *sk);
 410};
 411
 412#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 413
 414#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 415#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 416
 417/*
 418 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 419 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 420 * on a socket means that the socket will reuse everybody else's port
 421 * without looking at the other's sk_reuse value.
 422 */
 423
 424#define SK_NO_REUSE     0
 425#define SK_CAN_REUSE    1
 426#define SK_FORCE_REUSE  2
 427
 428static inline int sk_peek_offset(struct sock *sk, int flags)
 429{
 430        if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
 431                return sk->sk_peek_off;
 432        else
 433                return 0;
 434}
 435
 436static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 437{
 438        if (sk->sk_peek_off >= 0) {
 439                if (sk->sk_peek_off >= val)
 440                        sk->sk_peek_off -= val;
 441                else
 442                        sk->sk_peek_off = 0;
 443        }
 444}
 445
 446static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 447{
 448        if (sk->sk_peek_off >= 0)
 449                sk->sk_peek_off += val;
 450}
 451
 452/*
 453 * Hashed lists helper routines
 454 */
 455static inline struct sock *sk_entry(const struct hlist_node *node)
 456{
 457        return hlist_entry(node, struct sock, sk_node);
 458}
 459
 460static inline struct sock *__sk_head(const struct hlist_head *head)
 461{
 462        return hlist_entry(head->first, struct sock, sk_node);
 463}
 464
 465static inline struct sock *sk_head(const struct hlist_head *head)
 466{
 467        return hlist_empty(head) ? NULL : __sk_head(head);
 468}
 469
 470static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 471{
 472        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 473}
 474
 475static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 476{
 477        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 478}
 479
 480static inline struct sock *sk_next(const struct sock *sk)
 481{
 482        return sk->sk_node.next ?
 483                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 484}
 485
 486static inline struct sock *sk_nulls_next(const struct sock *sk)
 487{
 488        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 489                hlist_nulls_entry(sk->sk_nulls_node.next,
 490                                  struct sock, sk_nulls_node) :
 491                NULL;
 492}
 493
 494static inline bool sk_unhashed(const struct sock *sk)
 495{
 496        return hlist_unhashed(&sk->sk_node);
 497}
 498
 499static inline bool sk_hashed(const struct sock *sk)
 500{
 501        return !sk_unhashed(sk);
 502}
 503
 504static inline void sk_node_init(struct hlist_node *node)
 505{
 506        node->pprev = NULL;
 507}
 508
 509static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 510{
 511        node->pprev = NULL;
 512}
 513
 514static inline void __sk_del_node(struct sock *sk)
 515{
 516        __hlist_del(&sk->sk_node);
 517}
 518
 519/* NB: equivalent to hlist_del_init_rcu */
 520static inline bool __sk_del_node_init(struct sock *sk)
 521{
 522        if (sk_hashed(sk)) {
 523                __sk_del_node(sk);
 524                sk_node_init(&sk->sk_node);
 525                return true;
 526        }
 527        return false;
 528}
 529
 530/* Grab socket reference count. This operation is valid only
 531   when sk is ALREADY grabbed f.e. it is found in hash table
 532   or a list and the lookup is made under lock preventing hash table
 533   modifications.
 534 */
 535
 536static inline void sock_hold(struct sock *sk)
 537{
 538        atomic_inc(&sk->sk_refcnt);
 539}
 540
 541/* Ungrab socket in the context, which assumes that socket refcnt
 542   cannot hit zero, f.e. it is true in context of any socketcall.
 543 */
 544static inline void __sock_put(struct sock *sk)
 545{
 546        atomic_dec(&sk->sk_refcnt);
 547}
 548
 549static inline bool sk_del_node_init(struct sock *sk)
 550{
 551        bool rc = __sk_del_node_init(sk);
 552
 553        if (rc) {
 554                /* paranoid for a while -acme */
 555                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 556                __sock_put(sk);
 557        }
 558        return rc;
 559}
 560#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 561
 562static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 563{
 564        if (sk_hashed(sk)) {
 565                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 566                return true;
 567        }
 568        return false;
 569}
 570
 571static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 572{
 573        bool rc = __sk_nulls_del_node_init_rcu(sk);
 574
 575        if (rc) {
 576                /* paranoid for a while -acme */
 577                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 578                __sock_put(sk);
 579        }
 580        return rc;
 581}
 582
 583static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 584{
 585        hlist_add_head(&sk->sk_node, list);
 586}
 587
 588static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 589{
 590        sock_hold(sk);
 591        __sk_add_node(sk, list);
 592}
 593
 594static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 595{
 596        sock_hold(sk);
 597        hlist_add_head_rcu(&sk->sk_node, list);
 598}
 599
 600static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 601{
 602        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 603}
 604
 605static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 606{
 607        sock_hold(sk);
 608        __sk_nulls_add_node_rcu(sk, list);
 609}
 610
 611static inline void __sk_del_bind_node(struct sock *sk)
 612{
 613        __hlist_del(&sk->sk_bind_node);
 614}
 615
 616static inline void sk_add_bind_node(struct sock *sk,
 617                                        struct hlist_head *list)
 618{
 619        hlist_add_head(&sk->sk_bind_node, list);
 620}
 621
 622#define sk_for_each(__sk, list) \
 623        hlist_for_each_entry(__sk, list, sk_node)
 624#define sk_for_each_rcu(__sk, list) \
 625        hlist_for_each_entry_rcu(__sk, list, sk_node)
 626#define sk_nulls_for_each(__sk, node, list) \
 627        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 628#define sk_nulls_for_each_rcu(__sk, node, list) \
 629        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 630#define sk_for_each_from(__sk) \
 631        hlist_for_each_entry_from(__sk, sk_node)
 632#define sk_nulls_for_each_from(__sk, node) \
 633        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 634                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 635#define sk_for_each_safe(__sk, tmp, list) \
 636        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 637#define sk_for_each_bound(__sk, list) \
 638        hlist_for_each_entry(__sk, list, sk_bind_node)
 639
 640static inline struct user_namespace *sk_user_ns(struct sock *sk)
 641{
 642        /* Careful only use this in a context where these parameters
 643         * can not change and must all be valid, such as recvmsg from
 644         * userspace.
 645         */
 646        return sk->sk_socket->file->f_cred->user_ns;
 647}
 648
 649/* Sock flags */
 650enum sock_flags {
 651        SOCK_DEAD,
 652        SOCK_DONE,
 653        SOCK_URGINLINE,
 654        SOCK_KEEPOPEN,
 655        SOCK_LINGER,
 656        SOCK_DESTROY,
 657        SOCK_BROADCAST,
 658        SOCK_TIMESTAMP,
 659        SOCK_ZAPPED,
 660        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 661        SOCK_DBG, /* %SO_DEBUG setting */
 662        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 663        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 664        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 665        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 666        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 667        SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 668        SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 669        SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 670        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 671        SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 672        SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 673        SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 674        SOCK_FASYNC, /* fasync() active */
 675        SOCK_RXQ_OVFL,
 676        SOCK_ZEROCOPY, /* buffers from userspace */
 677        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 678        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 679                     * Will use last 4 bytes of packet sent from
 680                     * user-space instead.
