linux/kernel/debug/kdb/kdb_main.c
<<
>>
Prefs
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
  24#include <linux/atomic.h>
  25#include <linux/module.h>
  26#include <linux/mm.h>
  27#include <linux/init.h>
  28#include <linux/kallsyms.h>
  29#include <linux/kgdb.h>
  30#include <linux/kdb.h>
  31#include <linux/notifier.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/nmi.h>
  35#include <linux/time.h>
  36#include <linux/ptrace.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/kdebug.h>
  40#include <linux/proc_fs.h>
  41#include <linux/uaccess.h>
  42#include <linux/slab.h>
  43#include "kdb_private.h"
  44
  45#define GREP_LEN 256
  46char kdb_grep_string[GREP_LEN];
  47int kdb_grepping_flag;
  48EXPORT_SYMBOL(kdb_grepping_flag);
  49int kdb_grep_leading;
  50int kdb_grep_trailing;
  51
  52/*
  53 * Kernel debugger state flags
  54 */
  55int kdb_flags;
  56atomic_t kdb_event;
  57
  58/*
  59 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  60 * single thread processors through the kernel debugger.
  61 */
  62int kdb_initial_cpu = -1;       /* cpu number that owns kdb */
  63int kdb_nextline = 1;
  64int kdb_state;                  /* General KDB state */
  65
  66struct task_struct *kdb_current_task;
  67EXPORT_SYMBOL(kdb_current_task);
  68struct pt_regs *kdb_current_regs;
  69
  70const char *kdb_diemsg;
  71static int kdb_go_count;
  72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  73static unsigned int kdb_continue_catastrophic =
  74        CONFIG_KDB_CONTINUE_CATASTROPHIC;
  75#else
  76static unsigned int kdb_continue_catastrophic;
  77#endif
  78
  79/* kdb_commands describes the available commands. */
  80static kdbtab_t *kdb_commands;
  81#define KDB_BASE_CMD_MAX 50
  82static int kdb_max_commands = KDB_BASE_CMD_MAX;
  83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  84#define for_each_kdbcmd(cmd, num)                                       \
  85        for ((cmd) = kdb_base_commands, (num) = 0;                      \
  86             num < kdb_max_commands;                                    \
  87             num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  88
  89typedef struct _kdbmsg {
  90        int     km_diag;        /* kdb diagnostic */
  91        char    *km_msg;        /* Corresponding message text */
  92} kdbmsg_t;
  93
  94#define KDBMSG(msgnum, text) \
  95        { KDB_##msgnum, text }
  96
  97static kdbmsg_t kdbmsgs[] = {
  98        KDBMSG(NOTFOUND, "Command Not Found"),
  99        KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 100        KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 101               "8 is only allowed on 64 bit systems"),
 102        KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 103        KDBMSG(NOTENV, "Cannot find environment variable"),
 104        KDBMSG(NOENVVALUE, "Environment variable should have value"),
 105        KDBMSG(NOTIMP, "Command not implemented"),
 106        KDBMSG(ENVFULL, "Environment full"),
 107        KDBMSG(ENVBUFFULL, "Environment buffer full"),
 108        KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 109#ifdef CONFIG_CPU_XSCALE
 110        KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 111#else
 112        KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 113#endif
 114        KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 115        KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 116        KDBMSG(BADMODE, "Invalid IDMODE"),
 117        KDBMSG(BADINT, "Illegal numeric value"),
 118        KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 119        KDBMSG(BADREG, "Invalid register name"),
 120        KDBMSG(BADCPUNUM, "Invalid cpu number"),
 121        KDBMSG(BADLENGTH, "Invalid length field"),
 122        KDBMSG(NOBP, "No Breakpoint exists"),
 123        KDBMSG(BADADDR, "Invalid address"),
 124};
 125#undef KDBMSG
 126
 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 128
 129
 130/*
 131 * Initial environment.   This is all kept static and local to
 132 * this file.   We don't want to rely on the memory allocation
 133 * mechanisms in the kernel, so we use a very limited allocate-only
 134 * heap for new and altered environment variables.  The entire
 135 * environment is limited to a fixed number of entries (add more
 136 * to __env[] if required) and a fixed amount of heap (add more to
 137 * KDB_ENVBUFSIZE if required).
 138 */
 139
 140static char *__env[] = {
 141#if defined(CONFIG_SMP)
 142 "PROMPT=[%d]kdb> ",
 143#else
 144 "PROMPT=kdb> ",
 145#endif
 146 "MOREPROMPT=more> ",
 147 "RADIX=16",
 148 "MDCOUNT=8",                   /* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = ARRAY_SIZE(__env);
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182        struct task_struct *p = curr_task(cpu);
 183#ifdef  _TIF_MCA_INIT
 184        if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185                p = krp->p;
 186#endif
 187        return p;
 188}
 189
 190/*
 191 * kdbgetenv - This function will return the character string value of
 192 *      an environment variable.
 193 * Parameters:
 194 *      match   A character string representing an environment variable.
 195 * Returns:
 196 *      NULL    No environment variable matches 'match'
 197 *      char*   Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201        char **ep = __env;
 202        int matchlen = strlen(match);
 203        int i;
 204
 205        for (i = 0; i < __nenv; i++) {
 206                char *e = *ep++;
 207
 208                if (!e)
 209                        continue;
 210
 211                if ((strncmp(match, e, matchlen) == 0)
 212                 && ((e[matchlen] == '\0')
 213                   || (e[matchlen] == '='))) {
 214                        char *cp = strchr(e, '=');
 215                        return cp ? ++cp : "";
 216                }
 217        }
 218        return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *      environment entries.
 224 * Parameters:
 225 *      match   A character string representing a numeric value
 226 * Outputs:
 227 *      *value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *      Zero on success, a kdb diagnostic on failure.
 230 * Remarks:
 231 *      We use a static environment buffer (envbuffer) to hold the values
 232 *      of dynamically generated environment variables (see kdb_set).  Buffer
 233 *      space once allocated is never free'd, so over time, the amount of space
 234 *      (currently 512 bytes) will be exhausted if env variables are changed
 235 *      frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define KDB_ENVBUFSIZE  512
 240        static char envbuffer[KDB_ENVBUFSIZE];
 241        static int envbufsize;
 242        char *ep = NULL;
 243
 244        if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245                ep = &envbuffer[envbufsize];
 246                envbufsize += bytes;
 247        }
 248        return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *      long-valued environment variable.
 254 * Parameters:
 255 *      match   A character string representing a numeric value
 256 * Outputs:
 257 *      *value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *      Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263        char *ep;
 264
 265        ep = kdbgetenv(match);
 266        if (!ep)
 267                return KDB_NOTENV;
 268        if (strlen(ep) == 0)
 269                return KDB_NOENVVALUE;
 270
 271        *value = simple_strtoul(ep, NULL, 0);
 272
 273        return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *      integer-valued environment variable.
 279 * Parameters:
 280 *      match   A character string representing an integer-valued env variable
 281 * Outputs:
 282 *      *value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *      Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288        unsigned long val;
 289        int diag;
 290
 291        diag = kdbgetulenv(match, &val);
 292        if (!diag)
 293                *value = (int) val;
 294        return diag;
 295}
 296
 297/*
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *      unsigned long value.
 300 * Parameters:
 301 *      arg     A character string representing a numeric value
 302 * Outputs:
 303 *      *value  the unsigned long represntation of arg.
 304 * Returns:
 305 *      Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309        char *endp;
 310        unsigned long val;
 311
 312        val = simple_strtoul(arg, &endp, 0);
 313
 314        if (endp == arg) {
 315                /*
 316                 * Also try base 16, for us folks too lazy to type the
 317                 * leading 0x...
 318                 */
 319                val = simple_strtoul(arg, &endp, 16);
 320                if (endp == arg)
 321                        return KDB_BADINT;
 322        }
 323
 324        *value = val;
 325
 326        return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331        char *endp;
 332        u64 val;
 333
 334        val = simple_strtoull(arg, &endp, 0);
 335
 336        if (endp == arg) {
 337
 338                val = simple_strtoull(arg, &endp, 16);
 339                if (endp == arg)
 340                        return KDB_BADINT;
 341        }
 342
 343        *value = val;
 344
 345        return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *      existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354        int i;
 355        char *ep;
 356        size_t varlen, vallen;
 357
 358        /*
 359         * we can be invoked two ways:
 360         *   set var=value    argv[1]="var", argv[2]="value"
 361         *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362         * - if the latter, shift 'em down.
 363         */
 364        if (argc == 3) {
 365                argv[2] = argv[3];
 366                argc--;
 367        }
 368
 369        if (argc != 2)
 370                return KDB_ARGCOUNT;
 371
 372        /*
 373         * Check for internal variables
 374         */
 375        if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376                unsigned int debugflags;
 377                char *cp;
 378
 379                debugflags = simple_strtoul(argv[2], &cp, 0);
 380                if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381                        kdb_printf("kdb: illegal debug flags '%s'\n",
 382                                    argv[2]);
 383                        return 0;
 384                }
 385                kdb_flags = (kdb_flags &
 386                             ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387                        | (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389                return 0;
 390        }
 391
 392        /*
 393         * Tokenizer squashed the '=' sign.  argv[1] is variable
 394         * name, argv[2] = value.
 395         */
 396        varlen = strlen(argv[1]);
 397        vallen = strlen(argv[2]);
 398        ep = kdballocenv(varlen + vallen + 2);
 399        if (ep == (char *)0)
 400                return KDB_ENVBUFFULL;
 401
 402        sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404        ep[varlen+vallen+1] = '\0';
 405
 406        for (i = 0; i < __nenv; i++) {
 407                if (__env[i]
 408                 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409                   && ((__env[i][varlen] == '\0')
 410                    || (__env[i][varlen] == '=')))) {
 411                        __env[i] = ep;
 412                        return 0;
 413                }
 414        }
 415
 416        /*
 417         * Wasn't existing variable.  Fit into slot.
 418         */
 419        for (i = 0; i < __nenv-1; i++) {
 420                if (__env[i] == (char *)0) {
 421                        __env[i] = ep;
 422                        return 0;
 423                }
 424        }
 425
 426        return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431        if (!kdb_current_regs) {
 432                kdb_printf("No current kdb registers."
 433                           "  You may need to select another task\n");
 434                return KDB_BADREG;
 435        }
 436        return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *      address-expression and returning the value of the expression,
 442 *      symbol name, and offset to the caller.
 443 *
 444 *      The argument may consist of a numeric value (decimal or
 445 *      hexidecimal), a symbol name, a register name (preceded by the
 446 *      percent sign), an environment variable with a numeric value
 447 *      (preceded by a dollar sign) or a simple arithmetic expression
 448 *      consisting of a symbol name, +/-, and a numeric constant value
 449 *      (offset).
