linux/include/xen/interface/xen.h
<<
>>
Prefs
   1/******************************************************************************
   2 * xen.h
   3 *
   4 * Guest OS interface to Xen.
   5 *
   6 * Copyright (c) 2004, K A Fraser
   7 */
   8
   9#ifndef __XEN_PUBLIC_XEN_H__
  10#define __XEN_PUBLIC_XEN_H__
  11
  12#include <asm/xen/interface.h>
  13
  14/*
  15 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
  16 */
  17
  18/*
  19 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
  20 *         EAX = return value
  21 *         (argument registers may be clobbered on return)
  22 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
  23 *         RAX = return value
  24 *         (argument registers not clobbered on return; RCX, R11 are)
  25 */
  26#define __HYPERVISOR_set_trap_table        0
  27#define __HYPERVISOR_mmu_update            1
  28#define __HYPERVISOR_set_gdt               2
  29#define __HYPERVISOR_stack_switch          3
  30#define __HYPERVISOR_set_callbacks         4
  31#define __HYPERVISOR_fpu_taskswitch        5
  32#define __HYPERVISOR_sched_op_compat       6
  33#define __HYPERVISOR_dom0_op               7
  34#define __HYPERVISOR_set_debugreg          8
  35#define __HYPERVISOR_get_debugreg          9
  36#define __HYPERVISOR_update_descriptor    10
  37#define __HYPERVISOR_memory_op            12
  38#define __HYPERVISOR_multicall            13
  39#define __HYPERVISOR_update_va_mapping    14
  40#define __HYPERVISOR_set_timer_op         15
  41#define __HYPERVISOR_event_channel_op_compat 16
  42#define __HYPERVISOR_xen_version          17
  43#define __HYPERVISOR_console_io           18
  44#define __HYPERVISOR_physdev_op_compat    19
  45#define __HYPERVISOR_grant_table_op       20
  46#define __HYPERVISOR_vm_assist            21
  47#define __HYPERVISOR_update_va_mapping_otherdomain 22
  48#define __HYPERVISOR_iret                 23 /* x86 only */
  49#define __HYPERVISOR_vcpu_op              24
  50#define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
  51#define __HYPERVISOR_mmuext_op            26
  52#define __HYPERVISOR_acm_op               27
  53#define __HYPERVISOR_nmi_op               28
  54#define __HYPERVISOR_sched_op             29
  55#define __HYPERVISOR_callback_op          30
  56#define __HYPERVISOR_xenoprof_op          31
  57#define __HYPERVISOR_event_channel_op     32
  58#define __HYPERVISOR_physdev_op           33
  59#define __HYPERVISOR_hvm_op               34
  60#define __HYPERVISOR_tmem_op              38
  61
  62/* Architecture-specific hypercall definitions. */
  63#define __HYPERVISOR_arch_0               48
  64#define __HYPERVISOR_arch_1               49
  65#define __HYPERVISOR_arch_2               50
  66#define __HYPERVISOR_arch_3               51
  67#define __HYPERVISOR_arch_4               52
  68#define __HYPERVISOR_arch_5               53
  69#define __HYPERVISOR_arch_6               54
  70#define __HYPERVISOR_arch_7               55
  71
  72/*
  73 * VIRTUAL INTERRUPTS
  74 *
  75 * Virtual interrupts that a guest OS may receive from Xen.
  76 */
  77#define VIRQ_TIMER      0  /* Timebase update, and/or requested timeout.  */
  78#define VIRQ_DEBUG      1  /* Request guest to dump debug info.           */
  79#define VIRQ_CONSOLE    2  /* (DOM0) Bytes received on emergency console. */
  80#define VIRQ_DOM_EXC    3  /* (DOM0) Exceptional event for some domain.   */
  81#define VIRQ_DEBUGGER   6  /* (DOM0) A domain has paused for debugging.   */
  82#define VIRQ_PCPU_STATE 9  /* (DOM0) PCPU state changed                   */
  83
  84/* Architecture-specific VIRQ definitions. */
  85#define VIRQ_ARCH_0    16
  86#define VIRQ_ARCH_1    17
  87#define VIRQ_ARCH_2    18
  88#define VIRQ_ARCH_3    19
  89#define VIRQ_ARCH_4    20
  90#define VIRQ_ARCH_5    21
  91#define VIRQ_ARCH_6    22
  92#define VIRQ_ARCH_7    23
  93
  94#define NR_VIRQS       24
  95/*
  96 * MMU-UPDATE REQUESTS
  97 *
  98 * HYPERVISOR_mmu_update() accepts a list of (ptr, val) pairs.