 681                     */
 682        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 683        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 684};
 685
 686static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 687{
 688        nsk->sk_flags = osk->sk_flags;
 689}
 690
 691static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 692{
 693        __set_bit(flag, &sk->sk_flags);
 694}
 695
 696static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 697{
 698        __clear_bit(flag, &sk->sk_flags);
 699}
 700
 701static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 702{
 703        return test_bit(flag, &sk->sk_flags);
 704}
 705
 706#ifdef CONFIG_NET
 707extern struct static_key memalloc_socks;
 708static inline int sk_memalloc_socks(void)
 709{
 710        return static_key_false(&memalloc_socks);
 711}
 712#else
 713
 714static inline int sk_memalloc_socks(void)
 715{
 716        return 0;
 717}
 718
 719#endif
 720
 721static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
 722{
 723        return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
 724}
 725
 726static inline void sk_acceptq_removed(struct sock *sk)
 727{
 728        sk->sk_ack_backlog--;
 729}
 730
 731static inline void sk_acceptq_added(struct sock *sk)
 732{
 733        sk->sk_ack_backlog++;
 734}
 735
 736static inline bool sk_acceptq_is_full(const struct sock *sk)
 737{
 738        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 739}
 740
 741/*
 742 * Compute minimal free write space needed to queue new packets.
 743 */
 744static inline int sk_stream_min_wspace(const struct sock *sk)
 745{
 746        return sk->sk_wmem_queued >> 1;
 747}
 748
 749static inline int sk_stream_wspace(const struct sock *sk)
 750{
 751        return sk->sk_sndbuf - sk->sk_wmem_queued;
 752}
 753
 754extern void sk_stream_write_space(struct sock *sk);
 755
 756/* OOB backlog add */
 757static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 758{
 759        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 760        skb_dst_force(skb);
 761
 762        if (!sk->sk_backlog.tail)
 763                sk->sk_backlog.head = skb;
 764        else
 765                sk->sk_backlog.tail->next = skb;
 766
 767        sk->sk_backlog.tail = skb;
 768        skb->next = NULL;
 769}
 770
 771/*
 772 * Take into account size of receive queue and backlog queue
 773 * Do not take into account this skb truesize,
 774 * to allow even a single big packet to come.
 775 */
 776static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
 777                                     unsigned int limit)
 778{
 779        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 780
 781        return qsize > limit;
 782}
 783
 784/* The per-socket spinlock must be held here. */
 785static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 786                                              unsigned int limit)
 787{
 788        if (sk_rcvqueues_full(sk, skb, limit))
 789                return -ENOBUFS;
 790
 791        __sk_add_backlog(sk, skb);
 792        sk->sk_backlog.len += skb->truesize;
 793        return 0;
 794}
 795
 796extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 797
 798static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 799{
 800        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 801                return __sk_backlog_rcv(sk, skb);
 802
 803        return sk->sk_backlog_rcv(sk, skb);
 804}
 805
 806static inline void sock_rps_record_flow(const struct sock *sk)
 807{
 808#ifdef CONFIG_RPS
 809        struct rps_sock_flow_table *sock_flow_table;
 810
 811        rcu_read_lock();
 812        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 813        rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 814        rcu_read_unlock();
 815#endif
 816}
 817
 818static inline void sock_rps_reset_flow(const struct sock *sk)
 819{
 820#ifdef CONFIG_RPS
 821        struct rps_sock_flow_table *sock_flow_table;
 822
 823        rcu_read_lock();
 824        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 825        rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 826        rcu_read_unlock();
 827#endif
 828}
 829
 830static inline void sock_rps_save_rxhash(struct sock *sk,
 831                                        const struct sk_buff *skb)
 832{
 833#ifdef CONFIG_RPS
 834        if (unlikely(sk->sk_rxhash != skb->rxhash)) {
 835                sock_rps_reset_flow(sk);
 836                sk->sk_rxhash = skb->rxhash;
 837        }
 838#endif
 839}
 840
 841static inline void sock_rps_reset_rxhash(struct sock *sk)
 842{
 843#ifdef CONFIG_RPS
 844        sock_rps_reset_flow(sk);
 845        sk->sk_rxhash = 0;
 846#endif
 847}
 848
 849#define sk_wait_event(__sk, __timeo, __condition)                       \
 850        ({      int __rc;                                               \
 851                release_sock(__sk);                                     \
 852                __rc = __condition;                                     \
 853                if (!__rc) {                                            \
 854                        *(__timeo) = schedule_timeout(*(__timeo));      \
 855                }                                                       \
 856                lock_sock(__sk);                                        \
 857                __rc = __condition;                                     \
 858                __rc;                                                   \
 859        })
 860
 861extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 862extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 863extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 864extern int sk_stream_error(struct sock *sk, int flags, int err);
 865extern void sk_stream_kill_queues(struct sock *sk);
 866extern void sk_set_memalloc(struct sock *sk);
 867extern void sk_clear_memalloc(struct sock *sk);
 868
 869extern int sk_wait_data(struct sock *sk, long *timeo);
 870
 871struct request_sock_ops;
 872struct timewait_sock_ops;
 873struct inet_hashinfo;
 874struct raw_hashinfo;
 875struct module;
 876
 877/*
 878 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 879 * un-modified. Special care is taken when initializing object to zero.
 880 */
 881static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 882{
 883        if (offsetof(struct sock, sk_node.next) != 0)
 884                memset(sk, 0, offsetof(struct sock, sk_node.next));
 885        memset(&sk->sk_node.pprev, 0,
 886               size - offsetof(struct sock, sk_node.pprev));
 887}
 888
 889/* Networking protocol blocks we attach to sockets.