 450 * Parameters:
 451 *      argc    - count of arguments in argv
 452 *      argv    - argument vector
 453 *      *nextarg - index to next unparsed argument in argv[]
 454 *      regs    - Register state at time of KDB entry
 455 * Outputs:
 456 *      *value  - receives the value of the address-expression
 457 *      *offset - receives the offset specified, if any
 458 *      *name   - receives the symbol name, if any
 459 *      *nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *      zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465                  unsigned long *value,  long *offset,
 466                  char **name)
 467{
 468        unsigned long addr;
 469        unsigned long off = 0;
 470        int positive;
 471        int diag;
 472        int found = 0;
 473        char *symname;
 474        char symbol = '\0';
 475        char *cp;
 476        kdb_symtab_t symtab;
 477
 478        /*
 479         * Process arguments which follow the following syntax:
 480         *
 481         *  symbol | numeric-address [+/- numeric-offset]
 482         *  %register
 483         *  $environment-variable
 484         */
 485
 486        if (*nextarg > argc)
 487                return KDB_ARGCOUNT;
 488
 489        symname = (char *)argv[*nextarg];
 490
 491        /*
 492         * If there is no whitespace between the symbol
 493         * or address and the '+' or '-' symbols, we
 494         * remember the character and replace it with a
 495         * null so the symbol/value can be properly parsed
 496         */
 497        cp = strpbrk(symname, "+-");
 498        if (cp != NULL) {
 499                symbol = *cp;
 500                *cp++ = '\0';
 501        }
 502
 503        if (symname[0] == '$') {
 504                diag = kdbgetulenv(&symname[1], &addr);
 505                if (diag)
 506                        return diag;
 507        } else if (symname[0] == '%') {
 508                diag = kdb_check_regs();
 509                if (diag)
 510                        return diag;
 511                /* Implement register values with % at a later time as it is
 512                 * arch optional.
 513                 */
 514                return KDB_NOTIMP;
 515        } else {
 516                found = kdbgetsymval(symname, &symtab);
 517                if (found) {
 518                        addr = symtab.sym_start;
 519                } else {
 520                        diag = kdbgetularg(argv[*nextarg], &addr);
 521                        if (diag)
 522                                return diag;
 523                }
 524        }
 525
 526        if (!found)
 527                found = kdbnearsym(addr, &symtab);
 528
 529        (*nextarg)++;
 530
 531        if (name)
 532                *name = symname;
 533        if (value)
 534                *value = addr;
 535        if (offset && name && *name)
 536                *offset = addr - symtab.sym_start;
 537
 538        if ((*nextarg > argc)
 539         && (symbol == '\0'))
 540                return 0;
 541
 542        /*
 543         * check for +/- and offset
 544         */
 545
 546        if (symbol == '\0') {
 547                if ((argv[*nextarg][0] != '+')
 548                 && (argv[*nextarg][0] != '-')) {
 549                        /*
 550                         * Not our argument.  Return.
 551                         */
 552                        return 0;
 553                } else {
 554                        positive = (argv[*nextarg][0] == '+');
 555                        (*nextarg)++;
 556                }
 557        } else
 558                positive = (symbol == '+');
 559
 560        /*
 561         * Now there must be an offset!
 562         */
 563        if ((*nextarg > argc)
 564         && (symbol == '\0')) {
 565                return KDB_INVADDRFMT;
 566        }
 567
 568        if (!symbol) {
 569                cp = (char *)argv[*nextarg];
 570                (*nextarg)++;
 571        }
 572
 573        diag = kdbgetularg(cp, &off);
 574        if (diag)
 575                return diag;
 576
 577        if (!positive)
 578                off = -off;
 579
 580        if (offset)
 581                *offset += off;
 582
 583        if (value)
 584                *value += off;
 585
 586        return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591        int i;
 592
 593        if (diag >= 0) {
 594                kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595                return;
 596        }
 597
 598        for (i = 0; i < __nkdb_err; i++) {
 599                if (kdbmsgs[i].km_diag == diag) {
 600                        kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601                        return;
 602                }
 603        }
 604
 605        kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *      command which defines one command as a set of other commands,
 611 *      terminated by endefcmd.  kdb_defcmd processes the initial
 612 *      'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *      the following commands until 'endefcmd'.
 614 * Inputs:
 615 *      argc    argument count
 616 *      argv    argument vector
 617 * Returns:
 618 *      zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621        int count;
 622        int usable;
 623        char *name;
 624        char *usage;
 625        char *help;
 626        char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637        struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638        char **save_command = s->command;
 639        if (strcmp(argv0, "endefcmd") == 0) {
 640                defcmd_in_progress = 0;
 641                if (!s->count)
 642                        s->usable = 0;
 643                if (s->usable)
 644                        kdb_register(s->name, kdb_exec_defcmd,
 645                                     s->usage, s->help, 0);
 646                return 0;
 647        }
 648        if (!s->usable)
 649                return KDB_NOTIMP;
 650        s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651        if (!s->command) {
 652                kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653                           cmdstr);
 654                s->usable = 0;
 655                return KDB_NOTIMP;
 656        }
 657        memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658        s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659        kfree(save_command);
 660        return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665        struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 666        if (defcmd_in_progress) {
 667                kdb_printf("kdb: nested defcmd detected, assuming missing "
 668                           "endefcmd\n");
 669                kdb_defcmd2("endefcmd", "endefcmd");
 670        }
 671        if (argc == 0) {
 672                int i;
 673                for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674                        kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675                                   s->usage, s->help);
 676                        for (i = 0; i < s->count; ++i)
 677                                kdb_printf("%s", s->command[i]);
 678                        kdb_printf("endefcmd\n");
 679                }
 680                return 0;
 681        }
 682        if (argc != 3)
 683                return KDB_ARGCOUNT;
 684        if (in_dbg_master()) {
 685                kdb_printf("Command only available during kdb_init()\n");
 686                return KDB_NOTIMP;
 687        }
 688        defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 689                             GFP_KDB);
 690        if (!defcmd_set)
 691                goto fail_defcmd;
 692        memcpy(defcmd_set, save_defcmd_set,
 693               defcmd_set_count * sizeof(*defcmd_set));
 694        s = defcmd_set + defcmd_set_count;
 695        memset(s, 0, sizeof(*s));
 696        s->usable = 1;
 697        s->name = kdb_strdup(argv[1], GFP_KDB);
 698        if (!s->name)
 699                goto fail_name;
 700        s->usage = kdb_strdup(argv[2], GFP_KDB);
 701        if (!s->usage)
 702                goto fail_usage;
 703        s->help = kdb_strdup(argv[3], GFP_KDB);
 704        if (!s->help)
 705                goto fail_help;
 706        if (s->usage[0] == '"') {
 707                strcpy(s->usage, argv[2]+1);
 708                s->usage[strlen(s->usage)-1] = '\0';
 709        }
 710        if (s->help[0] == '"') {
 711                strcpy(s->help, argv[3]+1);
 712                s->help[strlen(s->help)-1] = '\0';
 713        }
 714        ++defcmd_set_count;
 715        defcmd_in_progress = 1;
 716        kfree(save_defcmd_set);
 717        return 0;
 718fail_help:
 719        kfree(s->usage);
 720fail_usage:
 721        kfree(s->name);
 722fail_name:
 723        kfree(defcmd_set);
 724fail_defcmd:
 725        kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 726        defcmd_set = save_defcmd_set;
 727        return KDB_NOTIMP;
 728}
 729
 730/*
 731 * kdb_exec_defcmd - Execute the set of commands associated with this
 732 *      defcmd name.
 733 * Inputs:
 734 *      argc    argument count
 735 *      argv    argument vector
 736 * Returns:
 737 *      zero for success, a kdb diagnostic if error
 738 */
 739static int kdb_exec_defcmd(int argc, const char **argv)
 740{
 741        int i, ret;
 742        struct defcmd_set *s;
 743        if (argc != 0)
 744                return KDB_ARGCOUNT;
 745        for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 746                if (strcmp(s->name, argv[0]) == 0)
 747                        break;
 748        }
 749        if (i == defcmd_set_count) {
 750                kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 751                           argv[0]);
 752                return KDB_NOTIMP;
 753        }
 754        for (i = 0; i < s->count; ++i) {
 755                /* Recursive use of kdb_parse, do not use argv after
 756                 * this point */
 757                argv = NULL;
 758                kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 759                ret = kdb_parse(s->command[i]);
 760                if (ret)
 761                        return ret;
 762        }
 763        return 0;
 764}
 765
 766/* Command history */
 767#define KDB_CMD_HISTORY_COUNT   32
 768#define CMD_BUFLEN              200     /* kdb_printf: max printline
 769                                         * size == 256 */
 770static unsigned int cmd_head, cmd_tail;
 771static unsigned int cmdptr;
 772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 773static char cmd_cur[CMD_BUFLEN];
 774
 775/*
 776 * The "str" argument may point to something like  | grep xyz
 777 */
 778static void parse_grep(const char *str)
 779{
 780        int     len;
 781        char    *cp = (char *)str, *cp2;
 782
 783        /* sanity check: we should have been called with the \ first */
 784        if (*cp != '|')
 785                return;
 786        cp++;
 787        while (isspace(*cp))
 788                cp++;
 789        if (strncmp(cp, "grep ", 5)) {
 790                kdb_printf("invalid 'pipe', see grephelp\n");
 791                return;
 792        }
 793        cp += 5;
 794        while (isspace(*cp))
 795                cp++;
 796        cp2 = strchr(cp, '\n');
 797        if (cp2)
 798                *cp2 = '\0'; /* remove the trailing newline */
 799        len = strlen(cp);
 800        if (len == 0) {
 801                kdb_printf("invalid 'pipe', see grephelp\n");
 802                return;
 803        }
 804        /* now cp points to a nonzero length search string */
 805        if (*cp == '"') {
 806                /* allow it be "x y z" by removing the "'s - there must
 807                   be two of them */
 808                cp++;
 809                cp2 = strchr(cp, '"');
 810                if (!cp2) {
 811                        kdb_printf("invalid quoted string, see grephelp\n");
 812                        return;
 813                }
 814                *cp2 = '\0'; /* end the string where the 2nd " was */
 815        }
 816        kdb_grep_leading = 0;
 817        if (*cp == '^') {
 818                kdb_grep_leading = 1;
 819                cp++;
 820        }
 821        len = strlen(cp);
 822        kdb_grep_trailing = 0;
 823        if (*(cp+len-1) == '$') {
 824                kdb_grep_trailing = 1;
 825                *(cp+len-1) = '\0';
 826        }
 827        len = strlen(cp);
 828        if (!len)
 829                return;
 830        if (len >= GREP_LEN) {
 831                kdb_printf("search string too long\n");
 832                return;
 833        }
 834        strcpy(kdb_grep_string, cp);
 835        kdb_grepping_flag++;
 836        return;
 837}
 838
 839/*
 840 * kdb_parse - Parse the command line, search the command table for a
 841 *      matching command and invoke the command function.  This
 842 *      function may be called recursively, if it is, the second call
 843 *      will overwrite argv and cbuf.  It is the caller's
 844 *      responsibility to save their argv if they recursively call
 845 *      kdb_parse().