  99 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
 100 * Where the FD has some effect, it is described below.
 101 * ptr[1:0] specifies the appropriate MMU_* command.
 102 *
 103 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
 104 * Updates an entry in a page table. If updating an L1 table, and the new
 105 * table entry is valid/present, the mapped frame must belong to the FD, if
 106 * an FD has been specified. If attempting to map an I/O page then the
 107 * caller assumes the privilege of the FD.
 108 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
 109 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
 110 * ptr[:2]  -- Machine address of the page-table entry to modify.
 111 * val      -- Value to write.
 112 *
 113 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
 114 * Updates an entry in the machine->pseudo-physical mapping table.
 115 * ptr[:2]  -- Machine address within the frame whose mapping to modify.
 116 *             The frame must belong to the FD, if one is specified.
 117 * val      -- Value to write into the mapping entry.
 118 *
 119 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
 120 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
 121 * with those in @val.
 122 */
 123#define MMU_NORMAL_PT_UPDATE      0 /* checked '*ptr = val'. ptr is MA.       */
 124#define MMU_MACHPHYS_UPDATE       1 /* ptr = MA of frame to modify entry for  */
 125#define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
 126
 127/*
 128 * MMU EXTENDED OPERATIONS
 129 *
 130 * HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
 131 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
 132 * Where the FD has some effect, it is described below.
 133 *
 134 * cmd: MMUEXT_(UN)PIN_*_TABLE
 135 * mfn: Machine frame number to be (un)pinned as a p.t. page.
 136 *      The frame must belong to the FD, if one is specified.
 137 *
 138 * cmd: MMUEXT_NEW_BASEPTR
 139 * mfn: Machine frame number of new page-table base to install in MMU.
 140 *
 141 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
 142 * mfn: Machine frame number of new page-table base to install in MMU
 143 *      when in user space.
 144 *
 145 * cmd: MMUEXT_TLB_FLUSH_LOCAL
 146 * No additional arguments. Flushes local TLB.
 147 *
 148 * cmd: MMUEXT_INVLPG_LOCAL
 149 * linear_addr: Linear address to be flushed from the local TLB.
 150 *
 151 * cmd: MMUEXT_TLB_FLUSH_MULTI
 152 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
 153 *
 154 * cmd: MMUEXT_INVLPG_MULTI
 155 * linear_addr: Linear address to be flushed.
 156 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
 157 *
 158 * cmd: MMUEXT_TLB_FLUSH_ALL
 159 * No additional arguments. Flushes all VCPUs' TLBs.
 160 *
 161 * cmd: MMUEXT_INVLPG_ALL
 162 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
 163 *
 164 * cmd: MMUEXT_FLUSH_CACHE
 165 * No additional arguments. Writes back and flushes cache contents.
 166 *
 167 * cmd: MMUEXT_SET_LDT
 168 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
 169 * nr_ents: Number of entries in LDT.
 170 */
 171#define MMUEXT_PIN_L1_TABLE      0
 172#define MMUEXT_PIN_L2_TABLE      1
 173#define MMUEXT_PIN_L3_TABLE      2
 174#define MMUEXT_PIN_L4_TABLE      3
 175#define MMUEXT_UNPIN_TABLE       4
 176#define MMUEXT_NEW_BASEPTR       5
 177#define MMUEXT_TLB_FLUSH_LOCAL   6
 178#define MMUEXT_INVLPG_LOCAL      7
 179#define MMUEXT_TLB_FLUSH_MULTI   8
 180#define MMUEXT_INVLPG_MULTI      9
 181#define MMUEXT_TLB_FLUSH_ALL    10
 182#define MMUEXT_INVLPG_ALL       11
 183#define MMUEXT_FLUSH_CACHE      12
 184#define MMUEXT_SET_LDT          13
 185#define MMUEXT_NEW_USER_BASEPTR 15
 186
 187#ifndef __ASSEMBLY__
 188struct mmuext_op {
 189        unsigned int cmd;
 190        union {
 191                /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR */
 192                xen_pfn_t mfn;
 193                /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
 194                unsigned long linear_addr;
 195        } arg1;
 196        union {
 197                /* SET_LDT */
 198                unsigned int nr_ents;
 199                /* TLB_FLUSH_MULTI, INVLPG_MULTI */
 200                void *vcpumask;
 201        } arg2;
 202};
 203DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
 204#endif
 205
 206/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
 207/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
 208/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
 209#define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
 210#define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
 211#define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
 212#define UVMF_FLUSHTYPE_MASK     (3UL<<0)
 213#define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
 214#define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
 215#define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
 216
 217/*
 218 * Commands to HYPERVISOR_console_io().