 890 * socket layer -> transport layer interface
 891 * transport -> network interface is defined by struct inet_proto
 892 */
 893struct proto {
 894        void                    (*close)(struct sock *sk,
 895                                        long timeout);
 896        int                     (*connect)(struct sock *sk,
 897                                        struct sockaddr *uaddr,
 898                                        int addr_len);
 899        int                     (*disconnect)(struct sock *sk, int flags);
 900
 901        struct sock *           (*accept)(struct sock *sk, int flags, int *err);
 902
 903        int                     (*ioctl)(struct sock *sk, int cmd,
 904                                         unsigned long arg);
 905        int                     (*init)(struct sock *sk);
 906        void                    (*destroy)(struct sock *sk);
 907        void                    (*shutdown)(struct sock *sk, int how);
 908        int                     (*setsockopt)(struct sock *sk, int level,
 909                                        int optname, char __user *optval,
 910                                        unsigned int optlen);
 911        int                     (*getsockopt)(struct sock *sk, int level,
 912                                        int optname, char __user *optval,
 913                                        int __user *option);
 914#ifdef CONFIG_COMPAT
 915        int                     (*compat_setsockopt)(struct sock *sk,
 916                                        int level,
 917                                        int optname, char __user *optval,
 918                                        unsigned int optlen);
 919        int                     (*compat_getsockopt)(struct sock *sk,
 920                                        int level,
 921                                        int optname, char __user *optval,
 922                                        int __user *option);
 923        int                     (*compat_ioctl)(struct sock *sk,
 924                                        unsigned int cmd, unsigned long arg);
 925#endif
 926        int                     (*sendmsg)(struct kiocb *iocb, struct sock *sk,
 927                                           struct msghdr *msg, size_t len);
 928        int                     (*recvmsg)(struct kiocb *iocb, struct sock *sk,
 929                                           struct msghdr *msg,
 930                                           size_t len, int noblock, int flags,
 931                                           int *addr_len);
 932        int                     (*sendpage)(struct sock *sk, struct page *page,
 933                                        int offset, size_t size, int flags);
 934        int                     (*bind)(struct sock *sk,
 935                                        struct sockaddr *uaddr, int addr_len);
 936
 937        int                     (*backlog_rcv) (struct sock *sk,
 938                                                struct sk_buff *skb);
 939
 940        void            (*release_cb)(struct sock *sk);
 941        void            (*mtu_reduced)(struct sock *sk);
 942
 943        /* Keeping track of sk's, looking them up, and port selection methods. */
 944        void                    (*hash)(struct sock *sk);
 945        void                    (*unhash)(struct sock *sk);
 946        void                    (*rehash)(struct sock *sk);
 947        int                     (*get_port)(struct sock *sk, unsigned short snum);
 948        void                    (*clear_sk)(struct sock *sk, int size);
 949
 950        /* Keeping track of sockets in use */
 951#ifdef CONFIG_PROC_FS
 952        unsigned int            inuse_idx;
 953#endif
 954
 955        bool                    (*stream_memory_free)(const struct sock *sk);
 956        /* Memory pressure */
 957        void                    (*enter_memory_pressure)(struct sock *sk);
 958        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
 959        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
 960        /*
 961         * Pressure flag: try to collapse.
 962         * Technical note: it is used by multiple contexts non atomically.
 963         * All the __sk_mem_schedule() is of this nature: accounting
 964         * is strict, actions are advisory and have some latency.
 965         */
 966        int                     *memory_pressure;
 967        long                    *sysctl_mem;
 968        int                     *sysctl_wmem;
 969        int                     *sysctl_rmem;
 970        int                     max_header;
 971        bool                    no_autobind;
 972
 973        struct kmem_cache       *slab;
 974        unsigned int            obj_size;
 975        int                     slab_flags;
 976
 977        struct percpu_counter   *orphan_count;
 978
 979        struct request_sock_ops *rsk_prot;
 980        struct timewait_sock_ops *twsk_prot;
 981
 982        union {
 983                struct inet_hashinfo    *hashinfo;
 984                struct udp_table        *udp_table;
 985                struct raw_hashinfo     *raw_hash;
 986        } h;
 987
 988        struct module           *owner;
 989
 990        char                    name[32];
 991
 992        struct list_head        node;
 993#ifdef SOCK_REFCNT_DEBUG
 994        atomic_t                socks;
 995#endif
 996#ifdef CONFIG_MEMCG_KMEM
 997        /*
 998         * cgroup specific init/deinit functions. Called once for all
 999         * protocols that implement it, from cgroups populate function.
1000         * This function has to setup any files the protocol want to
1001         * appear in the kmem cgroup filesystem.
1002         */
1003        int                     (*init_cgroup)(struct mem_cgroup *memcg,
1004                                               struct cgroup_subsys *ss);
1005        void                    (*destroy_cgroup)(struct mem_cgroup *memcg);
1006        struct cg_proto         *(*proto_cgroup)(struct mem_cgroup *memcg);
1007#endif
1008};
1009
1010/*
1011 * Bits in struct cg_proto.flags
1012 */
1013enum cg_proto_flags {
1014        /* Currently active and new sockets should be assigned to cgroups */
1015        MEMCG_SOCK_ACTIVE,
1016        /* It was ever activated; we must disarm static keys on destruction */
1017        MEMCG_SOCK_ACTIVATED,
1018};
1019
1020struct cg_proto {
1021        void                    (*enter_memory_pressure)(struct sock *sk);
1022        struct res_counter      *memory_allocated;      /* Current allocated memory. */
1023        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1024        int                     *memory_pressure;
1025        long                    *sysctl_mem;
1026        unsigned long           flags;
1027        /*
1028         * memcg field is used to find which memcg we belong directly
1029         * Each memcg struct can hold more than one cg_proto, so container_of
1030         * won't really cut.
1031         *
1032         * The elegant solution would be having an inverse function to
1033         * proto_cgroup in struct proto, but that means polluting the structure
1034         * for everybody, instead of just for memcg users.
1035         */
1036        struct mem_cgroup       *memcg;
1037};
1038
1039extern int proto_register(struct proto *prot, int alloc_slab);
1040extern void proto_unregister(struct proto *prot);
1041
1042static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1043{
1044        return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1045}
1046
1047static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1048{
1049        return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1050}
1051
1052#ifdef SOCK_REFCNT_DEBUG
1053static inline void sk_refcnt_debug_inc(struct sock *sk)
1054{
1055        atomic_inc(&sk->sk_prot->socks);
1056}
1057
1058static inline void sk_refcnt_debug_dec(struct sock *sk)
1059{
1060        atomic_dec(&sk->sk_prot->socks);
1061        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1062               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1063}
1064
1065static inline void sk_refcnt_debug_release(const struct sock *sk)
1066{
1067        if (atomic_read(&sk->sk_refcnt) != 1)
1068                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1069                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1070}
1071#else /* SOCK_REFCNT_DEBUG */
1072#define sk_refcnt_debug_inc(sk) do { } while (0)
1073#define sk_refcnt_debug_dec(sk) do { } while (0)
1074#define sk_refcnt_debug_release(sk) do { } while (0)
1075#endif /* SOCK_REFCNT_DEBUG */
1076
1077#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1078extern struct static_key memcg_socket_limit_enabled;
1079static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1080                                               struct cg_proto *cg_proto)
1081{
1082        return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1083}
1084#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1085#else
1086#define mem_cgroup_sockets_enabled 0
1087static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1088                                               struct cg_proto *cg_proto)
1089{
1090        return NULL;
1091}
1092#endif
1093
1094static inline bool sk_stream_memory_free(const struct sock *sk)
1095{
1096        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1097                return false;
1098
1099        return sk->sk_prot->stream_memory_free ?