 846 * Parameters:
 847 *      cmdstr  The input command line to be parsed.
 848 *      regs    The registers at the time kdb was entered.
 849 * Returns:
 850 *      Zero for success, a kdb diagnostic if failure.
 851 * Remarks:
 852 *      Limited to 20 tokens.
 853 *
 854 *      Real rudimentary tokenization. Basically only whitespace
 855 *      is considered a token delimeter (but special consideration
 856 *      is taken of the '=' sign as used by the 'set' command).
 857 *
 858 *      The algorithm used to tokenize the input string relies on
 859 *      there being at least one whitespace (or otherwise useless)
 860 *      character between tokens as the character immediately following
 861 *      the token is altered in-place to a null-byte to terminate the
 862 *      token string.
 863 */
 864
 865#define MAXARGC 20
 866
 867int kdb_parse(const char *cmdstr)
 868{
 869        static char *argv[MAXARGC];
 870        static int argc;
 871        static char cbuf[CMD_BUFLEN+2];
 872        char *cp;
 873        char *cpp, quoted;
 874        kdbtab_t *tp;
 875        int i, escaped, ignore_errors = 0, check_grep;
 876
 877        /*
 878         * First tokenize the command string.
 879         */
 880        cp = (char *)cmdstr;
 881        kdb_grepping_flag = check_grep = 0;
 882
 883        if (KDB_FLAG(CMD_INTERRUPT)) {
 884                /* Previous command was interrupted, newline must not
 885                 * repeat the command */
 886                KDB_FLAG_CLEAR(CMD_INTERRUPT);
 887                KDB_STATE_SET(PAGER);
 888                argc = 0;       /* no repeat */
 889        }
 890
 891        if (*cp != '\n' && *cp != '\0') {
 892                argc = 0;
 893                cpp = cbuf;
 894                while (*cp) {
 895                        /* skip whitespace */
 896                        while (isspace(*cp))
 897                                cp++;
 898                        if ((*cp == '\0') || (*cp == '\n') ||
 899                            (*cp == '#' && !defcmd_in_progress))
 900                                break;
 901                        /* special case: check for | grep pattern */
 902                        if (*cp == '|') {
 903                                check_grep++;
 904                                break;
 905                        }
 906                        if (cpp >= cbuf + CMD_BUFLEN) {
 907                                kdb_printf("kdb_parse: command buffer "
 908                                           "overflow, command ignored\n%s\n",
 909                                           cmdstr);
 910                                return KDB_NOTFOUND;
 911                        }
 912                        if (argc >= MAXARGC - 1) {
 913                                kdb_printf("kdb_parse: too many arguments, "
 914                                           "command ignored\n%s\n", cmdstr);
 915                                return KDB_NOTFOUND;
 916                        }
 917                        argv[argc++] = cpp;
 918                        escaped = 0;
 919                        quoted = '\0';
 920                        /* Copy to next unquoted and unescaped
 921                         * whitespace or '=' */
 922                        while (*cp && *cp != '\n' &&
 923                               (escaped || quoted || !isspace(*cp))) {
 924                                if (cpp >= cbuf + CMD_BUFLEN)
 925                                        break;
 926                                if (escaped) {
 927                                        escaped = 0;
 928                                        *cpp++ = *cp++;
 929                                        continue;
 930                                }
 931                                if (*cp == '\\') {
 932                                        escaped = 1;
 933                                        ++cp;
 934                                        continue;
 935                                }
 936                                if (*cp == quoted)
 937                                        quoted = '\0';
 938                                else if (*cp == '\'' || *cp == '"')
 939                                        quoted = *cp;
 940                                *cpp = *cp++;
 941                                if (*cpp == '=' && !quoted)
 942                                        break;
 943                                ++cpp;
 944                        }
 945                        *cpp++ = '\0';  /* Squash a ws or '=' character */
 946                }
 947        }
 948        if (!argc)
 949                return 0;
 950        if (check_grep)
 951                parse_grep(cp);
 952        if (defcmd_in_progress) {
 953                int result = kdb_defcmd2(cmdstr, argv[0]);
 954                if (!defcmd_in_progress) {
 955                        argc = 0;       /* avoid repeat on endefcmd */
 956                        *(argv[0]) = '\0';
 957                }
 958                return result;
 959        }
 960        if (argv[0][0] == '-' && argv[0][1] &&
 961            (argv[0][1] < '0' || argv[0][1] > '9')) {
 962                ignore_errors = 1;
 963                ++argv[0];
 964        }
 965
 966        for_each_kdbcmd(tp, i) {
 967                if (tp->cmd_name) {
 968                        /*
 969                         * If this command is allowed to be abbreviated,
 970                         * check to see if this is it.
 971                         */
 972
 973                        if (tp->cmd_minlen
 974                         && (strlen(argv[0]) <= tp->cmd_minlen)) {
 975                                if (strncmp(argv[0],
 976                                            tp->cmd_name,
 977                                            tp->cmd_minlen) == 0) {
 978                                        break;
 979                                }
 980                        }
 981
 982                        if (strcmp(argv[0], tp->cmd_name) == 0)
 983                                break;
 984                }
 985        }
 986
 987        /*
 988         * If we don't find a command by this name, see if the first
 989         * few characters of this match any of the known commands.
 990         * e.g., md1c20 should match md.
 991         */
 992        if (i == kdb_max_commands) {
 993                for_each_kdbcmd(tp, i) {
 994                        if (tp->cmd_name) {
 995                                if (strncmp(argv[0],
 996                                            tp->cmd_name,
 997                                            strlen(tp->cmd_name)) == 0) {
 998                                        break;
 999                                }
1000                        }
1001                }
1002        }
1003
1004        if (i < kdb_max_commands) {
1005                int result;
1006                KDB_STATE_SET(CMD);
1007                result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008                if (result && ignore_errors && result > KDB_CMD_GO)
1009                        result = 0;
1010                KDB_STATE_CLEAR(CMD);
1011                switch (tp->cmd_repeat) {
1012                case KDB_REPEAT_NONE:
1013                        argc = 0;
1014                        if (argv[0])
1015                                *(argv[0]) = '\0';
1016                        break;
1017                case KDB_REPEAT_NO_ARGS:
1018                        argc = 1;
1019                        if (argv[1])
1020                                *(argv[1]) = '\0';
1021                        break;
1022                case KDB_REPEAT_WITH_ARGS:
1023                        break;
1024                }
1025                return result;
1026        }
1027
1028        /*
1029         * If the input with which we were presented does not
1030         * map to an existing command, attempt to parse it as an
1031         * address argument and display the result.   Useful for
1032         * obtaining the address of a variable, or the nearest symbol
1033         * to an address contained in a register.
1034         */
1035        {
1036                unsigned long value;
1037                char *name = NULL;
1038                long offset;
1039                int nextarg = 0;
1040
1041                if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042                                  &value, &offset, &name)) {
1043                        return KDB_NOTFOUND;
1044                }
1045
1046                kdb_printf("%s = ", argv[0]);
1047                kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048                kdb_printf("\n");
1049                return 0;
1050        }
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P  16
1057#define CTRL_N  14
1058
1059        /* initial situation */
1060        if (cmd_head == cmd_tail)
1061                return 0;
1062        switch (*cmd) {
1063        case CTRL_P:
1064                if (cmdptr != cmd_tail)
1065                        cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066                strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067                return 1;
1068        case CTRL_N:
1069                if (cmdptr != cmd_head)
1070                        cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071                strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072                return 1;
1073        }
1074        return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1079 *      the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083        emergency_restart();
1084        kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085        while (1)
1086                cpu_relax();
1087        /* NOTREACHED */
1088        return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093        int old_lvl = console_loglevel;
1094        console_loglevel = 15;
1095        kdb_trap_printk++;
1096        show_regs(regs);
1097        kdb_trap_printk--;
1098        kdb_printf("\n");
1099        console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104        kdb_current_task = p;
1105
1106        if (kdb_task_has_cpu(p)) {
1107                kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108                return;
1109        }
1110        kdb_current_regs = NULL;
1111}
1112
1113/*
1114 * kdb_local - The main code for kdb.  This routine is invoked on a
1115 *      specific processor, it is not global.  The main kdb() routine
1116 *      ensures that only one processor at a time is in this routine.
1117 *      This code is called with the real reason code on the first
1118 *      entry to a kdb session, thereafter it is called with reason
1119 *      SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 *      reason          The reason KDB was invoked
1122 *      error           The hardware-defined error code
1123 *      regs            The exception frame at time of fault/breakpoint.
1124 *      db_result       Result code from the break or debug point.
1125 * Returns:
1126 *      0       KDB was invoked for an event which it wasn't responsible
1127 *      1       KDB handled the event for which it was invoked.
1128 *      KDB_CMD_GO      User typed 'go'.
1129 *      KDB_CMD_CPU     User switched to another cpu.
1130 *      KDB_CMD_SS      Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133                     kdb_dbtrap_t db_result)
1134{
1135        char *cmdbuf;
1136        int diag;
1137        struct task_struct *kdb_current =
1138                kdb_curr_task(raw_smp_processor_id());
1139
1140        KDB_DEBUG_STATE("kdb_local 1", reason);
1141        kdb_go_count = 0;
1142        if (reason == KDB_REASON_DEBUG) {
1143                /* special case below */
1144        } else {
1145                kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146                           kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148                kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150        }
1151
1152        switch (reason) {
1153        case KDB_REASON_DEBUG:
1154        {
1155                /*
1156                 * If re-entering kdb after a single step
1157                 * command, don't print the message.
1158                 */
1159                switch (db_result) {
1160                case KDB_DB_BPT:
1161                        kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162                                   kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164                        kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166                        kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167                                   instruction_pointer(regs));
1168                        break;
1169                case KDB_DB_SS:
1170                        break;
1171                case KDB_DB_SSBPT:
1172                        KDB_DEBUG_STATE("kdb_local 4", reason);
1173                        return 1;       /* kdba_db_trap did the work */
1174                default:
1175                        kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176                                   db_result);
1177                        break;
1178                }
1179
1180        }
1181                break;
1182        case KDB_REASON_ENTER:
1183                if (KDB_STATE(KEYBOARD))
1184                        kdb_printf("due to Keyboard Entry\n");
1185                else
1186                        kdb_printf("due to KDB_ENTER()\n");
1187                break;
1188        case KDB_REASON_KEYBOARD:
1189                KDB_STATE_SET(KEYBOARD);
1190                kdb_printf("due to Keyboard Entry\n");
1191                break;
1192        case KDB_REASON_ENTER_SLAVE:
1193                /* drop through, slaves only get released via cpu switch */
1194        case KDB_REASON_SWITCH:
1195                kdb_printf("due to cpu switch\n");
1196                break;
1197        case KDB_REASON_OOPS:
1198                kdb_printf("Oops: %s\n", kdb_diemsg);
1199                kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200                           instruction_pointer(regs));
1201                kdb_dumpregs(regs);
1202                break;
1203        case KDB_REASON_NMI:
1204                kdb_printf("due to NonMaskable Interrupt @ "
1205                           kdb_machreg_fmt "\n",
1206                           instruction_pointer(regs));
1207                kdb_dumpregs(regs);
1208                break;
1209        case KDB_REASON_SSTEP:
1210        case KDB_REASON_BREAK:
1211                kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1212                           reason == KDB_REASON_BREAK ?