 219 */
 220#define CONSOLEIO_write         0
 221#define CONSOLEIO_read          1
 222
 223/*
 224 * Commands to HYPERVISOR_vm_assist().
 225 */
 226#define VMASST_CMD_enable                0
 227#define VMASST_CMD_disable               1
 228#define VMASST_TYPE_4gb_segments         0
 229#define VMASST_TYPE_4gb_segments_notify  1
 230#define VMASST_TYPE_writable_pagetables  2
 231#define VMASST_TYPE_pae_extended_cr3     3
 232#define MAX_VMASST_TYPE 3
 233
 234#ifndef __ASSEMBLY__
 235
 236typedef uint16_t domid_t;
 237
 238/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
 239#define DOMID_FIRST_RESERVED (0x7FF0U)
 240
 241/* DOMID_SELF is used in certain contexts to refer to oneself. */
 242#define DOMID_SELF (0x7FF0U)
 243
 244/*
 245 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
 246 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
 247 * is useful to ensure that no mappings to the OS's own heap are accidentally
 248 * installed. (e.g., in Linux this could cause havoc as reference counts
 249 * aren't adjusted on the I/O-mapping code path).
 250 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
 251 * be specified by any calling domain.
 252 */
 253#define DOMID_IO   (0x7FF1U)
 254
 255/*
 256 * DOMID_XEN is used to allow privileged domains to map restricted parts of
 257 * Xen's heap space (e.g., the machine_to_phys table).
 258 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
 259 * the caller is privileged.
 260 */
 261#define DOMID_XEN  (0x7FF2U)
 262
 263/*
 264 * Send an array of these to HYPERVISOR_mmu_update().
 265 * NB. The fields are natural pointer/address size for this architecture.
 266 */
 267struct mmu_update {
 268    uint64_t ptr;       /* Machine address of PTE. */
 269    uint64_t val;       /* New contents of PTE.    */
 270};
 271DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
 272
 273/*
 274 * Send an array of these to HYPERVISOR_multicall().
 275 * NB. The fields are natural register size for this architecture.
 276 */
 277struct multicall_entry {
 278    unsigned long op;
 279    long result;
 280    unsigned long args[6];
 281};
 282DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
 283
 284/*
 285 * Event channel endpoints per domain:
 286 *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
 287 */
 288#define NR_EVENT_CHANNELS (sizeof(xen_ulong_t) * sizeof(xen_ulong_t) * 64)
 289
 290struct vcpu_time_info {
 291        /*
 292         * Updates to the following values are preceded and followed
 293         * by an increment of 'version'. The guest can therefore
 294         * detect updates by looking for changes to 'version'. If the
 295         * least-significant bit of the version number is set then an
 296         * update is in progress and the guest must wait to read a
 297         * consistent set of values.  The correct way to interact with
 298         * the version number is similar to Linux's seqlock: see the
 299         * implementations of read_seqbegin/read_seqretry.
 300         */
 301        uint32_t version;
 302        uint32_t pad0;
 303        uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
 304        uint64_t system_time;     /* Time, in nanosecs, since boot.    */
 305        /*
 306         * Current system time:
 307         *   system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
 308         * CPU frequency (Hz):
 309         *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
 310         */
 311        uint32_t tsc_to_system_mul;
 312        int8_t   tsc_shift;
 313        int8_t   pad1[3];
 314}; /* 32 bytes */
 315
 316struct vcpu_info {
 317        /*
 318         * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
 319         * a pending notification for a particular VCPU. It is then cleared
 320         * by the guest OS /before/ checking for pending work, thus avoiding
 321         * a set-and-check race. Note that the mask is only accessed by Xen
 322         * on the CPU that is currently hosting the VCPU. This means that the
 323         * pending and mask flags can be updated by the guest without special
 324         * synchronisation (i.e., no need for the x86 LOCK prefix).
 325         * This may seem suboptimal because if the pending flag is set by
 326         * a different CPU then an IPI may be scheduled even when the mask
 327         * is set. However, note:
 328         *  1. The task of 'interrupt holdoff' is covered by the per-event-
 329         *     channel mask bits. A 'noisy' event that is continually being
 330         *     triggered can be masked at source at this very precise
 331         *     granularity.