1100                sk->sk_prot->stream_memory_free(sk) : true;
1101}
1102
1103static inline bool sk_stream_is_writeable(const struct sock *sk)
1104{
1105        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1106               sk_stream_memory_free(sk);
1107}
1108
1109
1110static inline bool sk_has_memory_pressure(const struct sock *sk)
1111{
1112        return sk->sk_prot->memory_pressure != NULL;
1113}
1114
1115static inline bool sk_under_memory_pressure(const struct sock *sk)
1116{
1117        if (!sk->sk_prot->memory_pressure)
1118                return false;
1119
1120        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1121                return !!*sk->sk_cgrp->memory_pressure;
1122
1123        return !!*sk->sk_prot->memory_pressure;
1124}
1125
1126static inline void sk_leave_memory_pressure(struct sock *sk)
1127{
1128        int *memory_pressure = sk->sk_prot->memory_pressure;
1129
1130        if (!memory_pressure)
1131                return;
1132
1133        if (*memory_pressure)
1134                *memory_pressure = 0;
1135
1136        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1137                struct cg_proto *cg_proto = sk->sk_cgrp;
1138                struct proto *prot = sk->sk_prot;
1139
1140                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1141                        if (*cg_proto->memory_pressure)
1142                                *cg_proto->memory_pressure = 0;
1143        }
1144
1145}
1146
1147static inline void sk_enter_memory_pressure(struct sock *sk)
1148{
1149        if (!sk->sk_prot->enter_memory_pressure)
1150                return;
1151
1152        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1153                struct cg_proto *cg_proto = sk->sk_cgrp;
1154                struct proto *prot = sk->sk_prot;
1155
1156                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1157                        cg_proto->enter_memory_pressure(sk);
1158        }
1159
1160        sk->sk_prot->enter_memory_pressure(sk);
1161}
1162
1163static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1164{
1165        long *prot = sk->sk_prot->sysctl_mem;
1166        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1167                prot = sk->sk_cgrp->sysctl_mem;
1168        return prot[index];
1169}
1170
1171static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1172                                              unsigned long amt,
1173                                              int *parent_status)
1174{
1175        struct res_counter *fail;
1176        int ret;
1177
1178        ret = res_counter_charge_nofail(prot->memory_allocated,
1179                                        amt << PAGE_SHIFT, &fail);
1180        if (ret < 0)
1181                *parent_status = OVER_LIMIT;
1182}
1183
1184static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1185                                              unsigned long amt)
1186{
1187        res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1188}
1189
1190static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1191{
1192        u64 ret;
1193        ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1194        return ret >> PAGE_SHIFT;
1195}
1196
1197static inline long
1198sk_memory_allocated(const struct sock *sk)
1199{
1200        struct proto *prot = sk->sk_prot;
1201        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1202                return memcg_memory_allocated_read(sk->sk_cgrp);
1203
1204        return atomic_long_read(prot->memory_allocated);
1205}
1206
1207static inline long
1208sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1209{
1210        struct proto *prot = sk->sk_prot;
1211
1212        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1213                memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1214                /* update the root cgroup regardless */
1215                atomic_long_add_return(amt, prot->memory_allocated);
1216                return memcg_memory_allocated_read(sk->sk_cgrp);
1217        }
1218
1219        return atomic_long_add_return(amt, prot->memory_allocated);
1220}
1221
1222static inline void
1223sk_memory_allocated_sub(struct sock *sk, int amt)
1224{
1225        struct proto *prot = sk->sk_prot;
1226
1227        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1228                memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1229
1230        atomic_long_sub(amt, prot->memory_allocated);
1231}
1232
1233static inline void sk_sockets_allocated_dec(struct sock *sk)
1234{
1235        struct proto *prot = sk->sk_prot;
1236
1237        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1238                struct cg_proto *cg_proto = sk->sk_cgrp;
1239
1240                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1241                        percpu_counter_dec(cg_proto->sockets_allocated);
1242        }
1243
1244        percpu_counter_dec(prot->sockets_allocated);
1245}
1246
1247static inline void sk_sockets_allocated_inc(struct sock *sk)
1248{
1249        struct proto *prot = sk->sk_prot;
1250
1251        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1252                struct cg_proto *cg_proto = sk->sk_cgrp;
1253
1254                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1255                        percpu_counter_inc(cg_proto->sockets_allocated);
1256        }
1257
1258        percpu_counter_inc(prot->sockets_allocated);
1259}
1260
1261static inline int
1262sk_sockets_allocated_read_positive(struct sock *sk)
1263{
1264        struct proto *prot = sk->sk_prot;
1265
1266        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1267                return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1268
1269        return percpu_counter_read_positive(prot->sockets_allocated);
1270}
1271
1272static inline int
1273proto_sockets_allocated_sum_positive(struct proto *prot)
1274{
1275        return percpu_counter_sum_positive(prot->sockets_allocated);
1276}
1277
1278static inline long
1279proto_memory_allocated(struct proto *prot)
1280{
1281        return atomic_long_read(prot->memory_allocated);
1282}
1283
1284static inline bool
1285proto_memory_pressure(struct proto *prot)
1286{
1287        if (!prot->memory_pressure)
1288                return false;
1289        return !!*prot->memory_pressure;
1290}
1291
1292
1293#ifdef CONFIG_PROC_FS
1294/* Called with local bh disabled */
1295extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1296extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1297#else
1298static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1299                int inc)
1300{
1301}
1302#endif
1303
1304
1305/* With per-bucket locks this operation is not-atomic, so that
1306 * this version is not worse.