1213                           "Breakpoint" : "SS trap", instruction_pointer(regs));
1214                /*
1215                 * Determine if this breakpoint is one that we
1216                 * are interested in.
1217                 */
1218                if (db_result != KDB_DB_BPT) {
1219                        kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1220                                   db_result);
1221                        KDB_DEBUG_STATE("kdb_local 6", reason);
1222                        return 0;       /* Not for us, dismiss it */
1223                }
1224                break;
1225        case KDB_REASON_RECURSE:
1226                kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1227                           instruction_pointer(regs));
1228                break;
1229        default:
1230                kdb_printf("kdb: unexpected reason code: %d\n", reason);
1231                KDB_DEBUG_STATE("kdb_local 8", reason);
1232                return 0;       /* Not for us, dismiss it */
1233        }
1234
1235        while (1) {
1236                /*
1237                 * Initialize pager context.
1238                 */
1239                kdb_nextline = 1;
1240                KDB_STATE_CLEAR(SUPPRESS);
1241
1242                cmdbuf = cmd_cur;
1243                *cmdbuf = '\0';
1244                *(cmd_hist[cmd_head]) = '\0';
1245
1246do_full_getstr:
1247#if defined(CONFIG_SMP)
1248                snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1249                         raw_smp_processor_id());
1250#else
1251                snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1252#endif
1253                if (defcmd_in_progress)
1254                        strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1255
1256                /*
1257                 * Fetch command from keyboard
1258                 */
1259                cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1260                if (*cmdbuf != '\n') {
1261                        if (*cmdbuf < 32) {
1262                                if (cmdptr == cmd_head) {
1263                                        strncpy(cmd_hist[cmd_head], cmd_cur,
1264                                                CMD_BUFLEN);
1265                                        *(cmd_hist[cmd_head] +
1266                                          strlen(cmd_hist[cmd_head])-1) = '\0';
1267                                }
1268                                if (!handle_ctrl_cmd(cmdbuf))
1269                                        *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1270                                cmdbuf = cmd_cur;
1271                                goto do_full_getstr;
1272                        } else {
1273                                strncpy(cmd_hist[cmd_head], cmd_cur,
1274                                        CMD_BUFLEN);
1275                        }
1276
1277                        cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1278                        if (cmd_head == cmd_tail)
1279                                cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1280                }
1281
1282                cmdptr = cmd_head;
1283                diag = kdb_parse(cmdbuf);
1284                if (diag == KDB_NOTFOUND) {
1285                        kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1286                        diag = 0;
1287                }
1288                if (diag == KDB_CMD_GO
1289                 || diag == KDB_CMD_CPU
1290                 || diag == KDB_CMD_SS
1291                 || diag == KDB_CMD_KGDB)
1292                        break;
1293
1294                if (diag)
1295                        kdb_cmderror(diag);
1296        }
1297        KDB_DEBUG_STATE("kdb_local 9", diag);
1298        return diag;
1299}
1300
1301
1302/*
1303 * kdb_print_state - Print the state data for the current processor
1304 *      for debugging.
1305 * Inputs:
1306 *      text            Identifies the debug point
1307 *      value           Any integer value to be printed, e.g. reason code.
1308 */
1309void kdb_print_state(const char *text, int value)
1310{
1311        kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1312                   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1313                   kdb_state);
1314}
1315
1316/*
1317 * kdb_main_loop - After initial setup and assignment of the
1318 *      controlling cpu, all cpus are in this loop.  One cpu is in
1319 *      control and will issue the kdb prompt, the others will spin
1320 *      until 'go' or cpu switch.
1321 *
1322 *      To get a consistent view of the kernel stacks for all
1323 *      processes, this routine is invoked from the main kdb code via
1324 *      an architecture specific routine.  kdba_main_loop is
1325 *      responsible for making the kernel stacks consistent for all
1326 *      processes, there should be no difference between a blocked
1327 *      process and a running process as far as kdb is concerned.
1328 * Inputs:
1329 *      reason          The reason KDB was invoked
1330 *      error           The hardware-defined error code
1331 *      reason2         kdb's current reason code.
1332 *                      Initially error but can change
1333 *                      according to kdb state.
1334 *      db_result       Result code from break or debug point.
1335 *      regs            The exception frame at time of fault/breakpoint.
1336 *                      should always be valid.
1337 * Returns:
1338 *      0       KDB was invoked for an event which it wasn't responsible
1339 *      1       KDB handled the event for which it was invoked.
1340 */
1341int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1342              kdb_dbtrap_t db_result, struct pt_regs *regs)
1343{
1344        int result = 1;
1345        /* Stay in kdb() until 'go', 'ss[b]' or an error */
1346        while (1) {
1347                /*
1348                 * All processors except the one that is in control
1349                 * will spin here.
1350                 */
1351                KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1352                while (KDB_STATE(HOLD_CPU)) {
1353                        /* state KDB is turned off by kdb_cpu to see if the
1354                         * other cpus are still live, each cpu in this loop
1355                         * turns it back on.
1356                         */
1357                        if (!KDB_STATE(KDB))
1358                                KDB_STATE_SET(KDB);
1359                }
1360
1361                KDB_STATE_CLEAR(SUPPRESS);
1362                KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1363                if (KDB_STATE(LEAVING))
1364                        break;  /* Another cpu said 'go' */
1365                /* Still using kdb, this processor is in control */
1366                result = kdb_local(reason2, error, regs, db_result);
1367                KDB_DEBUG_STATE("kdb_main_loop 3", result);
1368
1369                if (result == KDB_CMD_CPU)
1370                        break;
1371
1372                if (result == KDB_CMD_SS) {
1373                        KDB_STATE_SET(DOING_SS);
1374                        break;
1375                }
1376
1377                if (result == KDB_CMD_KGDB) {
1378                        if (!KDB_STATE(DOING_KGDB))
1379                                kdb_printf("Entering please attach debugger "
1380                                           "or use $D#44+ or $3#33\n");
1381                        break;
1382                }
1383                if (result && result != 1 && result != KDB_CMD_GO)
1384                        kdb_printf("\nUnexpected kdb_local return code %d\n",
1385                                   result);
1386                KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1387                break;
1388        }
1389        if (KDB_STATE(DOING_SS))
1390                KDB_STATE_CLEAR(SSBPT);
1391
1392        /* Clean up any keyboard devices before leaving */
1393        kdb_kbd_cleanup_state();
1394
1395        return result;
1396}
1397
1398/*
1399 * kdb_mdr - This function implements the guts of the 'mdr', memory
1400 * read command.
1401 *      mdr  <addr arg>,<byte count>
1402 * Inputs:
1403 *      addr    Start address
1404 *      count   Number of bytes
1405 * Returns:
1406 *      Always 0.  Any errors are detected and printed by kdb_getarea.
1407 */
1408static int kdb_mdr(unsigned long addr, unsigned int count)
1409{
1410        unsigned char c;
1411        while (count--) {
1412                if (kdb_getarea(c, addr))
1413                        return 0;
1414                kdb_printf("%02x", c);
1415                addr++;
1416        }
1417        kdb_printf("\n");
1418        return 0;
1419}
1420
1421/*
1422 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1423 *      'md8' 'mdr' and 'mds' commands.
1424 *
1425 *      md|mds  [<addr arg> [<line count> [<radix>]]]
1426 *      mdWcN   [<addr arg> [<line count> [<radix>]]]
1427 *              where W = is the width (1, 2, 4 or 8) and N is the count.
1428 *              for eg., md1c20 reads 20 bytes, 1 at a time.