 332         *  2. The main purpose of the per-VCPU mask is therefore to restrict
 333         *     reentrant execution: whether for concurrency control, or to
 334         *     prevent unbounded stack usage. Whatever the purpose, we expect
 335         *     that the mask will be asserted only for short periods at a time,
 336         *     and so the likelihood of a 'spurious' IPI is suitably small.
 337         * The mask is read before making an event upcall to the guest: a
 338         * non-zero mask therefore guarantees that the VCPU will not receive
 339         * an upcall activation. The mask is cleared when the VCPU requests
 340         * to block: this avoids wakeup-waiting races.
 341         */
 342        uint8_t evtchn_upcall_pending;
 343        uint8_t evtchn_upcall_mask;
 344        xen_ulong_t evtchn_pending_sel;
 345        struct arch_vcpu_info arch;
 346        struct pvclock_vcpu_time_info time;
 347}; /* 64 bytes (x86) */
 348
 349/*
 350 * Xen/kernel shared data -- pointer provided in start_info.
 351 * NB. We expect that this struct is smaller than a page.
 352 */
 353struct shared_info {
 354        struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
 355
 356        /*
 357         * A domain can create "event channels" on which it can send and receive
 358         * asynchronous event notifications. There are three classes of event that
 359         * are delivered by this mechanism:
 360         *  1. Bi-directional inter- and intra-domain connections. Domains must
 361         *     arrange out-of-band to set up a connection (usually by allocating
 362         *     an unbound 'listener' port and avertising that via a storage service
 363         *     such as xenstore).
 364         *  2. Physical interrupts. A domain with suitable hardware-access
 365         *     privileges can bind an event-channel port to a physical interrupt
 366         *     source.
 367         *  3. Virtual interrupts ('events'). A domain can bind an event-channel
 368         *     port to a virtual interrupt source, such as the virtual-timer
 369         *     device or the emergency console.
 370         *
 371         * Event channels are addressed by a "port index". Each channel is
 372         * associated with two bits of information:
 373         *  1. PENDING -- notifies the domain that there is a pending notification
 374         *     to be processed. This bit is cleared by the guest.
 375         *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
 376         *     will cause an asynchronous upcall to be scheduled. This bit is only
 377         *     updated by the guest. It is read-only within Xen. If a channel
 378         *     becomes pending while the channel is masked then the 'edge' is lost
 379         *     (i.e., when the channel is unmasked, the guest must manually handle
 380         *     pending notifications as no upcall will be scheduled by Xen).
 381         *
 382         * To expedite scanning of pending notifications, any 0->1 pending
 383         * transition on an unmasked channel causes a corresponding bit in a
 384         * per-vcpu selector word to be set. Each bit in the selector covers a
 385         * 'C long' in the PENDING bitfield array.
 386         */
 387        xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
 388        xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
 389
 390        /*
 391         * Wallclock time: updated only by control software. Guests should base
 392         * their gettimeofday() syscall on this wallclock-base value.
 393         */
 394        struct pvclock_wall_clock wc;
 395
 396        struct arch_shared_info arch;
 397
 398};
 399
 400/*
 401 * Start-of-day memory layout for the initial domain (DOM0):
 402 *  1. The domain is started within contiguous virtual-memory region.
 403 *  2. The contiguous region begins and ends on an aligned 4MB boundary.
 404 *  3. The region start corresponds to the load address of the OS image.
 405 *     If the load address is not 4MB aligned then the address is rounded down.
 406 *  4. This the order of bootstrap elements in the initial virtual region:
 407 *      a. relocated kernel image
 408 *      b. initial ram disk              [mod_start, mod_len]
 409 *      c. list of allocated page frames [mfn_list, nr_pages]
 410 *      d. start_info_t structure        [register ESI (x86)]
 411 *      e. bootstrap page tables         [pt_base, CR3 (x86)]
 412 *      f. bootstrap stack               [register ESP (x86)]
 413 *  5. Bootstrap elements are packed together, but each is 4kB-aligned.
 414 *  6. The initial ram disk may be omitted.
 415 *  7. The list of page frames forms a contiguous 'pseudo-physical' memory
 416 *     layout for the domain. In particular, the bootstrap virtual-memory
 417 *     region is a 1:1 mapping to the first section of the pseudo-physical map.
 418 *  8. All bootstrap elements are mapped read-writable for the guest OS. The
 419 *     only exception is the bootstrap page table, which is mapped read-only.