1307 */
1308static inline void __sk_prot_rehash(struct sock *sk)
1309{
1310        sk->sk_prot->unhash(sk);
1311        sk->sk_prot->hash(sk);
1312}
1313
1314void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1315
1316/* About 10 seconds */
1317#define SOCK_DESTROY_TIME (10*HZ)
1318
1319/* Sockets 0-1023 can't be bound to unless you are superuser */
1320#define PROT_SOCK       1024
1321
1322#define SHUTDOWN_MASK   3
1323#define RCV_SHUTDOWN    1
1324#define SEND_SHUTDOWN   2
1325
1326#define SOCK_SNDBUF_LOCK        1
1327#define SOCK_RCVBUF_LOCK        2
1328#define SOCK_BINDADDR_LOCK      4
1329#define SOCK_BINDPORT_LOCK      8
1330
1331/* sock_iocb: used to kick off async processing of socket ios */
1332struct sock_iocb {
1333        struct list_head        list;
1334
1335        int                     flags;
1336        int                     size;
1337        struct socket           *sock;
1338        struct sock             *sk;
1339        struct scm_cookie       *scm;
1340        struct msghdr           *msg, async_msg;
1341        struct kiocb            *kiocb;
1342};
1343
1344static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1345{
1346        return (struct sock_iocb *)iocb->private;
1347}
1348
1349static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1350{
1351        return si->kiocb;
1352}
1353
1354struct socket_alloc {
1355        struct socket socket;
1356        struct inode vfs_inode;
1357};
1358
1359static inline struct socket *SOCKET_I(struct inode *inode)
1360{
1361        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1362}
1363
1364static inline struct inode *SOCK_INODE(struct socket *socket)
1365{
1366        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1367}
1368
1369/*
1370 * Functions for memory accounting
1371 */
1372extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1373extern void __sk_mem_reclaim(struct sock *sk);
1374
1375#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1376#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1377#define SK_MEM_SEND     0
1378#define SK_MEM_RECV     1
1379
1380static inline int sk_mem_pages(int amt)
1381{
1382        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1383}
1384
1385static inline bool sk_has_account(struct sock *sk)
1386{
1387        /* return true if protocol supports memory accounting */
1388        return !!sk->sk_prot->memory_allocated;
1389}
1390
1391static inline bool sk_wmem_schedule(struct sock *sk, int size)
1392{
1393        if (!sk_has_account(sk))
1394                return true;
1395        return size <= sk->sk_forward_alloc ||
1396                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1397}
1398
1399static inline bool
1400sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1401{
1402        if (!sk_has_account(sk))
1403                return true;
1404        return size<= sk->sk_forward_alloc ||
1405                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1406                skb_pfmemalloc(skb);
1407}
1408
1409static inline void sk_mem_reclaim(struct sock *sk)
1410{
1411        if (!sk_has_account(sk))
1412                return;
1413        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1414                __sk_mem_reclaim(sk);
1415}
1416
1417static inline void sk_mem_reclaim_partial(struct sock *sk)
1418{
1419        if (!sk_has_account(sk))
1420                return;
1421        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1422                __sk_mem_reclaim(sk);
1423}
1424
1425static inline void sk_mem_charge(struct sock *sk, int size)
1426{
1427        if (!sk_has_account(sk))
1428                return;
1429        sk->sk_forward_alloc -= size;
1430}
1431
1432static inline void sk_mem_uncharge(struct sock *sk, int size)
1433{
1434        if (!sk_has_account(sk))
1435                return;
1436        sk->sk_forward_alloc += size;
1437}
1438
1439static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1440{
1441        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1442        sk->sk_wmem_queued -= skb->truesize;
1443        sk_mem_uncharge(sk, skb->truesize);
1444        __kfree_skb(skb);
1445}
1446
1447/* Used by processes to "lock" a socket state, so that
1448 * interrupts and bottom half handlers won't change it
1449 * from under us. It essentially blocks any incoming
1450 * packets, so that we won't get any new data or any
1451 * packets that change the state of the socket.
1452 *
1453 * While locked, BH processing will add new packets to
1454 * the backlog queue.  This queue is processed by the
1455 * owner of the socket lock right before it is released.
1456 *
1457 * Since ~2.3.5 it is also exclusive sleep lock serializing
1458 * accesses from user process context.
1459 */
1460#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
1461
1462/*
1463 * Macro so as to not evaluate some arguments when
1464 * lockdep is not enabled.
1465 *
1466 * Mark both the sk_lock and the sk_lock.slock as a
1467 * per-address-family lock class.
1468 */
1469#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1470do {                                                                    \
1471        sk->sk_lock.owned = 0;                                          \
1472        init_waitqueue_head(&sk->sk_lock.wq);                           \
1473        spin_lock_init(&(sk)->sk_lock.slock);                           \
1474        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1475                        sizeof((sk)->sk_lock));                         \
1476        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1477                                (skey), (sname));                               \
1478        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1479} while (0)
1480
1481extern void lock_sock_nested(struct sock *sk, int subclass);
1482
1483static inline void lock_sock(struct sock *sk)
1484{
1485        lock_sock_nested(sk, 0);
1486}
1487
1488extern void release_sock(struct sock *sk);
1489
1490/* BH context may only use the following locking interface. */
1491#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1492#define bh_lock_sock_nested(__sk) \
1493                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1494                                SINGLE_DEPTH_NESTING)
1495#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1496
1497extern bool lock_sock_fast(struct sock *sk);
1498/**
1499 * unlock_sock_fast - complement of lock_sock_fast
1500 * @sk: socket
1501 * @slow: slow mode
1502 *
1503 * fast unlock socket for user context.
1504 * If slow mode is on, we call regular release_sock()
1505 */
1506static inline void unlock_sock_fast(struct sock *sk, bool slow)
1507{
1508        if (slow)
1509                release_sock(sk);
1510        else
1511                spin_unlock_bh(&sk->sk_lock.slock);
1512}
1513
1514
1515extern struct sock              *sk_alloc(struct net *net, int family,
1516                                          gfp_t priority,
1517                                          struct proto *prot);
1518extern void                     sk_free(struct sock *sk);
1519extern void                     sk_release_kernel(struct sock *sk);
1520extern struct sock              *sk_clone_lock(const struct sock *sk,
1521                                               const gfp_t priority);
1522
1523extern struct sk_buff           *sock_wmalloc(struct sock *sk,
1524                                              unsigned long size, int force,
1525                                              gfp_t priority);
1526extern struct sk_buff           *sock_rmalloc(struct sock *sk,
1527                                              unsigned long size, int force,
1528                                              gfp_t priority);
1529extern void                     sock_wfree(struct sk_buff *skb);
1530extern void                     skb_orphan_partial(struct sk_buff *skb);
1531extern void                     sock_rfree(struct sk_buff *skb);
1532extern void                     sock_edemux(struct sk_buff *skb);
1533
1534extern int                      sock_setsockopt(struct socket *sock, int level,
1535                                                int op, char __user *optval,
1536                                                unsigned int optlen);
1537
1538extern int                      sock_getsockopt(struct socket *sock, int level,
1539                                                int op, char __user *optval,
1540                                                int __user *optlen);
1541extern struct sk_buff           *sock_alloc_send_skb(struct sock *sk,
1542                                                     unsigned long size,
1543                                                     int noblock,
1544                                                     int *errcode);
1545extern struct sk_buff           *sock_alloc_send_pskb(struct sock *sk,
1546                                                      unsigned long header_len,
1547                                                      unsigned long data_len,
1548                                                      int noblock,
1549                                                      int *errcode,
1550                                                      int max_page_order);
1551extern void *sock_kmalloc(struct sock *sk, int size,
1552                          gfp_t priority);
1553extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1554extern void sk_send_sigurg(struct sock *sk);
1555
1556/*
1557 * Functions to fill in entries in struct proto_ops when a protocol
1558 * does not implement a particular function.