1429 *      mdr  <addr arg>,<byte count>
1430 */
1431static void kdb_md_line(const char *fmtstr, unsigned long addr,
1432                        int symbolic, int nosect, int bytesperword,
1433                        int num, int repeat, int phys)
1434{
1435        /* print just one line of data */
1436        kdb_symtab_t symtab;
1437        char cbuf[32];
1438        char *c = cbuf;
1439        int i;
1440        unsigned long word;
1441
1442        memset(cbuf, '\0', sizeof(cbuf));
1443        if (phys)
1444                kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1445        else
1446                kdb_printf(kdb_machreg_fmt0 " ", addr);
1447
1448        for (i = 0; i < num && repeat--; i++) {
1449                if (phys) {
1450                        if (kdb_getphysword(&word, addr, bytesperword))
1451                                break;
1452                } else if (kdb_getword(&word, addr, bytesperword))
1453                        break;
1454                kdb_printf(fmtstr, word);
1455                if (symbolic)
1456                        kdbnearsym(word, &symtab);
1457                else
1458                        memset(&symtab, 0, sizeof(symtab));
1459                if (symtab.sym_name) {
1460                        kdb_symbol_print(word, &symtab, 0);
1461                        if (!nosect) {
1462                                kdb_printf("\n");
1463                                kdb_printf("                       %s %s "
1464                                           kdb_machreg_fmt " "
1465                                           kdb_machreg_fmt " "
1466                                           kdb_machreg_fmt, symtab.mod_name,
1467                                           symtab.sec_name, symtab.sec_start,
1468                                           symtab.sym_start, symtab.sym_end);
1469                        }
1470                        addr += bytesperword;
1471                } else {
1472                        union {
1473                                u64 word;
1474                                unsigned char c[8];
1475                        } wc;
1476                        unsigned char *cp;
1477#ifdef  __BIG_ENDIAN
1478                        cp = wc.c + 8 - bytesperword;
1479#else
1480                        cp = wc.c;
1481#endif
1482                        wc.word = word;
1483#define printable_char(c) \
1484        ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1485                        switch (bytesperword) {
1486                        case 8:
1487                                *c++ = printable_char(*cp++);
1488                                *c++ = printable_char(*cp++);
1489                                *c++ = printable_char(*cp++);
1490                                *c++ = printable_char(*cp++);
1491                                addr += 4;
1492                        case 4:
1493                                *c++ = printable_char(*cp++);
1494                                *c++ = printable_char(*cp++);
1495                                addr += 2;
1496                        case 2:
1497                                *c++ = printable_char(*cp++);
1498                                addr++;
1499                        case 1:
1500                                *c++ = printable_char(*cp++);
1501                                addr++;
1502                                break;
1503                        }
1504#undef printable_char
1505                }
1506        }
1507        kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1508                   " ", cbuf);
1509}
1510
1511static int kdb_md(int argc, const char **argv)
1512{
1513        static unsigned long last_addr;
1514        static int last_radix, last_bytesperword, last_repeat;
1515        int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1516        int nosect = 0;
1517        char fmtchar, fmtstr[64];
1518        unsigned long addr;
1519        unsigned long word;
1520        long offset = 0;
1521        int symbolic = 0;
1522        int valid = 0;
1523        int phys = 0;
1524
1525        kdbgetintenv("MDCOUNT", &mdcount);
1526        kdbgetintenv("RADIX", &radix);
1527        kdbgetintenv("BYTESPERWORD", &bytesperword);
1528
1529        /* Assume 'md <addr>' and start with environment values */
1530        repeat = mdcount * 16 / bytesperword;
1531
1532        if (strcmp(argv[0], "mdr") == 0) {
1533                if (argc != 2)
1534                        return KDB_ARGCOUNT;
1535                valid = 1;
1536        } else if (isdigit(argv[0][2])) {
1537                bytesperword = (int)(argv[0][2] - '0');
1538                if (bytesperword == 0) {
1539                        bytesperword = last_bytesperword;
1540                        if (bytesperword == 0)
1541                                bytesperword = 4;
1542                }
1543                last_bytesperword = bytesperword;
1544                repeat = mdcount * 16 / bytesperword;
1545                if (!argv[0][3])
1546                        valid = 1;
1547                else if (argv[0][3] == 'c' && argv[0][4]) {
1548                        char *p;
1549                        repeat = simple_strtoul(argv[0] + 4, &p, 10);
1550                        mdcount = ((repeat * bytesperword) + 15) / 16;
1551                        valid = !*p;
1552                }
1553                last_repeat = repeat;
1554        } else if (strcmp(argv[0], "md") == 0)
1555                valid = 1;
1556        else if (strcmp(argv[0], "mds") == 0)
1557                valid = 1;
1558        else if (strcmp(argv[0], "mdp") == 0) {
1559                phys = valid = 1;
1560        }
1561        if (!valid)
1562                return KDB_NOTFOUND;
1563
1564        if (argc == 0) {
1565                if (last_addr == 0)
1566                        return KDB_ARGCOUNT;
1567                addr = last_addr;
1568                radix = last_radix;
1569                bytesperword = last_bytesperword;
1570                repeat = last_repeat;
1571                mdcount = ((repeat * bytesperword) + 15) / 16;
1572        }
1573
1574        if (argc) {
1575                unsigned long val;
1576                int diag, nextarg = 1;
1577                diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1578                                     &offset, NULL);
1579                if (diag)
1580                        return diag;
1581                if (argc > nextarg+2)
1582                        return KDB_ARGCOUNT;
1583
1584                if (argc >= nextarg) {
1585                        diag = kdbgetularg(argv[nextarg], &val);
1586                        if (!diag) {
1587                                mdcount = (int) val;
1588                                repeat = mdcount * 16 / bytesperword;
1589                        }
1590                }
1591                if (argc >= nextarg+1) {
1592                        diag = kdbgetularg(argv[nextarg+1], &val);
1593                        if (!diag)
1594                                radix = (int) val;
1595                }
1596        }
1597
1598        if (strcmp(argv[0], "mdr") == 0)
1599                return kdb_mdr(addr, mdcount);
1600
1601        switch (radix) {
1602        case 10:
1603                fmtchar = 'd';
1604                break;
1605        case 16:
1606                fmtchar = 'x';
1607                break;
1608        case 8:
1609                fmtchar = 'o';
1610                break;
1611        default:
1612                return KDB_BADRADIX;
1613        }
1614
1615        last_radix = radix;
1616
1617        if (bytesperword > KDB_WORD_SIZE)
1618                return KDB_BADWIDTH;
1619
1620        switch (bytesperword) {
1621        case 8:
1622                sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1623                break;
1624        case 4:
1625                sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1626                break;
1627        case 2:
1628                sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1629                break;
1630        case 1:
1631                sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1632                break;
1633        default:
1634                return KDB_BADWIDTH;
1635        }
1636
1637        last_repeat = repeat;
1638        last_bytesperword = bytesperword;
1639
1640        if (strcmp(argv[0], "mds") == 0) {
1641                symbolic = 1;
1642                /* Do not save these changes as last_*, they are temporary mds
1643                 * overrides.
1644                 */
1645                bytesperword = KDB_WORD_SIZE;
1646                repeat = mdcount;
1647                kdbgetintenv("NOSECT", &nosect);
1648        }
1649
1650        /* Round address down modulo BYTESPERWORD */
1651
1652        addr &= ~(bytesperword-1);
1653
1654        while (repeat > 0) {
1655                unsigned long a;
1656                int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1657
1658                if (KDB_FLAG(CMD_INTERRUPT))
1659                        return 0;
1660                for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1661                        if (phys) {
1662                                if (kdb_getphysword(&word, a, bytesperword)
1663                                                || word)
1664                                        break;
1665                        } else if (kdb_getword(&word, a, bytesperword) || word)
1666                                break;
1667                }
1668                n = min(num, repeat);
1669                kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1670                            num, repeat, phys);
1671                addr += bytesperword * n;
1672                repeat -= n;
1673                z = (z + num - 1) / num;
1674                if (z > 2) {
1675                        int s = num * (z-2);
1676                        kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1677                                   " zero suppressed\n",
1678                                addr, addr + bytesperword * s - 1);
1679                        addr += bytesperword * s;
1680                        repeat -= s;
1681                }
1682        }
1683        last_addr = addr;
1684
1685        return 0;
1686}
1687
1688/*
1689 * kdb_mm - This function implements the 'mm' command.
1690 *      mm address-expression new-value
1691 * Remarks:
1692 *      mm works on machine words, mmW works on bytes.
1693 */
1694static int kdb_mm(int argc, const char **argv)
1695{
1696        int diag;
1697        unsigned long addr;
1698        long offset = 0;
1699        unsigned long contents;
1700        int nextarg;
1701        int width;
1702
1703        if (argv[0][2] && !isdigit(argv[0][2]))
1704                return KDB_NOTFOUND;
1705
1706        if (argc < 2)
1707                return KDB_ARGCOUNT;
1708
1709        nextarg = 1;
1710        diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1711        if (diag)
1712                return diag;
1713
1714        if (nextarg > argc)
1715                return KDB_ARGCOUNT;
1716        diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1717        if (diag)
1718                return diag;
1719
1720        if (nextarg != argc + 1)
1721                return KDB_ARGCOUNT;
1722
1723        width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1724        diag = kdb_putword(addr, contents, width);
1725        if (diag)
1726                return diag;
1727
1728        kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1729
1730        return 0;
1731}
1732
1733/*
1734 * kdb_go - This function implements the 'go' command.
1735 *      go [address-expression]
1736 */
1737static int kdb_go(int argc, const char **argv)
1738{
1739        unsigned long addr;
1740        int diag;
1741        int nextarg;
1742        long offset;
1743
1744        if (raw_smp_processor_id() != kdb_initial_cpu) {
1745                kdb_printf("go must execute on the entry cpu, "
1746                           "please use \"cpu %d\" and then execute go\n",
1747                           kdb_initial_cpu);
1748                return KDB_BADCPUNUM;
1749        }
1750        if (argc == 1) {
1751                nextarg = 1;
1752                diag = kdbgetaddrarg(argc, argv, &nextarg,
1753                                     &addr, &offset, NULL);
1754                if (diag)
1755                        return diag;
1756        } else if (argc) {
1757                return KDB_ARGCOUNT;
1758        }
1759
1760        diag = KDB_CMD_GO;
1761        if (KDB_FLAG(CATASTROPHIC)) {
1762                kdb_printf("Catastrophic error detected\n");
1763                kdb_printf("kdb_continue_catastrophic=%d, ",
1764                        kdb_continue_catastrophic);
1765                if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1766                        kdb_printf("type go a second time if you really want "
1767                                   "to continue\n");
1768                        return 0;
1769                }
1770                if (kdb_continue_catastrophic == 2) {
1771                        kdb_printf("forcing reboot\n");
1772                        kdb_reboot(0, NULL);
1773                }
1774                kdb_printf("attempting to continue\n");
1775        }
1776        return diag;
1777}
1778
1779/*
1780 * kdb_rd - This function implements the 'rd' command.
1781 */
1782static int kdb_rd(int argc, const char **argv)
1783{
1784        int len = kdb_check_regs();
1785#if DBG_MAX_REG_NUM > 0
1786        int i;
1787        char *rname;
1788        int rsize;
1789        u64 reg64;
1790        u32 reg32;
1791        u16 reg16;
1792        u8 reg8;
1793
1794        if (len)
1795                return len;
1796
1797        for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1798                rsize = dbg_reg_def[i].size * 2;
1799                if (rsize > 16)
1800                        rsize = 2;
1801                if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1802                        len = 0;
1803                        kdb_printf("\n");
1804                }
1805                if (len)
1806                        len += kdb_printf("  ");
1807                switch(dbg_reg_def[i].size * 8) {
1808                case 8:
1809                        rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1810                        if (!rname)
1811                                break;
1812                        len += kdb_printf("%s: %02x", rname, reg8);
1813                        break;
1814                case 16:
1815                        rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1816                        if (!rname)
1817                                break;
1818                        len += kdb_printf("%s: %04x", rname, reg16);
1819                        break;
1820                case 32:
1821                        rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1822                        if (!rname)
1823                                break;
1824                        len += kdb_printf("%s: %08x", rname, reg32);
1825                        break;
1826                case 64:
1827                        rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1828                        if (!rname)
1829                                break;
1830                        len += kdb_printf("%s: %016llx", rname, reg64);
1831                        break;
1832                default:
1833                        len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1834                }
1835        }
1836        kdb_printf("\n");
1837#else
1838        if (len)
1839                return len;
1840
1841        kdb_dumpregs(kdb_current_regs);
1842#endif
1843        return 0;
1844}
1845
1846/*
1847 * kdb_rm - This function implements the 'rm' (register modify)  command.
1848 *      rm register-name new-contents
1849 * Remarks:
1850 *      Allows register modification with the same restrictions as gdb
1851 */
1852static int kdb_rm(int argc, const char **argv)
1853{
1854#if DBG_MAX_REG_NUM > 0
1855        int diag;
1856        const char *rname;
1857        int i;
1858        u64 reg64;
1859        u32 reg32;
1860        u16 reg16;
1861        u8 reg8;
1862
1863        if (argc != 2)
1864                return KDB_ARGCOUNT;
1865        /*
1866         * Allow presence or absence of leading '%' symbol.