 420 *  9. There is guaranteed to be at least 512kB padding after the final
 421 *     bootstrap element. If necessary, the bootstrap virtual region is
 422 *     extended by an extra 4MB to ensure this.
 423 */
 424
 425#define MAX_GUEST_CMDLINE 1024
 426struct start_info {
 427        /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
 428        char magic[32];             /* "xen-<version>-<platform>".            */
 429        unsigned long nr_pages;     /* Total pages allocated to this domain.  */
 430        unsigned long shared_info;  /* MACHINE address of shared info struct. */
 431        uint32_t flags;             /* SIF_xxx flags.                         */
 432        xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
 433        uint32_t store_evtchn;      /* Event channel for store communication. */
 434        union {
 435                struct {
 436                        xen_pfn_t mfn;      /* MACHINE page number of console page.   */
 437                        uint32_t  evtchn;   /* Event channel for console page.        */
 438                } domU;
 439                struct {
 440                        uint32_t info_off;  /* Offset of console_info struct.         */
 441                        uint32_t info_size; /* Size of console_info struct from start.*/
 442                } dom0;
 443        } console;
 444        /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
 445        unsigned long pt_base;      /* VIRTUAL address of page directory.     */
 446        unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
 447        unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
 448        unsigned long mod_start;    /* VIRTUAL address of pre-loaded module.  */
 449        unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
 450        int8_t cmd_line[MAX_GUEST_CMDLINE];
 451};
 452
 453struct dom0_vga_console_info {
 454        uint8_t video_type;
 455#define XEN_VGATYPE_TEXT_MODE_3 0x03
 456#define XEN_VGATYPE_VESA_LFB    0x23
 457#define XEN_VGATYPE_EFI_LFB     0x70
 458
 459        union {
 460                struct {
 461                        /* Font height, in pixels. */
 462                        uint16_t font_height;
 463                        /* Cursor location (column, row). */
 464                        uint16_t cursor_x, cursor_y;
 465                        /* Number of rows and columns (dimensions in characters). */
 466                        uint16_t rows, columns;
 467                } text_mode_3;
 468
 469                struct {
 470                        /* Width and height, in pixels. */
 471                        uint16_t width, height;
 472                        /* Bytes per scan line. */
 473                        uint16_t bytes_per_line;
 474                        /* Bits per pixel. */
 475                        uint16_t bits_per_pixel;
 476                        /* LFB physical address, and size (in units of 64kB). */
 477                        uint32_t lfb_base;
 478                        uint32_t lfb_size;
 479                        /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
 480                        uint8_t  red_pos, red_size;
 481                        uint8_t  green_pos, green_size;
 482                        uint8_t  blue_pos, blue_size;
 483                        uint8_t  rsvd_pos, rsvd_size;
 484
 485                        /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
 486                        uint32_t gbl_caps;
 487                        /* Mode attributes (offset 0x0, VESA command 0x4f01). */
 488                        uint16_t mode_attrs;
 489                } vesa_lfb;
 490        } u;
 491};
 492
 493/* These flags are passed in the 'flags' field of start_info_t. */
 494#define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
 495#define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
 496#define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
 497
 498typedef uint64_t cpumap_t;
 499
 500typedef uint8_t xen_domain_handle_t[16];
 501
 502/* Turn a plain number into a C unsigned long constant. */
 503#define __mk_unsigned_long(x) x ## UL
 504#define mk_unsigned_long(x) __mk_unsigned_long(x)
 505
 506#define TMEM_SPEC_VERSION 1
 507
 508struct tmem_op {
 509        uint32_t cmd;
 510        int32_t pool_id;
 511        union {
 512                struct {  /* for cmd == TMEM_NEW_POOL */
 513                        uint64_t uuid[2];
 514                        uint32_t flags;
 515                } new;
 516                struct {
 517                        uint64_t oid[3];
 518                        uint32_t index;
 519                        uint32_t tmem_offset;
 520                        uint32_t pfn_offset;
 521                        uint32_t len;
 522                        GUEST_HANDLE(void) gmfn; /* guest machine page frame */
 523                } gen;
 524        } u;
 525};
 526
 527DEFINE_GUEST_HANDLE(u64);
 528
 529#else /* __ASSEMBLY__ */
 530
 531/* In assembly code we cannot use C numeric constant suffixes. */
 532#define mk_unsigned_long(x) x
 533
 534#endif /* !__ASSEMBLY__ */
 535
 536#endif /* __XEN_PUBLIC_XEN_H__ */
 537