1559 */
1560extern int                      sock_no_bind(struct socket *,
1561                                             struct sockaddr *, int);
1562extern int                      sock_no_connect(struct socket *,
1563                                                struct sockaddr *, int, int);
1564extern int                      sock_no_socketpair(struct socket *,
1565                                                   struct socket *);
1566extern int                      sock_no_accept(struct socket *,
1567                                               struct socket *, int);
1568extern int                      sock_no_getname(struct socket *,
1569                                                struct sockaddr *, int *, int);
1570extern unsigned int             sock_no_poll(struct file *, struct socket *,
1571                                             struct poll_table_struct *);
1572extern int                      sock_no_ioctl(struct socket *, unsigned int,
1573                                              unsigned long);
1574extern int                      sock_no_listen(struct socket *, int);
1575extern int                      sock_no_shutdown(struct socket *, int);
1576extern int                      sock_no_getsockopt(struct socket *, int , int,
1577                                                   char __user *, int __user *);
1578extern int                      sock_no_setsockopt(struct socket *, int, int,
1579                                                   char __user *, unsigned int);
1580extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1581                                                struct msghdr *, size_t);
1582extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1583                                                struct msghdr *, size_t, int);
1584extern int                      sock_no_mmap(struct file *file,
1585                                             struct socket *sock,
1586                                             struct vm_area_struct *vma);
1587extern ssize_t                  sock_no_sendpage(struct socket *sock,
1588                                                struct page *page,
1589                                                int offset, size_t size,
1590                                                int flags);
1591
1592/*
1593 * Functions to fill in entries in struct proto_ops when a protocol
1594 * uses the inet style.
1595 */
1596extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1597                                  char __user *optval, int __user *optlen);
1598extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1599                               struct msghdr *msg, size_t size, int flags);
1600extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1601                                  char __user *optval, unsigned int optlen);
1602extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1603                int optname, char __user *optval, int __user *optlen);
1604extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1605                int optname, char __user *optval, unsigned int optlen);
1606
1607extern void sk_common_release(struct sock *sk);
1608
1609/*
1610 *      Default socket callbacks and setup code
1611 */
1612
1613/* Initialise core socket variables */
1614extern void sock_init_data(struct socket *sock, struct sock *sk);
1615
1616extern void sk_filter_release_rcu(struct rcu_head *rcu);
1617
1618/**
1619 *      sk_filter_release - release a socket filter
1620 *      @fp: filter to remove
1621 *
1622 *      Remove a filter from a socket and release its resources.
1623 */
1624
1625static inline void sk_filter_release(struct sk_filter *fp)
1626{
1627        if (atomic_dec_and_test(&fp->refcnt))
1628                call_rcu(&fp->rcu, sk_filter_release_rcu);
1629}
1630
1631static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1632{
1633        atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1634        sk_filter_release(fp);
1635}
1636
1637static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1638{
1639        atomic_inc(&fp->refcnt);
1640        atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1641}
1642
1643/*
1644 * Socket reference counting postulates.
1645 *
1646 * * Each user of socket SHOULD hold a reference count.
1647 * * Each access point to socket (an hash table bucket, reference from a list,
1648 *   running timer, skb in flight MUST hold a reference count.
1649 * * When reference count hits 0, it means it will never increase back.
1650 * * When reference count hits 0, it means that no references from
1651 *   outside exist to this socket and current process on current CPU
1652 *   is last user and may/should destroy this socket.
1653 * * sk_free is called from any context: process, BH, IRQ. When
1654 *   it is called, socket has no references from outside -> sk_free
1655 *   may release descendant resources allocated by the socket, but
1656 *   to the time when it is called, socket is NOT referenced by any
1657 *   hash tables, lists etc.
1658 * * Packets, delivered from outside (from network or from another process)
1659 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1660 *   when they sit in queue. Otherwise, packets will leak to hole, when
1661 *   socket is looked up by one cpu and unhasing is made by another CPU.
1662 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1663 *   (leak to backlog). Packet socket does all the processing inside
1664 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1665 *   use separate SMP lock, so that they are prone too.
1666 */
1667
1668/* Ungrab socket and destroy it, if it was the last reference. */
1669static inline void sock_put(struct sock *sk)
1670{
1671        if (atomic_dec_and_test(&sk->sk_refcnt))
1672                sk_free(sk);
1673}
1674
1675extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1676                          const int nested);
1677
1678static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1679{
1680        sk->sk_tx_queue_mapping = tx_queue;
1681}
1682
1683static inline void sk_tx_queue_clear(struct sock *sk)
1684{
1685        sk->sk_tx_queue_mapping = -1;
1686}
1687
1688static inline int sk_tx_queue_get(const struct sock *sk)
1689{
1690        return sk ? sk->sk_tx_queue_mapping : -1;
1691}
1692
1693static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1694{
1695        sk_tx_queue_clear(sk);
1696        sk->sk_socket = sock;
1697}
1698
1699static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1700{
1701        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1702        return &rcu_dereference_raw(sk->sk_wq)->wait;
1703}
1704/* Detach socket from process context.
1705 * Announce socket dead, detach it from wait queue and inode.
1706 * Note that parent inode held reference count on this struct sock,
1707 * we do not release it in this function, because protocol
1708 * probably wants some additional cleanups or even continuing
1709 * to work with this socket (TCP).
1710 */
1711static inline void sock_orphan(struct sock *sk)
1712{
1713        write_lock_bh(&sk->sk_callback_lock);
1714        sock_set_flag(sk, SOCK_DEAD);
1715        sk_set_socket(sk, NULL);
1716        sk->sk_wq  = NULL;
1717        write_unlock_bh(&sk->sk_callback_lock);
1718}
1719
1720static inline void sock_graft(struct sock *sk, struct socket *parent)
1721{
1722        write_lock_bh(&sk->sk_callback_lock);
1723        sk->sk_wq = parent->wq;
1724        parent->sk = sk;
1725        sk_set_socket(sk, parent);
1726        security_sock_graft(sk, parent);
1727        write_unlock_bh(&sk->sk_callback_lock);
1728}
1729
1730extern kuid_t sock_i_uid(struct sock *sk);
1731extern unsigned long sock_i_ino(struct sock *sk);
1732
1733static inline struct dst_entry *
1734__sk_dst_get(struct sock *sk)
1735{
1736        return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1737                                                       lockdep_is_held(&sk->sk_lock.slock));
1738}
1739
1740static inline struct dst_entry *
1741sk_dst_get(struct sock *sk)
1742{
1743        struct dst_entry *dst;
1744
1745        rcu_read_lock();
1746        dst = rcu_dereference(sk->sk_dst_cache);
1747        if (dst)
1748                dst_hold(dst);
1749        rcu_read_unlock();
1750        return dst;
1751}
1752
1753extern void sk_reset_txq(struct sock *sk);
1754
1755static inline void dst_negative_advice(struct sock *sk)
1756{