1867         */
1868        rname = argv[1];
1869        if (*rname == '%')
1870                rname++;
1871
1872        diag = kdbgetu64arg(argv[2], &reg64);
1873        if (diag)
1874                return diag;
1875
1876        diag = kdb_check_regs();
1877        if (diag)
1878                return diag;
1879
1880        diag = KDB_BADREG;
1881        for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1882                if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1883                        diag = 0;
1884                        break;
1885                }
1886        }
1887        if (!diag) {
1888                switch(dbg_reg_def[i].size * 8) {
1889                case 8:
1890                        reg8 = reg64;
1891                        dbg_set_reg(i, &reg8, kdb_current_regs);
1892                        break;
1893                case 16:
1894                        reg16 = reg64;
1895                        dbg_set_reg(i, &reg16, kdb_current_regs);
1896                        break;
1897                case 32:
1898                        reg32 = reg64;
1899                        dbg_set_reg(i, &reg32, kdb_current_regs);
1900                        break;
1901                case 64:
1902                        dbg_set_reg(i, &reg64, kdb_current_regs);
1903                        break;
1904                }
1905        }
1906        return diag;
1907#else
1908        kdb_printf("ERROR: Register set currently not implemented\n");
1909    return 0;
1910#endif
1911}
1912
1913#if defined(CONFIG_MAGIC_SYSRQ)
1914/*
1915 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1916 *      which interfaces to the soi-disant MAGIC SYSRQ functionality.
1917 *              sr <magic-sysrq-code>
1918 */
1919static int kdb_sr(int argc, const char **argv)
1920{
1921        if (argc != 1)
1922                return KDB_ARGCOUNT;
1923        kdb_trap_printk++;
1924        __handle_sysrq(*argv[1], false);
1925        kdb_trap_printk--;
1926
1927        return 0;
1928}
1929#endif  /* CONFIG_MAGIC_SYSRQ */
1930
1931/*
1932 * kdb_ef - This function implements the 'regs' (display exception
1933 *      frame) command.  This command takes an address and expects to
1934 *      find an exception frame at that address, formats and prints
1935 *      it.
1936 *              regs address-expression
1937 * Remarks:
1938 *      Not done yet.
1939 */
1940static int kdb_ef(int argc, const char **argv)
1941{
1942        int diag;
1943        unsigned long addr;
1944        long offset;
1945        int nextarg;
1946
1947        if (argc != 1)
1948                return KDB_ARGCOUNT;
1949
1950        nextarg = 1;
1951        diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1952        if (diag)
1953                return diag;
1954        show_regs((struct pt_regs *)addr);
1955        return 0;
1956}
1957
1958#if defined(CONFIG_MODULES)
1959/*
1960 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1961 *      currently loaded kernel modules.
1962 *      Mostly taken from userland lsmod.
1963 */
1964static int kdb_lsmod(int argc, const char **argv)
1965{
1966        struct module *mod;
1967
1968        if (argc != 0)
1969                return KDB_ARGCOUNT;
1970
1971        kdb_printf("Module                  Size  modstruct     Used by\n");
1972        list_for_each_entry(mod, kdb_modules, list) {
1973                if (mod->state == MODULE_STATE_UNFORMED)
1974                        continue;
1975
1976                kdb_printf("%-20s%8u  0x%p ", mod->name,
1977                           mod->core_size, (void *)mod);
1978#ifdef CONFIG_MODULE_UNLOAD
1979                kdb_printf("%4ld ", module_refcount(mod));
1980#endif
1981                if (mod->state == MODULE_STATE_GOING)
1982                        kdb_printf(" (Unloading)");
1983                else if (mod->state == MODULE_STATE_COMING)
1984                        kdb_printf(" (Loading)");
1985                else
1986                        kdb_printf(" (Live)");
1987                kdb_printf(" 0x%p", mod->module_core);
1988
1989#ifdef CONFIG_MODULE_UNLOAD
1990                {
1991                        struct module_use *use;
1992                        kdb_printf(" [ ");
1993                        list_for_each_entry(use, &mod->source_list,
1994                                            source_list)
1995                                kdb_printf("%s ", use->target->name);
1996                        kdb_printf("]\n");
1997                }
1998#endif
1999        }
2000
2001        return 0;
2002}
2003
2004#endif  /* CONFIG_MODULES */
2005
2006/*
2007 * kdb_env - This function implements the 'env' command.  Display the
2008 *      current environment variables.
2009 */
2010
2011static int kdb_env(int argc, const char **argv)
2012{
2013        int i;
2014
2015        for (i = 0; i < __nenv; i++) {
2016                if (__env[i])
2017                        kdb_printf("%s\n", __env[i]);
2018        }
2019
2020        if (KDB_DEBUG(MASK))
2021                kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2022
2023        return 0;
2024}
2025
2026#ifdef CONFIG_PRINTK
2027/*
2028 * kdb_dmesg - This function implements the 'dmesg' command to display
2029 *      the contents of the syslog buffer.
2030 *              dmesg [lines] [adjust]
2031 */
2032static int kdb_dmesg(int argc, const char **argv)
2033{
2034        int diag;
2035        int logging;
2036        int lines = 0;
2037        int adjust = 0;
2038        int n = 0;
2039        int skip = 0;
2040        struct kmsg_dumper dumper = { .active = 1 };
2041        size_t len;
2042        char buf[201];
2043
2044        if (argc > 2)
2045                return KDB_ARGCOUNT;
2046        if (argc) {
2047                char *cp;
2048                lines = simple_strtol(argv[1], &cp, 0);
2049                if (*cp)
2050                        lines = 0;
2051                if (argc > 1) {
2052                        adjust = simple_strtoul(argv[2], &cp, 0);
2053                        if (*cp || adjust < 0)
2054                                adjust = 0;
2055                }
2056        }
2057
2058        /* disable LOGGING if set */
2059        diag = kdbgetintenv("LOGGING", &logging);
2060        if (!diag && logging) {
2061                const char *setargs[] = { "set", "LOGGING", "0" };
2062                kdb_set(2, setargs);
2063        }
2064
2065        kmsg_dump_rewind_nolock(&dumper);
2066        while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2067                n++;
2068
2069        if (lines < 0) {
2070                if (adjust >= n)
2071                        kdb_printf("buffer only contains %d lines, nothing "
2072                                   "printed\n", n);
2073                else if (adjust - lines >= n)
2074                        kdb_printf("buffer only contains %d lines, last %d "
2075                                   "lines printed\n", n, n - adjust);
2076                skip = adjust;
2077                lines = abs(lines);
2078        } else if (lines > 0) {
2079                skip = n - lines - adjust;
2080                lines = abs(lines);
2081                if (adjust >= n) {
2082                        kdb_printf("buffer only contains %d lines, "
2083                                   "nothing printed\n", n);
2084                        skip = n;
2085                } else if (skip < 0) {
2086                        lines += skip;
2087                        skip = 0;
2088                        kdb_printf("buffer only contains %d lines, first "
2089                                   "%d lines printed\n", n, lines);
2090                }
2091        } else {
2092                lines = n;
2093        }
2094
2095        if (skip >= n || skip < 0)
2096                return 0;
2097
2098        kmsg_dump_rewind_nolock(&dumper);
2099        while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2100                if (skip) {
2101                        skip--;
2102                        continue;
2103                }
2104                if (!lines--)
2105                        break;
2106                if (KDB_FLAG(CMD_INTERRUPT))
2107                        return 0;
2108
2109                kdb_printf("%.*s\n", (int)len - 1, buf);
2110        }
2111
2112        return 0;
2113}
2114#endif /* CONFIG_PRINTK */
2115
2116/* Make sure we balance enable/disable calls, must disable first. */
2117static atomic_t kdb_nmi_disabled;
2118
2119static int kdb_disable_nmi(int argc, const char *argv[])
2120{
2121        if (atomic_read(&kdb_nmi_disabled))
2122                return 0;
2123        atomic_set(&kdb_nmi_disabled, 1);
2124        arch_kgdb_ops.enable_nmi(0);
2125        return 0;
2126}
2127
2128static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2129{
2130        if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2131                return -EINVAL;
2132        arch_kgdb_ops.enable_nmi(1);
2133        return 0;
2134}
2135
2136static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2137        .set = kdb_param_enable_nmi,
2138};
2139module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2140
2141/*
2142 * kdb_cpu - This function implements the 'cpu' command.
2143 *      cpu     [<cpunum>]
2144 * Returns:
2145 *      KDB_CMD_CPU for success, a kdb diagnostic if error
2146 */
2147static void kdb_cpu_status(void)
2148{
2149        int i, start_cpu, first_print = 1;
2150        char state, prev_state = '?';
2151
2152        kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2153        kdb_printf("Available cpus: ");
2154        for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2155                if (!cpu_online(i)) {
2156                        state = 'F';    /* cpu is offline */
2157                } else {
2158                        state = ' ';    /* cpu is responding to kdb */
2159                        if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2160                                state = 'I';    /* idle task */
2161                }
2162                if (state != prev_state) {
2163                        if (prev_state != '?') {
2164                                if (!first_print)
2165                                        kdb_printf(", ");
2166                                first_print = 0;
2167                                kdb_printf("%d", start_cpu);
2168                                if (start_cpu < i-1)
2169                                        kdb_printf("-%d", i-1);
2170                                if (prev_state != ' ')
2171                                        kdb_printf("(%c)", prev_state);
2172                        }
2173                        prev_state = state;
2174                        start_cpu = i;
2175                }
2176        }
2177        /* print the trailing cpus, ignoring them if they are all offline */
2178        if (prev_state != 'F') {
2179                if (!first_print)
2180                        kdb_printf(", ");
2181                kdb_printf("%d", start_cpu);
2182                if (start_cpu < i-1)
2183                        kdb_printf("-%d", i-1);
2184                if (prev_state != ' ')
2185                        kdb_printf("(%c)", prev_state);
2186        }
2187        kdb_printf("\n");
2188}
2189
2190static int kdb_cpu(int argc, const char **argv)
2191{
2192        unsigned long cpunum;
2193        int diag;
2194
2195        if (argc == 0) {
2196                kdb_cpu_status();
2197                return 0;
2198        }
2199
2200        if (argc != 1)
2201                return KDB_ARGCOUNT;
2202
2203        diag = kdbgetularg(argv[1], &cpunum);
2204        if (diag)
2205                return diag;
2206
2207        /*
2208         * Validate cpunum
2209         */
2210        if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2211                return KDB_BADCPUNUM;
2212
2213        dbg_switch_cpu = cpunum;
2214
2215        /*
2216         * Switch to other cpu
2217         */
2218        return KDB_CMD_CPU;
2219}
2220
2221/* The user may not realize that ps/bta with no parameters does not print idle
2222 * or sleeping system daemon processes, so tell them how many were suppressed.