1757        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1758
1759        if (dst && dst->ops->negative_advice) {
1760                ndst = dst->ops->negative_advice(dst);
1761
1762                if (ndst != dst) {
1763                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1764                        sk_reset_txq(sk);
1765                }
1766        }
1767}
1768
1769static inline void
1770__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1771{
1772        struct dst_entry *old_dst;
1773
1774        sk_tx_queue_clear(sk);
1775        /*
1776         * This can be called while sk is owned by the caller only,
1777         * with no state that can be checked in a rcu_dereference_check() cond
1778         */
1779        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1780        rcu_assign_pointer(sk->sk_dst_cache, dst);
1781        dst_release(old_dst);
1782}
1783
1784static inline void
1785sk_dst_set(struct sock *sk, struct dst_entry *dst)
1786{
1787        spin_lock(&sk->sk_dst_lock);
1788        __sk_dst_set(sk, dst);
1789        spin_unlock(&sk->sk_dst_lock);
1790}
1791
1792static inline void
1793__sk_dst_reset(struct sock *sk)
1794{
1795        __sk_dst_set(sk, NULL);
1796}
1797
1798static inline void
1799sk_dst_reset(struct sock *sk)
1800{
1801        spin_lock(&sk->sk_dst_lock);
1802        __sk_dst_reset(sk);
1803        spin_unlock(&sk->sk_dst_lock);
1804}
1805
1806extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1807
1808extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1809
1810static inline bool sk_can_gso(const struct sock *sk)
1811{
1812        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1813}
1814
1815extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1816
1817static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1818{
1819        sk->sk_route_nocaps |= flags;
1820        sk->sk_route_caps &= ~flags;
1821}
1822
1823static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1824                                           char __user *from, char *to,
1825                                           int copy, int offset)
1826{
1827        if (skb->ip_summed == CHECKSUM_NONE) {
1828                int err = 0;
1829                __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1830                if (err)
1831                        return err;
1832                skb->csum = csum_block_add(skb->csum, csum, offset);
1833        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1834                if (!access_ok(VERIFY_READ, from, copy) ||
1835                    __copy_from_user_nocache(to, from, copy))
1836                        return -EFAULT;
1837        } else if (copy_from_user(to, from, copy))
1838                return -EFAULT;
1839
1840        return 0;
1841}
1842
1843static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1844                                       char __user *from, int copy)
1845{
1846        int err, offset = skb->len;
1847
1848        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1849                                       copy, offset);
1850        if (err)
1851                __skb_trim(skb, offset);
1852
1853        return err;
1854}
1855
1856static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1857                                           struct sk_buff *skb,
1858                                           struct page *page,
1859                                           int off, int copy)
1860{
1861        int err;
1862
1863        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1864                                       copy, skb->len);
1865        if (err)
1866                return err;
1867
1868        skb->len             += copy;
1869        skb->data_len        += copy;
1870        skb->truesize        += copy;
1871        sk->sk_wmem_queued   += copy;
1872        sk_mem_charge(sk, copy);
1873        return 0;
1874}
1875
1876static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1877                                   struct sk_buff *skb, struct page *page,
1878                                   int off, int copy)
1879{
1880        if (skb->ip_summed == CHECKSUM_NONE) {
1881                int err = 0;
1882                __wsum csum = csum_and_copy_from_user(from,
1883                                                     page_address(page) + off,
1884                                                            copy, 0, &err);
1885                if (err)
1886                        return err;
1887                skb->csum = csum_block_add(skb->csum, csum, skb->len);
1888        } else if (copy_from_user(page_address(page) + off, from, copy))
1889                return -EFAULT;
1890
1891        skb->len             += copy;
1892        skb->data_len        += copy;
1893        skb->truesize        += copy;
1894        sk->sk_wmem_queued   += copy;
1895        sk_mem_charge(sk, copy);
1896        return 0;
1897}
1898
1899/**
1900 * sk_wmem_alloc_get - returns write allocations
1901 * @sk: socket
1902 *
1903 * Returns sk_wmem_alloc minus initial offset of one
1904 */
1905static inline int sk_wmem_alloc_get(const struct sock *sk)
1906{
1907        return atomic_read(&sk->sk_wmem_alloc) - 1;
1908}
1909
1910/**
1911 * sk_rmem_alloc_get - returns read allocations
1912 * @sk: socket
1913 *
1914 * Returns sk_rmem_alloc
1915 */
1916static inline int sk_rmem_alloc_get(const struct sock *sk)
1917{
1918        return atomic_read(&sk->sk_rmem_alloc);
1919}
1920
1921/**
1922 * sk_has_allocations - check if allocations are outstanding
1923 * @sk: socket
1924 *
1925 * Returns true if socket has write or read allocations
1926 */
1927static inline bool sk_has_allocations(const struct sock *sk)
1928{
1929        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1930}
1931
1932/**
1933 * wq_has_sleeper - check if there are any waiting processes
1934 * @wq: struct socket_wq
1935 *
1936 * Returns true if socket_wq has waiting processes
1937 *
1938 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1939 * barrier call. They were added due to the race found within the tcp code.
1940 *
1941 * Consider following tcp code paths:
1942 *
1943 * CPU1                  CPU2
1944 *
1945 * sys_select            receive packet
1946 *   ...                 ...
1947 *   __add_wait_queue    update tp->rcv_nxt
1948 *   ...                 ...
1949 *   tp->rcv_nxt check   sock_def_readable
1950 *   ...                 {
1951 *   schedule               rcu_read_lock();
1952 *                          wq = rcu_dereference(sk->sk_wq);
1953 *                          if (wq && waitqueue_active(&wq->wait))
1954 *                              wake_up_interruptible(&wq->wait)
1955 *                          ...
1956 *                       }
1957 *
1958 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1959 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1960 * could then endup calling schedule and sleep forever if there are no more
1961 * data on the socket.
1962 *
1963 */
1964static inline bool wq_has_sleeper(struct socket_wq *wq)
1965{
1966        /* We need to be sure we are in sync with the
1967         * add_wait_queue modifications to the wait queue.
1968         *
1969         * This memory barrier is paired in the sock_poll_wait.
1970         */
1971        smp_mb();
1972        return wq && waitqueue_active(&wq->wait);
1973}
1974
1975/**
1976 * sock_poll_wait - place memory barrier behind the poll_wait call.
1977 * @filp:           file
1978 * @wait_address:   socket wait queue
1979 * @p:              poll_table
1980 *
1981 * See the comments in the wq_has_sleeper function.
1982 */
1983static inline void sock_poll_wait(struct file *filp,
1984                wait_queue_head_t *wait_address, poll_table *p)
1985{
1986        if (!poll_does_not_wait(p) && wait_address) {
1987                poll_wait(filp, wait_address, p);
1988                /* We need to be sure we are in sync with the
1989                 * socket flags modification.
1990                 *
1991                 * This memory barrier is paired in the wq_has_sleeper.
1992                 */
1993                smp_mb();
1994        }
1995}
1996
1997/*
1998 *      Queue a received datagram if it will fit. Stream and sequenced
1999 *      protocols can't normally use this as they need to fit buffers in
2000 *      and play with them.
2001 *
2002 *      Inlined as it's very short and called for pretty much every
2003 *      packet ever received.
2004 */
2005
2006static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2007{
2008        skb_orphan(skb);
2009        skb->sk = sk;
2010        skb->destructor = sock_wfree;
2011        /*
2012         * We used to take a refcount on sk, but following operation
2013         * is enough to guarantee sk_free() wont free this sock until
2014         * all in-flight packets are completed
2015         */
2016        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2017}
2018
2019static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2020{
2021        skb_orphan(skb);
2022        skb->sk = sk;
2023        skb->destructor = sock_rfree;
2024        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2025        sk_mem_charge(sk, skb->truesize);
2026}
2027
2028extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2029                           unsigned long expires);
2030
2031extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2032
2033extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2034
2035extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2036
2037/*
2038 *      Recover an error report and clear atomically
2039 */
2040
2041static inline int sock_error(struct sock *sk)
2042{
2043        int err;
2044        if (likely(!sk->sk_err))
2045                return 0;
2046        err = xchg(&sk->sk_err, 0);
2047        return -err;
2048}
2049
2050static inline unsigned long sock_wspace(struct sock *sk)
2051{
2052        int amt = 0;
2053
2054        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2055                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2056                if (amt < 0)
2057                        amt = 0;
2058        }
2059        return amt;
2060}
2061
2062static inline void sk_wake_async(struct sock *sk, int how, int band)
2063{
2064        if (sock_flag(sk, SOCK_FASYNC))
2065                sock_wake_async(sk->sk_socket, how, band);
2066}
2067
2068/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2069 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2070 * Note: for send buffers, TCP works better if we can build two skbs at
2071 * minimum.
2072 */
2073#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2074
2075#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2076#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2077
2078static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2079{
2080        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2081                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2082                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2083        }
2084}
2085
2086struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2087
2088/**
2089 * sk_page_frag - return an appropriate page_frag
2090 * @sk: socket
2091 *
2092 * If socket allocation mode allows current thread to sleep, it means its
2093 * safe to use the per task page_frag instead of the per socket one.
2094 */
2095static inline struct page_frag *sk_page_frag(struct sock *sk)
2096{
2097        if (sk->sk_allocation & __GFP_WAIT)
2098                return &current->task_frag;
2099
2100        return &sk->sk_frag;
2101}
2102
2103extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2104
2105/*
2106 *      Default write policy as shown to user space via poll/select/SIGIO
2107 */
2108static inline bool sock_writeable(const struct sock *sk)
2109{
2110        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2111}
2112
2113static inline gfp_t gfp_any(void)
2114{
2115        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2116}
2117
2118static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2119{
2120        return noblock ? 0 : sk->sk_rcvtimeo;
2121}
2122
2123static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2124{
2125        return noblock ? 0 : sk->sk_sndtimeo;
2126}
2127
2128static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2129{
2130        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2131}
2132
2133/* Alas, with timeout socket operations are not restartable.
2134 * Compare this to poll().
2135 */
2136static inline int sock_intr_errno(long timeo)
2137{
2138        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2139}
2140
2141extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2142        struct sk_buff *skb);
2143extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2144        struct sk_buff *skb);
2145
2146static inline void
2147sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2148{
2149        ktime_t kt = skb->tstamp;
2150        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2151
2152        /*
2153         * generate control messages if
2154         * - receive time stamping in software requested (SOCK_RCVTSTAMP
2155         *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2156         * - software time stamp available and wanted
2157         *   (SOCK_TIMESTAMPING_SOFTWARE)
2158         * - hardware time stamps available and wanted
2159         *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2160         *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2161         */
2162        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2163            sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2164            (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2165            (hwtstamps->hwtstamp.tv64 &&
2166             sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2167            (hwtstamps->syststamp.tv64 &&
2168             sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2169                __sock_recv_timestamp(msg, sk, skb);
2170        else
2171                sk->sk_stamp = kt;
2172
2173        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2174                __sock_recv_wifi_status(msg, sk, skb);
2175}
2176
2177extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2178                                     struct sk_buff *skb);
2179
2180static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2181                                          struct sk_buff *skb)
2182{
2183#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2184                           (1UL << SOCK_RCVTSTAMP)                      | \
2185                           (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)       | \
2186                           (1UL << SOCK_TIMESTAMPING_SOFTWARE)          | \
2187                           (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)      | \
2188                           (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2189
2190        if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2191                __sock_recv_ts_and_drops(msg, sk, skb);
2192        else
2193                sk->sk_stamp = skb->tstamp;
2194}
2195
2196/**
2197 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2198 * @sk:         socket sending this packet
2199 * @tx_flags:   filled with instructions for time stamping
2200 *
2201 * Currently only depends on SOCK_TIMESTAMPING* flags.
2202 */
2203extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2204
2205/**
2206 * sk_eat_skb - Release a skb if it is no longer needed
2207 * @sk: socket to eat this skb from
2208 * @skb: socket buffer to eat
2209 * @copied_early: flag indicating whether DMA operations copied this data early
2210 *
2211 * This routine must be called with interrupts disabled or with the socket
2212 * locked so that the sk_buff queue operation is ok.
2213*/
2214#ifdef CONFIG_NET_DMA
2215static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2216{
2217        __skb_unlink(skb, &sk->sk_receive_queue);
2218        if (!copied_early)
2219                __kfree_skb(skb);
2220        else
2221                __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2222}
2223#else
2224static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2225{
2226        __skb_unlink(skb, &sk->sk_receive_queue);
2227        __kfree_skb(skb);
2228}
2229#endif
2230
2231static inline
2232struct net *sock_net(const struct sock *sk)
2233{
2234        return read_pnet(&sk->sk_net);
2235}
2236
2237static inline
2238void sock_net_set(struct sock *sk, struct net *net)
2239{
2240        write_pnet(&sk->sk_net, net);
2241}
2242
2243/*
2244 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2245 * They should not hold a reference to a namespace in order to allow
2246 * to stop it.
2247 * Sockets after sk_change_net should be released using sk_release_kernel
2248 */
2249static inline void sk_change_net(struct sock *sk, struct net *net)
2250{
2251        put_net(sock_net(sk));
2252        sock_net_set(sk, hold_net(net));
2253}
2254
2255static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2256{
2257        if (skb->sk) {
2258                struct sock *sk = skb->sk;
2259
2260                skb->destructor = NULL;
2261                skb->sk = NULL;
2262                return sk;
2263        }
2264        return NULL;
2265}
2266
2267extern void sock_enable_timestamp(struct sock *sk, int flag);
2268extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2269extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2270extern int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2271                              int level, int type);
2272
2273/*
2274 *      Enable debug/info messages
2275 */
2276extern int net_msg_warn;
2277#define NETDEBUG(fmt, args...) \
2278        do { if (net_msg_warn) printk(fmt,##args); } while (0)
2279
2280#define LIMIT_NETDEBUG(fmt, args...) \
2281        do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2282
2283extern __u32 sysctl_wmem_max;
2284extern __u32 sysctl_rmem_max;
2285
2286extern int sysctl_optmem_max;
2287
2288extern __u32 sysctl_wmem_default;
2289extern __u32 sysctl_rmem_default;
2290
2291#endif  /* _SOCK_H */
2292