2223 */
2224void kdb_ps_suppressed(void)
2225{
2226        int idle = 0, daemon = 0;
2227        unsigned long mask_I = kdb_task_state_string("I"),
2228                      mask_M = kdb_task_state_string("M");
2229        unsigned long cpu;
2230        const struct task_struct *p, *g;
2231        for_each_online_cpu(cpu) {
2232                p = kdb_curr_task(cpu);
2233                if (kdb_task_state(p, mask_I))
2234                        ++idle;
2235        }
2236        kdb_do_each_thread(g, p) {
2237                if (kdb_task_state(p, mask_M))
2238                        ++daemon;
2239        } kdb_while_each_thread(g, p);
2240        if (idle || daemon) {
2241                if (idle)
2242                        kdb_printf("%d idle process%s (state I)%s\n",
2243                                   idle, idle == 1 ? "" : "es",
2244                                   daemon ? " and " : "");
2245                if (daemon)
2246                        kdb_printf("%d sleeping system daemon (state M) "
2247                                   "process%s", daemon,
2248                                   daemon == 1 ? "" : "es");
2249                kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2250        }
2251}
2252
2253/*
2254 * kdb_ps - This function implements the 'ps' command which shows a
2255 *      list of the active processes.
2256 *              ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2257 */
2258void kdb_ps1(const struct task_struct *p)
2259{
2260        int cpu;
2261        unsigned long tmp;
2262
2263        if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2264                return;
2265
2266        cpu = kdb_process_cpu(p);
2267        kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2268                   (void *)p, p->pid, p->parent->pid,
2269                   kdb_task_has_cpu(p), kdb_process_cpu(p),
2270                   kdb_task_state_char(p),
2271                   (void *)(&p->thread),
2272                   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2273                   p->comm);
2274        if (kdb_task_has_cpu(p)) {
2275                if (!KDB_TSK(cpu)) {
2276                        kdb_printf("  Error: no saved data for this cpu\n");
2277                } else {
2278                        if (KDB_TSK(cpu) != p)
2279                                kdb_printf("  Error: does not match running "
2280                                   "process table (0x%p)\n", KDB_TSK(cpu));
2281                }
2282        }
2283}
2284
2285static int kdb_ps(int argc, const char **argv)
2286{
2287        struct task_struct *g, *p;
2288        unsigned long mask, cpu;
2289
2290        if (argc == 0)
2291                kdb_ps_suppressed();
2292        kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2293                (int)(2*sizeof(void *))+2, "Task Addr",
2294                (int)(2*sizeof(void *))+2, "Thread");
2295        mask = kdb_task_state_string(argc ? argv[1] : NULL);
2296        /* Run the active tasks first */
2297        for_each_online_cpu(cpu) {
2298                if (KDB_FLAG(CMD_INTERRUPT))
2299                        return 0;
2300                p = kdb_curr_task(cpu);
2301                if (kdb_task_state(p, mask))
2302                        kdb_ps1(p);
2303        }
2304        kdb_printf("\n");
2305        /* Now the real tasks */
2306        kdb_do_each_thread(g, p) {
2307                if (KDB_FLAG(CMD_INTERRUPT))
2308                        return 0;
2309                if (kdb_task_state(p, mask))
2310                        kdb_ps1(p);
2311        } kdb_while_each_thread(g, p);
2312
2313        return 0;
2314}
2315
2316/*
2317 * kdb_pid - This function implements the 'pid' command which switches
2318 *      the currently active process.
2319 *              pid [<pid> | R]
2320 */
2321static int kdb_pid(int argc, const char **argv)
2322{
2323        struct task_struct *p;
2324        unsigned long val;
2325        int diag;
2326
2327        if (argc > 1)
2328                return KDB_ARGCOUNT;
2329
2330        if (argc) {
2331                if (strcmp(argv[1], "R") == 0) {
2332                        p = KDB_TSK(kdb_initial_cpu);
2333                } else {
2334                        diag = kdbgetularg(argv[1], &val);
2335                        if (diag)
2336                                return KDB_BADINT;
2337
2338                        p = find_task_by_pid_ns((pid_t)val,     &init_pid_ns);
2339                        if (!p) {
2340                                kdb_printf("No task with pid=%d\n", (pid_t)val);
2341                                return 0;
2342                        }
2343                }
2344                kdb_set_current_task(p);
2345        }
2346        kdb_printf("KDB current process is %s(pid=%d)\n",
2347                   kdb_current_task->comm,
2348                   kdb_current_task->pid);
2349
2350        return 0;
2351}
2352
2353static int kdb_kgdb(int argc, const char **argv)
2354{
2355        return KDB_CMD_KGDB;
2356}
2357
2358/*
2359 * kdb_help - This function implements the 'help' and '?' commands.
2360 */
2361static int kdb_help(int argc, const char **argv)
2362{
2363        kdbtab_t *kt;
2364        int i;
2365
2366        kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2367        kdb_printf("-----------------------------"
2368                   "-----------------------------\n");
2369        for_each_kdbcmd(kt, i) {
2370                char *space = "";
2371                if (KDB_FLAG(CMD_INTERRUPT))
2372                        return 0;
2373                if (!kt->cmd_name)
2374                        continue;
2375                if (strlen(kt->cmd_usage) > 20)
2376                        space = "\n                                    ";
2377                kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2378                           kt->cmd_usage, space, kt->cmd_help);
2379        }
2380        return 0;
2381}
2382
2383/*
2384 * kdb_kill - This function implements the 'kill' commands.
2385 */
2386static int kdb_kill(int argc, const char **argv)
2387{
2388        long sig, pid;
2389        char *endp;
2390        struct task_struct *p;
2391        struct siginfo info;
2392
2393        if (argc != 2)
2394                return KDB_ARGCOUNT;
2395
2396        sig = simple_strtol(argv[1], &endp, 0);
2397        if (*endp)
2398                return KDB_BADINT;
2399        if (sig >= 0) {
2400                kdb_printf("Invalid signal parameter.<-signal>\n");
2401                return 0;
2402        }
2403        sig = -sig;
2404
2405        pid = simple_strtol(argv[2], &endp, 0);
2406        if (*endp)
2407                return KDB_BADINT;
2408        if (pid <= 0) {
2409                kdb_printf("Process ID must be large than 0.\n");
2410                return 0;
2411        }
2412
2413        /* Find the process. */
2414        p = find_task_by_pid_ns(pid, &init_pid_ns);
2415        if (!p) {
2416                kdb_printf("The specified process isn't found.\n");
2417                return 0;
2418        }
2419        p = p->group_leader;
2420        info.si_signo = sig;
2421        info.si_errno = 0;
2422        info.si_code = SI_USER;
2423        info.si_pid = pid;  /* same capabilities as process being signalled */
2424        info.si_uid = 0;    /* kdb has root authority */
2425        kdb_send_sig_info(p, &info);
2426        return 0;
2427}
2428
2429struct kdb_tm {
2430        int tm_sec;     /* seconds */
2431        int tm_min;     /* minutes */
2432        int tm_hour;    /* hours */
2433        int tm_mday;    /* day of the month */
2434        int tm_mon;     /* month */
2435        int tm_year;    /* year */
2436};
2437
2438static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2439{
2440        /* This will work from 1970-2099, 2100 is not a leap year */
2441        static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2442                                 31, 30, 31, 30, 31 };
2443        memset(tm, 0, sizeof(*tm));
2444        tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2445        tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2446                (2 * 365 + 1); /* shift base from 1970 to 1968 */
2447        tm->tm_min =  tm->tm_sec / 60 % 60;
2448        tm->tm_hour = tm->tm_sec / 60 / 60;
2449        tm->tm_sec =  tm->tm_sec % 60;
2450        tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2451        tm->tm_mday %= (4*365+1);
2452        mon_day[1] = 29;
2453        while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2454                tm->tm_mday -= mon_day[tm->tm_mon];
2455                if (++tm->tm_mon == 12) {
2456                        tm->tm_mon = 0;
2457                        ++tm->tm_year;
2458                        mon_day[1] = 28;
2459                }
2460        }
2461        ++tm->tm_mday;
2462}
2463
2464/*
2465 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2466 * I cannot call that code directly from kdb, it has an unconditional
2467 * cli()/sti() and calls routines that take locks which can stop the debugger.
2468 */
2469static void kdb_sysinfo(struct sysinfo *val)
2470{
2471        struct timespec uptime;
2472        do_posix_clock_monotonic_gettime(&uptime);
2473        memset(val, 0, sizeof(*val));
2474        val->uptime = uptime.tv_sec;
2475        val->loads[0] = avenrun[0];
2476        val->loads[1] = avenrun[1];
2477        val->loads[2] = avenrun[2];
2478        val->procs = nr_threads-1;
2479        si_meminfo(val);
2480
2481        return;
2482}
2483
2484/*
2485 * kdb_summary - This function implements the 'summary' command.
2486 */
2487static int kdb_summary(int argc, const char **argv)
2488{
2489        struct timespec now;
2490        struct kdb_tm tm;
2491        struct sysinfo val;
2492
2493        if (argc)
2494                return KDB_ARGCOUNT;
2495
2496        kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2497        kdb_printf("release    %s\n", init_uts_ns.name.release);
2498        kdb_printf("version    %s\n", init_uts_ns.name.version);
2499        kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2500        kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2501        kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2502        kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2503
2504        now = __current_kernel_time();
2505        kdb_gmtime(&now, &tm);
2506        kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2507                   "tz_minuteswest %d\n",
2508                1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2509                tm.tm_hour, tm.tm_min, tm.tm_sec,
2510                sys_tz.tz_minuteswest);
2511
2512        kdb_sysinfo(&val);
2513        kdb_printf("uptime     ");
2514        if (val.uptime > (24*60*60)) {
2515                int days = val.uptime / (24*60*60);
2516                val.uptime %= (24*60*60);
2517                kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2518        }
2519        kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2520
2521        /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2522
2523#define LOAD_INT(x) ((x) >> FSHIFT)
2524#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2525        kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2526                LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2527                LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2528                LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2529#undef LOAD_INT
2530#undef LOAD_FRAC
2531        /* Display in kilobytes */
2532#define K(x) ((x) << (PAGE_SHIFT - 10))
2533        kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2534                   "Buffers:        %8lu kB\n",
2535                   val.totalram, val.freeram, val.bufferram);
2536        return 0;
2537}
2538
2539/*
2540 * kdb_per_cpu - This function implements the 'per_cpu' command.
2541 */
2542static int kdb_per_cpu(int argc, const char **argv)
2543{
2544        char fmtstr[64];
2545        int cpu, diag, nextarg = 1;
2546        unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2547
2548        if (argc < 1 || argc > 3)
2549                return KDB_ARGCOUNT;
2550
2551        diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2552        if (diag)
2553                return diag;
2554
2555        if (argc >= 2) {
2556                diag = kdbgetularg(argv[2], &bytesperword);
2557                if (diag)
2558                        return diag;
2559        }
2560        if (!bytesperword)
2561                bytesperword = KDB_WORD_SIZE;
2562        else if (bytesperword > KDB_WORD_SIZE)
2563                return KDB_BADWIDTH;
2564        sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2565        if (argc >= 3) {
2566                diag = kdbgetularg(argv[3], &whichcpu);
2567                if (diag)
2568                        return diag;
2569                if (!cpu_online(whichcpu)) {
2570                        kdb_printf("cpu %ld is not online\n", whichcpu);
2571                        return KDB_BADCPUNUM;
2572                }
2573        }
2574
2575        /* Most architectures use __per_cpu_offset[cpu], some use
2576         * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2577         */
2578#ifdef  __per_cpu_offset
2579#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2580#else
2581#ifdef  CONFIG_SMP
2582#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2583#else
2584#define KDB_PCU(cpu) 0
2585#endif
2586#endif
2587        for_each_online_cpu(cpu) {
2588                if (KDB_FLAG(CMD_INTERRUPT))
2589                        return 0;
2590
2591                if (whichcpu != ~0UL && whichcpu != cpu)
2592                        continue;
2593                addr = symaddr + KDB_PCU(cpu);
2594                diag = kdb_getword(&val, addr, bytesperword);
2595                if (diag) {
2596                        kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2597                                   "read, diag=%d\n", cpu, addr, diag);
2598                        continue;
2599                }
2600                kdb_printf("%5d ", cpu);
2601                kdb_md_line(fmtstr, addr,
2602                        bytesperword == KDB_WORD_SIZE,
2603                        1, bytesperword, 1, 1, 0);
2604        }
2605#undef KDB_PCU
2606        return 0;
2607}
2608
2609/*
2610 * display help for the use of cmd | grep pattern
2611 */
2612static int kdb_grep_help(int argc, const char **argv)
2613{
2614        kdb_printf("Usage of  cmd args | grep pattern:\n");
2615        kdb_printf("  Any command's output may be filtered through an ");
2616        kdb_printf("emulated 'pipe'.\n");
2617        kdb_printf("  'grep' is just a key word.\n");
2618        kdb_printf("  The pattern may include a very limited set of "
2619                   "metacharacters:\n");
2620        kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2621        kdb_printf("  And if there are spaces in the pattern, you may "
2622                   "quote it:\n");
2623        kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2624                   " or \"^pat tern$\"\n");
2625        return 0;
2626}
2627
2628/*
2629 * kdb_register_repeat - This function is used to register a kernel
2630 *      debugger command.
2631 * Inputs:
2632 *      cmd     Command name
2633 *      func    Function to execute the command
2634 *      usage   A simple usage string showing arguments
2635 *      help    A simple help string describing command
2636 *      repeat  Does the command auto repeat on enter?
2637 * Returns:
2638 *      zero for success, one if a duplicate command.
2639 */
2640#define kdb_command_extend 50   /* arbitrary */
2641int kdb_register_repeat(char *cmd,
2642                        kdb_func_t func,
2643                        char *usage,
2644                        char *help,
2645                        short minlen,
2646                        kdb_repeat_t repeat)
2647{
2648        int i;
2649        kdbtab_t *kp;
2650
2651        /*
2652         *  Brute force method to determine duplicates
2653         */
2654        for_each_kdbcmd(kp, i) {
2655                if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2656                        kdb_printf("Duplicate kdb command registered: "
2657                                "%s, func %p help %s\n", cmd, func, help);
2658                        return 1;
2659                }
2660        }
2661
2662        /*
2663         * Insert command into first available location in table
2664         */
2665        for_each_kdbcmd(kp, i) {
2666                if (kp->cmd_name == NULL)
2667                        break;
2668        }
2669
2670        if (i >= kdb_max_commands) {
2671                kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2672                         kdb_command_extend) * sizeof(*new), GFP_KDB);
2673                if (!new) {
2674                        kdb_printf("Could not allocate new kdb_command "
2675                                   "table\n");
2676                        return 1;
2677                }
2678                if (kdb_commands) {
2679                        memcpy(new, kdb_commands,
2680                          (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2681                        kfree(kdb_commands);
2682                }
2683                memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2684                       kdb_command_extend * sizeof(*new));
2685                kdb_commands = new;
2686                kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2687                kdb_max_commands += kdb_command_extend;
2688        }
2689
2690        kp->cmd_name   = cmd;
2691        kp->cmd_func   = func;
2692        kp->cmd_usage  = usage;
2693        kp->cmd_help   = help;
2694        kp->cmd_flags  = 0;
2695        kp->cmd_minlen = minlen;
2696        kp->cmd_repeat = repeat;
2697
2698        return 0;
2699}
2700EXPORT_SYMBOL_GPL(kdb_register_repeat);
2701
2702
2703/*
2704 * kdb_register - Compatibility register function for commands that do
2705 *      not need to specify a repeat state.  Equivalent to
2706 *      kdb_register_repeat with KDB_REPEAT_NONE.
2707 * Inputs:
2708 *      cmd     Command name
2709 *      func    Function to execute the command
2710 *      usage   A simple usage string showing arguments
2711 *      help    A simple help string describing command
2712 * Returns:
2713 *      zero for success, one if a duplicate command.
2714 */
2715int kdb_register(char *cmd,
2716             kdb_func_t func,
2717             char *usage,
2718             char *help,
2719             short minlen)
2720{
2721        return kdb_register_repeat(cmd, func, usage, help, minlen,
2722                                   KDB_REPEAT_NONE);
2723}
2724EXPORT_SYMBOL_GPL(kdb_register);
2725
2726/*
2727 * kdb_unregister - This function is used to unregister a kernel
2728 *      debugger command.  It is generally called when a module which
2729 *      implements kdb commands is unloaded.
2730 * Inputs:
2731 *      cmd     Command name
2732 * Returns:
2733 *      zero for success, one command not registered.
2734 */
2735int kdb_unregister(char *cmd)
2736{
2737        int i;
2738        kdbtab_t *kp;
2739
2740        /*
2741         *  find the command.
2742         */
2743        for_each_kdbcmd(kp, i) {
2744                if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2745                        kp->cmd_name = NULL;
2746                        return 0;
2747                }
2748        }
2749
2750        /* Couldn't find it.  */
2751        return 1;
2752}
2753EXPORT_SYMBOL_GPL(kdb_unregister);
2754
2755/* Initialize the kdb command table. */
2756static void __init kdb_inittab(void)
2757{
2758        int i;
2759        kdbtab_t *kp;
2760
2761        for_each_kdbcmd(kp, i)
2762                kp->cmd_name = NULL;
2763
2764        kdb_register_repeat("md", kdb_md, "<vaddr>",
2765          "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2766                            KDB_REPEAT_NO_ARGS);
2767        kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2768          "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2769        kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2770          "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2771        kdb_register_repeat("mds", kdb_md, "<vaddr>",
2772          "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2773        kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2774          "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2775        kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2776          "Continue Execution", 1, KDB_REPEAT_NONE);
2777        kdb_register_repeat("rd", kdb_rd, "",
2778          "Display Registers", 0, KDB_REPEAT_NONE);
2779        kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2780          "Modify Registers", 0, KDB_REPEAT_NONE);
2781        kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2782          "Display exception frame", 0, KDB_REPEAT_NONE);
2783        kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2784          "Stack traceback", 1, KDB_REPEAT_NONE);
2785        kdb_register_repeat("btp", kdb_bt, "<pid>",
2786          "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2787        kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2788          "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2789        kdb_register_repeat("btc", kdb_bt, "",
2790          "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2791        kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2792          "Backtrace process given its struct task address", 0,
2793                            KDB_REPEAT_NONE);
2794        kdb_register_repeat("env", kdb_env, "",
2795          "Show environment variables", 0, KDB_REPEAT_NONE);
2796        kdb_register_repeat("set", kdb_set, "",
2797          "Set environment variables", 0, KDB_REPEAT_NONE);
2798        kdb_register_repeat("help", kdb_help, "",
2799          "Display Help Message", 1, KDB_REPEAT_NONE);
2800        kdb_register_repeat("?", kdb_help, "",
2801          "Display Help Message", 0, KDB_REPEAT_NONE);
2802        kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2803          "Switch to new cpu", 0, KDB_REPEAT_NONE);
2804        kdb_register_repeat("kgdb", kdb_kgdb, "",
2805          "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2806        kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2807          "Display active task list", 0, KDB_REPEAT_NONE);
2808        kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2809          "Switch to another task", 0, KDB_REPEAT_NONE);
2810        kdb_register_repeat("reboot", kdb_reboot, "",
2811          "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2812#if defined(CONFIG_MODULES)
2813        kdb_register_repeat("lsmod", kdb_lsmod, "",
2814          "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2815#endif
2816#if defined(CONFIG_MAGIC_SYSRQ)
2817        kdb_register_repeat("sr", kdb_sr, "<key>",
2818          "Magic SysRq key", 0, KDB_REPEAT_NONE);
2819#endif
2820#if defined(CONFIG_PRINTK)
2821        kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2822          "Display syslog buffer", 0, KDB_REPEAT_NONE);
2823#endif
2824        if (arch_kgdb_ops.enable_nmi) {
2825                kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2826                  "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2827        }
2828        kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2829          "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2830        kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2831          "Send a signal to a process", 0, KDB_REPEAT_NONE);
2832        kdb_register_repeat("summary", kdb_summary, "",
2833          "Summarize the system", 4, KDB_REPEAT_NONE);
2834        kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2835          "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2836        kdb_register_repeat("grephelp", kdb_grep_help, "",
2837          "Display help on | grep", 0, KDB_REPEAT_NONE);
2838}
2839
2840/* Execute any commands defined in kdb_cmds.  */
2841static void __init kdb_cmd_init(void)
2842{
2843        int i, diag;
2844        for (i = 0; kdb_cmds[i]; ++i) {
2845                diag = kdb_parse(kdb_cmds[i]);
2846                if (diag)
2847                        kdb_printf("kdb command %s failed, kdb diag %d\n",
2848                                kdb_cmds[i], diag);
2849        }
2850        if (defcmd_in_progress) {
2851                kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2852                kdb_parse("endefcmd");
2853        }
2854}
2855
2856/* Initialize kdb_printf, breakpoint tables and kdb state */
2857void __init kdb_init(int lvl)
2858{
2859        static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2860        int i;
2861
2862        if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2863                return;
2864        for (i = kdb_init_lvl; i < lvl; i++) {
2865                switch (i) {
2866                case KDB_NOT_INITIALIZED:
2867                        kdb_inittab();          /* Initialize Command Table */
2868                        kdb_initbptab();        /* Initialize Breakpoints */
2869                        break;
2870                case KDB_INIT_EARLY:
2871                        kdb_cmd_init();         /* Build kdb_cmds tables */
2872                        break;
2873                }
2874        }
2875        kdb_init_lvl = lvl;
2876}
2877